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We present a fast, matrix-based semi-analytical method to calculate the stray magnetic field and
its derivative above spin textures with cylindrical symmetry. A magnetostatic Green’s function
approach is used to obtain accurate fields and magnetic forces, which are confirmed using micro-
magnetic simulations. The developed method can be used to quickly analyze and fit experimental
measurements of the stray magnetic field (measured, for example, via nitrogen vacancies in dia-
mond) or magnetic forces (measured via magnetic force microscopy) above a thin film or patterned
element. Calculations for magnetic skyrmions show that these techniques have the potential to
distinguish between Bloch and Néel walls for skyrmions in single layer as well as in multilayer thin

films where the wall structure evolves with depth.

I. INTRODUCTION

Skyrmion spin textures are topologically-protected
spin states that are made up of a central, circular out-
of-plane core with a bounding wall that can be Néel- or
Bloch-type depending on the symmetry of the stabiliz-
ing Dzyaloshinskii Moriya interactions. Skyrmions have
recently attracted a great deal of attention due to their
possible applications in spin-based electronics, and due
to their potential to probe new physics' 2. Skyrmions
can be stabilized in single-layer thin films, and multilayer
films provide broader opportunities to modify the mate-
rial properties in order to improve the room temperature
stability of the skyrmions* and counter the skyrmion Hall
effect®. Recently, it has been shown that the domain wall
structure for a skyrmion in a multilayered film can be
more complex than it is in a single magnetic layer, where
the wall structure can evolve with depth from one chi-
rality of Néel wall to the other, with a Bloch wall as an
intermediate state®. Understanding the wall structure of
skyrmions is critical for applications, and can also pro-
vide a means to probe the material properties. More-
over, the three dimensional (3D) nature of spin textures,
particularly how the spin textures evolve with depth,
is, more generally, becoming increasingly important in

magnetism”.

X-ray-based techniques®, especially tomography-based
techniques, are leading to incredible advances in imag-
ing of the internal 3D structure of complex materials®
and depth-dependent spin structures, such as seen with
magnetic skyrmions'®. Lorentz transmission electron mi-
croscopy (LTEM) can also be used to obtain high reso-
lution images of the magnetization state and to deter-
mine the skyrmion wall type, though the interpretation
of measurements on structures with depth-dependent
magnetization is more challenging'*2. Scanning probe
techniques based on nitrogen vacancy (NV) centers in
diamond'3'® and magnetic force microscopy!'® are both
important techniques for obtaining images of spin tex-
tures, and since these are tabletop techniques they of-

fer the advantage that they are more accessible than
synchrotron-based x-ray techniques or LTEM. Moreover,
scanning probe techniques can be used to study samples
that require specific substrates and that consequently
cannot easily be grown directly on membranes. Mod-
eling is, however, key to interpreting experimental data
collected using these techniques since NV centers in di-
amond 7 and quantitative magnetic force microscopy
(MFM)!® both probe the magnetization state indirectly
via measurements made above the sample surface. Both
techniques hence rely on accurate calculations of the
stray magnetic fields.

Much of the modeling work that has been done thus far
to interpret scanning probe images of skyrmions has uti-
lized full micromagnetic simulations. While micromag-
netic simulations are unquestionably useful for capturing
the details of skyrmions in real-world situations, simpli-
fied models are needed to link measurements done above
a magnetic thin film to the the spin texture that are
both straightforward to use and also accurate. Analyti-
cal and semi-analytical methods methods for obtaining
the stray magnetic field and MFM contrast are valu-
able because unlike simulations, they provide a means
to quantitatively fit experimental data to obtain the spin
texture profile and, furthermore, to evaluate the associ-
ated uncertainties.' Analytical expressions derived using
a multi-pole expansion have been used as an alternative
to full simulations'® but this approach only works well
for point-like skyrmions. Here we present an alternate
method to obtain the stray magnetic field and the deriva-
tive of the stray magnetic field that MFM is sensitive to.
We use magnetostatic Green’s functions to derive expres-
sions for the stray field components, and present a semi-
analytical matrix-based implementation of these expres-
sions that can be used to fit experimental data for an ar-
bitrary skyrmion magnetization profile. In fact, the stray
field can be calculated for any other spin texture that has
cylindrical symmetry, for example, vortices or more ex-
otic quasiparticles including skyrmionium textures, and
antiferromagnetic skyrmions?? using this method. Our
method is based on our previous work that used Green’s



function methods to evaluate the demagnetizing fields in
textures with cylindrical symmetry,2! and that method is
extended here to find the exact magnetic field produced
outside the magnet with no approximations. Our ex-
pression provide a straightforward and accurate means to
obtain the stray field above a spin texture with cylindri-
cal symmetry, and the presented 1D matrix calculation
method is significantly faster than using demagnetization
kernel from a traditional 2D micromagnetic solver to find
the stray field for a specified profile.

