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Abstract—Unmanned aerial vehicles (a.k.a. drones) with high-
resolution video cameras are useful for applications in e.g.,
public safety and smart farming. Inefficient configurations in
drone video analytics applications due to edge network miscon-
figurations can result in degraded video quality and inefficient
resource utilization. In this paper, we present a novel scheme
for offline/online learning-based network edge orchestration to
achieve pertinent selection of both network protocols and video
properties in multi-drone based video analytics. Our approach
features both supervised and unsupervised machine learning
algorithms to enable decision making for selection of both
network protocols and video properties in the drones’ pre-takeoff
stage i.e., offline stage. In addition, our approach facilitates
drone trajectory optimization during drone flights through an
online reinforcement learning-based multi-agent deep Q-network
algorithm. Evaluation results show how our offline orchestration
can suitably choose network protocols (i.e., amongst TCP/HTTP,
UDP/RTP, QUIC). We also demonstrate how our unsupervised
learning approach outperforms existing learning approaches, and
achieves efficient offloading while also improving the network
performance (i.e., throughput and round-trip time) by least 25%
with satisfactory video quality. Lastly, we show via trace-based
simulations, how our online orchestration achieves 91% of oracle
baseline network throughput performance with comparable video
quality.

Index Terms—Multi-access edge computing, Multi-drone net-
works, Reinforcement learning, Network protocols

I. INTRODUCTION

There is a rapid evolution in systems of unmanned aerial
vehicles (a.k.a. drones) with edge-server architectures fueled
by innovations in multi-access edge computing that are vital
for applications in e.g., public safety and smart farming [1].
Most drone platforms can be equipped with high-resolution
video cameras that can help visualize and monitor target status
via object recognition, motion detection or tracking. Thus,
it is essential to provide capabilities for video processing
through edge network orchestration for application setups with
multiple drones and edge resources [2].

However, issues related to multi-drone video analytics using
edge computing and network control are understudied. Based
on literature surveys [3], [4], prior works only address primi-
tive mechanisms to orchestrate selection of network protocols
and video properties in multi-drone video analytics. Further,
there are significant challenges due to different features in
multi-drone control such as mobility models, limitations in
edge computation and communication resources [5]. Inef-
ficient parameter selection for video processing and edge
network misconfigurations can result in video impairments,

reduced resolution of transmitted videos, and loss of points-
of-interest in multi-drone video analytics applications.

Fig. 1: Overview of multi-drone video analytics setup based
on air-to-air and air-to-ground links with edge servers.

To better understand the requirements of multi-drone video
analytics with edge network orchestration, let us consider the
system setup shown in Figure 1. The setup features a drone-
edge network with air-to-air and air-to-ground wireless links
that utilize an edge server infrastructure on the ground to
enable applications to monitor a surveillance area. System op-
eration requires drones to cooperatively work with each other
when recording surveillance area scene videos at different
angles. This will require selection of a network protocol (i.e.,
amongst TCP/HTTP, UDP/RTP and QUIC [6]) in the drone-
to-drone, drone-to-edge server communications. Also, in such
cases, if the connection among one of the drones to an edge
server is interrupted, the video properties (i.e., video codecs
and resolutions) need to be adapted. Specifically, adaptation
will be required in both the drones’ pre-takeoff stage (offline)
or during drones’ flight (online) to cope with any limitations in
the multi-drone and edge server resources [7], while satisfying
application user experience expectations.

In this paper, we present a novel scheme for offline/online
learning-based multi-drone video analytics through edge net-
work orchestration to achieve pertinent selection of both
network protocols and video properties. Depending on the
drone flight context, the scheme provides either offline (i.e.,
supervised-learning-based or unsupervised-learning-based) or
online (i.e., reinforcement-learning-based) orchestration with:
(1) network protocol selection (i.e., amongst TCP/HTTP,
UDP/RTP, QUIC) for various network conditions and drone
mobility models, and (ii) video properties (i.e., codec, resolu-
tion) selection for video transmission on wireless drone/edge
network links. More specifically, using various machine learn-



ing models, our approach can predict network conditions either
in the pre-takeoff stage (offline) or during (online) application
use for pertinent network protocol and video properties selec-
tion in drone-to-drone and drone-to-edge setups.

Summary of the novel contributions of our work is as
follows: First, our learning-based multi-drone video analyt-
ics with edge network orchestration is based on network
conditions analysis (considering metrics of throughput and
RTT) and video quality analysis (considering metrics of
Peak Signal-To-Noise Ratio i.e., PSNR and video impairment
percentage) in various drone video analytics scenarios. The
orchestration utilizes function-centric computing in the video
analytics where we decouple the application video analytics
pipeline into isolated computer vision functions that can be
executed either on the drone(s) or on the edge server locations.
Our network protocol involves handling network impairments
affecting the switching between high resolution/low resolution
video capture, or the change of video codec selection for
delivering effective scene surveillance.

In addition, considering diverse and realistic system setup
configurations to develop our learning-based approach, we use
a trace-based simulator dataset [8] in our multi-drone video
analytics performance studies. We collect drone traces with
different mobility models and application scenarios from both
real-world drone experiments as well as in simulations. On
these traces, we apply supervised learning based strategies of-
fline to intelligently select potential video capture and network
protocol setup combinations based on expected network char-
acteristics and video quality requirements. Trace-based per-
formance evaluation experiments with our supervised-learning
based approach shows how video quality delivery using suit-
able control networking matches real-world measurements in
terms of machine learning model accuracy.

