
Bryn Mawr College Bryn Mawr College 

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College 

Physics Faculty Research and Scholarship Physics 

2022 

Persistent opto-ferroelectric responses in molecular ferroelectrics Persistent opto-ferroelectric responses in molecular ferroelectrics 

Xuanyuan Jiang 

Xiao Wang 

Pratyush Buragohain 

Andy T. Clark 

Haidong Lu 

See next page for additional authors 

Follow this and additional works at: https://repository.brynmawr.edu/physics_pubs 

 Part of the Physics Commons 

Let us know how access to this document bene5ts you. 

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. 
https://repository.brynmawr.edu/physics_pubs/155 

For more information, please contact repository@brynmawr.edu. 

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/physics_pubs
https://repository.brynmawr.edu/physics
https://repository.brynmawr.edu/physics_pubs?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/physics_pubs/155
mailto:repository@brynmawr.edu


Authors Authors 
Xuanyuan Jiang, Xiao Wang, Pratyush Buragohain, Andy T. Clark, Haidong Lu, Shashi Poddar, Le Yu, 
Anthony D. DiChiara, Alexei Gruverman, Xuemei Cheng, and Xiaoshan Xu 



PHYSICAL REVIEW MATERIALS 6, 074412 (2022)

Persistent opto-ferroelectric responses in molecular ferroelectrics

Xuanyuan Jiang,1 Xiao Wang,2 Pratyush Buragohain,1 Andy T. Clark,2 Haidong Lu,1 Shashi Poddar,1 Le Yu,2,3

Anthony D. DiChiara,4 Alexei Gruverman,1,5 Xuemei Cheng ,2 and Xiaoshan Xu 1,5,*

1Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA
2Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA

3School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
4Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA

5Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, USA

(Received 7 March 2022; accepted 30 June 2022; published 29 July 2022)

Persistent photoresponses require optical excitations to metastable states, which are rare of ionic origin due
to the indirect photon-ion interaction. In this work, we explore the photoinduced metastable proton states in the
proton-transfer type molecular ferroelectric croconic acid. We observe that, after the photoexcitation, the changes
of structural and ferroelectric properties relax in ∼103 s, indicating persistent photoresponses of ionic origin.
In contrast, the photoconductivity relaxes within 1 s. The 103 s timescale suggests that the ionic metastable
states result from proton transfer both along and out of the hydrogen bonds. This discovery unveils an ionic
mechanism for the phototunability, which offers persistent opto-ferroelectric control for proton-transfer type
molecular ferroelectrics.

DOI: 10.1103/PhysRevMaterials.6.074412

I. INTRODUCTION

The timescale of a material’s photoresponses, a key param-
eter of optical properties, can vary many orders of magnitude.
For instance, light reflection and absorption are normally
electronic responses that occur in femtoseconds, while the
electrons may excite to metastable states leading to persistent
responses such as hour-long photoluminescence and photo-
conductivity [1–4].

Persistent photoresponse hinges on photoexcitation to
metastable states. The polarization states in ferroelectric ma-
terials offer natural candidates for ionic metastable states.
As illustrated in Fig. 1(a), according to the Frank-Condon
principle [5–7], photoexcitation mostly starts with electronic
excitation in a “vertical” fashion in femtoseconds without
changing the vibrational states of the ions. The excited elec-
tronic states modify the potential energy landscape of the
ions and change the vibrational eigenstates. The ions acquire
energy indirectly, in the form of only a few vibrational energy
quanta (phonons) by transitioning to the modified states. The
probability of photoexcitation to ionic metastable states then
depends on the distortion of the ionic potential energy caused
by the electronic excited states and the mass of the ions. In
this regard, the proton-transfer type molecular ferroelectrics
[8–11] is promising given the strong electron-proton coupling
and the small mass of proton.

Croconic acid (CA) is a prototypical example of proton-
transfer type molecular ferroelectrics, which consists of
stacked herringbone layers [12,13], as shown in Fig. 1(b).
While these layers are held together by the van der Waals
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interactions, the molecules within a layer are connected by
the (ridge and plane) hydrogen bonds (H bond). As depicted
in Fig. 1(c), the protons in the hydrogen bonds have two
energy minima resulting from the double-well potentials. CA
crystals exhibit spontaneous polarization due to the ordering
of proton positions on the same side of the double wells with
a Curie temperature higher than 400 K [13]. Recently, CA has
demonstrated application potential in ferroelectric control of
spintronic devices [14].

