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Abstract 

Dispersion relations and isofrequency curves are of critical importance for understanding the 
behavior of waves, including what frequencies can be excited, how the waves will propagate, and 
how waves in one system will couple to another. Here we present methods to extract the 
dispersion relations and isofrequency curves automatically and conveniently, each from a single 
micromagnetic simulation run. These methods have significant advantages in that they provide 
a means to obtain rapid insight into spin wave behavior in complex situations where analytic 
approaches are difficult or impossible.  We present multiple examples to illustrate the 
methodology and discuss specific issues that need to be considered for the different situations.  

1) Introduction 

Dispersion relations provide at-a-glance insight into how any kind of wave – water waves, elastic 
waves, magnetic waves, etc. - will propagate in a particular situation. In magnetic materials, the 
waves of interest are spin waves, also known as magnons1. Spin waves are of increasing interest 
as a means to transmit information and to carry out logic operations2–5 since spin waves span the 
gigahertz regime with wavelengths on the order of micrometers. Dispersion relations are also a 
vital tool for interpreting experiments to extract fundamental material parameters, e.g., the 
Dzyaloshinskii Moriya interactions (DMI) 6,7, to understand the spin Seebeck effect8, to 
understand scattering processes that contribute to damping9,10, and to predict and interpret 
nonlinear processes11,12.  

Many of the problems of interest at present, especially for magnonics applications, involve 
magnetic microstrips or nanostrips, but analytic theoretical models only exist for a narrow subset 
of the geometries of interest. Theoretical methods have been developed to calculate the spin 
wave dispersion relations in magnetic thin films for a variety of field directions using exact 
methods13,14 and an approximate matrix method15, both of which must be evaluated numerically. 
Theories have also been developed for multilayered thin films that are appropriate for calculating 
the dispersion relations for ferromagnetically coupled multilayers, exchange spring magnets, and 
RKKY-coupled thin films of interest for giant magnetoresistance and magnetic tunnel junctions 
14,16–20.   
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The dispersion relations for long magnetic wires are more complex as compared to those of an 
extended thin film because the spin waves are quantized across the width of the microstrip but 
quasi-continuous along the length. One common approach21 that works well for the surface wave 
or Damon Esbach (DE) geometry, where the magnetic field is in-plane and perpendicular to the 
length of the microstrip, is to use the dispersion relations for a continuous thin film15 and assume 
that the spin waves across the finite width of the strip should have quantized wavevectors 𝑘! 	=
	𝑝𝜋/𝑤"##22. Here, 𝑤"## an effective width that is introduced to adjust for the effects of the 
nonuniform demagnetization field across the microstrip width and is typically slightly larger than 
the actual width of the microstrip, defined as 𝑤"## 	= 	𝑤[𝑔/(𝑔	– 	2)], where 𝑔(𝛽) 	= 	2𝜋/𝛽[1	 +
2 ln(1/𝛽)] and 𝛽	 = 	𝐿/𝑤. For the DE geometry, there is also a sizeable static demagnetization 
field 𝐻$"%&' inside the microstrip that must be accounted for, hence the thin film dispersion 
relations should be calculated for a reduced effective static field of 𝐻"## 	= 	𝐻	 −	𝐻$"%&', where 
𝐻 is the applied static field. More exact solutions have also been derived but only for the high 
symmetry field directions23,24.  

While some standard cases can be calculated analytically, this is not easy for many geometries, 
including microstrips, or for systems with complicated interactions, for example, multilayers with 
DMI and perpendicular anisotropy, or for external magnetic fields that are at an angle other than 
parallel or perpendicular to the surface or edge of a structure.  As we will show, the method used 
to excite the spin waves can also play a role that is not captured by analytic calculations.  

Micromagnetic simulations such as OOMMF25 and mumax3 26 are routinely used to gain insight 
into the formation of spin textures, to calculate the dynamic response of patterned structures, 
and to investigate the response of a sample to driving stimuli including spin transfer torque and 
magneto-elastic perturbations. These simulations are typically used to investigate very specific 
problems and they do not immediately yield the rapid insight into dynamics that are offered by 
dispersion relations. Here we present and explore two simple methods that can be used to obtain 
broad insight into spin dynamics using micromagnetic simulations by directly calculating 
dispersion relations and isofrequency curves, each with a single dynamic run of the 
micromagnetic solver.   Dispersion relations are, of course, fundamental tools for understanding 
and characterizing wave excitations.  Isofrequency curves are equally important as they may be 
used to indicate the direction and magnitude of power flow and caustics from a localized 
source27–31.    

Spin wave dispersion methods 

2) Sinc pulse method 

The first method we will demonstrate involves the use of micromagnetic simulations to calculate 
dispersion relations. Micromagnetic simulations were conducted using mumax3 26 for two test 
cases: a Permalloy microstrip where the angles of the antenna and magnetic field are varied, and 
a Pt/Co/Gd trilayer magnetic microstrip.  These cases, dubbed case 1a and 1b, respectively, 
illustrate how this method can be used to calculate dispersion relations for non-standard field 
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angles not covered by existing analytical theories, and for complex cases that involve interlayer 
exchange16,17 and DMI32,33, effects that have been incorporated separately into spin wave 
dispersion theories but not yet combined. These cases also highlight that it is possible to treat in-
plane and out-of-plane magnetization tilts easily, whereas these add considerable complexity to 
analytical and semi-analytical approaches.   