The remainder of the paper is organized as follows: Sec-
tion II presents related work. In Section III, we present
details of the multi-drone video analytics with edge network
orchestration process and provide an overview of our so-
lution approach along with related performance metrics. In
Section IV, we present two offfine learning-based methods
for either supervised or unsupervised decision making related
to the selection of video properties and network protocol
configurations. Section V enhances the learning-based method
by utilizing a reinforcement-learning based algorithm for
online orchestration. In Section VI, we describe our exper-
imental testbed, performance metrics and evaluation results.
Section VII concludes the paper.

II. RELATED WORK

Drone-edge networks are used to overcome the challenges
of communication in a multi-drone environment. In [9],
authors addressed the problem of enabling the automated
orchestration of smart edge devices through edge and cloud
microservice platforms. However, their work lacks the im-
plementation of networking aspects in terms of end-to-end
orchestration. Specifically, there is a need to address particular
problems concerning selection of pertinent network protocols

that can help to optimize specific smart edge device parameters
for high-resolution video delivery [3], [4]. In our work, we
also leverage the multi-access edge computing paradigm in
our drone-edge setups, and we optimize the user experience
in terms of video quality in the multi-drone video analytics re-
lated application scenarios. Uniquely, our work uses learning-
based strategies network edge orchestration by considering
both network protocol and video properties.

Machine learning as a subset of artificial intelligence, pro-
vides techniques that typically fall under three main cate-
gories: supervised, unsupervised and reinforcement learning.
Supervised/unsupervised learning specifically uses a set of
labeled/unlabeled data samples to learn and map between
the input and output spaces [10], [11]. In our work, we are
interested in the investigation of strategies for applying super-
vised learning-based methods to intelligently provide suitable
network protocol and video capture setups in multi-drone
video analytics related applications. In addition, our work
similarly applies unsupervised learning clustering algorithms
to assist multi-drone video analytics users in their decision
process to select video properties and network protocols.

Machine learning can also be applied for the trajectory
design and power control of multi-drone assisted wireless
networks. Authors in [12] provide an approach to study
trajectory design and analyze network configurations using
Reinforcement Learning (RL) and a echo-state network. Their
work focused on the pre-deployment of drones by using
user location information from social media data in their
solution. Other works such as [13] [14] focus on formulation
of the trajectory as a Markov decision process (MDP). RL
approaches can also include several other applications that
focus on wireless power transfer between drones (in the air)
and energy receivers (on the ground) to design the sub-
optimal trajectories with lower complexities, compared with
conventional power transfer systems [15]. Authors in [16]
apply a deep Q-network (DQN) for optimization of drone
systems navigation. The drones learn based on the received
signal strength information for navigation with the aid of Q-
learning. Our approach builds on this prior work in [16] and
our novelty is in the use of network signal strength along with
video codec information for drones to make dynamic decisions
to stay in the optimal trajectory that helps in transmission of
high-resolution video to meet user expectations.

III. EDGE ORCHESTRATION SOLUTION OVERVIEW

In this section, we provide a background on the process
involved in the multi-drone video analytics with edge network
orchestration in terms of offline and online algorithms.

A. Trace Data Collection and Dataset Components

Figure 2 illustrates the multi-drone video analytics with
edge network orchestration process steps. We use an openly-
accessible trace-based simulator dataset [8] that considers
drone video analytics running on multi-drone configurations
with wireless network control. The real-world traces involve
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Fig. 2: multi-drone video analytics with edge network orchestration process diagram showing how application user requirements
are considered in a trace dataset collection based on which we develop offline and online edge server orchestration algorithms.
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Fig. 3: Network protocol and video properties selection pro-
cess applied after the video preparation from the drone camera,
and before the transmission process from drone to ground.

a multi-drone configuration of 8 drones embedded with high-
definition video cameras that cooperate together along with an
edge server network for video capture across a surveillance
scene. The control of search and intelligence drones involves
data points with various drone positions, speeds and camera
angles. In addition, data points related to drone video analytics
and drone-edge network performance are in the dataset.
Figure 3 shows the available options of network protocols
and video properties that can be chosen in our approach. We
label the video properties and network protocols shown in
Figure 3 as our desired output values. To aid the decision
making, we map the application-layer and transport-layer pro-
tocols and associate them with video transmission properties
of: network protocol and video properties. In terms of the input
objects, we considered two broad categories with total of five
parameter: (i) Analytics Layer: Real-time analytics level, video
quality level, and (ii) System Layer: Parallel level, bandwidth
usage, and on-flight CPU level. As for the testing dataset,
only the input object will be used, and the supervised learning
algorithm will learn the desired output value by itself.

