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Abstract
The decomposition of flow-networks is an essential part of many transcriptome assembly algorithms
used in Computational Biology. The addition of subpath constraints to this decomposition appeared
recently as an effective way to incorporate longer, already known, portions of the transcript. The
problem is defined as follows: given a weakly connected directed acyclic flow network G = (V, E, f)
and a set R of subpaths in G, find a flow decomposition so that every subpath in R is included in
some flow in the decomposition [Williams et al., WABI 2021]. The authors of that work presented
an exponential time algorithm for determining the feasibility of such a flow decomposition, and
more recently presented an O(|E| + L + |R|3) time algorithm, where L is the sum of the path
lengths in R [Williams et al., TCBB 2022]. Our work provides an improved, linear O(|E| + L) time
algorithm for determining the feasibility of such a flow decomposition. We also introduce two natural
optimization variants of the feasibility problem: (i) determining the minimum sized subset of R
that must be removed to make a flow decomposition feasible, and (ii) determining the maximum
sized subset of R that can be maintained while making a flow decomposition feasible. We show
that, under the assumption P ̸= NP, (i) does not admit a polynomial-time o(log |V |)-approximation
algorithm and (ii) does not admit a polynomial-time O(|V |

1
2 −ε + |R|1−ε)-approximation algorithm

for any constant ε > 0.
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1 Introduction

The decomposition of flow networks is both a classical problem in Computer Science and an
important tool in Computational Biology, where it is used for transcriptome assembly [2, 8,
13, 15, 16, 17, 21]. It was in this last context that the idea of adding subpath constraints
to the decomposition of flow networks arose. These constraints allow one to incorporate
longer, known portions of a transcript by enforcing that every path in a provided subpath
constraint set is a subpath in the flow decomposition (details given in Section 1.2). Williams
et al. defined the problem of determining whether a flow decomposition under a set of subpath
constraints is feasible and, if so, finding a flow decomposition with the minimum number
of paths [21, 22]. Minimizing the size of a flow decomposition under subpath constraints
is NP-hard due to the same problem being NP-hard without added constraints, even on
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DAGs [19]. For determining the feasibility of a flow decomposition, Williams et al. in [21]
presented an algorithm running in time exponential in the total overdemand, where the total
overdemand is a quantity related to the flows assigned to every edge and the number of
subpath constraints. They also posed the question of whether the problem can be solved
in polynomial time. The same authors recently answered this question by providing an
algorithm that runs in time O(|E| + L + |R|3) on a flow network with |V | vertices, |E| edges,
and a subpath constraint set R where the total sum of the subpath lengths is L [22]. A
primary contribution of this work is an algorithm that solves the feasibility problem with an
improved, linear time complexity that is O(|E| + L).

We will also consider two optimization versions of this problem: minimizing the number of
constraints removed while making a flow decomposition feasible and, its dual, maximizing the
number of constraints maintained while making a flow decomposition feasible. When applied
to transcriptome assembly, the vertices are often used to represent k-mers and the flows
assigned to edges correspond to levels of support for the k-mers being adjacent (frequency of
the corresponding k + 1-mers). The paths found through flow decomposition are interpreted
as assembled transcripts. As mentioned above, the idea of adding subpath constraints to
the flow decomposition comes from trying to incorporate knowledge of longer portions of
transcripts [1, 7, 23]. In the case where a flow decomposition under the constraints is not
feasible, a natural next step is to eliminate a small number of these constraints in order to
make a flow decomposition possible. This would correspond to rejecting some subset of the
longer transcripts used for subpath constraints as being either erroneous or not present in
the transcripts that caused the given flow network.

Our work studies the inapproximability of these optimization problems. For the problem
of removing a minimal number of subpath constraints, we show that a polynomial-time
o(log |V |)-approximation algorithm does not exist under the assumption that P ̸= NP.
We then show that the minimization problem’s dual, maximizing the number of subpath
constraints maintained, is more difficult to approximate. For the maximization version, there
does not exist a polynomial-time approximation algorithm with an approximation factor
that is O(|R|1−ε + |V | 1

2 −ε) for any constant ε > 0, assuming P ̸= NP.

1.1 Related work
Research on flow decomposition under subpath constraints began with work on finding a
minimum path cover (MPC) under subpath constraints. MPC with subpath constraints was
initially introduced by Bao et al. as a tool for RNA-sequence assembly [1]. It received further
study by Rizzi et al., who considered different weighted cases of the problem and provided
polynomial-time algorithms, as well as hardness results for some variations of the problem [14].
Subsequent work has applied these algorithms to assembly [7]. A generalization from path
cover to flow decomposition was introduced by Williams et al. [22]. There, the authors
observed the deficiency of path decomposition in terms of failing to incorporate frequency
information. They propose flow networks and flow decomposition with the minimum number
of paths as an improvement. To circumvent this problem’s NP-hardness (even without path
constraints [19]), the authors provide an FPT algorithm and heuristics as potential solutions.

In our work, we will not be concerned with the problem of finding a minimum number of
paths, but rather with the feasibility problem. By avoiding the minimality condition, the
problem becomes computationally tractable. Another recent line of related research that
avoids this optimization criterion and leads to a polynomial-time solvable problem is finding
paths in flow networks that are “safe”. These paths are safe in that they appear as subpaths
in every flow decomposition. Such safe paths can be enumerated in polynomial time [5, 6, 10].
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1.2 Preliminaries
Like in [21, 22], we will only work with directed acyclic graphs (DAGs) in this paper. The
reasons for this stem from its application to transcriptome assembly, where the flow networks
constructed from a reference genome are DAGs. We define flow networks accordingly. Also,
the definition of a flow decomposition here differs from the standard definition in several
ways, including that there is no capacity function and that flows are given as part of the flow
network itself rather than the decomposition. However, for consistency with [21, 22] we will
maintain this terminology.