Polarization switching of CA corresponds to the collective
transfer of protons to the other wells, or transition between
two tautomers [12]. The vibrational energy quantum can be
estimated as ∼0.1 eV using the uncertainty principle for a
proton in a well of about 0.5 Å wide, which is comparable
to the hydrogen-bond energy [15]. Therefore, the acquisition
of a couple of vibrational energy quanta is enough for pro-
tons to transfer to the other well as a metastable state. In
addition, croconic acid has a large spontaneous polarization
(≈20 µC/cm2) [12,13] originating from both the ordered
protons and the distorted electronic cloud [9,16–18]. The elec-
tronic excitation is expected to have a significant impact on
the proton potential well [9,19] and promote the protons to
the metastable states.

In this work, we studied the responses of structural, ferro-
electric, and electric transport properties to photoexcitation in
CA films. Reversible changes have been observed in crystal
structure and piezoresponse on the order of 103 s, indicating
dominant ionic contributions.

II. EXPERIMENT

CA films were fabricated by physical vapor deposition in
high vacuum (1 × 10–7 Torr) with an EvoVac system from
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FIG. 1. (a) Simulated potential energy landscapes (thick lines) and the vibrational eigenstates (thin lines) of protons in croconic acid
hydrogen bonds. The eigenstates are plotted on the dashed baselines indicating the eigenenergies. The vertical arrow indicates possible proton
transfer after the “vertical” electronic excitation. (b) Fragment of a herringbone layer of the croconic acid crystal structure. The spontaneous
polarization is pointing down. (c) Two croconic acid molecules connected by a ridge hydrogen bond. The dashed circle indicates the other
energy minimum of the proton. The arrows indicate the two potential proton-transfer routes.

Angstrom Engineering on different substrates: 300 nm films
on Al2O3 substrate for time-resolved x-ray diffraction (XRD),
140 nm films on patterned Au/SiO2 substrate with 60 nm
Al2O3 capping layer for photocurrent measurements, and
40 nm films on conductive NiCo2O4/MgAl2O4 for piezore-
sponse force microscopy (PFM). The time-resolved x-ray
diffraction on CA films was carried out at room temperature
at beamline 14-ID-B at the Advanced Photon Source in the
Argonne National Laboratory [20]. Optical excitation during
the x-ray diffraction studies was provided by laser pulses
(500 Hz) with 2 µJ/mm2 (100 mW/cm2) fluence and 330
nm wavelength (3.8 eV) with an electronically adjustable time
delay. The photoconductivity was measured by an impedance
analyzer Solartron 1260, with 1 V and 100 Hz with a com-
mercial diode laser with 400 nm wavelength (3.1 eV) with
140 mW/cm2 fluence. The dimension of the conduction chan-
nel is 10 µm × 100 nm × 80 nm. Local PFM spectroscopic
studies were carried out using a commercial MFP-3D system
from Asylum Research using Cr/Pt/Ir-coated Si probes, in the
resonant enhanced mode using a ∼350 kHz AC signal with
0.8 V drive amplitude. The bias was applied to the tip and the
bottom electrode was grounded in the PFM measurements.
The light source used in the PFM study has 390 nm wave-
length (3.2 eV) with 15 mW/cm2 fluence.

III. RESULTS AND DISCUSSION

A. Photostriction

We studied the photostriction and its timescale of polycrys-
talline CA films using time-resolved XRD, as demonstrated
previously on other ferroelectric materials [20–22]. The
experimental setup is depicted in Fig. 2(a). The lattice con-
stants were extracted from the structural refinement using
the software FULLPROF based on the Pca21 crystal structure

(Supplemental Material, Figs. S1 and S2) [13,23–26], as
shown in Figs. 2(b) and 2(c).

Starting at zero time in Fig. 2(b), the film sample was
photoexcited. All lattice constants increase, consistent with
the expected positive photostriction, because photoexcitation
reduces the order of the protons and molecules which are
otherwise tightly packed. At about 300 s (τ1), while the lattice
expansion continues, the rate of lattice expansion reduces;
the lower expansion rate remains for a timescale of 103 (τ2).
Figure 2(c) displays the lattice change after the photoexcita-
tion is stopped at zero time. The lattice constants decrease
slowly until they relax back to approximately the original
values before the photoexcitation. Interestingly, there also
appears to be two timescales including a fast one (τ1) and a
slow one (τ2) on the order of 102 s and 103 s, respectively.

