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We study frustration-free Hamiltonians of fractional quantum Hall (FQH) states from the point of view of the

matrix product state (MPS) representation of their ground and excited states. There is a wealth of solvable models

relating to FQH physics, which, however, is mostly derived and analyzed from the vantage point of first-quantized

“analytic clustering properties.” In contrast, one obtains long-ranged frustration-free lattice models when these

Hamiltonians are studied in an orbital basis, which is the natural basis for the MPS representation of FQH states.

The connection between MPS-like states and frustration-free parent Hamiltonians is the central guiding principle

in the construction of solvable lattice models, but thus far, only for short-range Hamiltonians and MPSs of finite

bond dimension. The situation in the FQH context is fundamentally different. Here we expose the direct link

between the infinite-bond-dimension MPS structure of Laughlin–conformal field theory (CFT) states and their

parent Hamiltonians. While focusing on the Laughlin state, generalizations to other CFT-MPSs will become

transparent.
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I. INTRODUCTION

The study of the fractional quantum Hall (FQH) effect is

known for its bootstrap approach of producing phase diagrams

via beautiful many-body wave functions [1–7] that are pulled

apparently out of thin air and linked to effective field theory

using a sophisticated array of methods. This seemingly by-

passes the traditional Hamiltonian starting point of condensed

matter physics. In truth, many of the most preeminent FQH

trial wave functions admit [3,5,7–14] parent Hamiltonians

with very useful properties. Such Hamiltonians do not only

cement the status of certain states as incompressible represen-

tatives of viable phases in the FQH regime. On top of that,

they also identify a tower of zero-energy (zero-mode) states

that describes both quasihole and edge degrees of freedom,

and whose angular momentum spectrum is in one-to-one cor-

respondence with the spectrum of a conformal field theory

(CFT). This represents the almost ideal scenario of unam-

biguously extracting low-energy physics from microscopic

principles. Arguably, there is no other regime of correlated

electron physics beyond one spatial dimension with similar

analytic control.

At the same time, one may argue that the picture is not quite

complete. Unlike in one dimension, where this is possible for

many special Hamiltonians, there still lacks an analytic proof

of the existence of an energy gap, a most defining feature

of all of quantum Hall physics, but one that is not shared

by all model Hamiltonians constructed in this context [6,15].

Indeed, as traditionally constructed, the FQH model Hamil-
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tonians bear little resemblance with solvable models in one

dimension. Typically, they are formulated as ultrashort-ranged

k-body interactions in the presence of some form of Landau

level (LL) projection. This description makes efficient use of

analytic clustering properties of prototypical trial wave func-

tions. On the other hand, it leaves LL projection quite implicit,

masking the physical degrees of freedom [16]. This is not

ideal for making statements about spectral properties beyond

the zero-mode space. A radical departure from this is the study

of FQH Hamiltonians in the LL occupation number basis, i.e.,

in second quantization [13,17–21]. In this approach, FQH par-

ent Hamiltonians are indeed formally cast as one-dimensional

lattice models, albeit, crucially, with interactions that are not

strictly finite-ranged. At the pure wave function level, the last

decade has seen similar radically new directions, driven by

the insight that FQH model wave functions are matrix product

states (MPSs) [22–28]. The MPS description likewise tends to

lead to a description in the occupation number basis. Naively,

these developments should elevate our understanding of FQH

parent Hamiltonians to a level similar to that of traditional

frustration-free lattice models in one dimension. However,

the infinite-ranged nature of these lattice Hamiltonians, and

the undoubtedly related fact that no finite bond dimension is

associated to the corresponding FQH-MPS, represent consid-

erable obstacles. Indeed, here we argue that the following may

be the decisive difference between traditional frustration-free

1D lattice models whose spectral feature are well understood,

and the FQH model Hamiltonians in question: The perti-

nent 1D framework [29] heavily capitalizes on the fact that

the existence of frustration-free lattice models is understood

as a consequence of the MPS structure of the respective

states they stabilize. In other words, traditional frustration-free

1D lattice models are constructed to capitalize on the MPS
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structure of certain wave functions, whereas quantum Hall

model Hamiltonians are constructed to capitalize on analytic

clustering properties of first-quantized wave functions. So far,

the only exception to the latter statement may be the com-

posite fermion state Hamiltonians constructed in Ref. [13],

although this construction also did not make contact with

an MPS. To the best of our knowledge, the existence of a

frustration-free parent Hamiltonian in the FQH regime has

thus far not been demonstrated using an orbital-basis MPS

description.

In this paper, we intend to develop such an angle of attack.