Of most interest to experimentalists is the possibility
to take a measurement for the stray field or the MFM
signal and find the underlying magnetization profile from
this. Using micromagnetics, this can be a lengthy pro-
cess because it typically involves obtaining relaxed spin
distributions with a large number of cells for a variety of
magnetic properties. Here, we show that it is possible to
not only obtain the predicted stray field profile with the
developed expressions and a matrix approach, but also
to find the best fit skyrmion parameters and detailed in-
formation about the uncertainties in those parameters in
just a few seconds. This proof of principal calculation is
done on synthetic data with a 10% noise added.

Section II outlines analytical expressions for the
skyrmion magnetization profiles that will be used in the
calculation of the stray field. The semi-analytical ap-
proach is described in section III, along with the mi-
cromagnetic simulations that were done to validate the
matrix-based approach. The results section, section IV,
shows calculations of the stray field profiles for several
representative cases and the close match between the
matrix method approach and micromagnetic simulations.
Approaches to the inverse problem of finding a magneti-
zation profile from magnetic field measurements are dis-
cussed and demonstrated. A summary is provided in
section V.

II. SKYRMION MAGNETIZATION MODELS

The skyrmion magnetization distribution, illustrated
in Fig. 1 for a Néel skyrmion, has radial symmetry and
the magnetization is constant along the film thickness.
Hence, the problem can be reduced to a one-dimensional
(1ID) distribution M(r), where r is the radial coordi-
nate in cylindrical coordinate system. The magnetiza-
tion profile is parameterized in terms of the skyrmion
radius R and the skyrmion wall thickness A, as indi-
cated in Fig. 1(b). The skyrmion magnetization can be
described using equation (3) of the supplemental materi-
als of Ref. [22], a profile that is justified by experiments.
Using p, = Rsi/A, 0 = r/A, the magnetization angle
with respect to the out-of-plane z direction is

0(po, 0) =2atan (exp(o — p))

+ 2atan (exp(o+ po)) — (p+ 1)I (1)
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FIG. 1. (Color online) (a) Diagram of a skyrmion with cylin-
drical symmetry in a single ferromagnetic layer of thickness L.
The origin is at the bottom of the thin film. (b) Magnetization
profile of a Néel skyrmion with ¥ = 0, radius Rsx = 145.7 nm,
and A = 4.8 nm from Eq. (1). The out-of-plane component
(light blue) and the radial component (purple) are shown.

where p = =1 is the skyrmion polarization, i.e., the
out-of-plane direction of the skymrion core. Eq. (1)
can be used to describe a skyrmion of Bloch, Néel, or
mixed character by introducing a parameter @ to de-
scribe the in-plane magnetization angle. The out-of-
plane normalized magnetization is m, = M, /M, = cos#,
and the in-plane radial and azimuthal components are
m, = Mypcosy and my = My, sing) respectively, where
Mip(Po, 0) = /1 —m? and all components of the magne-
tization are normalized by the saturation magnetization
M. For a Néel wall that points radially outwards (in-
wards), ¢ = 0 (m), whereas for a Bloch wall, ¢ = £7/2.
Fig. 1(b) shows the magnetization profile of a represen-
tative Néel skyrmion with ) =0 and p = 1.

In our calculation of the stray field (Section III) the
magnetization ansatz given in Eq. (1) is used, with R
and A values found via micromagnetic simulations for
a given set of thin film parameters. For the analysis of
experiments, Rg, A and 1 would be used as fitting pa-
rameters, allowing micromagnetic simulations to be by-
passed. In other words, matching the measured stray
field to that which is calculated using the semi-analytic
approach allows one to obtain the skyrmion parameters.
This will be explored more in Section IV.



III. APPROACH

Calculating the stray magnetic fields above a skyrmion
is challenging because the stray magnetic fields are long
range. Stray magnetic fields arise from gradients of the
magnetization that occur due to discontinuities in the
magnetization, e.g., at the edges of a patterned struc-
ture, or due to smooth gradients in the magnetization,
for example at a domain wall or skyrmion boundary. The
stray magnetic fields of a skyrmion will be strongest near
its boundary but they are also generally non-negligible
directly above the skyrmion and for some distance out-
side of the skyrmion wall. Here, we use a matrix-based
implementation of a Green’s function approach to obtain
the stray magnetic field above a single skyrmion.