The geometries considered for these simulations, long magnetic micro- or nano-strips of width 
w and length 𝑙 ≫ 𝑤 made up of one or more magnetic layers, are illustrated in Figs. 1(a) and (b). 
The thicknesses of the ferromagnetic thin film layers 𝑡()*, 𝑡()+, … are small compared to 𝑙 and 
𝑤. The spin wave dispersion relations are obtained by first allowing the spin state to relax to 
equilibrium in the presence of a static magnetic field 𝐻. In the examples considered here 𝐻 is 
applied in-plane at an angle 𝜑 with respect to the microstrip long axis, also the 𝑥 direction, but 
this method will work for any static field orientation. Next, a broadband excitation field is applied 
to a narrow region of width 𝑤&,-",,& that spans the width of the magnetic nanowire to 
approximate the effect of a microstrip antenna. Here a broadband sinc pulse was used 

𝐻$., 	=
/! 0123+4#"(-6-!)8

+4#"(-6-!)
	, 

applied in-plane and parallel to the antenna width, where ℎ9 is the pulse amplitude, and 𝑡 and 𝑡9 
are time and central time of the pulse, respectively. A microstrip antenna will also generate out-
of-plane fields and, while this can be included, the susceptibility of a magnetic thin film is usually 
an order of magnitude lower for the out-of-plane response, so for simplicity we use only the in-
plane component. The bandwidth of the excitation pulse, with central frequency 𝑓:, should be 
broad enough to encompass the frequency range of interest, and the width of the antenna region 
𝑤&,- must be narrow enough to obtain a broad range of excited 𝑘, where 𝑘 is the wavevector 
along the length of the microstrip, i.e., 𝑤&,-",,& < 𝜋/𝑘%&;, where 𝑘%&; is the maximum desired 
wavevector.  

The pulse amplitude ℎ9 should be large enough to produce oscillations that are above the 
numerical noise level outside of the antenna region but low enough that the magnetic response 
is still linear. Typically, a ℎ9 that leads to oscillations with a few percent deviation from 
equilibrium near the antenna region will work well, and linear behavior is confirmed by running 
test simulations with several ℎ9 values to ensure that the shapes of the calculated dispersion 
relations are unaffected by ℎ9.  

The simulations are run in the time-domain and the magnetization along the center line of the 
magnetic structure is saved out at roughly equal time intervals of 𝑑𝑡~10 ps or less until the 
response damps out, where 𝑑𝑡 must be chosen such that the Nyquist frequency 𝑓<. = 1/2𝑑𝑡 is 
higher than the maximum frequency of interest. The dispersion relations are obtained by first 
interpolating the normalized 𝑧-component of the magnetization 𝑚= vs. 𝑥 and 𝑡 onto a fixed time 
base and then taking a two-dimensional Fourier transform, over time and space. A proposed 
standard problem that uses OOMMF and Nmag uses a similar approach to calculate dispersion 
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relations for high symmetry directions, described in Ref. [34], and here we show examples of how 
this approach is more broadly useful for more complex situations. 

 

 

Figure 1: Geometry for the spin wave dispersion and isofrequency curve calculations. a) Top view 
and b) 3D view of the geometry used for spin wave dispersion calculations. The magnetic strip is 
made up of one or more layers of thickness tFM1, tFM2, etc. and has dimensions of length l along 
𝑥	by width w along 𝑦, with 𝑙 ≫ 𝑤. A uniform, in-plane static field 𝐻 is applied to the entire strip 
at an angle of 𝜑 from the 𝑥-axis. A dynamic field 𝐻$., is applied within the antenna region of 
width wantenna, shown by the cross-hatched area. The antenna is oriented at an angle θ with 
respect to 𝑥, and 𝐻$.,  is applied perpendicular to the antenna width. The green line in a) shows 
the midpoint of the microstrip in the 𝑦 direction. The magnetization is saved along this line as a 
function of time. The slanted cuts in a) are used to illustrate that 𝑙 ≫ 𝑤. c) Diagram of the 
geometry used for isofrequency calculations, where a localized source is pulsed at a specific 
frequency.  The external field can be applied at any angle.  The light-colored rings indicate the 
anisotropic propagation of the wavefronts from the source. 
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The first case considered, case 1a, involves a long, straight 𝑡()* =	40-nm thick and 𝑤 =	1-μm 
wide Permalloy microstrip with 𝜇>𝐻 = 0.12 T applied in-plane at angles 𝜑 of 90°, 45°, and 60°. 
Spin wave dispersion relations were calculated using micromagnetic simulations for antenna 
orientations of 𝜃 = 90° and 𝜃 = 𝜑 for each 𝜑, as defined in Fig. 1(a). Material parameters 
appropriate for Permalloy were used: saturation magnetization 𝑀? = 8 × 10@ A/m, exchange 

𝐴"; = 	1.3 × 106**	J/m, 𝛾 = 1.76 × 10** A&$
B	?
,	a damping parameter of α = 0.01, and anisotropy 

was neglected. The dynamic magnetic field 𝐻$., was applied in-plane and perpendicular to the 
antenna axis within a 𝑤&,-",,& = 100-nm wide region, centered with respect to the Permalloy 
microstrip length, with pulse parameters of 	𝑓:   = 20 GHz, 𝑡9  = 50 ps, and 𝜇>ℎ9= 1 mT. The 
Permalloy microstrip length, 𝑙 = 41	µm, is much longer than 
𝑤, and	long	enough	to	avoid	reflections.  