Starting from a CFT, and the resulting MPS as constructed in

the literature, we will demonstrate the frustration-free char-

acter of the second-quantized, “lattice” parent Hamiltonian

directly from the orbital-basis MPS formulation of its zero

modes. While focusing on Laughlin states as the key example,

the generic nature of most our reasoning will be evident.

The remainder of this paper is organized as follows. In

Sec. II we review the MPS formalism for FQH states in the

context of the Laughlin state. In Sec. III A we review the

second-quantized representation of fractional quantum Hall

parent Hamiltonians. In Sec. III B we present the induction

step that is the heart of our formalism. It can be seen to

be quite readily generalizable. Section III C discusses those

aspects that are, on the other hand, truly sensitive to details

of the Hamiltonian and the CFT in questions. Formally, this

is the induction beginning of our method. In Sec. III D, we

discuss generic methods to establish the completeness of a

given class of CFT-MPSs within the zero-mode space of the

corresponding parent Hamiltonian. In Sec. III E we take a

detour and discuss variational (non-eigen) quasiparticle states

that emerge naturally from the action of second-quantized

operator algebras on the MPS. We conclude in Sec. IV.

II. MPS REPRESENTATION OF LAUGHLIN STATES

Being the most fundamental fractional quantum Hall state,

the Laughlin state also has the simplest matrix product

representation. Before we can elaborate on its relation to

the existence of a local parent Hamiltonian, we first re-

view the derivation of this MPS representation from CFT

[22,23,25,27]. The filling factor ν = 1/q Laughlin state [1]

for a system of N particles has the wave function

ψL(z1 · · · zN ) =
∏

i< j

(zi − z j )
q, (1)

where we suppress the exponential factor exp[− 1
4

∑

i |zi|2]

and focus on the polynomial part. As is well established in

the literature [2,30–33], and again well covered recently with

MPSs in mind [23–28], Eq. (1) can be written as the CFT cor-

relator of a chiral free massless bosonic theory, or “Coulomb

gas,”

ψL(z1 · · · zN ) = 〈V√
q(zN ) · · ·V√

q(z1)〉, (2)

where V√
q(z) =: ei

√
q φ(z) : is the holomorphic (chiral) part of

the vertex operator. More specifically, it is a primary field

in a chiral free massless bosonic CFT in 1 + 1d with U (1)

charge
√

q (see below). Here we will only summarize defining

properties of this theory and refer the interested reader to

Refs. [32,33]. The chiral bosonic field can be given the mode

expansion defined by

φ(z) = φ0 − ia0 log (z) + i
∑

n �=0

1

n
anz−n, (3)

where the an’s obey the algebra

[φ0, a0] = i, [an, am] = nδn+m,0. (4)

These operators represent neutral excitations of the CFT. They

act on states as follows:

an |N〉 = 0, n > 0, a0 |N〉 = √
qN |N〉 , (5)

where |N〉 is a primary state of the bosonic theory. These states

together with the descendant states,

{a−n1
a−n2

· · · |N〉}, ni ∈ N, (6)

form a basis of the Fock space of this theory. The U (1) charge√
qN , measured by a0 and shifted by exp(i

√
qφ0), will also

play the role of being proportional to the particle number in

the quantum Hall state to be constructed. The an’s operators

are the raising operators that generate the neutral excitations

of the chiral free massless bosonic CFT.

The following steps now result in an MPS form for the

Laughlin state Eq. (2). The vertex operator admits the mode

expansion,

V√
q(z) =

∑

λ

V−λ−hzλ, (7)

where h = q/2 is the conformal dimension of V and

V−λ =
∮

dz

2π i
z−λ−1V√

q(z). (8)

The V√
q(z) operator and its modes commute (anticommute)

for q even (odd), i.e., when the Jastrow factor in Eq. (1) is

describing a symmetric (antisymmetric) function.

This mode expansion allows one to write the correlators (2)

of V ’s in terms of powers of z’s:

ψN (z1 · · · zN ) =
∑

{λi}

〈αout|V−λN −h · · ·V−λ1−h|αin〉
N

∏

i=1

z
λi

i . (9)

Equation (7) formally includes all powers (positive and neg-

ative) of z, but will only contain non-negative powers for the

appropriate choice of “out” and “in” states 〈αout| and |αin〉,
respectively, which we will now discuss. This will lead to the

introduction of the background charge operator. As we will

see, the 〈αout| state sets the “maximum” value of the angular

momentum, λmax = q(N − 1), of the Laughlin state, i.e., the

largest angular momentum that will appear in the resulting

orbital-basis MPS. Correspondingly, we choose the |αin〉 state

to have “minimum” angular momentum λmin = 0.