A. Stray field

To obtain the stray magnetic field, we use the magne-
tostatic tensorial Green’s function. The tensor compo-
nents needed to calculate the internal demagnetization
fields for cylindrical spin distributions were derived pre-
viously for the radial??3 and out-of-plane?! directions,
and we recently used these expressions to find the radial
modes of a vortex with DMI?!. In this section we will
derive the expressions for magnetic field above or below
a magnetic skyrmion in a thin film of thickness L.

By symmetry, the magnetic field H inside and outside
of the magnetic film will only have components in the r
and z directions. However, the radial component of the
magnetization contributes to both r- and z-components
of H , as does the z-component of the magnetization. The
cross terms (H, due to m, and H, due to m,) average
to zero for the intralayer demagnetization field but are
non-zero for the case of a stray field above or below the
magnetic thin film. The magnetostatic tensorial Green’s
functions are defined as

[(r,r') = -VV'G(r,r') (2)

where G = 1/(4n|r — r’|) is the Coulombic Green’s func-
tion, and a form appropriate for a problem with cylindri-
cal symmetry is?*

Gr,x')= LS [ dk Jo(rk)Jm (r'k)
w eim(o—0") o —klz—2"] (3)

The reduced (unitless) magnetic field from a particular
magnetization profile can be found at any position in
space by integrating the Green’s function tensor multi-
plied by the magnetization sources as follows

oo 27 o
hq(r, 2, ¢) :/0 dr’r’/o d¢’/_ dz T.m(r', %', ¢)
(4)

(in ST units; a prefactor of 47w appears for cgs units). The
magnetization profile does not depend on the azimuthal

coordinate ¢’ and we assume that it is constant through
the thickness of the film. Furthermore, we expect the
magnetic field to have no azimuthal dependence. The
magnetic material has radius R. With these assumptions,
Eq. (4) simplifies to

h ( ) th _ Rd 1 0 Grrt Grz’ myr (7"/)
alrs 2 hd 2 0 rr 9zr' Gz mz’(rl) ’
(5)

where the simplified Green’s function tensor components

are
2m 2
/ o [ avre,. ©
where o, 8 =, 2.

The first of the four tensor components g,/ is

Gap(z,m,7")
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The expression above, and those that follow, involve in-
tegrals of the form

I(p,v; A)/OOO kNI (kr) g, (kr')e @ dk,  (8)

and these integrals have solutions that can be expressed
in terms of elliptic integrals (see Ref. [25] for details). For
grr, the solutions is

Grrr (2,7,77) = —% [vi1(|z = L]) — v ([2))]  (9)

with

2a

o) = =)

(10)

where K and FE are elliptic integrals of the first and sec-

ond kind, respectively. The definitions of the lengths v;
and -9 are

w3 (VEFrE e - Ve a).

1
n=5 (VE+rPTa?+ V=P +a?), (12)
and their ratio is
p=m/72 (13)

In Eq. 10 and the equations that follow we assume that
the complete elliptic integrals are specified in terms of
the parameter m = p?, instead of the elliptic modulus

k=np.



The next tensor component is

:—7/ dk Jo(kr) Jo(kr') / dz 83— —kle==1,
(14)
which is, in terms of elliptic integrals,
1
gzz (27 7") = 5 [ooor (|2 = LI) = voor(12)], (15)
with
2c 2
- | _K(p? 2
1)001(0[) 77'}’3(1 _pg) |: (p )+ (1 _pg) (p )
(16)

Finally, the off diagonal components that are used to
capture the z () component of the stray magnetic field
generated by m, (m,) are

g,l/mﬂwj@mjwmjiw“9esz
rz 2 o 1 0 o 82,’/
Goyr = 1/00 dk kJo(kr)Jy (kr') /L dz'ge—klz—zf\
27 2 o 0 1 o 82
The solutions are
1
Grar (2,7,77) = 5 01|z = L) = vi01(|2))] (17)

gor (2,71") = =3 loons (12 = L) —wou ()] (1)
with
(@) = —— 2| (6 =) KG?)
@tH:JﬂE@ﬂ, (19)
nn(@) = s | (=) K6 0
S

The expressions above are valid for z > L.