The cell sizes used in the dispersion and isofrequency calculations are typically of order 𝑥 - 10 
nm, 𝑦 – 10 nm, 𝑧 – 𝑡()*, where 𝑡()* is typically tens of nanometers or less.  For case 1a we use 
cells of 𝑥 – 20 nm, 𝑦 – 15.6 nm, 𝑧 – 40 nm, which we will indicate by 20 × 15.6 × 40 nm3. Similarly, 
the number of cells, for example, is indicated by 2048 x 64 x 1, meaning that there are 2048 cells 
in the 𝑥 direction, 64 in the	𝑦 direction, and 1 in the 𝑧 direction. Smaller cells are needed to 
accurately capture domain walls where the cell size must be on the order of the exchange length 
of the material or smaller, but for spin wave dispersion relations the relevant length scale is the 
smallest spin wave wavelength of interest, consequently larger cells can often be used. Selected 
simulations repeated with half-sized cells yield the same results, indicating that the cells are 
sufficiently small.  

The results for the Permalloy microstrip are shown in Fig. 2. Fig. 2(a) and (b) show the results for 
𝜃 = 𝜑 = 90°, so 𝐻 is along the microstrip width, which is the DE or surface wave geometry that 
is often used in experiments. The microstrip is magnetized mainly along 𝑦, with a slight tilt along 
𝑥 at the top and bottom edges, a configuration known as the flower state. The magnetization 𝑚= 
vs. 𝑥 and 𝑡 (Fig. 2(a)) shows a broadband response in the time-domain that is concentrated at the 
antenna for small times and spreads out in 𝑥 and decreases in amplitude as 𝑡 increases. The signal 
damps out before reaching the ends of the microstrip and no reflections are observed. The two-
dimensional Fourier transform of Fig. 2(a) yields the corresponding dispersion relation, shown in 
Fig. 2(b). The spin wave dispersion relations show the available states at a given frequency as well 
as the relative excitation amplitudes of the allowed modes, and the group velocity can be 
obtained from the slope. In Fig. 2(b) the strongest response is a quasi-continuous bright band 
that increases in frequency 𝑓 with increasing 𝑘, where 𝑘 is the wavenumber along the microstrip 
length. This band corresponds to the lowest-order width-quantized mode that has a single 
antinode at the microstrip center (along the width). For example, the strongest excitation at 12 
GHz will be a traveling spin wave with lower amplitude at the edges (𝑦 = ±𝑤/2)	and the 
strongest amplitude at the center (𝑦 = 0), a 𝑘 of 6 𝜇𝑚6*, and the group velocity 𝑣' = 𝑑𝜔/𝑑𝑘 
with 𝜔 = 2𝜋𝑓 is approximately 2800 m/s and has the same sign as the phase velocity. Weaker 
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dispersion relations are found at slightly lower frequencies in Fig. 2(b) as compared to the 
strongest mode, and these are higher-order width-quantized modes (modes with 𝑝	 = 	1, 3, 5…, 
i.e., modes with an odd number of antinodes because 𝐻$., is uniform along 𝑦). Note that 
excitation fields that are non-uniform across the width can be applied to excite modes with even 
𝑝.  Dispersion relations were also calculated analytically for the Permalloy microstrips with 𝜃 =
𝜑 = 90° (Fig. 2b) using 𝑤"## = 𝑤 and a static demagnetization field of 0.026 T, obtained from 
the micromagnetic simulations. The analytical calculations agree well with the dispersion 
relations obtained from the mumax3 simulations for 𝑝	 = 	1 and 3, and some minor deviations 
are present for 𝑝 = 5. 