More concretely, the in-state |αin〉 is defined by the action

on the vacuum |0〉 of the field Vαin
√

q at the origin,

|αin〉 = lim
z→0

Vαin
√

q(z) |0〉 = eiαin
√

qφ0 |0〉 , (10)

where the modes have the property V−λ−h |αin〉 = 0 for λ <

qαin, to ensure the absence of singularities [32,33]. Thus,
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αin = 0 indeed leads to λmin = 0. On the other hand, the out

state is defined via the following limit,

〈αout| = lim
z→∞

zqαout 〈0|V−αout
√

q(z) = 〈0| e−i
√

qαout φ0 , (11)

where 〈αout|V−λ−h = 0 for λ > q(αout − 1), i.e., λmax =
q(αout − 1). Given the above, and the number of vertex op-

erators in (2), we must now enforce the neutrality condition

for the bosonic CFT, which asserts that −αout
√

q + N
√

q +
αin

√
q = 0. This condition must be satisfied; otherwise the

correlator vanishes. Since αin = 0, we get αout = N . This is

indeed consistent with λmax = q(N − 1) being the highest

occupied single particle angular momentum in the Laughlin

state. Through Eq. (11), this introduces a background charge

operator,

Obg = e−i
√

qN φ0 , (12)

to be added in the CFT correlator, which enforces the

neutrality condition. This operator is closely related to

the one generating a uniform charge distribution, Õbg =
exp[−iρ

√
q

∫

d2z φ(z)], where ρ is the electric charge den-

sity. The only difference between these two operators lies

in the log term in Eq. (3). This term generates the Gaussian

factor of the Laughlin wave function, modulo an everywhere

singular gauge transformation [2,23,26,34]. As is customary,

we will usually drop this Gaussian factor, which is merely a

spectator in all of the following. We will thus achieve charge

neutrality through the operator Obg in Eqs. (11) and (12).

The Laughlin wave function (1) is symmetric (antisymmet-

ric) for q even (odd). This is also manifest in Eq. (9) by the

(anti)commutation of the modes V−λ−h. It is somewhat cus-

tomary in the literature, though not strictly necessary for our

purposes, to restrict sums over {λi} by passing from unordered

sequences {λi} to ordered sequences (λi) via

(λi ) :

{

0 � λ1 � · · · λN � λmax, for bosons,

0 � λ1 < · · · λN � λmax, for fermions;
(13)

i.e., we now wish to restrict the sum in Eq. (9) to only the

ordered sets (λi ). Indeed, using the (anti)symmetric commuta-

tors of the modes of the vertex operator, we may equivalently

write

ψN (z1 · · · zN ) =
∑

(λi )

〈αout|V−λN −h · · ·V−λ1−h|αin〉

×
N!

∏

λ lλ!

1

N!

∑

σ∈SN

(sgn σ )q

N
∏

i=1

z
λσi

i , (14)

where lλ is the number of occurrences of λ among the λi. The

ordering of the modes in Eq. (14) must be consistent with (13)

because of their (anti)commutation relations. Note that lλ =
0, 1 for fermions only.

The second line in the last equation can be identified as an

occupation number eigenstate in the angular momentum basis

of the Fock space. As a consequence, the last expression is

manifestly the second-quantized description of the Laughlin

state in this basis,

|ψN 〉 =
∑

(λi )

〈αout|V−λN −h · · ·V−λ1−h|αin〉 |(λi )〉 , (15)

where

〈z1, . . . , zN |(λi )〉 =
1

N!
∏

λ lλ!

∑

σ∈SN

(sgn σ )q

N
∏

i=1

z
λσi

i , (16)

and, in (15) and (16), we dropped an overall normalization

factor N! present in (14), for convenience. We point out that

as a basis of the Fock space, the last equation is not only

lacking the Gaussian factor, which is a trivial (λi)-independent

multiplicative factor, but is in any case not normalized (even

with the Gaussian factor in place). This is to say, we may

think of this basis as created by pseudofermion operators

cλ, c∗
λ, or their bosonic counterparts, where c∗

λ creates a

particle in the un-normalized state zλ exp(−|z|2/4), and the

associated destruction operators cλ may be defined such that

[cλ, c∗
λ′ ]± = δλ,λ′ holds, as in Ref. [13] (with upper [lower]

sign for fermions [bosons]). We use this basis for convenience;

however, it is trivial to convert the coefficients in the above

expansion to ones referring to a normalized basis, where the λ

dependence of proper single-particle normalization factors is

given by (2λλ!)−1/2. In the following, we will for simplicity

refer to the operators cλ, c∗
λ′ as pseudoparticle operators, refer-

ring to both the fermionic and bosonic case on equal footing.

They differ from ordinary ladder operators chiefly through the

fact that the Hermitian adjoint (cλ)† is only proportional to c∗
λ.

The particle number operator can, however, be expressed as

N̂ =
∑

λ c∗
λcλ. We refer the reader to Ref. [13] for details.