▶ Definition 1 (Flow network). A flow network G = (V, E, f) consists of a (weakly) connected
DAG G = (V, E) where V contains special source and sink vertices s and t, and a function
f : E → N called the flow. The flow satisfies that for all v ∈ V \ {s, t},

∑
(u,v)∈E f((u, v)) =∑

(v,w)∈E f((v, w)). In addition, vertex s has in-degree 0 and vertex t has out-degree 0.

For an edge e ∈ E, we will refer to f(e) as the flow assigned to e.

▶ Definition 2 (Flow decomposition). A flow decomposition (P, w) of a flow network G is a
set of st-paths P = {P1, ..., P|P|} and natural numbers w = {w1, ..., w|P|}, called weights,
such that if e ∈ E is contained exactly in the paths {Pi1 , ..., Pij } ⊆ P, then

∑j
h=1 wih

= f(e).

▶ Definition 3 (Subpath Constraints). A set of subpath constraints R = {R1, ..., R|R|} for a
given flow network G is a set of simple paths in G such that for all distinct Ri, Rj ∈ R, we
have Ri is not a subpath of Rj.

The requirement that no subpath constraint is a subpath of another subpath constraint is a
property that will be used in the proof that our linear time algorithm is correct.

▶ Problem 4 (Flow Decomposition with Subpath Constraints (FDSC)). An instance (G, R)
of FDSC consists of a flow network G and a set of subpath constraints R. The problem
is to determine if there exists a flow decomposition (P, w) of G such that for all subpath
constraints R ∈ R, there exists a path P ∈ P where R is a subpath of P .

If such a flow decomposition exists, we say the instance of FDSC is feasible, and we otherwise
say it is infeasible.

Two optimization variants of this problem are defined below. We consider a solution to
the minimization problem to have as the objective value the number of subpath constraints
removed from R, and a solution to the maximization problem as the number of subpath
constraints maintained.

▶ Problem 5 (Minimum Subpath Constraint Removal). Given an instance of FDSC (G, R)
and integer k ≥ 0, determine if there exists a subset of R′ ⊆ R, such that |R′| ≤ k and
(G, R \ R′) is feasible.

▶ Problem 6 (Maximum Subpath Constraint Retention). Given an instance of FDSC (G, R)
and integer k ≥ 0, determine if there exists a subset of R′ ⊆ R, such that |R′| ≥ k and
(G, R′) is feasible.

The following definitions will be used in the remainder of this work.

▶ Definition 7 (Union of Two Paths). We say two paths vi1vi2 ...vik
and vj1vj2 ...vjk′ can be

unioned if there exists suffix-prefix overlap between vi1vi2 ...vik
and vj1vj2 ...vjk′ or between

vj1vj2 ...vjk′ and vi1vi2 ...vik
when viewed as strings, i.e., there exists indices ih and jg such

that either (i) vih
vih+1 ...vik

= vj1vj2 ...vjg
or (ii) vi1vi2 ...vih

= vjg
vjg+1 ...vjk′ . The union of

these two paths in case (i) is vi1 ...vih−1vj1 ...vjk′ , and in case (ii) is vj1 ...vjg−1vi1 ...vik
. We

use Ri ∪ Rj to denote the union of subpath constraints Ri and Rj.

WABI 2022
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▶ Definition 8 (Compatible Subpath Constraints). We say that two subpath constraints Ri and
Rj are compatible if Ri and Rj are either vertex disjoint or can be unioned. This is denoted
as Ri ∼ Rj. If two subpath constraints Ri and Rj are not compatible, they are considered
incompatible and this is denoted as Ri ̸∼ Rj.

Note that by our definition of unioning and compatible subpath constraints, we cannot union
two subpath constraints Ri and Rj if they are vertex disjoint, despite them being compatible.

We refer to a set of subpath constraints that can be formed by starting with R and
repeatedly applying zero or more unions as a unioning of R. For a particular unioning of
R, say R′, and edge e ∈ E, we let |R′(e)| denote the number of subpath constraints in R′

containing e. We say a subpath constraint set R′ is maximally unioned if for all Ri, Rj ∈ R′,
Ri cannot be unioned with Rj . Lastly, we define the length of a path as the number of edges
contained in the path.

2 Linear Time Algorithm for FDSC

Our approach will be different from the one taken in [22], although both will result in greedy
algorithms. In that work, a graph known as the constraint graph is constructed from the
given instance of FDSC. The construction of the constraint graph causes an increased time
complexity relative to the algorithm presented here. Also, on the constraint graph, it is
possible to derive an equivalent result to Lemma 12, albeit in terms of a path cover on the
constraint graph (Lemma 16 in [22]). In the interest of avoiding having to prove that desired
equivalence holds outside of the language of the constraint graph, we provide our own proof.

2.1 Equivalence with Finding a Satisfactory Unioning of Constraints
Lemmas 9 - 12 essentially reduce FDSC to the problem of finding an satisfactory unioning of
the subpath constraint set.

▶ Lemma 9 ([21], Corollary 9). For an FDSC instance (G, R), if for all e ∈ E, |R(e)| ≤ f(e),
then (G, R) is feasible.

▶ Lemma 10. If an instance of FDSC (G, R) is feasible, then there exists a feasible instance
of FDSC (G, R′) where R′ is a maximal unioning of R.