Analytical theories exist for the geometry considered in Figs. 2(a) and (b). These theories assume 
quantization of the wavevectors along w, as described in the introduction. The analytical theories 
have only been developed, however, for microstrips for high symmetry field directions, the DE 
geometry	𝜑 = 90° and the backward volume configuration where 𝐻 is along the microstrip (𝜑 =
0°	)23,24. Several scenarios for the Permalloy microstrips that cannot be calculated using existing 
analytical theories are shown in Figs. 2(c-f) with 𝜑 = 45°	and 60° with 𝜃 = 90° where the 
antenna length is perpendicular to the wire and 𝜃 = 𝜑, i.e., where the antenna length is parallel 
to 𝐻. The relaxed magnetizations are in-plane and mostly uniform with magnetization angles of 
𝜃) of 34° and 47° with respect to the 𝑥 direction, respectively, for 𝜑 = 45°	and 60°, in both cases 
tilted slightly towards the long axis of the microstrip due to the shape anisotropy. Unlike the 
quasi-continuous mode shown in Fig. 2(b) for the DE case, the curves in Figs. 2(c-f) are made up 
of disconnected segments that are of similar intensity, which suggests that the wavevector 
quantization effects are more complex than the simple condition of width quantization (𝑘! 	=
	𝑝𝜋/𝑤"##) that applies for the high symmetry directions. Notably the slopes of the individual 
segment are negative (positive) for positive (negative) 𝑘, so the phase and group velocities have 
opposite signs, which is expected for backward-volume-type waves that occur for 𝜑 = 0°.  

The results in Fig. 2 also highlight the importance of the antenna angle 𝜃 since the accessible 
dispersion relations for the same 𝜑 differ significantly depending on the choice of 𝜃. This can 
have important implications in terms of the number of overlapping modes available. For 
example, with 𝜑 = 45° and 𝜃 = 90°, a driving frequency of 12 GHz is expected to excite three 
modes with distinct 𝑘 values based on Fig. 2(c), whereas if the antenna is tilted such that 𝜃 =
45°, a single 𝑘 would be expected at 𝑓	 = 	12 GHz (Fig. 2(d)). The effect of the antenna angle is 
more dramatic than the effect of the static field angle in Figs. 2(c-f). Fig. 2f shows that the 
combination 𝜑 = 𝜃 = 60° leads to a more complex multi-mode situation with many discrete 
sections that occur due to width quantization combined with the phase delays associated with 
the antenna angle. These results show that both 𝜑 and 𝜃 have important effects on the spin 
waves that can be excited in a magnetic microstrip using a strip antenna. This example also 
highlights how simulations can provide rapid insight (the approximate run time for the 
simulations in each panel of Fig. 2 is ~1 minute) for situations that are not covered by existing 
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analytical theories and that are relevant to magnonics, including wavevector up-conversion 
strategies35.  

 

  

Figure 2: Dispersion relations for a 40-nm thick Permalloy microstrip with 𝑤	 = 	1 µm for selected 
antenna and static field orientations, 𝜃 and 𝜑, respectively, as defined in Fig. 1a with 𝜇>𝐻 = 0.12 
T. (a) Magnetization component, mz, vs. 𝑡 and 𝑥 for 𝜃 = 𝜑 = 90°, the DE geometry, and (b) shows 
the dispersion relation obtained from (a). (c) and (d) show dispersion relations for  𝜑 = 45° with 
𝜃 = 90° and 45°, respectively, and (e) and (f) show dispersion relations for 𝜑 = 60°	for both 
antenna orientations. Analytical calculations of the dispersion relations are shown in (b) for 𝑝 =
1, 3, and 5 as blue dash-dot, solid, and dotted lines, respectively.   

The second case, case 1b, involves a Co/Gd bilayer magnetic thin film with perpendicular 
magnetic anisotropy and interfacial DMI assigned the Co layer. The parameters used here are 
chosen to match those of multilayer [Co/Gd/Pt]10 films that were recently shown to support 
antiferromagnetic skyrmions at room temperature36. The Co and Gd layers were assigned 𝑀? =
1.196 × 10D A/m and 0.325 × 10D A/m, respectively,  values appropriate for a temperature of 
160 K, 𝐴"; = 20 pJ/m and 5 pJ/m, respectively, the interlayer exchange coupling was set to 𝐽 =
−0.15	mJ/m+, and a damping parameter of 𝛼 = 0.01 was used. An interfacial DMI of 𝐷	 = 	2.5 
mJ/m2 and a perpendicular anisotropy of 𝐾E = 1.6 × 10D J/m3 were applied to the Co layer to 
account for the effects of the Co/Pt interface.  The simulations were done using 𝑡()* = 0.5	nm 
for the Co layer, 𝑡()+ = 1	nm for the Gd, with 𝑤 = 256 nm. The spin waves were excited by an 
antenna with 𝑤&,-",,& = 4	 nm and ℎ9 = 	40 mT in the DE geometry, the same configuration 
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used in Fig. 2(a,b) with 𝜑 = 𝜃 = 90°. The Co/Gd simulations were done with 2 × 2 × 0.5	nm3 
cells and 𝑙 = 	2	µm and repeated with 5 × 5 × 0.5	nm3 cells and 𝑙 = 10.24	µm, using 1024 x 128 
x 3 cells in the first case and 2048 x 128 x 3 cells in the second case. Both sets of simulations 
yielded similar results, and in both cases 𝑙 was sufficiently long to avoid reflections. The 
simulations were repeated with D = 0 mJ/m2 in order to identify features specific to the DMI.  