We pause to emphasize that Egs. (9), (15), (17) and
(18), when substituted into Eq. (5), allows the calculation
of the stray field above a skyrmion or any magnetic tex-
ture with cylindrical symmetry. The matrix components
Jap are semi-analytic since they involve elliptic functions.
The stray field calculation at a given position is reduced
from a two-dimensional integral over a film to a one-
dimensional integral along the radial component. To find
the stray field below the thin film, the sign is the same
for g, and g,,/, whereas the signs flip for g,, and g,,.

The stray field integral (Eq. (5)) must be evaluated
numerically, however, this can be set up as a matrix-
based calculation so that the calculations are fast and
can be used to fit experimental data. In fact, we find
that the stray field can be predicted significantly faster

this way than through micromagnetic simulations (see
Appendix B for details), where this time saving is asso-
ciated with the stray field calculation step. Micromag-
netic simulations also require a longer initial calculation
of the kernel, and if the spin distribution is relaxed then
it can take minutes or hours for a single stray field cal-
culation. We recently used such a matrix approach for a
magnetic texture with cylindrical symmetry to find dy-
namical modes.?! The continuous magnetization profile
(Eq. (1)) and Green’s function tensor are discretized into
steps of size ¢’, where ¢’ is chosen to be small compared
to the spatial variation of the magnetization along the
radial direction. The vector stray field is

hg(r, z) = Ggm(r') (22)

where Gy is the magnetostatic, tensorial, non-local, inte-
gral matrix operator

A A7r’ Arz/
Gd B |:Azr’ Azz’:| (23)
The tensor sub components are
Augr = Gap diag(r').o' (24)

where the non-local integral operators §,s are dis-
cretized matrices (for more details see Appendix A), and
diag(r’) is a square matrix of dimension (R/d"), with the
discrete distances 7’ ranging from ¢’ to R — ¢'/2 on its
diagonal and all other elements zero. The radius R can
be used to represent a finite-sized magnetic element, or a
safe distance from the edge of a skyrmion that resides in
an extended thin film (i.e., R > Ry + 2A), the approach
used in the examples that follow. The initial calculation
of the matrix, which only needs to be done once for a
given height z, takes a few seconds or less, and the subse-
quent evaluations of Eq. (22) take less than a millisecond
for a typical calculation.

B. MFM Signal

The force on an MFM tip is proportional to dhg ,/0%.
This is a point dipole approximation, which is usually suf-
ficient to compare to experimental data and also serves
as the basis for models that account for the dipole na-
ture of the tip. The derivatives of the relevant tensor
components are

0g..r(r',z) 1

5 3 [vooz2(|2]) — vooz(]z — L|)] (25)

and

agzr’ (TI7 Z)

9z _%[vouﬂz\) —voz(lz = L)) (26)



with
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Expressed as a matrix calculation, the MFM signal is

Ohg, . i i

T = |2 24 I m(r). (29)
Python code that implements the described methods

to calculate the stray magnetic field and the MFM signal

is included in the Supplemental Materials.

C. Micromagnetic Simulations

Micromagnetic simulations were performed using
MuMax32% to obtain stray field and MFM signal profiles
to compare with the 1D matrix-based calculations. The
simulations were conducted by relaxing a Néel skyrmion
in zero magnetic field in a single magnetic layer of thick-
ness L = 1 nm. Parameters similar to those of a
Pt/Co/Ir trilayer film were used: M, = 1.1 x 10% A /m,
Aer = 1.0 x 107! J/m?, a perpendicular magnetocrys-
talline anisotropy of K, = 1.15 x 10% J/m?, and an in-
terfacial DMI of -2.1 mJ/m?. This leads to a relaxed
Néel skyrmion that is stable at remanence. The magne-
tization profile (essentially identical to Fig. 1(b)), stray
field, and MFM profiles were calculated and all exhibit
cylindrical symmetry. The skyrmion radius was found to
be Rg, = 145.7 nm, which relaxed slightly to 136.8 nm
for the simulations conducted to calculate the MFM pro-
file, with a domain wall width of A = 4.8 nm in both
cases. These values were used in the semi-analytic ma-
trix method to predict the stray field above the skyrmion.