Proof. We can consider the flow decomposition (P, w) for (G, R) as consisting of (possibly
overlapping2) st-paths all of weight 1. For duplicate paths we only work with one repres-
entative path. For every subpath constraint R ∈ R, we arbitrarily assign R to one of the
representative st-paths P ∈ P in the flow decomposition that contains R as a subpath and
say that P satisfies R.

We first iterate through the representative st-paths in P in any order. For each repres-
entative path, P ∈ P we union all non-disjoint subpath constraints satisfied by P . Let the
resulting unioning of R be denoted as R′. We next repeat the following steps until the set of
subpath constraints is maximally unioned:

Suppose there exists two compatible, non-disjoint subpath constraints Ri, Rj ∈ R′ that
are not unioned, with the prefix of Rj overlapping with the suffix of Ri. See Figure 1. Let
Ri be satisfied by path P1 ∈ P and Rj be satisfied by path P2 ∈ P, both having weight 1.

2 This is permitted under the definition of flow decomposition.
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Figure 1 The procedure for swapping portions of paths described in the proof of Lemma 10.

Then there exists some vertex v in common between Ri, Rj , P1, and P2. Let P1[x, y] be the
portion of P1 from vertex x to vertex y (both inclusive) and P2[x, y] be defined similarly. We
next,
1. Remove the paths P1 and P2 from P;
2. If not already existing, add the paths P ′

1 = P1[s, v] ◦ P2[v, t] and P ′
2 = P2[s, v] ◦ P1[v, t] to

P, where ◦ applies concatenation (including v only once);
3. Union Ri and Rj and assign Ri ∪ Rj as being satisfied by the representative for P ′

1.
Additionally, any subpath constraints satisfied by P1[s, v] or P2[v, t] are assigned to the
representative for P ′

1 and any subpath constraints satisfied by P2[s, v] or P1[v, t] are
assigned to the representative for P ′

2 .
For all edges, the sums of path weights are not modified since both P1 and P2 had weight 1.
Furthermore, other subpath constraints remain satisfied. This is since if a subpath constraint
contained v and was being satisfied by either P1 or P2, it would have been unioned with
Ri or Rj respectively when forming R′. It also still holds that all non-disjoint subpath
constraints that are satisfied by the same representative st-path in the decomposition are
unioned. Hence, we can repeat Steps 1-3 until the resulting set of subpath constraints is
maximally unioned. ◀

▶ Lemma 11. If R is a maximally unioned subpath constraint set, then (G, R) is infeasible
iff there exists an edge e ∈ E such that |R(e)| > f(e).

Proof. First consider when |R(e)| > f(e). Since R is maximally unioned, every subpath
constraint in R(e) must be satisfied by a distinct path. This implies there must be at least
|R(e)| distinct paths containing e, each with weight at least 1, making the sum of these
exceed f(e). Hence, (G, R) is infeasible. In the other direction, if for all e ∈ E, |R(e)| ≤ f(e),
then we can directly apply Lemma 9 to obtain that a flow decomposition exists that satisfies
the subpath constraints in R. ◀

The main result for this section is Lemma 12.

▶ Lemma 12. For a given FDSC instance (G, R), there exists a flow decomposition satisfying
R iff there exists a unioning R′ of R where |R′(e)| ≤ f(e) for all e ∈ E.

Proof. If there exists a flow decomposition satisfying R, then, by Lemma 10, there exists
a feasible instance (G, R′) where R′ is maximally unioned. By Lemma 11 we have that
|R′(e)| ≤ f(e) for all e ∈ E. In the other direction, if there exists a unioning of R, say
R′, such that |R′(e)| ≤ f(e) for all e ∈ E, then, by Lemma 9, there exists a valid flow
decomposition for (G, R′). Since the same flow decomposition used for (G, R′) satisfies all of
the constraints in R, the instance (G, R) must be feasible as well. ◀

As the first step in determining whether such a unioning exists, we topologically sort the
vertices in V . We will henceforth consider the vertices v1, v2, ..., v|V | to be in sorted order
from smallest to largest. A given constraint Ri ∈ R can now be written as Ri = vi1vi2 ...vi|Ri|

WABI 2022
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Figure 2 (Left) A flow network with four subpath constraints: R1 = s v1 v3 v5 (dark blue),
R2 = v1 v3 v4 (red), R3 = v2 v3 v4 (green), and R4 = v3 v4 t (light blue). Flows for each edge are
indicated by the numbers adjacent to the edge. (Right) The same subpath constraints and edge
flows, but in the visualization style used in this work.

where these vertices are also considered to be in sorted order from smallest to largest. Using
this ordering we can compare the max and min values of a subpath constraint Ri to the max
and min values of another subpath constraint Rj .

We can also now more easily visualize an instance of FDSC. An example of this visual
representation is shown in Figure 2. This is done by creating for each subpath constraint
R ∈ R a set of |R| horizontal dots, each positioned horizontally so as to correspond to
vertex indices on the number line. For every subpath constraint, we connect each of its dots
by a line. In modeling our problem we fix the horizontal position of each set of dots and
lines formed from R, but allow their vertical position to be simultaneously shifted. Two
non-disjoint constraints can be unioned if we can place one subpath constraint representation
on top of the other without a line being placed on top of a dot (or vice versa). At the bottom
of this representation we indicate the flow f((vα, vβ)) with a box spanning the interval [α, β]
and containing f((vα, vβ)). We can now recast the feasibility problem as trying to find a way
to vertically shift these subpath constraint representations on top of one another such that
for every interval [α, β] the number of lines spanning it is at most f((vα, vβ)). This problem
representation removes unnecessary information present in the original FDSC instance, such
as edges not containing any subpath constraints. In particular, this makes the reduction
used in Section 3.1 easier to visualize.