The dispersion relations for the Co/Gd microstrip are shown in Fig. 3 for two static field values, a 
low field of 𝜇>𝐻 = 0.5 T and a high field of 𝜇>𝐻 = 2.0 T. The low-field equilibrium state is still 
partially out-of-plane, whereas the high field is sufficient to achieve a fully in-plane relaxed state. 
Defining the out-of-plane angle of the magnetization (measured with respect to +𝑧) as 𝛽, the 
low field relaxed state involves substantial out-of-plane magnetization tilts of 𝛽F> 	= 	13° (tilted 
towards +𝑧) and 𝛽G$ 	= 	121° (tilted towards −𝑧) for the Co and Gd layers, respectively. The in-
plane tilt angle for both layers is  𝜃) = 90°  (in the +𝑦 direction). The two layers are tilted in 
opposite directions due to the antiferromagnetic interlayer exchange, and the Gd is more in-
plane than the Co because perpendicular anisotropy is assigned to the Co layer. At the higher 
field, 𝐻 is sufficiently strong that both layers are fully in-plane magnetized along 𝐻 (𝜃) = 90°). 
As shown in Fig. 3, two distinct and continuous dispersion relations are obtained for both 𝐻 
values. The intensities of the two modes differ slightly depending on whether the dispersion 
relations are calculated using the dynamic magnetization from the Co or Gd layers, but the 
frequency/wavevector relationships are the same.  

Focusing on Figs. 3(a) and 3(b), we examine the two mode branches in more detail. The relative 
phases of the dynamics in the two magnetic layers were determined by examining the 
magnetization vs. time while driving at fixed frequencies corresponding to 𝑘 = 100	1/µm for the 
low (𝑓 = 25	GHz) and high (𝑓 = 50	GHz) frequency branches. In Fig. 3(a), which corresponds to 
the low field, the low frequency branch corresponds to out-of-phase motion of the Co and Gd, 
whereas the Co and Gd layers oscillate in-phase for the high frequency branch. In both cases the 
dispersion relations are the lowest-order width quantized modes. The low frequency branch in 
Fig. 3(a), mode 1, is symmetric about 𝑘 = 0, which is also the case for the dispersion relations 
shown in Fig. 2, whereas the high frequency branch, mode 2, is not symmetric about 𝑘 = 0.  GHz-
scale frequency difference Δ𝑓 between the spin waves at +k and -k for |𝑘| ≤ 25 1/𝜇m are 
observed (Fig. 3(e)), and Δ𝑓 increases linearly with increasing |𝑘|, which is expected for DE-type 
spin waves in magnetic thin films with interfacial DMI32,33. In the high field case where both layers 
are fully magnetized in-plane (Fig. 3(b)), the low frequency branch (mode 1) shows a large Δ𝑓 of 
~5 GHz for k = 25 1/𝜇m and a smaller GHz-scale shift for the high frequency branch (mode 2).  
The observed asymmetries in the dispersion relations Figs. 3(a,e) and (b,f) become negligible 
when D = 0 as shown in Figs. 3(e) and (f), hence the frequency shifts are due to the DMI. The DMI 
value cannot, however, be extracted from the slope of the Δ𝑓 vs. 𝑘 curves using the simple single-
layer analysis approach32,33. The results shown in Fig. 3 highlight an as-of-yet unexplored 
peculiarity of the effect of DMI in an exchange coupled bilayer system, where both modes in the 
DE configuration are affected by the DMI provided the films are sufficiently in-plane magnetized. 
Furthermore, these calculations show that there is strong potential for quantitatively measuring 
the DMI in bilayer systems and highlight the importance of field dependent measurements for 
extracting DMI in experiments in more complex thin film stacks.  
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Figure 3: Dispersion relations for a CoGd bilayer microstrip with 𝑤 = 256	nm and D = 2.5 mJ/m2 

assigned to the Co layer. The thicknesses of the Co and Gd are 𝑡()* = 0.5 nm and 𝑡()+ = 1 nm, 
respectively. The dispersion relations are shown in (a, c) for 𝜇>𝐻 = 0.5 T and in (b, d) for 𝜇>𝐻 =
2.0 T with 𝜑 = 𝜃 = 90°. The dispersion relations calculated for the Gd and Co layers are shown 
in (a, b) and (c, d), respectively. The frequency differences Δ𝑓 between the spin waves at +k and 
-k obtained from (a) and (b) are shown in (e) and (f), respectively, along with the corresponding 
results with no DMI (D = 0). In (e) and (f), modes 1 and 2 are the low and high frequency branches, 
respectively.  