IV. RESULTS

Firstly, we will compare the results of the semi-
analytical calculations to the MuMax results to validate
the matrix approach. Secondly, we will explore the stray
magnetic fields and expected MFM signals for two dif-
ferent scenarios: (i) Néel skyrmions of both chiralities,
and a Bloch skyrmion in a single layer; (ii) a multilayer
skyrmion (in three layers) where the wall type evolves
with depth. As shown in Ref. 6, the character of a
skyrmion wall can evolve from Néel to Bloch types as
a function of depth in multilayered films such that a
vortex-type configuration is realized in a cross-sectional

slice through the skyrmion wall. This reduces the net de-
magnetization energy of the skyrmion spin texture and
can hence be energetically favorable if the exchange cou-
pling between the magnetic layers is relatively weak.
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FIG. 2. (Color online) Comparison of 1D (a) stray field and
(b) MFM signal profiles extracted from fits to micromagnetic
simulations, and from matrix-based calculations done using
the two skyrmion fit parameters, Rsr and A, and the analyt-
ical magnetization profile (Eq. 1. The matrix calculations in
(a) are at h = 3.5 nm and the simulations are averaged across
a l-nm thick cell, centered at the same h value. For (a) and
(b), Rsi = 145.7 and 136.8 nm, respectively, and A = 4.8 nm
and p = +1 for both.

Fig. 2(a) shows 1D profiles of the stray field for z =
4.5 nm (that is at a height h = z — L = 3.5 nm above the
film) obtained from MuMax and calculated using the ma-
trix method and the the skyrmion magnetization profile
shown in Fig. 1(b). Fig. 1(b) shows the magnetization
profiles generated using Eq. 1, which is almost indistin-
guishable from the magnetization extracted from the re-
laxed skyrmion from the MuMax simulations, with Ry
and A values given in the figure caption. Fig. 2(b) shows
the MFM signal at h = 30 and 50 nm. These results were
calculated separately and the skyrmion relaxed slightly
to a smaller radius of Ry, = 136.8 nm, which was used to
calculate the MFM profiles. In Fig. 2 the matrix-based
calculations agree very well with the MuMax results. We
note that the MuMax MFM signal was scaled by a fac-



tor of 1/2, which reflects a difference in the definition
of the MFM signal (the results shown in Fig. 2(b) match
numerical calculations of Ohg . /0z). There is a slight dis-
crepancy in the peak Hg, values, which is likely because
the MuMax stray field is averaged across a 1-nm-thick cell
centered at height h, whereas the matrix method yields
hg at a specific h.
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FIG. 3. (Color online) (a) Matrix calculations of the stray
field contributions at h = 10 nm above a Néel skyrmion with
R, = 145.7 nm and A = 4.8 nm. (b) Hq,r and (c) Hg,. are
shown a distance of h = 10 nm above and below the surface of
the magnetic layer, for a Néel (1 = 0) and a Bloch (¢ = 7/2)

skyrmion.

The matrix-based approach was used to examine sev-
eral scenarios to illustrate the variation in the field
and the MFM signals expected for problems of inter-
ests. First, a magnetic skyrmion in a Co thin film with
L =1 nm is considered. Here we have focused on larger
bubble-type skyrmions so that the fields in the skyrmion
center and above the skyrmion wall can be distinguished,

but the method works equally well for smaller point-like
skyrmions. The stray magnetic fields above and below
a skyrmion with Ry, = 145.7 nm and A = 4.8 nm are
shown in Fig. 3. The individual contributions Hg ,, and
Hgy,. shown in panel (a) are the contributions to Hy.,
due to the r and z components of the magnetization,
respectively, and Hg ., and Hy ., are similarly the con-
tributions to Hy , due to m, and m,, respectively. The
contributions due to m, dominate, but for a Néel wall
the contributions from m, are also sizeable.

For a Bloch wall, m, = 0 so the magnitudes of Hy, and
Hg, . are the same above and below a Bloch skyrmion (see
yellow dotted and blue dashed lines in Fig. 3(b) and (c))
and are independent of the skyrmion chirality, whereas
for a Néel wall the fields above and below the skyrmion
differ in magnitude by more than a factor of three (solid
pink line and dot-dashed green line). The magnetic field
at the center of the skyrmion is in the z direction and
has the same magnitude independent of the wall type
(Bloch or Néel) for this large, bubble-type skyrmion. For
smaller R, values, the wall contributions will overlap
with the skyrmion center and this leads to differences
in the magnitude of hg , for the two skyrmion types. As
illustrated in Fig. 3(b) and (¢), measurements of the stray
field above and below a skyrmion would provide a means
to unambiguously identify the wall type.