2.2 Our Greedy Algorithm

We first present a high-level overview of the algorithm that forms a subpath constraint set
RG by unioning subpath constraints in R. As such, we will denote each subpath constraint
in RG as a subset of the subpath constraints in R, implying that this subset is to be unioned
to form a new subpath constraint. This is merely a notational convenience, for example,
we denote the unioned subpath constraints Ri1 ∪ Ri2 ∪ ... ∪ Rik

as {Ri1 , Ri2 , ..., Rik
}. These

subsets of R are disjoint (no subpath constraint appears in two sets) and only contain
subpath constraints that are compatible.

Our greedy algorithm simultaneously minimizes the number of subpath constraints in
RG containing any given edge, across all edges. As a result, to determine feasibility, we only
need to check for every edge e ∈ E the number of subpath constraints in RG containing e.
Implementation details are given in Section 2.4.
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Figure 3 An example sorted set of subpath constraints R = {R1, R2, R3, R4, R5} where R1 =
v1 v4 v5 v6, R2 = v2 v5 v6 v7, R3 = v3 v4 v5, R4 = v5 v6 v7 v8, R5 = v5 v6v7 v9.

High-Level Algorithm

Recall that all vertices are topologically sorted and indexed according to this order. Sort R
in ascending order according to each subpath constraint’s minimum vertex with ties broken
arbitrarily. Let R1, R2, ..., R|R| denote the subpath constraints in R in sorted order from
smallest to largest. We next create a new subpath constraint set RG that is initially empty.
Processing R in this sorted order from smallest to largest, on iteration i, let

RG|∼i = {R ∈ RG : R ∼ Ri and R ∩ Ri ̸= ∅}.

If RG|∼i is non-empty, we update RG by unioning Ri with a Rj ∈ RG|∼i that has the largest
last vertex, i.e. j ∈ arg maxh{max Rh : Rh ∈ RG|∼i} where max Rh returns the largest index
of any vertex in Rh. If RG|∼i is empty, then we add {Ri} to RG.

As an example, consider the subpath constraints R shown in Figure 3. We create an
initially empty set of subpath constraints RG = ∅.

On iteration i = 1, we make RG = {{R1}}.
On iteration i = 2, we make RG = {{R1}, {R2}}.
On iteration i = 3, we make RG = {{R1}, {R2}, {R3}}.
On iteration i = 4, we have to decide whether to union R4 with {R1}, {R2}, or
{R3}. Since max{R2} = v7 > max{R1} = v6 > max{R3} = v5, we make RG =
{{R1}, {R2, R4}, {R3}}.
On iteration i = 5, we make RG = {{R1, R5}, {R2, R4}, {R3}}.

2.3 Proof of Correctness
Let OPT(e) denote the minimum number of subpath constraints containing e ∈ E across all
possible ways of unioning R. We claim that after completing all |R| iterations of the above
algorithm, for all edges e ∈ E, we have |RG(e)| = OPT(e). For the rest of Section 2.3
we fix the edge e = (vα, vβ). Note that since our greedy algorithm is independent of the
choice of e, proving the above claim for e proves it for an arbitrary edge. The proof of the
claim involves an exchange argument. For the sake of completeness, we show that an optimal
solution can be obtained by iterating over R in the same order as our greedy algorithm.

▶ Lemma 13. There exists a sequence of unions of subpath constraints in R that creates
a set of subpath constraints R′ such that: (i) |R′(e)| = OPT(e), (ii) the process starts with
R′ = ∅ and on the ith iteration, for i = 1 to |R|: either unions Ri ∈ R with some R′ ∈ R′

created from the previous i − 1 iterations, or adds {Ri} to R′. Note that this process iterates
through R in the same sorted order as our greedy algorithm.

WABI 2022
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Proof. Let R′′ be a unioning of R such that |R′′(e)| = OPT(e) (not necessarily applying
unions in the order described above). Then R′′ has a representation of the form R′′ =
{R′′

1 , R′′
2 , ..., R′′

k}, where each R′′
i is the union of some subset of R. We construct a solution

as follows: We first create an empty set R′ and process R in sorted order. When processing
Ri, assume that Ri is contained in the subpath constraint R′′ ∈ R′′.

If no previously processed subpath constraint in R is in R′′, we add {Ri} to R′.
If some subset of previously processed subpath constraints in R are in R′′, then we assume
inductively that they have already been unioned together, and now union Ri with this
partial subset of R′′. This is always possible since Ri cannot be vertex disjoint with the
partial subset of R′′. If it were, then min Ri would be larger than the maximum vertex
in the partial subset of R′′. This, together with the sorted order in which R is being
processed, would imply that R′′ cannot be a single subpath constraint.

After iterating over all of R, R′ is identical to R′′ and the sequence of unions used to obtain
it satisfies the stated conditions. ◀

We denote the sequence of unions used in Lemma 13 as the OPT(e)-solution. Let i be
the first iteration where our greedy algorithm and the OPT(e)-solution perform a different
action on Ri ∈ R. We will show how to modify the OPT(e)-solution in such a way that it:

matches our greedy algorithm on the ith iteration;
does not modify the unions made in earlier iterations;
has a valid sequence of unions in future iterations;
does not increase the number of subpath constraints containing e.