3) Isofrequency Curves 

Isofrequency curves and propagation in arbitrary directions 

The previous section developed a method to produce dispersion curves for propagation in a 
particular direction (along a magnetic microstrip). In contrast, here we explore a method that 
produces information about the dispersion curves in all directions simultaneously. In its most 
immediate application, this method produces a set of isofrequency curves in 𝑘 space. These 
curves, also known as slowness surfaces in phonon problems, provide information on how a wave 
will spread.  In particular, the density of isofrequency curves gives immediate information on 
group velocity (𝑑𝜔/𝑑𝑘) in every direction. In addition, normals to the isofrequency curves 
indicate the direction of power flow. Finally, regions of the isofrequency curves where the 
curvature is zero identify the directions of caustic beams originating from point sources.28–31 
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The identification of the connection between isofrequency curves and power flow in spin waves 
has become quite common with the development of microfocus Brillouin Light Scattering37.   The 
systems studied have varied from standard thin film geometries27,38, thin ferromagnetic films 
with interfacial DMI39, lens design for spin wave computing,40 to the influence of dipole-dipole 
interactions in synthetic antiferromagnets.41 

Our geometry consists of an extended thin film of thickness 𝑡()* as illustrated in Fig. 1(c). The 𝑧 
direction is oriented out of the plane of the sample and an external static field 𝐻 is applied in the 
sample plane. The material parameters appropriate for Permalloy were used in the calculations 
that follow, i.e., 𝑀?&- 	= 	8	 ×	10@ A/m, 𝐾E = 0, and 𝐴"; 	= 	1.3	 × 	106** J/m and 𝛾 =
1.76 × 10** A&$

B	H
.	 Unless otherwise noted, the cell size and number of cells used were 5 x 5 x 30 

nm3 and 512 x 512 x 1, respectively.  

In the simplest version of this method, one drives the system with an oscillating magnetic field at 
one or more fixed frequencies, again in a small region (one or a few cells, darker region in Fig. 
1(c)), allowing a large range in wavevector space to be examined. This will produce waves in all 
directions with wavevectors consistent with the driving frequencies and the dispersion relations. 
To identify the wavevectors, we let the system evolve over time and collect the data on the 
transverse components of the dynamic magnetization in each cell at a particular time.  We then 
do a two-dimensional spatial Fourier transform of 𝑚=(𝑥, 𝑦), which produces iso-frequency curves 
in 𝑘 space. 

It is helpful to identify the range of wavevectors that are produced by such an excitation.  The 
size of the sample and the size of the driven region limits the range of accessible wavevectors.  If 
one uses a single cell, with a side dimension of 𝑎, the largest wavevector is given by      
 

	𝑘%&; =	
2𝜋
2𝑎 		=

𝜋
𝑎 

 
As an example, if 𝑎	 = 	5 nm, a common value in many micromagnetics projects, then 
 

𝑘%&; ≈ 		628/µm.	 
 
This is a large value compared to those found in most spin wave dispersion curves measured with 
BLS or other methods. Thus, in many cases it is convenient and appropriate to use larger cell 
sizes, on the order of 20 - 30 nm. This allows larger systems to be more easily calculated and 
results in better resolution for the 𝑘 values in the isofrequency curves. Some problems do emerge 
with larger cell sizes; this will be discussed in more detail below.  
 
We illustrate the method with a simple example.  We use the following parameters in our 
micromagnetic simulation for a Permalloy element which is 𝑡()* = 	30 nm thick and 5120 nm x 
5120 nm wide.  The parameters for the calculation are: Cell size 5 x 5 x 30 nm3; number of cells 
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1024 x 1024 x 1; 𝜇>𝐻 = 	0.1 T along the 𝑥 axis (𝜙 = 0); Gilbert damping constant a = 0.0001; and 
the oscillating field frequencies are 9, 13, 17, 21, 25, and 29 GHz. The system is driven by an 
oscillating field at an amplitude of 20 Oe at each frequency and in a 10 x 10 nm2 central region. 

 
 

 
 
Figure 4: (a) Example of the spatial pattern of the transverse magnetization produced for a 
Permalloy film of thickness 𝑡()* = 30 nm with 𝐻$., applied to a single central cell and 𝜇>𝐻 =
	0.1 T along the 𝑥 axis (𝜙 = 0).  Light regions indicate a positive value of mz and dark regions 
have negative values.  (b)  A 2D spatial Fourier transform of the data from (a) produces 
isofrequency curves. 
 
We allow the excitation to propagate until it nearly reaches the edges of the sample, about 2 ns. 
We then take the instantaneous values of one of the transverse components of the 
magnetization, illustrated in Fig. 4(a), typically the out-of-plane component 𝑚=, and do a two-
dimensional spatial Fourier transform. This produces a set of isofrequency curves in k space as 
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shown in Fig. 4(b).  We note that the isofrequency curves calculated in this way agree with the 
results from analytic calculations done in Ref. [42] for dipole exchange modes.  
 

 
 
Figure 5:  Dispersion relation obtained from several sets of isofrequency curves similar to those 
shown in Fig. 4. We generate dispersion relations for two propagation directions, parallel and 
perpendicular to the applied field.  Analytic results, in red, for the same parameters are shown 
for comparison.  

By this method, one can easily produce isofrequency curves (in 3D) in any direction.   Also, if one 
wants an actual dispersion relation, one can drive the system at multiple frequencies (in a single 
run) and find the associated 𝑘 values for each frequency. Then, taking the 𝑘 values along a 
particular direction, one can obtain a dispersion curve for any particular direction as seen in Fig. 
5.  In this case we examine propagation both parallel and perpendicular to the applied field. We 
also provide the analytic results, calculated using the methods from  Ref. [42].  The results are in 
very good agreement and would likely be better if one included more than 1 cell representing 
the thickness of the film in the micromagnetic calculations. 
 