B. Edge Server Orchestration

As shown in Figure 2, our edge server orchestration for
drone control is responsible for processing videos from the
multi-drone deployments. Edge server(s) are tasked to observe
the impact of the initial video codec selection based on the
quality of the video captured. The observation is to verify
whether video quality meets application user requirements
i.e., if the high-quality video delivery is occurring regardless
of the mobility model of the multi-drone configuration and
any impairments resulting from network limitations. Thus,
edge servers analyze the video properties and if necessary,

adapt the future video properties’ settings as well as network
protocol configuration strategies. To make the multi-drone
video analytics flexible, scalable and reusable, edge server
orchestration utilizes function-centric computing, where the
decoupling of the video analytics pipeline is performed into
isolated computer vision functions that are packaged as Docker
containers [17]. Pre-trained learning weights for the edge
server orchestration are derived from the drone traces dataset
detailed above in Section III-A, and are stored in the Docker
containers. A ground operator can use the edge server to
either choose our pre-trained learning weights on the existing
trace dataset or utilize the learning-based algorithm itself
to train and generate more accurate network protocol and
video property configurations relevant to the application user
requirements.

Our proposed learning-based offline and online algorithms
are implemented in the edge server orchestration as part of a
learning engine that serves as a key orchestration component.
More specifically, as shown in Figure 2, the learning engine
is composed of: (i) offline supervised learning and unsuper-
vised learning clustering models that use our algorithms and
updated datasets, and (ii) online DQN trajectory optimization
model. Both algorithms leverage the trace-based simulator
dataset [8] in the learning engine, and information related to
drone mobility models, application imagery and operational
system performance are utitlized in the context of multi-drone
video analytics. Larger trace data fosters accurate decisions to
improve the edge server orchestration performance, and also
guide configurations of upcoming experiments.

IV. LEARNING-BASED VIDEO PROPERTIES AND NETWORK
PROTOCOLS SELECTION

In this section, we detail our offline supervised learning
and unsupervised learning algorithms for multi-drone network
edge orchestration.

A. Supervised Learning Algorithm

Both training phase and testing phase are designed and
described in the following. In general, we use 70% of the
dataset for training and the rest 30% of the dataset is used for
testing, with 10-fold validation method.



1) Training Phase: The training phase is a step that is used
to narrow down the searchable space of traces by filtering our
400 real-world traces database. Although the settings of each
of the traces can be quite varied, they have redundant data
that impacts the learning process. Consequently, it is possible
to find multiple network protocol configurations that satisfy
the needs of the application (e.g., traces with multiple video
resolution settings (720p and 480p) will use the same protocol
settings (e.g., TCP) under ideal network conditions). Hence,
drone operators and experimenters can obtain more number of
choice suggestions with the same application requirements.

With the collected data sets, we used machine learning to
predict the network protocol and video properties used in the
‘high case’ in the post-application measurements. We have
nearly 85% of data in the dataset categorized as a ‘high case’.
Those traces vary by application/transport protocol settings
and video resolution/codec selections. We use the supervised
learning approach to achieve prediction and classification. In
the training phase, four machine learning models from the Sci-
Kit Learn toolkit [18] were used: (i) Kernel-Ridge Regression
(KRR), (i) SVR-RBF (Radial Basis Function kernel SVM),
(iii) Gaussian-Process Regression (GPR), and (iv) Random
Forest Regression (RFR). In essence, machine learning cate-
gorizing allows us to reduce the overhead of relying on the use
of hundreds of redundant schemes. We are able to select the
most optimal choice in terms of network protocol and video
properties, and configure them as preliminary application
settings for the drone flight paths.

2) Testing Phase: To test the accuracy of the machine
learning model predictions, we use 95% confidence interval
range of accuracy on correctly categorized data. In addition,
to evaluate the overall video quality, we use PSNR as a
performance metric as detailed in Section VI-B.

3) Discussion: Although we have labeled data for learning
as categories, the category of the dataset may not be the
best choice overall for satisfactory application user experience.
Here are two examples which can be considered as a risk in
using our supervised learning algorithm in practice:
Example 1: Some drone management systems may only
support UDP, which may not be the most suitable solution.
Example 2: During the processing, the protocol could be
changed in the application to improve the application per-
formance. Thus, a multi-drone and edge server system many
not have a fixed configuration during an experiment. Our
supervised learning output only provides consistent network
protocol and video properties choices which may not suitable
for some advanced situations where dynamic decisions could
provide better performance.

To overcome both questions, we take the following actions:
(i) we unlabel the dataset in terms of protocol selection and
video properties choices, only focusing on the video quality
and the streaming data in order to do clustering on those
datasets, and (ii) we do not determe a precise network proto-
col/video property choice for each dataset i.e., each element
is assigned to all of the available clusters with a different
membership degree for each cluster; once the system setup

requires a dual protocol selection or a drone video resolution
switching strategy, we transition the decision making in the
application to an online procedure described in Section V.

B. Unsupervised Learning Algorithm

Given that we unlabeled the trace data on network protocols
and video properties, we utilize the unsupervised learning
algorithm to aid the decision making in the orchestration
process. The orchestration needs to analyze the unlabeled
data to find the optimal choice of the network protocol or
video properties for a given multi-drone-edge-server appli-
cation context. Clustering algorithm provides either fuzzy or
precise bounds to categorize the unlabeled data into different
categories that map to the potential network protocol and video
properties. As part of the solution approach, we introduce
three different unsupervised learning algorithms, FCM, PCM
and K-means, which belong to two categories on clustering:
either fuzzy or not. FCM is one of the most widely used fuzzy
clustering algorithms expressed as shown in Equation 1.
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where X = z1,...,x,, and V = vq,...,v, are the feature
data and cluster centroids; U = u Sisa fuzzy partition matrix
composed of the membership degree of pattern xj, for a given
cluster ¢; m is the total number of patterns in a given data set
and n is the number of clusters; k is a factor which defines the
fuzziness degree of the partition. In such a FCM algorithm, the
main constraint is that the sum of each column in membership
matrix U is equal to 1. Although FCM is not effective in
finding complex cluster shapes other than the spherical shape,
we still consider FCM as one of the comparison methods to
relatively detect the noise from clustering. Our orchestration
can benefit from FCM on an unbalanced dataset such as e.g.,
the one relating to network protocols. The data imbalance
arises from the fact that we generate more TCP and UDP
based data rather than data on QUIC in our collected dataset.