Let R′ be the partially constructed set of subpath constraints just prior to the ith iteration
resulting from the OPT(e)-solution, and suppose in our greedy algorithm we union Ri with
{Rj1 , ..., Rjh

} ∈ R′ instead of {Ri1 , ..., Rik
} ∈ R′ as is done in the OPT(e)-solution. Let

the set of subpath constraints unioned with Ri on later iterations in the OPT(e)-solution
be denoted as {Rik+1 , ..., Rit

}. Similarly, let the set of subpath constraints in R unioned
with {Rj1 , ..., Rjh

} in later iterations in the OPT(e)-solution be denoted as {Rjh+1 , ..., Rjs
}.

The modification we make to the (completed) OPT(e)-solution is to remove the subpath
constraints

{Rj1 , ..., Rjh
, Rjh+1 , ..., Rjs} and {Ri1 , ..., Rik

, Ri, Rik+1 , ..., Rit},

then, in the case where Rik
∩ Rjh+1 ̸= ∅, we add the subpath constraints

{Ri1 , ..., Rik
, Rjh+1 , ..., Rjs

} and {Rj1 , ..., Rjh
, Ri, Rik+1 , ..., Rit

}.

In the case where Rik
∩ Rjh+1 = ∅, we instead add

{Ri1 , ..., Rik
}, {Rjh+1 , ..., Rjs

}, and {Rj1 , ..., Rjh
, Ri, Rik+1 , ..., Rit

}.

▶ Lemma 14. The modified solution is always valid (no two incompatible subpath constraints
are unioned in the modified solution).

Proof. First, we show that every subpath constraint in the set {Rik+1 , ..., Rit
} is compatible

with every subpath constraint in {Rj1 , ..., Rjh
} (we already know Ri is compatible with

{Rj1 , ..., Rjh
} since our greedy algorithm chose it). Suppose for the sake of contradiction

that some Rju
∈ {Rj1 , ..., Rjh

} is incompatible with some Riv
∈ {Rik+1 , ..., Rit

}. See Figure
4 (Left). Because of the sorted order, min Rju ≤ min Ri ≤ min Riv . Combining this with



D. Gibney, S. V. Thankachan, and S. Aluru 17:9

Figure 4 (Left) A visualization of the argument in Lemma 14 that every subpath constraint
in {Rik+1 , ..., Rit } is compatible with every subpath constraint in {Rj1 , ..., Rjh }. The only relative
position that an incompatibility could occur is indicated in red. However, such an incompatibility
can not occur since max Ri > max Rju . (Right) Every subpath constraint in {Rjh+1 , ..., Rjs } is
compatible with every subpath constraint in {Ri1 , ..., Rik }. Here the relative end positions make an
incompatibility impossible as well.

Rju
∼ Ri, and Ri ∼ Riv

, we have that Rju
̸∼ Riv

implies an incompatibility at some vertex
vx where vx > max Ri and vx < max Rju . However, this implies max Ri < max Rju , making
Ri ⊂ Rju

, a contradiction.
Next we show that every subpath constraint in the set {Rjh+1 , ..., Rjs

} is compatible
with every subpath constraint in {Ri1 , ..., Rik

}. Suppose for the sake of contradiction that
Riu

∈ {Ri1 , ..., Rik
} is incompatible with Rjv

∈ {Rjh+1 , ..., Rjt
}. See Figure 4 (Right).

Because our greedy algorithm unions Ri with the subpath constraint having the largest max
value, max Rjh

> max Riu
. Also, by the sorted order, we have min Rjh

< min Rjv
. Since

Rjh
∼ Rjv , the only way that Riu ̸∼ Rjv is if the incompatibility happens at a vertex greater

than max Rjh
. However, since max Rjh

> max Riu
, this is not possible. ◀

▶ Lemma 15. The modified solution has at most the same number of subpath constraints
containing e as the unmodified OPT(e)-solution.

Proof.
Case 1. Rik

∩ Rjh+1 ̸= ∅. Recall that the modified solution is

{Ri1 , ..., Rik
, Rjh+1 , ..., Rjs} and {Rj1 , ..., Rjh

, Ri, Rik+1 , ..., Rit}.

If both {Rj1 , ..., Rjh
, Rjh+1 , ..., Rjs} and {Ri1 , ..., Rik

, Ri, Rik+1 , ..., Rit} contain e in the
unmodified OPT(e)-solution, then the number of subpath constraints containing e can not
increase in the modified solution. Hence, we only need to consider when the following
assumption holds:

▷ Assumption 16. Only one of

{Rj1 , ..., Rjh
, Rjh+1 , ..., Rjs

} and {Ri1 , ..., Rik
, Ri, Rik+1 , ..., Rit

}

contains edge e.

We will show that Assumption 16 implies that only one of {Ri1 , ..., Rik
}, {Ri, Rik+1 , ...Rit},

{Rj1 , .., Rjh
}, {Rjh+1 , ..., Rjs

} contains e. This in turn implies that only one of

{Ri1 , ..., Rik
, Rjh+1 , ..., Rjs

} and {Rj1 , ..., Rjh
, Ri, Rik+1 , ..., Rit

}

contains e in the modified solution.
Observe that only a consecutively ordered subset of {Rj1 , ..., Rjh

, Rjh+1 , ..., Rjs} can
contain subpath constraints containing e. To see this, consider Rju

, Rjv
, Rjw

where
ju < jv < jw and Rju and Rjw contain e = (vα, vβ). We have min Rjv ≤ min Rjw ≤
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vα, and vβ ≤ max Rju ≤ max Rjv . These bounds, combined with the compatibility of
all three, imply Rjv

must contain e = (vα, vβ) as well. The same argument holds for
{Ri1 , ..., Rik

, Ri, Rik+1 , ..., Rit
}. This observation implies we just need to investigate the two

cases below as possible examples where more than one of {Ri1 , ..., Rik
}, {Ri, Rik+1 , ...Rit},

{Rj1 , .., Rjh
}, {Rjh+1 , ..., Rjs

} contains e.