When implementing this method, it is important to consider if the strength of the driving field or 
the compilation of several driving fields could unintentionally push the system into the nonlinear 
regime. If the system is in the nonlinear regime, one will likely see the formation of second or 
higher harmonics and in the case where multiple driving frequencies are being explored 
simultaneously, one could see the formation of mixed frequencies43,44. If there are several 



 13 

different driving frequencies, the isofrequency curves of unintended nonlinear frequencies may 
be indistinguishable from their linear counterparts. 
 
We note that, while this method also produces dispersion relations, it may not be as convenient 
as the method presented in the previous section. There are two reasons for this: 
 
1) If there are many exciting frequencies and they are close together, the isofrequency curves 
may not be sufficiently resolved to cleanly associate a particular wavevector with a particular 
frequency.  The resolution in 𝑘-space for the example above is given by  

Δ𝑘 = 	
2𝜋

𝑡𝑜𝑡𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	=
2𝜋

(𝑐𝑒𝑙𝑙	𝑠𝑖𝑧𝑒)(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠) = 	
2𝜋

(5	nm)(1024) = 	1.23/µm 

From the dispersion relation, this typically leads to a range of frequency values which is on the 
order of 0.5 GHz. This could be improved by using a larger structure.  

2) In some cases, for example as seen in magnetostatic backward volume waves (along the x-
direction), there are multiple 𝑘 values for a single frequency. This can make it more difficult to 
write a program to associate 𝑘 values with individual frequencies through a single set of 
isofrequency curves.  

As a final comment on dispersion curves, the periodicity introduced by the choice of a cell size 
greater than the actual atomic spacing of material produces an effective first Brillouin zone, with 
edge value 	𝑘%&; = 	𝜋/(𝑐𝑒𝑙𝑙	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) which is nonphysical. This results in the dispersion 
curve bending over at an inflection point near the center of this effective first Brillouin zone, 
artificially lowering the frequency values.  This effect can be reduced by running the simulation 
with smaller cell sizes and thereby extending the size of the effective Brillouin zone.  For the 
parameters explored in Fig. 5, a cell size of 10 nm gave good results up to about 100/µm.  When 
the cell size is reduced to 5 nm the region of accurate results extends to about 150/µm.  

In finite systems, it is important to address the impact of reflections on the results. One method 
to avoid the question of reflections is to simply not let the waves reach the boundaries of the 
system.  We have found that reasonable isofrequency curves can be produced even if the 
excitation has not propagated very far away from the central point driven by the oscillating field.  
However, as one would expect, the resolution in 𝑘 space is better if one allows the waves to 
propagate closer to the edge of the sample. Of course, the waves do not propagate equally 
quickly in all directions, so there is not a single time when the edge of the sample is reached.  
However, this does not significantly impact the quality of the isofrequency curves.  

Isofrequency curves for finite size magnetic structures with dimensions on the order of hundreds 
of nm or smaller are different, however, from those obtained for larger objects. We illustrate this 
in Fig. 6, which compares some isofrequency curves obtained for a 30-nm thick Permalloy 
extended film and Permalloy square with a side length of 320 nm and the same thickness. As one 
would expect, in the small square the wavevectors are quantized, which leads to discrete 
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isofrequency points rather than the continuous curves that are found in an unconfined magnetic 
film.  As a result, only a few wavevectors are excited at each driving frequency, but the discrete 
isofrequency points for the smaller square all lie almost directly on the isofrequency curve for 
the larger system as can be seen in Fig. 6(a). Which 𝑘 values appear depends on the driving 
frequency and the dimensions of the magnetic structure.  With substantial damping (𝛼 = 	0.05), 
the eigenfrequencies are smeared out, and even for the small system, most of the isofrequency 
curve is present as seen in Fig. 6(b) 

 

Figure 6:  Isofrequency curves for a large structure (solid line) and small structure (squares).  In 
(a) the damping is zero while in (b) the damping is large at  𝛼 = 	0.02.  The parameters for the 
runs are as follows. For the large structure, the cell sizes are 5 x 5 x 30 nm3; 1024 x 1024 x 1 cells; 
𝜇>𝐻 = 	0.1 T.  The small structure has the same parameters except the number of cells is 64 x 64 
x 1, which corresponds to a 320 x 320 nm2 square. The grid indicates the allowed 𝑘 values for the 
small structure.  

 

As a final example, we demonstrate the construction of isofrequency curves for a more complex 
situation where one has a ferromagnetic film with both interfacial DMI and perpendicular 
anisotropy. Such curves were used to demonstrate nonreciprocal power flow in DMI systems.39  

The parameters for this calculation were: cell size 10 x 10 x 1 nm3, grid size 512 x 512 x 1, applied 
field 𝜇>𝐻 = 0.8	T.  The other parameters are the same as those in Ref. [39], i.e., out of plane 
anisotropy 𝐾E 	= 	 10D J/m3, 𝐴"; 	= 	15 pJ/m, 𝐷	 = 		1 mJ/m2 , a = 0.001, 𝑀? 	= 	 10D A/m). Fig. 
7(a) shows the spatial pattern created by a small source near the origin driven with an oscillating 
field of 𝜇>𝐻$., = 0.002 T at a frequency of 6 GHz. Fig. 7(b) is the spatial Fourier transform of the 
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entire spatial pattern. Despite the fact that the spatial pattern is strongly asymmetric, the 
resulting isofrequency curve is symmetric in 𝑘-space.   