To check the impact of temperature increase (due to the
light absorption) to the lattice expansion, we measured the
thermal expansion of the CA films directly. As shown in
Fig. 2(d), when the CA films were heated, all lattice constants
increased compared with the room-temperature values, but
with a large anisotropy: The thermal expansion coefficients
are 50, 80, and 27 ppm/K along the a, b, and c axes, respec-
tively. The anisotropy of the thermal expansion is consistent
with the crystal structural anisotropy of CA [13,25] and pre-
vious measurements [27]: the largest expansion is along the
b axis which is the direction along which the herringbone
layers are held together by the van der Waals interaction. The
large difference in anisotropy between Fig. 2(b) and Fig. 2(d)
suggests that the effect of thermal expansion to the observed
photostriction is minimal.

B. Opto-ferroelectric responses

The transfer of protons to the metastable states may also
manifest in the ferroelectric properties of the CA films. More

074412-2
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FIG. 2. (a) Experimental setup for time-resolved synchrotron x-ray diffraction. (b) Time-resolved lattice distortion along three axes under
photoexcitation starting at zero time. (c) Lattice relaxation after the laser is turned off at zero time. (d) Lattice change due to the thermal
expansion with a large anisotropy with respect to the room-temperature values.

specifically, as illustrated in Fig. 1(a), when the protons trans-
fer to the other side of the double well, local dipole moments
opposite to the global polarization direction are generated,
corresponding to an additional internal field. We studied the
ferroelectric switching behavior of the photoexcited CA films
using PFM [28–30]. Previously, we demonstrated that contin-
uous CA films consisting of nanometer-sized grains can be
prepared on conducting oxide films [31–33] and single-grain
ferroelectric switching can be achieved using the conduc-
tive tip of a scanning probe as the top electrode [34]. As
depicted in Fig. 3(a), using the PFM, the time evolution
of piezoresponse of the CA grains was measured. Clear

butterfly-type hysteresis loops have been observed, indicative
of polarization switchability. The coercive voltage is about 6
V (Supplemental Material, Fig. S3) [26], in agreement with
our previous results measured on films grown under similar
conditions [35].

Interestingly, the piezoresponse hysteresis loops after pho-
toexcitation, show dramatic asymmetry that is correlated with
the initial polarization state [Fig. 3(b)]. The hysteresis loops
are shifted to the right immediately after the photoexcitation;
correspondingly, the piezoresponses for the positively and
negatively poled states at zero bias show large contrasts (>2).
The voltage shift of the hysteresis loop in Fig. 3(b) indicates

FIG. 3. (a) Schematic diagram of the internal bias study via piezoresponse force microscope (PFM) under the illumination. (b) Hysteretic
piezoresponse amplitude at different time after photoexcitation stops, showing shape distortions and shifts of the response along the voltage
axis. (c) Internal bias from (b) as a function of relaxation time and the corresponding fit assuming exponential decay. The error bar is 0.01
MV/cm.
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the existence of an internal bias field that is opposite to the
field generated by the initial polarization. The asymmetry
slowly decays over time after the photoexcitation is turned off
and the hysteresis loop becomes symmetric after about 1 h.
To analyze the time evolution of the asymmetry, we plotted
the internal bias as a function of time after the photoexcitation
in Fig. 3(c); a fit assuming exponential decay results in a time
constant of 1.5 × 103 s, consistent with the timescale of the
slow process observed in photostriction.

C. Domainlike and defectlike metastable states

Combining the results from the measurement of photo-
striction and the measurement of photoinduced changes in
piezoresponses, the origin of two metastable states of different
timescales may be inferred.

The decay of 102 s timescale was observed in photo-
striction [Fig. 2(c)] but not in the internal bias field in the
polarization switching processes [Fig. 3(b)], suggesting that
the energy scale of the related metastable state is compara-
ble or less than that of the ferroelectric domain walls. This
is consistent with the metastable states resulting from pro-
ton transfer along the hydrogen bonds [9,10,19], indicated
as route A in Fig. 1(c); the configuration can be viewed as
the reversed single-molecule ferroelectric domain. We call
this the domainlike metastable state. During the polarization
switching process (hysteresis loop measurement), the domain-
like metastable state cannot survive because the electric field
is expected to wipe out all the domain walls and generate a
single domain.