FCM algorithm produces the memberships of the data points
that are related to the distance of that data point from the
centers of the clusters. Thus, if a data point is equidistant
from the clusters, then it will have the same membership value
in each cluster. In order to prevent such outliers from being
accounted in, another clustering technique was introduced by
Krishnapuram and Keller, named PCM. In contrast to FCM
algorithm, membership value generated by PCM algorithm can
be interpreted as “degree of belongings or compatibility or
typicality”. Typicality degrees are defined to build prototypes
that characterize data subcategories Typicality values with
respect to one cluster do not depend on any of the prototypes
of other clusters. Equation 2 shows the relationships -
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where k is the factor that defines the degree of the partition,
and d?j is the point distances. PCM is different from FCM



because of the u variable addition, which is called the “scale”
parameter that is estimated from the data to prevent outliers.

The logic of our unsupervised clustering algorithm selec-
tion is as follows: Initially, all three unsupervised learning
algorithms are considered. If user provides the number of the
clusters, the K-means algorithm will be used for obtaining
results. If the cluster number is not restricted, we will use
recursion utilizing either PCM or FCM to select the optimal
number of clusters based on the network performance and
video quality metrics. By evaluating the network performance
(average throughput) and video metrics (minimum PSNR), we
choose the lower limit of the number of clusters among all
outputs.

To conclude, we can observe that both the supervised and
unsupervised learning algorithms provide offfine results which
only provide guidance in the pre-takeoff stage on multi-drone
video analytics with edge network orchestration. In the case
where we deal with intermittent network failures or other
environment limitations, we transition the decision making in
the application to an online procedure described in Section V.

V. REINFORCEMENT LEARNING BASED DRONE
TRAJECTORY OPTIMIZATION

In this section, we first describe the motivations for our
online orchestration. Following this, we present our reinforce-
ment learning based drone trajectory optimization algorithm.

A. Orchestration Motivation for Online Learning

Unsupervised learning could receive cluster combination
options offline i.e., in the pre-takeoff stage of drones. However,
during mid-flight operation, there might be a necessity to
change the network protocol or video properties online to
achieve better results which satisfy user experience expecta-
tions. For this purpose, we need to analyze the trajectories
of drones and video quality by selection of pertinent network
protocol and video codecs. We propose a multi-agent DQN
algorithm for intelligent path planning of the drones.

B. Multi-Agent Deep Q-Network

To achieve intelligent trajectory learning, we propose a
multi-agent Deep Q-Network [19], [20] based method which
aims to establish an optimal policy for drones’ path selection
as per changes in network performance and video quality. The
path selection aids the drones to learn and make necessary
sequence of decisions under uncertainty in drone-edge network
conditions. The learning involved in path selection by the
drones can be represented as a Markov Decision Process [21]
(MDP) which forms the basis for the DQN algorithm.

A similar approach to formulate an MDP for intelligent
trajectory design for drones is shown in [22]. Figure 2 shows
(see bottom portion related to online DQN) the basic steps for
formulating an MDP, and the subsequent use of DQN (detailed
in following sub-section) to obtain the drone trajectory update
guidance.

The multi-agent DQN uses Boltzmann’s Q policy [23] by
considering a continuous state space that allows the drones

to explore and exploit [24] the learning environment to the
largest extent possible along with a sequential memory called
replay buffer to store the state-action pairs along with re-
wards for reinforcement learning based simulations denoted
by (s°a",r, sol). The output is the drone trajectory update
guidance that is used to keep the drones as much as possible
in their optimal trajectories. The intelligent trajectory learning
detailed in the following sub-section renders network perfor-
mance in terms of throughput and the video quality scores
(i.e., rewards) obtained in the learning process.

C. Intelligent Trajectory Learning

The agents are operating in the environment are denoted by
D(n), where n represents the number of drones, and the time
intervals in which they carry out surveillance are considered to
be irregular. We refer to each of these time steps as episodes.
During each episode, the agents hover over specific regions
in discrete time steps denoted by At and observe a global
state given by sf = (Sy, S1, S2,S3) that represents 'Random
Area’, 'Secure Area’, 'Precarious Area’ and 'Terminal State’,
respectively and perform independent actions ay = Ao, Ay
and A, that represent "Hover’, "Move rapidly’, and ’Land to
recharge’, respectively and receive global reward ry.;. Let C
be the cost associated with the network protocol and video
properties selection, with ¢ being the task of switching the
video codec along with resolution i.e., H.265 HEVC and
H.264 AVC between 720p, 1080p and 2K. The immediate
costs of actions a;‘(i) are given by -