With these remarks, Eq. (15) defines an MPS represen-

tation for the N-particle Laughlin state in the basis |(λi)〉
[23–28]. It is common in the literature [25] to further rep-

resent the MPS coefficients, 〈αout|V−λN −h · · ·V−λ1−h|αin〉, in

terms of the “site-dependent” matrices Alλ [λ] ∝ (V−λ−h)lλ :

〈αout|AlqN [qN] · · · Al0 [0]|αin〉, passing to a “site-dependent

MPS” with basis states labeled by orbital occupancies lλ, thus

trading the “external labels” λi that list the occupied angular

momenta for new labels lλ, which list the occupancies of all

possible angular momenta. While one may clearly switch back

and forth between these representations, it will be advanta-

geous for us to work with the original MPS carrying λi-labels,

Eq. (15).

In the present work, we want to make direct contact be-

tween the MPS representation of the Laughlin state (15) and

the existence of a frustration-free parent Hamiltonian. Such

parent Hamiltonians in the fractional quantum Hall regime

traditionally have the benefit of not only counting the incom-

pressible ground state in question among their zero modes,

but also quasihole-type excitations, which increase the angular

momentum of the state. This increase is infinitesimal if the

quasihole approaches the edge of the system, in which case the

zero mode describes a gapless edge excitation. Though strictly

speaking nondispersing, the physical character of these gap-

less edge modes becomes apparent when a confining potential

is added, which may be taken to be proportional to the total

angular momentum. In this way, one recovers gapless, linearly

dispersing edge modes, whose mode counting one expects to

be in one-to-one correspondence with the counting of modes

in the CFT from which the incompressible ground state is

constructed in the manner of Eq. (15). Indeed, one can con-

struct variational MPS states for a set of edge excitations in a

natural manner (see below). It will be an added benefit of this
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work that a closed formalism will emerge to establish these

MPS-edge modes as a complete set of zero modes of some

parent Hamiltonian. In this way, it will become most manifest

that zero-mode counting, which has a long tradition [35–38] in

the field, is in one-to-one correspondence with mode counting

in the associated CFT. This “zero-mode paradigm” is indeed

what one expects of a “good” parent Hamiltonian.

We proceed by reviewing how variational edge modes nat-

urally emerge in the MPS formalism.

In the conformal edge theory, a complete set of edge ex-

citations at fixed particle number is generated by products of

the mode operators a−n, as in Eq. (6). It is thus natural, from a

variational point of view, to replace |αout〉 = |N〉 with Eq. (6)

in the MPS (9) in order to describe edge excitations. This leads

to the following form:

|ψan...
N 〉 =

∑

(λi )

〈N |an · · ·V−λN −h · · ·V−λ1−h|0〉 |(λi )〉 , (17)

where an . . . is short for any products of M mode operators

an1
an2

. . . anM
. While the above motivates the expression (17),

it does not establish this expression from a Hamiltonian prin-

ciple, which we will achieve below. As a stepping stone, it is

worthwhile to motivate Eq. (17) in a slightly different manner.

In first quantization, it is well known that a complete set

of edge excitations of the Laughlin state can be generated by

multiplication of the incompressible Laughlin state with gen-

eral products of power-sum polynomials [18,35,39–41]. The

equivalent of this operation in second quantization, which is

more useful for present purposes, is given by the action of the

operators pn =
∑N

i=1 c∗
λi+ncλi

, which facilitate multiplication

with the power-sum polynomial
∑N

k=1 zn
k [18,41]. The effect

of these operators on the Laughlin state in the MPS form (9)

can be readily worked out:

√
qpn |ψN 〉 = √

q
∑

(λi )

〈N |V−λ1−h · · ·V−λN −h|0〉

×
N

∑

i=1

|λ1, . . . , λi + n, . . . , λN 〉

= √
q

∑

(λi )

(〈N |V−λ1+n−h · · ·V−λN −h|0〉+· · ·) |{λi}〉

=
∑

(λi )

〈N |anV−λ1−h · · ·V−λN −h|0〉 |{λi}〉 =
∣

∣ψ
an

N

〉

,

(18)

where we used the commutation relation

[an,V−λ−h] = √
q V−λ+n−h, (19)

which follows from the more elementary CFT identity [32]
[

an,V√
q(z)

]

= √
qznV√

q(z), (20)

together with Eq. (8) for the modes of the vertex operator.

pn adds n to the Laughlin state total angular momentum and

increases λmax from q(αout − 1) to q(αout − 1) + n.