The 103 s timescale was observed in both measurements,
suggesting a different metastable state. The longer timescale
of this metastable state is consistent with a larger energy scale
than that of the domain walls since the polarization switch-
ing process cannot remove this metastable state. We propose
that this metastable state results from proton transfer to an-
other nearby oxygen site, indicated as route B in Fig. 1(c).
Also depicted in Fig. 1(c) is the slight bending (155 °) of
hydrogen bond toward the other oxygen along route B in
the crystal structure [35], suggesting sizable attractive force.
In this metastable state, with the broken hydrogen bond, the
hydrogen becomes an interstitial/vacancy defect. We call this
defectlike metastable state. The proton is further away from
the originally bonded oxygen site, making it more difficult to
return to the ground state, consistent with the internal bias
field that cannot be removed by the polarization switching
process. Another possible origin for the internal bias is the
charge carriers in trap states [36,37], which can be ruled out
because our photoconductivity measurements show a <1 s
timescale (Supplemental Material, Fig. S4) [26].

Previous studies using optical second harmonic generation
indicated a component of the photoresponses of proton-
transfer type ferroelectric crystals up to the microsecond range
[9,10]. Calculations found that the lowest excited electronic
state of the CA molecules carries a dipole moment opposite to
the polarization direction of the CA crystal [9,19]. Based on
these findings, simulations assuming adiabatic processes sug-
gest that the photoinduced electronic excitation causes proton
transfer to the other side of the hydrogen bonds [9], similar
to the route A shown in Fig. 1(c), generating metastable

states in the form of local reversed ferroelectric domains.
However, the observation of two metastable states, especially
one that cannot be removed by the polarization switching pro-
cess, suggests a more complex process that involves different
proton-transfer routes.

D. Double-well model

Here we analyze the proton-transfer process in terms of the
response of proton vibrational states to the change of double
well after the “vertical” electronic excitation. We employ a
double-well model in which most parameters can be estimated
using the known CA crystal structure and a hydrogen-bond
energy, except for the asymmetry parameter which describes
the change of double well due to electronic excitation. The
simplicity of the model allows a straightforward illustration of
the physical process and comparison between multiple proton-
transfer routes.

The potential energy of a proton is assumed to come from
two neighboring oxygen sites separated by distance D0:

VDW(x) = − a(1 − δ)
(
x − D0

2

)4 + b
(
x − D0

2

)8

− a(1 + δ)
(
x + D0

2

)4 + b
(
x + D0

2

)8 , (1)

where a and b are parameters for the attractive and re-
pulsive forces of the oxygen sites and δ is the asymmetry
parameter. For CA crystals, a and b can be determined us-
ing hydrogen-bond energy EHB, proton-oxygen distance x0,
and the hydrogen-bond length L, which are known from the
CA crystal structure (Supplemental Material, Figs. S5, S6,
and Table S1) [26]. The variable δ describes the change of
the double-well potential caused by the electronic excita-
tion. One can numerically solve the vibrational eigenstates by
diagonalizing the Hamiltonian [38] with the potential energy
VDW(x).

For the proton transfer along route A (to domainlike
metastable states), we use the structural parameters x0 =
0.977 Å, L = 1.641 Å, and D0 = 2.618 Å (Supplemental
Material, Figs. S5, S6, and Table S1) [26] and assuming
EHB = 0.3 eV [15,39]. The asymmetry parameters are as-
sumed to be δg = 0.1 and δe = 0.01 with the electronic ground
state and the electronic excited state, respectively.

As shown in Fig. 1(a), with the electronic ground state,
a significant asymmetry is introduced to the proton potential
well using δg = 0.1, due to the local field generated by the
spontaneous polarization. The energy barrier in the middle
is consistent with the result from the previous first-principles
calculations [9]. The proton (vibrational) ground state ψ0 is
local in the left well with an energy lower than the barrier.
The ∼0.1 eV separation between the ψ0 and ψ1 is consistent
with the estimated vibrational energy quantum from the un-
certainty principle, which suggests the protons stay mostly in
the ground state ψ0.