Cswitch(sg7 a?(l))7 Zfa’g(z) 2 1
Cstable (57 af(i)), ifa?(i) =0

U(sy, ay)) = { 3)
Where Cliten represents the cost of switching resolution
of the video stream due to increased traffic in a particular
state, and Clszqpie 1S the cost related to the change in network
performance in the stable state. The total long term cost is the
expected sum of all the components’ immediate costs, given

by -
U (s) =Y (s7,aiy) &)
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Let d be the distance that the drones travel in the secure
area S1, A is the network wavelength and § is the bandwidth
of the network and frequency lies in the range (2.4 GHz
to 5.8 GHz). It is assumed that the best network conditions
are available when drones hover in S;, and transmit high
resolution video. As the drones keep taking actions to reach the
secure state, there is a possibility of a large number of drones
accumulating in the same space creating traffic and ( is over-
utilized. This results in frame stalling, distortion and blurring
of the video. To effectively use 3, the agent has to remain in
the S7 and simultaneously continue to configure the network
protocol. The reward associated with the reliable connection
establishment after entering a new state at cost Cszqp1 1S given

by -
P (s°)
A
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The reward associated with the agent hovering over the secure
state that allows for highest quality video resolution at cost
Cswitch is given by -

R(s7, 0} )video = o [1 = [72=]°4] 4™ (s) (6)

max

where « is the security parameter associated with S;. The
global reward function of a state-action pair of an episode is
given as the sum of the two intermediate rewards.

Tnet = R(Sfa a?)video + R(Stoa a?)network: (7)

The trajectory learning of the drones occurs by maximizing
the gain G; along their path which is a function of expected
cumulative discounted rewards.

o0

Gr = E[Y_7"rnet(s7, af')] ®)
n=0

where «y is the discount factor (0 < ~ < 1). Each action
change may only produce a small reward. Thus, we require the
value of the discount factor « to be such that it maximizes the
cumulative reward. The multi-agent DQN uses an estimator
neural network (parameterized by #) and a target neural
network (parameterized by 6’ along with the replay memory
to approximate the action-value function. The DQN is trained
using the loss function-

L(0) = Elrpe; +ymazQ(s¢ ,al;0') — Q(s7,at); 0] (9)

The estimator and target neural networks have pre-defined
weights. The estimator takes state space values (s¢) of a drone
as input, and generates action value function Q(s{,a}"). The
target network’s weights are updated at specific predefined
intervals so that they match with weights of the estimator net-
work to produce maximum value of the action-value function
and add stability to the performance. While back-propagating,
the weights of both networks are updated in an iterative
fashion and the output values come close to the optimal
value. All experiences (s°,a%,r, 50/) are stored in the replay
buffer and are sampled uniformly as training examples. This
process makes sure that the there is no correlation between the
training examples which may lead the policy to reach a local
minima, and is followed until optimal Q function Q% (s¢, a})
is obtained. Once the optimal value is reached, our DQN
algorithm converges. The optimal Q function is given as -
Qi(s7.a}) = B[S 7 (rnetls®, a®)] (10)
k
From our empirical observations, our proposed DQN best
converges at v = 0.8. The optimal policy which maps the
state-space and actions, 7 : S; — Ay is given as -

7T;,k = argminﬂ' Z ¢ﬂ($?7 a’?(v))
1€€

(1)

The optimal policy governs the convergence of the multi-
agent DQN algorithm and leads the agents (drones) in in-
dependent intelligent path, orchestrating network and video
analytics during their flight operations. We remark that the
online decision making delay can be ignored compared to

the whole multi-drone mission period in applications because
the actual delay value depends on the learning period and the
convergence efficiency.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation
of various machine learning models in the orchestration of
network protocols and video parmeters selection in multi-
drone video analytics. We first describe our experiment setup
and data collection. Following this, we detail results for our
supervised, unsupervised and reinforcement learning based
models. Finally, we present a discussion of the salient findings.

A. Experiment Setup

For evaluation of our edge network orchestration algorithms,
we use data collection from a hierarchical drone configuration
(detailed in Section III) that is controlled within a drone-edge
network with varying considerations such as: different mobil-
ity models and number of drones in a fleet. We specifically
use the Gauss-Markov Mobility Model to simulate the drone
behavior in multi-drone configurations as detailed in [25].
The Gauss-Markov Mobility model can easily and inherently
eliminate abrupt stops and sharp turns by allowing past veloc-
ities/directions to influence future velocities/directions [26].

TABLE I: Environment Settings used in Experiments

Application Settings Network Settings
Number of drones: 10-30 | Application Bit rate: 6 Mbps
Flight area: 10-15 miles | Tx power: 32-48 dBm
Transmission range: 50-250 m | Tx/Rx gain: 3 dB
Simulation time: 1000-3000 s | WIFI protocol 802.11 n/ac
Avg. drone speed: 10 - 35 mph | Modulation: OFDM
Prop. Model: TWO RAY | Data rate: 65 Mbps

From the drone video and drone trace datasets, we gathered
the original video property settings in terms of video codec
type, and video resolution into our learning-based database.
Traces are formatted and stored in the form of CSV files.
Within these traces, we collect data on the network protocols,
i.e., TCP, UDP, and QUIC. Our dataset features three different
video resolutions (1344x756, 1902x1071, 2688x1322). For
each video resolution, we have 20 video clips each with 50
seconds duration and having a frame rate of 30 frames/second.
In terms of video codecs, we have videos with both H.265 and
H.264 codecs. We labeled the data with the video properties
and network protocols as the output, and the rest of the settings
as the input. The video captured by drone swarms contains
various scenes, i.e., metropolitan area, urban area, city park,
and crop area [8]. In the video analytics, we process each live
stream through an image processing pipeline that comprises of
a pre-trained model designed for pedestrian detection running
on Tensorflow, and an object detection function to detect
number of pedestrians in each frame.