Equation (18) can be iterated arbitrarily many times to

give the general edge excitation (17). This now establishes

these states (in 17) as a complete set of zero modes in the

MPS form, making a parallel with the power-sum polynomials

in first quantization. In the following section, we will make

the completeness of the set of zero modes in the MPS more

transparent. This now establishes these states as a complete

set of zero modes if we take as given that the pn generate

such when acting on |ψN 〉. While this can be shown in various

ways, we will do so here without leaving the MPS framework.

Moreover, the above establishes a one-to-one correspon-

dence between operator algebras acting on the “real” Hilbert

space describing microscopic degrees of freedom and modes

representing the “virtual” degrees of freedom of the MPS. It is

the fact that this kind of translation is feasible that will make

the developments of the following section possible, where

we explore the action of a Hamiltonian defined in terms of

microscopic electron operators on the MPS states (17).

III. THE ZERO-MODE PROPERTY

A. Hamiltonian and setup

We now derive the fact that Laughlin states admit parent

Hamiltonians with the claimed features from the MPS struc-

ture of the states (17). To this end, we begin by reviewing

pseudopotentials in second quantization. From first quanti-

zation, it is well known that the ν = 1/q-Laughlin state is

annihilated by 2-particle projection operators onto relative an-

gular momentum m known as Haldane pseudopotentials [8],

with m < q and m even (odd) for q even (odd). The second-

quantized version of such a Hamiltonian is of the general form

[17,42,43]

H 1
q

=
∑

0�m<q
(−1)m=(−1)q

∑

R

Q
m†
R Qm

R , (21)

where Qm
R is an operator that annihilates a pair of particles with

total angular momentum 2R. The Hamiltonian is frustration

free, in that the ground state is a zero mode of each of the

(noncommuting) positive-semidefinite terms Q
m†
R Qm

R . The Qm
R

can be chosen such that Qm
R

†Qm
R is precisely the mth Haldane

pseudopotential. However, as we will be interested only in the

zero-mode space, and the zero-mode condition for a ket |ψ〉
can be stated as

Qm
R |ψ〉 = 0 (22)

for all pertinent m and R, one may form linearly independent

new linear combinations of the Qm
R . The resulting Hamiltonian

(21) then has the same zero-mode space as the sum of the

original Haldane pseudopotentials. With this in mind, it was

established in [43] that we may choose

Qm
R =

∑

x

xmcR−xcR+x. (23)

The above operators appear long-ranged in the distance x

only in pseudofermion/boson language. When the normaliza-

tion factors are restored, turning pseudoparticles into ordinary

electron destruction operators via ck → Nkck , the action of

Eq. (23) is seen to be exponentially decaying in x. Indeed,

for m = 0 (bosons) and m = 1 (fermions),
∑

R Qm
R

†Qm
R with

Qm
R chosen as in Eq. (23) is (proportional to) the Haldane

pseudopotential with index m. While the relation is more

complicated for larger m, all statements about zero modes
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that follow do equally apply to Eq. (23) as well as the origi-

nal Haldane pseudopotential’s parent Hamiltonian. Moreover,

while we have the disk geometry in mind, all of the follow-

ing applies also to the other genus-zero geometries, i.e., the

cylinder and sphere, where the Laughlin state is the same in

terms of suitably defined pseudofermions (which is to say

that its first-quantized wave function is given by the same

polynomial).

We are now in a position to demonstrate that the general

MPS (17) is a zero mode of the Hamiltonian (21). We do so

by induction in particle number N . We present the induction

step first. That is, we will first demonstrate

Qm
R |ψan···

N 〉 = 0, (24)

for all half-integer R � 0, all m included in the sum (21), and

all strings an . . . , as long as the same statement is known for

N − 1 in place of N . We note that this is a stronger induction

assumption than that in Ref. [17], which was used there to

relate the zero-mode property to a second-quantized recursion

relation related to Read’s order parameter formalism [44] for

the Laughlin state. Unlike in Ref. [17], we make an induction

assumption for all zero modes, not just the incompressible

Laughlin state. In this way, our reasoning becomes completely

independent of particular properties of the pn discussed ear-

lier. This is the main reason why the present analysis can be

generalized to other CFT-related quantum Hall states and their

parent Hamiltonians.

The two-body operator (23) obeys the following identity,

independently of the form factors (here, xm) [17]:

Qm
R

1

N

∑

λ�0

c∗
λcλ =

2

N
Qm

R +
1

N

∑

λ�0

c∗
λQm

R cλ. (25)

The key insight in utilizing this equation is the realization

that cλ acting on any N-particle state of the form (17) yields

a state to which the induction hypothesis applies, i.e., a linear

combination of N − 1 particle states of the form (17). Then,

when acting with Eq. (25) on any state |ψan···
N 〉, the last term

on the right vanishes by the induction assumption, and the

remaining terms yield (1 − 2/N )Qm
R |ψan···

N 〉 = 0; therefore,

Eq. (24) follows if N > 2.