(i) Both Rjh
and Rjh+1 contain e = (vα, vβ): We claim that Ri must also contain e. This

is since min Ri ≤ min Rjh+1 ≤ vα, vβ ≤ max Rjh
≤ max Ri, and Rjh

∼ Ri. Hence,
both {Rj1 , ..., Rjh

, Rjh+1 , ..., Rjs} and {Ri1 , ..., Rik
, Ri, Rik+1 , ..., Rit} must contain e,

contradicting Assumption 16.
(ii) Both Rik

and Ri contain e = (vα, vβ): We claim that Rjh
must contain e. This

is since min Rjh
≤ min Ri ≤ vα, vβ ≤ max Rik

≤ max Rjh
(where the last inequal-

ity is due to our greedy algorithm’s selection process), and Ri ∼ Rjh
. Hence, both

{Rj1 , ..., Rjh
, Rjh+1 , ..., Rjs

} and {Ri1 , ..., Rik
, Ri, Rik+1 , ..., Rit

} must contain e, contra-
dicting Assumption 16.

This completes the proof for Case 1.

Case 2. Rik
∩ Rjh+1 = ∅. Recall that the modified solution is

{Ri1 , ..., Rik
}, {Rjh+1 , ..., Rjs

}, and {Rj1 , ..., Rjh
, Ri, Rik+1 , ..., Rit

}.

If e is contained in both {Rj1 , ..., Rjh
, Rjh+1 , ..., Rjs

} and {Ri1 , ..., Rik
, Ri, Rik+1 , ..., Rit

} in
the unmodified OPT(e)-solution, then, since {Ri1 , ..., Rik

} and {Rjh+1 , ..., Rjs
} are vertex

disjoint, only one of them can contain e. Hence, the number of subpath constraints containing
e in the modified solution cannot increase. Again, we only need to consider when Assumption
16 holds and, by the same arguments used when Rik

∩ Rjh+1 ̸= ∅, we must only look at cases
(i) and (ii) from above.

In (i), Rik
cannot contain e since it is disjoint from Rjh+1 . Combined with the sorted

order and Rjh+1 containing e, this ensures {Ri1 , ..., Rik
} does not contain e. The previous

argument for (i) then applies to {Rjh+1 , ..., Rjs} and {Rj1 , ..., Rjh
, Ri, Rik+1 , ..., Rit} and

shows both {Rj1 , ..., Rjh
, Rjh+1 , ..., Rjs

} and {Ri1 , ..., Rik
, Ri, Rik+1 , ..., Rit

} contain e.
In (ii), Rjh+1 does not contain e since it is disjoint from Rik

. Combined with the sorted
order and Rik

containing e, this ensures {Rjh+1 , ..., Rjs
} does not contain e. The previous

argument for (ii) then applies to {Ri1 , ..., Rik
} and {Rj1 , ..., Rjh

, Ri, Rik+1 , ..., Rit} and
shows both {Rj1 , ..., Rjh

, Rjh+1 , ..., Rjs
} and {Ri1 , ..., Rik

, Ri, Rik+1 , ..., Rit
} contain e. ◀

Lemmas 14 and 15 imply that the modified sequence of unions remains optimal with
respect to the edge e (it becomes a different OPT(e)-solution, but can still be formed by
iterating through R in the same sorted order). Hence, we can repeat the same swapping
procedure on the modified solution for the next iteration where a discrepancy occurs with
our greedy algorithm.

2.4 Linear Time Implementation via Suffix-Prefix Overlap
We now show how to implement our greedy algorithm via reducing it to suffix prefix overlap,
a classical problem in computational biology with an efficient solution [4].

Define the map str that maps an arbitrary subpath constraint Ri = vi1vi2 ...vi|Ri| onto
the string str(Ri) = i1i2...i|Ri|. The linear time implementation of our greedy algorithm first
performs a linear time sort on str(R) = {str(R) : R ∈ R} using the subpath constraint’s
minimum values as keys, with ties broken arbitrarily. Let the sorted strings be denoted str(R1),
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..., str(R|R|). We concatenate a unique symbol $i to the end of str(Ri), 1 ≤ i ≤ |R|. Then
we concatenate these strings together to form the string T = str(R1)$1...$|R|−1 str(R|R|)$|R|
and construct a suffix tree ST over T . Briefly speaking, the suffix tree ST is a compact trie
constructed from all suffixes of T . For a given suffix of T , there exists a distinct leaf in ST

where the labels assigned to the edges on the root-to-leaf path match the corresponding
suffix of T when concatenated. Suffix trees can be constructed in linear time [11, 18, 20],
even for strings over integer alphabets [3], like the one used here.

Next, we describe how the suffix tree ST is used to solve the FDSC instance. Let r denote
the root of ST . We preprocess ST by marking every node with a branch whose edge has a
label that starts with a $-symbol (including r). We keep pointers from every leaf in ST to
its closest marked ancestor. See Figure 5. This preprocessing can be done in linear time via
one traversal of ST . We then iterate from i = 1 to |R|, and on the ith iteration we start at
the leaf ℓ corresponding to the suffix str(Ri)$i... str(R|R|)$|R| in T . Let ℓ’s closest marked
ancestor be u.