Experiments are typically set up so that it is possible
to obtain the stray field above but not below the spin
texture. Further to this point, we compare stray field
profiles above Néel walls of both chiralities and Bloch
walls in Fig. 4. Fig. 4 shows Hg,, Hy ., signals for Bloch
and Néel walls of both chiralities in parts (a) and (b).
Some of these lines represent the same data as presented
in Fig. 3, however here one explicitly sees the difference
between Néel walls of clockwise versus counterclockwise
chirality, and how they may possibly be discerned from
one another using stray field analysis or the MFM signal
(Fig. 4). In all three cases the signal magnitude above
the skyrmion wall differs substantially depending on the
wall type. The shapes of the MFM profiles are very sim-
ilar, independent of wall type, however, so if it is only
possible to scan above the film, identification of the wall
type/chirality requires the ability to quantitatively mea-
sure the magnitude of the stray field above the skyrmion
wall. As shown in the insets of Fig. 4, there are differences
in how the magnitude of Hg, decreases as a function of
h, the full-width at half maximum (FWHM) of the Hy.,
profile (namely, the Néel+ wall has a wider stray field
profile compared to the others for the same A), and in
the peak/dip ratios of the Hy , signals that can also be
used to identify the domain wall type.

Obtaining the stray magnetic field from the magne-
tization is a linear problem (Eq. (22)), which suggests
that linear inversion techniques may provide a means
to obtain the magnetization profile directly from stray
field measurements made at one or more heights. Indeed
an inversion of the form m = G;lhd perfectly recov-
ers the original magnetization profile from a calculated
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FIG. 4. (Color online) The (a) r and (b) z components
of the stray magnetic fields above a magnetic skyrmion at
h = 10 nm, and (c) the corresponding MFM signal at
h = 50 nm. Calculated profiles are shown for Néel skyrmions
of both chiralities (dashed and dash-dot lines) where the sign
in the legend indicates the sign of m, within the domain wall,
and for a Bloch skyrmion (solid lines). The top inset of (a)
shows Hg , at the maximum field value, marked in the main
plot by the pink dotted line, versus h where the Hy , values
are normalized to the value at h = 5 nm for the corresponding
wall type. The bottom inset of (a) shows the FWHM of Hg, .
In (b) the top inset shows the ratio of Hg . magnitudes at the
peak and dip — shown by the black arrows in the main figure
— and the bottom inset shows the ratio of Hg . at the positive
peak to Hg . at = 0 nm.

stray field profile, as expected. In order to determine if
this approach will work on experimental data, we con-

(a)
o
E
:C
20 [Hygh=5am Hy,ih=50m %Hd,k;hflﬂnm‘ Hyih=10mm, .. |
0 200 400 600 800 1000 1200
index
(b 3 ©
3 3
_gg , 2 _Eg Bloch , 2
= BB B
z [ o
1 1 1 1
Néel+
0
2 4 6 8
A (nm)
@

Néel-

o (rad)
r2

[*]

4 6 8
A (nm)

A (nm)

FIG. 5. (Color online) (a) The first two heights (h = 5 and
10 nm) of a synthetic dataset hgq: constructed using calcu-
lated Hq,» and Hgy, . profiles at h = 5, 10, 15, and 20 nm for
a Néel+ wall (¢p = 0) with Resx = 145.7 nm and A = 4.8 nm
with 10% white noise added. Best fits (solid lines) as well as
high and low modeled profiles (dot-dashed and dashed) are
also plotted. The high and low profiles correspond to two edge
points of the dark best-fit parameter region in (b), namely
(1, A) of (0 rad, 6.35 nm) and (0 rad, 3.55 nm). The residual
F — Foyin, as a function of A and ¢ for (b) a Néel+ skyrmion,
(c) a Bloch skyrmion with ¢ = 7/2, and (d) a Néel- skyrmion
are shown for the best fit Ry values (all within 0.5 nm of the
actual value, 145.7 nm). In all cases the synthetic datasets
were generated using A = 4.8 nm with 10% white noise added.
(e) Shaded-in contours for the four-height fits from (b)-(d) are
displayed in dark blue, and the contours for corresponding
single-height fits are shown in a lighter shade. The symbols
(* and triangles) show the minima of F' for the four-height
and single-height fits (h = 10 nm), respectively.

structed synthetic datasets hg,; by adding 10% noise to
stray field profiles. A single-height dataset, calculated for
h =10 nm, and a four-height dataset (h = 5, 10, 15, and
20 nm) were considered, where the first two heights of the
four-height dataset for a Néel+ skyrmion are shown in
Fig. 5(a). The magnetization profiles obtained by invert-
ing hgy,: directly unfortunately bear little resemblance to
the original m. Two other linear inversion approaches,
singular value decomposition and the conjugate gradient
method, were tested and the latter provides a reasonable
match to the magnetization profile, but the recovered m,.
is noisy and it is difficult to unambiguously identify the
wall type from the inverted profiles.