B. The induction step

To complete the induction step, we must therefore evaluate
√

Ncλ

∣

∣ψ
an...
N

〉

=
∑

(λi )i=1... N−1

〈N |an . . . V−λ−hV−λN−1−h · · ·V−λ1−h|0〉

× |(λi )i=1... N−1〉 . (26)

In the above, it was used that |(λi)i=1... N 〉 as defined in

Eq. (16) equals (
√

N!
∏

λ lλ!)−1c∗
λ1

. . . c∗
λN

|0〉, and that the

modes of V√
q(z) commute (anticommute) for even (odd)

q so we can pull the mode corresponding to the anni-

hilated angular momentum λ to the left. For fermions,

the sign generated by the anticommutation of the modes

of the vertex cancel exactly the sign due to the anti-

commutation of the pseudofermion operators. Let us, for

simplicity, first consider the case where an . . . = an is a

single mode operator. The relation (19) is used to apply

V−λ−h directly on 〈N |, 〈N |anV−λ−hV−λN −h · · ·V−λ1−h|0〉 →
〈N |(V−λ−han + √

qV−λ+n−h)V−λN −h · · ·V−λ1−h|0〉, generating

an extra term involving V−λ−h+n and no an mode. The modes

of the vertex operator modify the final state in the following

way:

〈N |V−λ−h = 〈0| e−i
√

qNφ0V−λ−h = 〈N − 1|
q(N−1)−λ

∑

l=0

bl
q(N−1)−λ,

(27)

where

bl
k =

(−√
q)l

l!

∑

i1+···+il =k

ai1

i1

ai2

i2
· · ·

ail

il
, i j > 0 ⇒ k � l;

b0
k =

{

1, k = 0,

0, k > 0.
(28)

The proof of this result will be left to Appendix A. The oper-

ators bl
k are a collection of l neutral excitations corresponding

to the addition of angular momentum k to the Laughlin state;

i.e., they are in the algebra generated by the modes an, n > 0.

Inserting Eq. (27) into (26) we find

√
Ncλ |ψan

N 〉 =
∑

(λi )i=1... N−1

〈N − 1|

(

q(N−1)−λ
∑

l=0

bl
q(N−1)−λan

+ √
q

q(N−1)−λ+n
∑

l=0

bl
q(N−1)−λ+n

)

× V−λN −h · · ·V−λ1−h|0〉 |(λi )i=1... N−1〉 , (29)

which, by the induction assumption, is a linear combination

of N − 1 particle zero modes. Therefore, the action of Qm
R on

cλ |ψan

N 〉 is zero.

We can, of course, similarly treat cλ |ψN 〉. Moreover, using

the same method (and induction in j), we generally have that

〈N | an1
. . . an j

V−λ−h = 〈N − 1| A, (30)

where A is an element of the algebra generated by the an,

n > 0. The induction hypothesis then implies just as before

that cλ |ψ
an1

... an j

N 〉 is a zero mode. This completes the induction

step. One may recognize the generality of these arguments,

using only general properties of the operators Qm
R , and, despite

our limitation to the free chiral bosonic case, arguably the

CFT in question. Indeed, the case of k-body generalization

of the Qm
R is also quite analogous, the only difference being

that the induction needs to start at N = k. Therefore, the only

aspect that truly depends on details of the Qm
R -like operators

and on the CFT is the induction beginning. Below we continue

discussing this for the Laughlin states.

C. The zero-mode property for two particles

Now let us prove the zero-mode property (24) for N = 2.

In this case we can prove that a state with arbitrary number of

edge excitations can always be written as a linear combination

of

∣

∣ψ
n,l
2

〉

=
1

2

∑

{λ1,λ2}

〈2|V−λ2+n−hV−λ1+l−h|0〉 |λ1, λ2〉, (31)
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for arbitrary n and l , where we have returned to the

nonordered set {λ1, λ2} with the addition of the factor 1/2. For

two excitations al , l > 0, and an, n > 0, we have, according

to (19),

1

q
〈alanV−λ2−hV−λ1−h〉

= 〈V−λ2−hV−λ1+n+l−h〉 + 〈V−λ2+l−hV−λ1+n−h〉
+ 〈V−λ2+n−hV−λ1+l−h〉 + 〈V−λ2+n+l−hV−λ1−h〉. (32)

Adding more than two excitations to the state will only result

in terms of the same general type, and, moreover, the case

of zero and one excitations yield, of course, special instances

thereof. Hence, it is enough to prove Qm
R |ψn,l

2 〉 = 0, with Qm
R

given by (23), for non-negative integers integer n and l:

〈0|Qm
R

∣

∣ψ
n,l
2

〉

=
R

∑

x=−R

xm 1

2

∑

{λ1,λ2}

〈2, 0|V−λ2+n−hV−λ1+l−h|0〉

× [δR+x,λ2
δR−x,λ1

+ (−1)qδR+x,λ1
δR−x,λ2

]

= δq,2R−n−l

R
∑

x=−R

xm(−1)R+x−n

(

q

R + x − n

)

= δq,2R−n−l

q+l
∑

x′=−n

(

x′ −
q − n + l

2

)m

(−1)x′
(

q

x′

)

= 0. (33)

Here, the first line is found by acting with the operator Qm
R on

the two-particle state (31). The second line is found using the

result for the correlator of two modes of the vertex operator

given in Appendix B.