With the electronic excited state, a corresponding dipole
moment [9,19] generates a field opposite to the local field and
reduces the asymmetry of the double well. We represent the
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FIG. 4. (a) Transition probability from the vibrational ground state to the modified eigenstates due to the change of potential energy
landscape. (b) Simulated potential energy landscapes (thick lines) and the vibrational eigenstates (thin lines) of protons. The eigenstates are
plotted on the dashed baselines indicating the eigenenergies. The vertical arrows indicate the potential proton transfer after the “vertical”
electronic excitation. (c) The proton transfer probability as a function of oxygen-oxygen site distance.

effect using a smaller value δe = 0.01 for the proton potential.
The two local states, ψe

0 and ψe
1 , due to the reduced asym-

metry, change substantially from ψ0 and ψ1, respectively,
suggesting a sizable probability for the proton to transfer
from ψ0 (left well) to ψe

1 (right well). Figure 4(a) displays
the transition probability Tn = |〈ψe

n |ψ0〉|2 as a function of
the vibrational energy of the ψe

n state. The probability drops
quickly with energy because the higher energy states are less
affected by the asymmetry change of the well and tend to re-
main orthogonal to ψ0. Therefore, the proton can only acquire
efficiently a few vibrational energy quanta.

The change of asymmetry from δg to δe is critical for the
proton transfer. The total probability of proton transfer from
the left well to the right well is Tpt =

∑
Ti =

∑
|〈ψe

i |ψ0〉|2
for all ψe

i states localized in the right well. It can be shown
(Supplemental Material, Fig. S7) [26], when δe/δg → 1, i.e.,
toward no change of asymmetry, Tpt drops quickly. In contrast,
Tpt is much less sensitive to δg alone if δe/δg is constant. Notice
that δ is a parameter in the model that is hard to estimate from
the known data of CA crystals. The insensitivity of Tpt to δg
makes the model more valid.

For the proton transfer along route B (to defectlike
metastable states), we use D0 = 3.18 Å in the model (Sup-
plemental Material, Figs. S5, S6, and Table S1) [26], with
other parameters kept the same. The results are displayed in
Fig. 4(b). As the two wells are more separated, the states are
more localized compared with those in Fig. 1(a). In addition,
larger D0 also makes the barrier between the two wells higher
for there is less attraction from the other oxygen site. As a
result, additional local states appear. Figure 4(c) shows the
calculated Tpt as a function of D0. In general, larger D0 re-
duces Tpt due to the localization of the vibrational states. On

the other hand, when additional local states appear, Tpt get
boosted, which is the case for route B (D0 = 3.18 Å). This
could be a mechanism for protons to follow route B to reach
the defectlike metastable state.

Overall, the double-well model offers plausible mecha-
nisms for the two proton metastable states that lead to two
different timescales of the photoresponses, with two key fac-
tors: (1) a significant change of protons double-well symmetry
due to the electronic excitation, i.e., strong electron-proton
coupling [9,16–18] and (2) few local vibrational eigenstates so
that the change of double-well symmetry can efficiently mod-
ify these states. These factors are not expected in traditional
oxide ferroelectrics. As a result, the ionic photoresponses of
materials like PbTiO3 are dominated by the classical con-
verse piezoelectric effects following the electronic excitation
in the form of photovoltaic effect with a nanosecond timescale
[21,40], or simply thermal expansion [20].

IV. CONCLUSION

We have demonstrated persistent (∼103 s) reversible struc-
tural responses to photoexcitation in croconic acid using
time-resolved x-ray diffraction. The effect correlates with the
buildup of the internal electric field which relaxes in a sim-
ilar timescale, while the photoconductivity decays within 1
s. These observations indicate that photoexcitation can ef-
fectively promote protons to metastable states, which in turn
have long-lasting impacts on material properties. In particular,
for proton-transfer type ferroelectrics, this mechanism gen-
erates persistent opto-ferroelectric effects which offers novel
control of ferroelectricity and the related devices such as
multiferroic tunnel junctions [14]. The gradual and persistent
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photoresponses are also promising for emulating the pho-
tocontrolled plasticity for neuromorphic computing applica-
tions.
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