If u = r, we record that Ri is the start of a new subpath constraint.
If u ̸= r and is marked due to some $h we record that Ri should be unioned with Rh.
Note that u cannot be marked due to $i, since this would imply that str(Ri) occurs as
a substring twice in T , which would, in turn, imply Ri is completely contained in some
other subpath constraint.

This works since for any j > i, Rj will either not contain min Ri, or will have an
incompatibility before the max Rj position. This causes a mismatch between the suffix
starting at str(Ri) and the suffix starting at str(Rj) prior to the $j symbol in the second
suffix. Consequently no node marked due to $j in ST will be found on the ru-path. Therefore,
the lowest $h occurring on the path matching Ri in ST indicates Rh where h < i, Rh ∼ Ri,
Rh ∩ Ri ̸= ∅, and max Rh is largest.

Once this is completed for all i iterations, we have obtained a sequence of unions that
indicates the subpath constraints in RG. We create a counter for every edge in E. For all
R′ = {Ri1 , Ri2 , ..., Rik

} ∈ RG, we iterate through the set of subpath constraints Ri1 , Ri2 ,...,
Rik

. For every edge contained in R′, we increment the counter for e only the first time it is
encountered in R′ (actually unioning the subpath constraints in R′ is not required). After
processing all subpath constraints in RG, we check for every edge e whether its counter is at
most f(e). If this holds for all e ∈ E, we report that the given instance of FDSC is feasible,
otherwise, we report that the instance is infeasible.

The initial topological ordering of V requires O(|V | + |E|) time and since G is weakly
connected |E| ≥ |V | − 1. The construction of the suffix tree, followed by the incrementing
and checking of counters to determine feasibility, can be done in time proportional to the
total length of the subpath constraints in R. Combining these, we obtain Theorem 17.

▶ Theorem 17. An instance (G = (V, E), R) of FDSC can be solved in O(|E| + L) time,
where L =

∑
R∈R |R|.

3 Minimizing or Maximizing the Number of Constraints

3.1 Minimizing Subpath Constraint Removal
▶ Theorem 18. There is no polynomial-time approximation algorithm for Minimum Subpath
Constraint Removal with an approximation factor that is o(log |V |) unless P = NP.

Theorem 18 will be proven using a reduction from the Set Cover problem, which is
defined as follows: Given a collection S of subsets S1, ..., Sm of a universe U = {1, 2, ..., n},
determine the minimum number of subsets Si1 , ..., Sik

∈ S such that ∪k
j=1Sij

= U . Well
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Figure 5 The suffix tree ST for the string T = str(R1)$1...$|R|−1 str(R|R|)$|R| is preprocessed
so that every leaf has a pointer to its nearest ancestor that is a marked node. A node is marked if it
has a branch whose edge label starts with a $-symbol.

Figure 6 The reduction from the Set Cover instance {1, 2, 3}, {1, 2, 4, 5}, {1, 3, 4}, {4, 5} to an
instance of Minimum Subpath Constraint Removal. Only the subpath constraints’ relevant corres-
ponding edge flows are shown.

known inapproximability bounds state that no polynomial time o(log n)-approximation
algorithm exists assuming P ̸= NP. These hold even under the assumption that m and n are
polynomially related [9, 12].

Reduction. Let the instance of set cover consist of subsets S1, ..., Sm ⊆ U = {1, 2, ..., n}.
We construct a flow network G as follows: Let V be initially empty. We first add to V the
vertices v1, v2,..., vm, vm+1, ..., vm+2n. For each subpath constraint described below, if an
edge specified does not exist in E, we add it to E. Let the set of subpath constraints R be
initially empty. We add to R the subpath constraints: for 1 ≤ i ≤ m, if Si = {x1, x2, ..., xh},

Ri = vi vm+2x1−1 vm+2x1 vm+2x2−1 vm+2x2 . . . vm+2xh−1 vm+2xh
.

Next, we describe the flows assigned to each edge. For the edge e = (vm+2j−1, vm+2j),
1 ≤ j ≤ n, we make f(e) = |R(e)| − 1, i.e., the number of subpath constraints containing
that edge minus 1. See Figure 6. For the remaining edges created above, we make the flow
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the number of subpath constraints containing that edge. We now create source and sink
vertices s and t. For v ∈ V \ {s, t} where

∑
(u,v)∈E f((u, v)) <

∑
(v,w)∈E f((v, w)), we add

the edge (s, v) and make

f((s, v)) =
∑

(v,w)∈E

f((v, w)) −
∑

(u,v)∈E

f((u, v)).

For v ∈ V \ {s, t} where
∑

(u,v)∈E f((u, v)) >
∑

(v,w)∈E f((v, w)), we add the edge (v, t) and
make

f((v, t)) =
∑

(u,v)∈E

f((u, v)) −
∑

(v,w)∈E

f((v, w)).

▶ Lemma 19. There exists a set cover of size k for the instance of Set Cover iff there exist k

subpath constraints that when deleted make the resulting modified instance of FDSC feasible.

Proof. First assume there exist a set cover of size k. For each set Si in the set cover,
delete the subpath constraint Ri. Let R′ denote the modified subpath constraint set.
For every x ∈ {1, 2, ..., n}, since x is included in some subset taken for the set cover,
the number of subpath constraints containing the edge (vm+2x−1, vm+2x) decreases by at
least 1. Hence for all x ∈ {1, 2, ..., n}, |R′((vm+2x−1, vm+2x))| ≤ |R((vm+2x−1, vm+2x))| −
1 = f((vm+2x−1, vm+2x)). Since these were the only edges where the number of subpath
constraints containing that edge exceeded the flow, and it only exceeded by 1, we now have
that for all e ∈ E, |R′(e)| ≤ f(e). By Lemma 12, this suffices to show that (G, R′) is feasible.