The final line is found using the more elementary result
∑

0� j�q(x − j)q(−1) j
(

q

j

)

= q! ∀x [45], and differentiating it

with respect to x, finding that the sum vanishes for all m < q,

as expected.

This concludes our demonstration of how the existence of

frustration-free parent Hamiltonians for the Laughlin states

can be seen as a consequence of their MPS structure.

D. Considerations of completeness

Having established the existence of a parent Hamiltonian

with zero modes Eq. (17), we would also like to remark

on how to establish the completeness of these zero modes

without leaving the present framework. It has been known

for some time [46,47] that the expansion of Laughlin states,

and similarly other quantum Hall states, in Salter determinants

|(λi)〉 or their bosonic equivalents is characterized by certain

root states |(λr
i )〉. The defining property of |(λr

i )〉 is that it

has nonzero amplitude in the expansion of the underlying

zero mode, and that all other |(λi)〉 with this property can

be obtained from |(λr
i )〉 via sequences of inward-squeezing

processes c∗
i c∗

j c j+rci−r , where i < j, r > 0. The root state

agrees with the thin-torus limit [42,46,48–53]. Furthermore,

|(λr
i )〉 is subject to rules known as generalized Pauli principles

(GPPs) that are characteristic of the quantum Hall state and

its quasihole excitations. In the case of the Laughlin state, the

GPP dictates that there is no more than 1 particle in q adjacent

sites. The root state of the incompressible Laughlin state is

simply the densest Slater determinant consistent with this rule,

having occupancy 100100100100 . . . for q = 3.

It is worth noting that these concepts have nontrivial gen-

eralizations to multicomponent and mixed-LL states [19,21],

leading to entanglement at root level. The root state can then

be thought of as the “entangled DNA” of the quantum Hall

state, encoding much and more of its topological properties.

In essence, the GPP becomes an “entangled Pauli principle”

(EPP).

For both single Landau level and mixed-Landau level

states, a general framework exists to derive the GPP/EPP

as necessary conditions on root states of zero modes of

the respective parent Hamiltonian of the general form (21)

[13,17,19,21,43], assuming one exists. (Again, generalization

to k-particle operators is possible.) One consequence of this

framework is that there cannot be more (linearly independent)

zero modes than root states consistent with the GPP/EPP.

Thus, whenever one has found one zero mode for every per-

missible root pattern, one is assured of the completeness of

such a set of zero modes. This can be applied in the present

situation: For MPS quantum Hall states, Estienne et al. [25]

have derived the systematics of extracting root states. This

shows that the states (17) realize all possible root patterns

consistent with the GPP, and are thus the complete set of zero

modes for the Hamiltonian (21).

E. Quasielectrons

In principle, quasielectron states are expected to emerge as

finite-energy eigenstates of the respective parent Hamiltonian.

Unfortunately, for all Hamiltonians known to us describing

fractional quantum Hall states, such finite-energy eigenstates

have not been obtained exactly. Many variational constructs

exist [1,54–57]. Here we elaborate on a construction that

seems both natural to us and has a simple MPS representation.

Consider again Eq. (18). As we have seen, the operators pn

generate all possible zero modes by acting on the incom-

pressible Laughlin state. Moreover, via the second-quantized

framework developed here, the action of such operators easily

translates into MPSs. One natural approach is to consider

the action of the adjoints, or, related to that (by form fac-

tors arising from the pseudoparticle nature of the cλ, c∗
λ),

the operators p−n, n > 0. A similar approach was taken re-

cently in Ref. [57], where a quasielectron operator has been

constructed that exactly fractionalizes, in that q applications

exactly correspond to the local addition of one electron in the

lowest Landau level, mirroring the celebrated property [58]

of Laughlin’s quasihole operator. Here we take a simplified

approach, and consider the action of the p−n operators on the

incompressible Laughlin state. This lowers angular momen-

tum, and so leads to states with nonzero energy in principle,

at least for finite particle number. In complete analogy with

Eq. (18), one finds

√
qp−n |ψN 〉 = √

q
∑

(λi )