Another approach that can be reliably used to obtain



the wall type and width is illustrated in Fig. 5. Model
magnetization profiles my,,q¢;, parameterized in terms
of Rg, A, and v, are constructed using Eq. (1) and a
goodness of fit parameter is then calculated using

= (hdat - demodel)T(hdat - demodel)- (30)

The minimization of F' with respect to the three param-
eters can be done using any suitable optimization rou-
tine. Here we use a grid search technique. Figs. 5(b)-
(d) show F (colored contours) as a function of A and
1 for synthetic datasets constructed using three differ-
ent wall types, in all cases with Ry = 145.7 nm and
A = 4.8 nm, and Fig. 5(e¢) summarizes the contours that
correspond to a reasonable fit for all three wall types.
As shown in Fig. 5(e) the wall types are distinguishable
when a single height is used (lighter contour), and addi-
tional heights can reduce the uncertainty in the recovered
parameters (darkest shading). The best fit Ry values
are within < 0.5 nm of the value used to construct the
model datasets; based on a comparison of the modeled
stray field profile and the synthetic dataset, the skyrmion
radius is resolved to within 1-1.5 nm for a dataset with
a 10% noise level.

The three-dimensional structure of spin textures is of
increasing interest in magnetism, especially since recent
measurements show that the wall type can evolve with
depth in a multilayer film.® Fig. 6 shows calculations of
the stray magnetic field at h = 10 nm [panels (a) and (b)]
and the MFM signal at A = 50 nm [panel (c)] above a
skyrmion that penetrates through a three-layer magnetic
thin film. Three layers with L = 1 nm are considered
with 1-nm of space between each magnetic layer. The
magnitude of the stray field and its gradient are larger
for a skyrmion that has one Néel wall of each chirality
and one Bloch wall (green and blue lines) as compared
to a skyrmion that has Néel walls (1) = 0, dashed purple
lines) of the same chirality in all layers. There is also a
difference in the magnitude of the stray magnetic field de-
pending on whether the ¢ = 0 Néel wall is on the top or
the bottom, but this difference is small compared to the
difference that arises based on whether or not there is a
change in the wall type within the structure. As shown in
the insets of Fig. 6, there are differences in how both com-
ponents of the stray field magnitudes and the full-width
at half maximum (FWHM) of the Hy, profile vary with
h that can be used to distinguish between the three con-
sidered spin distributions (N+/N+/N+, N+4/B/N-, and
N-/B/N+). These calculations indicate that MFM and
nitrogen-vacancy (NV) magnetometry measurements, es-
pecially NV measurements made at several heights, may
be used to discern the internal — and not just the surface
— magnetic structures of multilayered skyrmions.

We discuss here the plausibility of using MFM and NV
magnetometry to probe skyrmions in the context of our
calculations. NV center magnetometry is an advanced
and non-invasive technique that can be used to detect
stray magnetic fields with a magnetic field sensitivity of
a few nanoTesla.?” It should be possible to determine not

only the number of layers of a particular type in a mul-
tilayer film but also the ordering of the wall types within
the layers with this technique. MFM is also a highly sen-
sitive technique and has been used to measure the mag-
netic moment of individual magnetic nanoparticles with
diameters of 4.8 nm and with net moments as low as
around 1.85 x 10729 A-m? using an AC field-modulated
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FIG. 6. (Color online) The (a) r and (b) z components of the
stray magnetic fields at h = 10 nm, and (c) the correspond-
ing MFM signal at h = 50 nm for a set of skyrmions with
in three magnetic layers of thickness L = 1 nm separated
by 1 nm. The stray fields and MFM signals are shown for
three cases: three Néel skyrmions with m, > 0, and depth-
dependent evolution of the wall type from top to bottom of
+Néel/Block/-Néel, and -Néel/Bloch/+Néel. As in Fig. 4,
the insets of (a) show Hg, at the maximum field value nor-
malized to the value at h = 5 nm for the corresponding wall
type and the FWHM of Hg,, versus h, and the insets of (b)
show the ratio of Hy . magnitudes at the peak and dip and
the ratio of Hg,. at the positive peak to Hg . at = 0 nm
versus h.



approach?®. It has also been used to image synthetic
antiferromagnetic skyrmions that have a small net mag-
netic moment.2? Tip-sample interactions can complicate
the imaging of spin textures by MFM but with a care-
ful analysis this can provide a means to quantify lateral
interaction forces.!® Based on the data shown in these
papers, it should be possible to determine the number
of layers of a particular type using MFM, but while de-
termining the ordering of the wall types within the lay-
ers may be possible it would likely be challenging. For
both experimental techniques, the rapid calculations pre-
sented here will be useful for extracting information from
measured data, with Ry, A and angle ¢ the only fit pa-
rameters to be adjusted.