In the other direction, assume there exists R′ ⊆ R, such that |R′| ≥ |R|−k and (G, R′) is
feasible. By Lemma 12, this implies |R′(e)| ≤ f(e) for all e ∈ E. Hence, for all x ∈ {1, 2, ..., n},
|R′((vm+2x−1, vm+2x))| ≤ f((vm+2x−1, vm+2x)) = |R((vm+2x−1, vm+2x))| − 1. This implies
there exists some subpath constraint that was removed and contained edge (vm+2x−1, vm+2x).
Hence, if the removed set of subpath constraints is |R| \ |R′| = {Ri1 , ..., Rik′ }, where k′ ≤ k,
we have that Si1 ∪ ... ∪ Sik′ = {1, 2, ..., n}. ◀

Assuming the instance of set-cover satisfies the condition that m and n are polynomially
related, we have |V | = m + 2n = nΘ(1). In this case, a polynomial-time algorithm providing
a o(log |V |)-approximation for the value k, also provides a o(log n)-approximation for set
cover. This completes the proof of Theorem 18.

3.2 Maximizing Subpath Constraint Retention
▶ Theorem 20. For every constant ε > 0, there is no polynomial time O(|V | 1

2 −ε + |R|1−ε)-
approximation algorithm for Maximum Subpath Constraint Retention, unless P = NP .

Theorem 20 is based on a reduction from the Maximum Independent Set problem defined as
follows: Given a graph G = (V, E), determine the maximum sized subset I ⊆ V such that no
two vertices in I are adjacent, i.e., I is an independent set. We assume that G is connected,
making |E| ≥ |V | − 1.

Reduction. Let G = (V, E) be a given instance of Maximum Independent Set problem
where V = {u1, ..., u|V |} and E = {e1, ..., e|E|}. We first create a vertex set V ′ with vertices
v1, ..., v|V |, v|V |+1, ..., v|V |+2|E|. We next construct an edge set E′. Like in the reduction for
Minimum Subpath Constraint Removal, if an edge specified by a subpath constraint does
not exist, we add it to E′. Let R be initially empty. For each ui ∈ V we add a constraint to
R. Suppose ui is incident to the edges ei1 , ..., eih

. We make

Ri = vi v|V |+2i1−1 v|V |+2i1 v|V |+2i2−1 v|V |+2i2 . . . v|V |+2ih−1 v|V |+2ih
.
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Figure 7 A reduction from the graph above to an instance of Maximum Subpath Constraint
Retention. For every vertex there is a corresponding subpath constraint.

For the edge e = (v|V |+2j−1, v|V |+2j) ∈ E′, 1 ≤ j ≤ |E|, we make |f(e)| = 1. Just as in the
reduction for Minimum Subpath Constraint Removal, we make the flows for the remaining
edges the number of subpath constraints containing that edge, then add vertices s and t,
edges from s to all vertices in V ′ \ {s, t}, edges from V ′ \ {s, t} to t, and assign flows as
needed to create a valid flow network. Let G′ be the resulting flow network.

▶ Lemma 21. There exists an independent set of size k for the instance of Independent Set
iff there exists k subpath constraints that when maintained (and other subpath constraints
deleted) make the resulting modified instance of FDSC feasible.

Proof. First assume there exist an Independent set I of size k. Maintain the subpath
constraints corresponding to the vertices in I and delete the remaining subpath constraints.
For edge (v|V |+2h−1, v|V |+2h) ∈ E′ that corresponds to an edge eh = (ui, uj) ∈ E, it can
not be that both the subpath constraint corresponding ui and the subpath constraint
corresponding to uj have been maintained, since that would imply that ui and uj are both
adjacent and in the independent set I. Hence, maintaining only the subpath constraints
corresponding to vertices in I must make the resulting instance of FDSC feasible.

In the other direction, assume there exists R′ ⊆ R, such that |R′| = k and (G′, R′) is
feasible. By Lemma 12, all edges eh = (ui, uj) ∈ E have |R′((v|V |+2h−1, v|V |+2h))| ≤ f(e) = 1.
Hence either Ri or Rj has been removed. This implies that if we take the subset of vertices
in V corresponding to the maintained subpath constraints, every edge in E is incident to at
most one vertex in this subset. Hence, this subset is an independent set. ◀

For any constant ε > 0 there does not exist a polynomial-time O(|V |1−ε)-approximation
algorithm for Maximum Independent Set on a graph G = (V, E) unless P = NP [24].
This combined with the above approximation preserving reduction to an FDSC instance
(G′ = (V ′, E′), R) where R = |V |, |V ′| = |V | + 2|E| ≤ 4|E| ≤ 4|V |2, and

|R|1−ε + |V ′| 1
2 −ε ≤ |V |1−ε + (4|V |2) 1

2 −ε = |V |1−ε + 4 1
2 −ε|V |1−2ε = O(|V |1−ε),

proves Theorem 20.
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4 Open Problems

A question raised by this work is whether feasibility can be determined in polynomial time
on cyclic flow networks. A flow decomposition in this setting may be allowed to contain
cycles, so the definition of FDSC should make clear whether constraints can also be cyclic.
A polynomial-time algorithm for cyclic graphs would have applications to de novo assembly.
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