For the network performance evaluation, we created a
computing environment with a desktop serving an edge server.
Nvidia Jetson Nano was used as an embedded drone device to
process the network performance and video properties. Other
related application and network settings on the trace-based
simulation can be found in Table I.



B. Network Performance and Video Quality Measurement

Unstable network quality or intermittent outages can fre-
quently occur in the drone-edge network, which could sig-
nificantly influence the drone video analytics tasks at the
application level (due to the impact on computation offload-
ing), and at the drone guidance level (due to impact on
operational commands from the edge server/ground control
station). To characterize the network performance in a drone-
edge network, we use a network recovery time that estimates
the network quality before we make offline decisions on
video transmission parameters or operational command control
settings. In addition, throughput and round-trip-time (RTT) are
also considered as evaluation metrics.

To measure the video quality, we consider both objective
and subjective metrics. First, for the objective metric, we use
the Peak Signal-To-Noise Ratio (PSNR) to measure the quality
of the video streamed by the drones. Note that the PNSR
values in the range of 15 dB to 25 dB are considered to be
at a minimally acceptable level and indicate poor network
connectivity between the sender and receiver of the video
streams. Values of PNSR above 25 dB and upto 40 dB are
deemed to be good for user experience of video quality,
and particularly 32 dB and higher values are ideal to meet
most users’ satisfaction levels of video quality. Hence, we
assume that the transmitted video quality can be rectified
effectively by camera control if the PSNR is less than or
equal to a fixed threshold e.g., <30 dB. If the PSNR value
is within such limits, then the impairments in the video can
be mitigated by instructing the drone through the controller (at
the edge server) to stream higher-resolution video. If the PSNR
threshold is e.g., >30, then the controller communicates to a
nearby drone to capture the required high-quality video in the
drone-edge network. This process iterates until the required
high-resolution quality of the video is streamed as part of the
video streaming process across the drone-edge network.

The subjective metric we consider in the unsupervised
learning based algorithm is the Mean Opinion Score (MOS),
which is widely used metric for subjective assessment of video
quality with human subjects. MOS is used to rank perceptual
quality of an end-user on a subjective quality scale of 1 to
5. The [1, 3) range corresponds to ‘“Poor” grade where an
end-user perceives severe and frequent impairments that make
the application unusable. The [3, 4) range corresponds to
“Acceptable” grade where an end-user perceives intermittent
impairments yet the application is mostly usable. Lastly, the
[4, 5] range corresponds to “Good” grade where an end-user
perceives none or minimal impairments and the application is
always usable.

C. Offline Supervised Learning Model Evaluation

We selected four different machine learning models, i.e.,
KRR, SVR-RBF, GPR, and RFR for both the test phase
and training phase in our supervised learning method. In
these models, initially, we were primarily concerned about
the prediction accuracy on networking protocols and video

TABLE II: The average training time taken by various Super-
vised Learning models (= RMSE) based on trace based dataset

in terms of network protocol and video ]%roperties rediction.
Model Type \ Protocol Prediction \ Video Properties Prediction

KRR 0.120+0.00362 0.004-£0.00272
SVR-RBF 0.099+0.01620 0.068+0.00252
GPR 2.1702£0.00100 1.962+0.00000
RFR 0.205+0.05400 0.156+0.05400

properties. However, all machine learning models achieved
similar high accuracy on prediction (0.954+0.036) in both the
network protocol and video properties selection cases. Hence,
we selected the models based on the shortest training time
with relatively smaller RMSE (Root Mean Square Error), as
indicated in Table II. For the network protocol prediction, we
found that the model that had the shortest training time was
the SVR-RBF model. For the video properties prediction, the
best performance was seen in the KRR model.

We compared our learning-based trace simulation results
with previous policy-based estimation and pure NS-3 simula-
tion traces [27]. The scheme in [27] uses a simple policy-based
decision-making algorithm to determine network protocol and
video properties. As shown in Table III, without the supervised
machine learning prediction, the accuracy of network protocol
and video property selection is relatively low and uncertain.
Even for the PSNR testing after reproducing the traces, a
policy-based estimation can only achieve a PSNR at around
30 dB, which is is not ideal for user experience expectations
of the video quality.

We evaluated the performance of our supervised machine
learning approach, against the 300 diverse traces selected from
our database as part of the testing set. In each of the traces,
the number of objects and their locations are distinct from the
traces in the training set. To test the system’s ability to adapt
to various network bandwidth constraints, we evaluated each
trace with 5 network condition settings, ranging from 50 Mbps
to 2 Gbps. Table III provides the supervised machine learning
model results on network protocol and video properties se-
lection. We compared results with real-world experiments for
each model and also calculated the 95% CI of accuracy for
each model. We conclude that: (a) RFR gives more accuracy
on networking protocol and video property selection. However,
the decision performance is in the unstable range of PSNR
within the transmitted video; and (b) KRR can generate more
reliable results with a stable range of PSNR, although the
performance is lower than other machine learning models.