〈N |V−λ1−h · · ·V−λN −h|0〉

N
∑

i=1

|λ1, . . . , λi − n, . . . , λN 〉
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=
∑

(λi )

〈N |V−λ1−h · · ·V−λN −h a−n|0〉 |{λi}〉

=:
∣

∣ψ
a−n

N

〉

, (34)

with obvious generalization to the action of products of p−n

operators. Having well-defined angular momentum, one can

interpret the above as a basis for extended quasielectron states,

with the benefit of having both a nice MPS structure and

a known generating principle in terms of second-quantized

electron operators. We expect that this basis may be key to

understanding relations between different quasielectron con-

structions found in the literature, such as Refs. [28,56], which

emphasizes MPS formalism, and Ref. [57], which emphasizes

second-quantized operator algebras. We stress again that for

quasiholes and in the context of the Haldane pseudopoten-

tial parent Hamiltonian, Eq. (18) is an exact quasihole basis,

whereas for quasiparticles, Eq. (34) is variational in character.

Detailed energetic considerations necessitate putting back the

Gaussian factor dropped below Eq. (12) [59].

IV. CONCLUSION

In this work we have explicitly linked this existence of a

frustration-free parent Hamiltonian of the Laughlin states to

the MPS structure of these states. In doing so, we discussed

the action of certain second-quantized operator algebras on

CFT-derived MPSs, which, in general, also lends itself to a

discussion of quasielectrons of either sign. While we leave

details to future work [60], the framework is expected to

generalize to many existing parent Hamiltonians in the FQH

regime. We argued that this elevates the theory of these Hamil-

tonians to a level that is more on par with the theory of

frustration-free lattice models in one dimension. Specifically,

FQH parent Hamiltonians have recently been constructed that

are not obviously determined by clustering properties of first-

quantized wave functions [13], counter to the tradition of

the field. It is, however, not obvious how to generalize the

construction of Ref. [13]. The present construction is expected

to make such generalization possible. We are hopeful that this

will spur developments leading to a wealth of new solvable

models.
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APPENDIX A

In this Appendix we will show Eq. (27). The normal ordering expansion of the holomorphic part of the vertex operator is

V√
q(z) = ei

√
q φ0 e

√
qa0 log (z)

∞
∏

n=1

e

√
q

n

a−n

z−n e−
√

q

n
an
zn . (A1)

The action of the vertex operator in the dual state is then

〈0| e−i
√

qNφ0V−λ−h = 〈0| e−i
√

qNφ0

∮

dz

2π i

V√
q(z)

zλ+1

= 〈N − 1|
∮

dz

2π i
zq(N−1)−λ−1

∞
∑

l=0

1

l!

( ∞
∑

n=1

−√
q

n

an

zn

)l

, (A2)

where we have used the Taylor expansion

e−√
q

∑∞
n=1

1
n

an
zn =

∞
∑

l=0

1

l!

( ∞
∑

n=1

−√
q

n

an

zn

)l

. (A3)

Expanding again in powers of z each term with power l in the above equation one finds

1

l!

( ∞
∑

n=1

−√
q

n
anz−n

)l

=
1

l!

(−√
qa1)l

zl
+

1

l!

(−√
q)l

z(l+1)

(

∑

i1+···+il =l+1

ai1

i1

ai2

i2
· · ·

ail

il

)

+ · · · =
∞

∑

k=l

bl
kz−k, (A4)

with bl
k defined in (28), yielding

〈N |V−λ−h = 〈N − 1|
∞

∑

l=0
k=l

∞
∑

k=l

bl
k

∮

dz

2π i
zq(N−1)−λ−1−k

= 〈N − 1|
∞

∑

l=0

∞
∑

k=l

bl
kδq(N−1)−λ−k,0. (A5)

The last sum can be evaluated using the definition of bl
k and the Kronecker delta. As a consequence Eq. (27) is found.
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APPENDIX B

In this Appendix we will calculate the correlator of two modes of the vertex operator,

〈2, 0|V−a−hV−b−h|0〉 =
1

(2π i)2

∮

dz1

za+1
1

∮

dz2

zb+1
2

〈2|V (z1)V (z2)|0〉

=
1

(2π i)2

∮

dz1

za+1
1

∮

dz2

zb+1
2

(z1 − z2)q

=
q

∑

k=0

(

q

k

)

(−1)k

(2π i)2

∮

dz1

2π i

z
q−k

1

za+1
1

∮

dz2

2π i

zk
2

zb+1
2

=
q

∑

k=0

(−1)k

(

q

k

)

δq−k,aδk,b =
δq,a+b

(−1)b

(

q

b

)

, (B1)

where we have used the binomial expansion in the second line to find the third one.
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