V. CONCLUSIONS

In conclusion, we have demonstrated a matrix-based
semi-analytical method that can be used to obtain exact
magnetic fields and field gradients above spin textures
with cylindrical symmetry. For magnetic skyrmions,
both the r and the z components of H, differ consid-
erably, by more than a factor of three in magnitude, de-
pending on the skyrmion wall type and chirality, and the
stray magnetic field also changes measurably when the
wall type evolves with depth. Hence, this method can aid
in unraveling the spin texture structure not just in sin-
gle layer structures but in more complex material stacks
with 3D spin textures that vary through the thickness.
We show how an approach that minimizes a goodness of
fit parameter with respect to the three skyrmion param-
eters, Rgk, A, and 1), a calculation that benefits from the
rapid matrix-based method, provides a means to unam-
biguously identify the skyrmion wall type and obtain the
uncertainty in the skyrmion parameters from fields mea-
sured above the sample. The presented approach is con-
siderably faster than micromagnetic simulations, hence
we anticipate that this method will be useful for analyz-
ing and fitting data obtained using nitrogen vacancies in
diamond and magnetic force microscopy, where for the
latter it can easily be extended to incorporate the shape
of the magnetic tip if needed. Python code is provided
to facilitate the use of this method in the Supplemental
Information.
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Appendix A: Definitions of matrix operators

The integral Green’s function matrix operators Aa,@ in
Eq. (23) are N x N matrices with r entries as rows, and
r’ entries as columns, where each is discretized with a
cell size of § = §’. The magnetization m(r’) is a column
vector of length 2N with the radial components (N val-
ues) followed by the out-of-plane component (another N
values). The matrix operator flrr/ elements are

Arr/,ij = Grr’ (riv 7’;) 7”‘; & (Al)
where the distances are 7; = (i — 1/2)0 and r; =
(j —1/2)¢’. Similar expressions are used for g,./, g,
and g,,.. Because g,,» changes rapidly near r = r’, the
diagonal and near-diagonal terms of the demagnetization
kernels were numerically integrated over each cell to ob-
tain the average value within the cell

48
AL A
rr!ij — grr'(rurj) T d’l". ( 2)
r

7'-; o’ 3.—6//2

Note that the matrices Aag are not entirely symmetric
because the integrated elements differ for r < 7’ and
r > 1. The cells with 77 = 7}y are integrated out to
oo to approximate the effects of an extended thin film
with a uniform magnetization, or out to the structure
boundary for a finite cylindrical disk.

Appendix B: Scaling of the matrix calculation

The operation count to multiply a matrix with dimen-
sions m X p by a vector of length p is 2mp. If n is
the length of each of the 1D m, and m, vectors, the
length of m(r’) is 2n and the 1D calculation will scale as
2(2n)(2n) = 8n?, assuming one magnetic layer and a sin-
gle height. The demagnetization field calculation step in
a 2D MuMax-type simulation can be set up as a matrix
multiplication of the same form as Eq. (22), for example,
by arranging the magnetization for a skyrmion in a film
with a similar area and the same cell sizes as the 1D calcu-
lation as a vector of the form [mg 1,my 1, Mz 1, Mg 2,...]

of length 3n2. The stray field operator matrix G is then
a 3n? x 3n? matrix, and the operation count to obtain
the 2D stray field at a single height is 18n*. Hence for
the same n, the 2D calculation will take 2.25n2 times
longer than a 1D calculation that covers a comparable
area. This is significant, representing a factor of roughly
2 x 10°, for the example shown in Fig. 5, which uses
n = 300. Fast Fourier transform algorithms are often
used in micromagnetics, in which case the 2D algorithm
scales as Nlog(N) rather than N2, where N = 3n? is
the total number of cells. The time savings are then
more modest but still significant especially for situations
where multiple layers and/or measurement heights are
considered.
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