D. Offline Unsupervised Learning Model Evaluation

Since both, FCM and PCM are two C-means-based cluster-
ing algorithms and with similar clustering logic instead of K-
means algorithm, we first evaluated the performance between
these two algorithms. Three C-means related evaluation met-
rics are considered to evaluate the accuracy of PCM and FCM.
These metrics are: Dunn Index (D), Davies-Bouldin Index
(DB), and Partition Coefficient Index (PC) on Coefficient
Index (PC). DB index considers the dispersion and separation



TABLE III: Comparison of prediction among policy-based
estimate (baseline) and the four supervised machine learning
models. PSNR results shown are the [min, max] values among
all the experiments with the video trace data.

Protocol Video Property

Model Type 95% CI 95% CI PSNR
Policy-based | (0.267, 0.6577) (0.1904,0.2715) | [26.71, 33.59]
KRR (0.652, 0.928) (0.803,0.927) | [32.86, 35.93]
SVR-RBF (0.779, 0.833) (0.9034,0.952) | [30.59, 33.93]
GPR (0.813,0.882) (0.7523,0.8) | [29.26, 32.86]
RFR (0.9124,0.96) (0.9032,0.97) | [22.26, 29.37]

TABLE IV: Unsupervised C-Means clustering algorithm ac-
curacy comparison

Algo. D DB PC
Video FCM | 5.89102e-05 1.5634 0.7444
PCM 1.1012e-04  2.0972e-03  1.3677
Network FCM 0.005 0.7195 0.7982
PCM 7.725e-03 0.513 1.5053

of all clusters, the Dunn Index only considers the worst cases
in the clustering i.e., it considers the clusters that are closest
together and the single most dispersed cluster. In addition,
partition coefficient index only uses the membership matrix to
compute the index based on the table and clustering results.

According to the definition, the lower DB, higher PC,
and higher Dunn index indicate a better cluster. As we can
observe from the Table IV, PCM outperforms FCM on both
network protocol and video properties categories. Thus, we
prefer to choose PCM as our C-means clustering algorithm to
compare with the K-means clustering algorithm. The reason
why the performance of FCM is lower than PCM could be
attributed to the fact that: (i) its noise points or the outliers are
also accounted in the membership values, and (ii) it detects
spherical clusters effectively, but is not effective in finding
other cluster shapes.

To summarize, in the comparison of C-Means and K-
Means cluster, we will only choose PCM as our C-Means
solution. For network performance evaluation, we use both
throughput and round-trip time (RTT) as the metrics, and for
the video properties evaluation, we use the PSNR objective
metric as well as the MOS subjective metric. For the subjective
assessment, we recruited 10 human subjects and asked the
participants to provide their MOS rankings on a 1 (Poor) - 5
(Excellent) scale to assess their experience quality with 95%
confidence intervals. We have the following observations on
both network performance and video quality sides:

1) PCM improves overall network performance on network
protocol selection: Figure 4 shows how PCM clustering
improves overall network performance in comparison with K-
Means approach. By selecting PCM as the clustering strategy,
categories which are assigned to use TCP, UDP, and QUIC
as the transport protocol on video data transmission could
achieve at least 25% of improvement, as well as at least
18% of reduction in delay in terms of RTT. In contrast
to PCM clustering, K-Means clustering prediction results in
poor overall bandwidth and delay (up to 50% reduction in
throughput and RTT).

The reason why the K-Means clustering algorithm failed
to choose the proper network protocol is that: (i) for large
dataset and multi-dimensional inputs, K-Means can easily be
trapped into a local minimum, even in a long term of training,
which will in turn categorize the traces into the wrong cluster;
and (ii) the dataset labels in terms of network protocols are
unbalanced e.g., we only obtained limited amount of drone
traces from QUIC protocol compared with TCP and UDP. The
unbalanced dataset will influence the K-means centroid and
result in an abandonment of the small cluster.

r
/

I mm— TCP-PCM
/ e TCP-K-means
= umun UDP-PCM
I = mmmw UDP-K-means
l == = = QUIC-PCM
e wm wm QUIC-K-means
T T

I - T
5 7 8 9 10

Throughput

(=)}

L
*

a2
>
L)

NG
»
\

s TCP-PCM
s TCP-K-means
=mmusn UDP-PCM

= uumn UDP-K-means
== = = QUIC-PCM
e wm mm QUIC-K-means
Il Il Il Il

20 30 40 50 60 70
RTT (ms)

Yamnmmnan,

L T

[l

Fig. 4: Cumulative distribution function (cdf) of: network
throughput (Mbps), and RTT (ms) - for the PCM and K-means
clustering algorithms; each group is categorized according to
TCP, UDP and QUIC protocol.

2) PCM improves overall video quality performance after
transmission: Table V shows both objective (i.e., PSNR) and
subjective (MOS) measurements related to the performance
of PCM and K-Means algorithms for clustering the video
properties. Q1 to @5 in the table represent 5 survey questions
that were used to obtain related MOS rankings from partic-
ipants: video quality, video smoothness, no blur effects, no
frame freezes, and no tiling effects. The baseline represents the
original video captured from the camera on the drone. Since
there is no transmission process, the PSNR does not apply to
the baseline videos. We can observe that the PCM can achieve
acceptable video quality comparable to the MOS rankings on
the original video, which is in contrast to K-Means clustering
with low MOS rankings for all 5 survey questions. Also, the
PSNR results show a similar difference as well. Overall, PCM
clustering can improve both overall network performance and
video quality by making near-optimized decisions.