We can however get additional insight by taking the Fourier transform of the right (cyan box) and 
left (red box) sides separately.  The result of this is shown in color-coded Fig. 7(c) where the cyan 
portion of the isofrequency curve comes from the right side of the original image, and the red 
portion from the left side.  It is easy to see that the right side of the original image has waves with 
shorter wavelengths and thus provides information at the larger 𝑘 vector values in Fig.  7(c).  
Similarly, the left side of the original image gives the portion of the isofrequency curve with 
smaller 𝑘 values. 

The final isofrequency curve is shown in Fig. 7(d), obtained by combining the appropriate portions 
of the curves seen in Fig. 7(c).  It is not immediately clear which portions belong in the final 
isofrequency curve.  We use the idea that the isofrequency curve and its slope should both be 
continuous. This guarantees that the power flow, which depends on the curvature of the 
isofrequency curve, is physical at all points.  

The final isofrequency curve found here is equivalent to that in Ref. [39].  We mention, however, 
that the calculations of the isofrequency curves in Ref. [39] were done using the ultra-thin film 
approximation, and with a large in-plane magnetic field to saturate the structure, because 
analytical results for the general case are complicated. No such restriction occurs in generating 
isofrequency curves using micromagnetic data.  One can treat thicker films, deal with 
antiferromagnetically coupled layers, and even deal with systems that are not saturated. 
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Figure 7:  Spatial profile and calculated isofrequency curves for a Permalloy thin film of thickness 
1 nm with interfacial DMI. The static field is 𝜇>𝐻 = 0.8	T (a) shows the spatial pattern for 𝑚= at 
𝑡	 = 	2	ns.  (b) isofrequency curve calculated from the Fourier transform of the entire spatial 
pattern. (c) color-coded portions of the isofrequency curves from the right (green) and left (red) 
sides of the spatial pattern. (d) final isofrequency curve as described in the text.   

4) Summary 

We have presented methods to calculate dispersion relations and isofrequency maps using 
micromagnetic simulations, and we show examples of how these methods can be used to study 
spin waves in thin film microstrips with arbitrary field angles, the effects of tilted antennas, and 
complex multilayer film stacks with DMI. These methods for obtaining dispersion relations and 
isofrequency curves are straightforward, flexible, and powerful, and provide important tools for 
understanding spin wave behavior in complex situations. Dispersion relations and isofrequency 
curves provide more complete insight into spin dynamics as compared to the more typically used 
micromagnetic simulation approach, which is to exactly replicate a particular experimental setup, 
and the presented methods provide a means to obtain these vital curves for magnetic thin film 
stacks and/or excitation geometries that go beyond the simple geometries that are analytically 
tractable. Since dynamic processes are of key importance to a wide range of magnetics problems, 
many of which involve complex setups, we expect that these methods will be useful for many 
topics of current interest including magnonics, spin torque nano-oscillators, quantitative 
measurements of DMI and critical parameters, the spin Seebeck effect, phonon/magnon and 
photon/magnon coupling that are important for quantum magnonics, and power flow in 
magnetic films.  

We have dealt with issues relating to cell size throughout the paper and summarize the results 
here.  The optimum choice of cell size depends on context.  If computation time is not an issue, 
one can simply use a small cell size (3 nm on a side) and a large number of cells (4096 on a side). 
This a total side length of 12.3 µm and a wavevector resolution of 0.51/µm.  In a square film with 
only 1 cell thickness, this would involve over 16 million cells.  With larger systems or systems with 
more than 1 cell in thickness the number increases substantially.  In that case one might want to 
use larger cells, with the caveat that one wants to use cell sizes which are on the order of 1/10 of 
the shortest wavelength of interest.  Thus, larger cells are allowed in the magnetostatic limit 
where the longer wavelengths are more important, and conversely, for spin waves in the 
exchange dominated region smaller cells are more appropriate. Clearly if one is dealing with 
excitations in domain walls or other magnetic textures, small cell sizes, on the order of a few nm, 
are a requirement.  It is always a good idea to run simulations with different cell sizes to see if 
they agree; this can be particularly important for system with large anisotropies or short 
wavelengths where the magnetization direction can change rapidly as a function of position. 

The impact of reflections has also been a continuous issue throughout this paper.  We have used 
a number of methods to avoid reflections of spin waves at the boundaries.  This included 
imposing regions of high damping near the edges of samples or simply only examining the 
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magnetic dynamics for times where the excitation has not yet reached the edges of the samples.  
Both methods work well, but in fact, reflections in many cases do not degrade the resulting 
dispersion relations or isofrequency curve results.   For small systems, reflections are necessary 
in order to capture the quantization of the allowed modes.  
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