E. Online RL-based Model Evaluation

Figure 5 illustrates the network performance difference be-
tween PCM and DQN as the learning procedure. In this exper-
iment, we use the trace-based simulation dataset. The benefit
of using simulation instead of the real-world experiment is that
simulation could provide any potential combinations without
limitations. Baseline data represents the oracle situation when



TABLE V: MOS measurement and PSNR results on K-Means, PCM and Baseline.

Approach | Q1 Q2 Q3 Q4 Q5 Overall | PSNR

K-Means 1.65+0.3 1.59+04 2.61£0.3 247412 2.26+0.5 2.12+0.4 [27.35,33.90]
PCM 3.2740.1 3.70£0.1 4.11+£0.0 4.23+0.3 4.174+0.2  3.9040.15 [32.32,39.00]

Baseline 4.64+0.3 4.8940.1 4.7340. 49140.1 4.8240.2 4.7940.2 N/A
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Fig. 5: Throughput performance comparison of PCM, DQN
(with LR = 0.001) and Baseline in a trace-based experiment.

the drone is aware of the network situation in advance, which
is an unrealistic assumption in real-world operations.

As we can observe from Figure 5, it is clear that - with
the DQN model, trace-based experiments can achieve better
throughput performance than PCM comparable with the oracle
baseline. Specifically, according to the results of our presented
experiments, by utilizing DQN as the online orchestration
algorithm, we can achieve at least 91% of throughput per-
formance of the oracle baseline approach. In the same case,
the PCM can only achieve around half of the throughput per-
formance. The reason for the sudden drops in DQN throughput
is that DQN model may provide a flawed prediction when the
drone flies across area boundaries. However, DQN can recover
from these negative reward conditions in a short time (~20s)
and resume the high throughput. It is worth noting that online
DQN learning exhibits similar results to offline unsupervised
learning (i.e., PCM) in terms of video properties performance.
This observation shows that - dynamically changing video
properties according to the drone’s trajectory does not increase
the video quality after transmission. Another significant obser-
vation is that - we expected a better network performance that
can improve the video quality after the transmission process,
but we did not get the expected experimental results. This
may be because of other factors i.e., the environment, noise,
or delay caused by frequent video codec changes that influence
the improvement of the video quality.

F. Overall Results Discussion

In this section, we conclude how different learning ap-
proaches used in multi-drone video analytics with edge net-
work orchestration have advantages and disadvantages. Based
on the conclusions, we provide guidance to drone system
operators on the potential learning-based approach choices that
are suitable in terms of optimizing the selection of network
protocols and video properties.

First, multi-drone applications users demand different net-
work performance and video quality requirements. If the user
requests are related to video quality experience, it is suitable

to use supervised learning with trained weights for decision
making of network protocols and video properties. Secondly,
if no preferred category is needed or supervised learning out-
puts decision cannot achieve the goals, unsupervised learning
algorithms can take the charge of clustering the drone setup
environment into pre-trained categories. As shown from the
experiments on our drone video data and drone trace data,
our unsupervised learning approach could achieve at least
~32 dB value (good video quality as perceived by users)
for PSNR after transmission. Nonetheless, some advanced
network protocols such as QUIC are not commonly used in
commercial drones, which might limit the choices.

Thus, unsupervised learning is not the primary choice for
simple use cases such as: small area surveillance, traffic
management or drone-aided parcel delivery. Computation re-
sources in terms of learning and inference can be embedded
on the drone using edge devices such as Nvidia Jetson [28]. In
such cases, reinforcement learning procedures can be applied
to dynamically optimize the drone trajectories and make
effective predictions to aid decisions for selection of network
protocols and video properties.

VII. CONCLUSION

In this paper, we presented a novel scheme for learning-
based multi-drone video analytics with edge network or-
chestration that considers both network protocol and video
property selection. Three different categories (i.e., supervised,
unsupervised, and RL) of learning based algorithms were pro-
posed and validated to facilitate decision making for pertinent
selection of network protocol and video properties in both an
offline manner (i.e., pre-takeoff stage of drones) and in an
online manner (i.e., during drone(s) flight).

Through evaluation experiments, we showed that our pro-
posed Possibilistic C-means (PCM) learning approach in the
offline setting achieves efficient offloading, while also improv-
ing the network performance (i.e., throughput and round-trip
time) for by least 25% compared with supervised approaches
with acceptable video quality (i.e., PSNR > 32). Also, based
on experiments on a trace-based simulator dataset, we showed
that DQN that utilizes deep reinforcement learning to predict
trajectory in the online setting can allow for dynamic decision-
making, achieving ~91% of the oracle baseline network
throughput performance with comparable video quality. This
is as in the case seen in the unsupervised clustering algorithm’s
performance. These results show that our scheme can be
used to handle significant challenges due to various features
involved in multi-drone control such as mobility models,
limitations in edge computation resources as well as multiple
choices in communication strategies with trade-offs. Thus, our
scheme is relevant for different multi-drone video analytics
applications in e.g., disaster management, smart city traffic
management, and precision agriculture.
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