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High-Performance Polynomial Root Finding for Graphics

CEM YUKSEL, University of Utah, USA

We present a computationally-efficient and numerically-robust algorithm for finding real roots of polynomials.
It begins with determining the intervals where the given polynomial is monotonic. Then, it performs a
robust variant of Newton iterations to find the real root within each interval, providing fast and guaranteed
convergence and satisfying the given error bound, as permitted by the numerical precision used.

For cubic polynomials, the algorithm is more accurate and faster than both the analytical solution and
directly applying Newton iterations. It trivially extends to polynomials with arbitrary degrees, but it is limited
to finding the real roots only and has quadratic worst-case complexity in terms of the polynomial’s degree.

We show that our method outperforms alternative polynomial solutions we tested up to degree 20. We
also present an example rendering application with a known efficient numerical solution and show that our
method provides faster, more accurate, and more robust solutions by solving polynomials of degree 10.
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Ray tracing; Collision detection.
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1 INTRODUCTION
Polynomials are virtually everywhere in computer graphics. They are not only used for representing
various curves and surfaces, but also needed for solving numerous problems that involve root
finding, such as ray intersection tests [Aydinlilar and Zanni 2021; Dokter et al. 2019; Steinberger
and Grabner 2010] and continuous collision detection [Tang et al. 2014], just to name a few.
Unfortunately, only quadratic (second order) polynomials have an efficient analytical solution. For
polynomials of higher degrees, either there is no analytical solution or the analytical solution is
considered too expensive and inaccurate. The common numerical methods, on the other hand, are
often unreliable. This severely limits our ability to efficiently handle various problems involving
polynomials and often forces researchers to develop alternative approaches, resulting in substantial
amount of additional effort, some of which may lead to sub-optimal solutions.

In this paper, we show that a robust and computationally-efficient numerical solution exists for
polynomials of higher degrees than 2, by presenting a simple and effective method for finding the
real roots of polynomial equations. Our solution begins with splitting the given polynomial into a
finite number of monotonic pieces. For each piece, we perform a variant of Newton iterations to
quickly and robustly find the root, if any, with the desired level of accuracy.

We show that our method with cubic (third order) polynomials outperforms both the analytical
solution and directly applying Newton iterations in terms of speed, accuracy, and robustness. For
higher-order polynomials, the robustness and efficiency of our method persists.
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We provide an extensive evaluation with randomly-generated polynomials. To demonstrate the
effectiveness of our method, we also present a challenging example rendering problem with an
existing highly-efficient numerical solution. Our results show that we can outperform the existing
solution by constructing and then solving polynomials of degree 10.

1.1 Related Work
Notwithstanding the amount of work on numerical approaches for polynomial root finding in other
fields [McNamee 2007; McNamee and Pan 2013], the consensus in computer graphics appears to be
that solving polynomials is not practical (e.g. [Reshetov and Luebke 2018]). Indeed, while recent
methods can handle extremely high-order (1000+) polynomials and even deliver complex roots
with extreme precision (500+ bits) [Pan 2002; Sagraloff and Mehlhorn 2016], their performance is
inadequate for relatively low-order polynomials (∼10 or less) that are of interest in graphics.

For cubic polynomials, there exists an analytical formula [Cardano 1570; Press et al. 1992], but it
involves computationally-expensive cubic root and trigonometric functions. Also, implementing it
in a way to minimize precision loss due to truncation can be a challenge. Strobach [2011] proposes
numerical iterations on top of this analytical solution to improve the accuracy at the cost of
additional computation. Blinn [2006a,b,c, 2007a,b] offers an alternative analytical solution with
similar operations but using homogeneous form. This results in improved numerical precision but
reduced performance.
Using Newton iterations might be considered an attractive alternative. Indeed, Newton itera-

tions can deliver fast and accurate solutions for any nonlinear equation, but they are notoriously
unreliable. Combining them with bisection can ensure convergence [Press et al. 1992], but only if
one can determine the finite interval of each root. This is exactly the solution we describe in this
paper, which can be considered a form of real root isolation [Collins and Loos 1976; Mourrain et al.
2005]. Our splitting process, however, is not just for isolating the roots, but it also forms monotonic
pieces for efficient root finding that follows splitting.

An alternative approach would be picking a good starting point for Newton iterations. Neumark
[1965] provides a table-based solution for a low-precision approximation of the roots that can
then be refined via Newton iterations, but its stability is not guaranteed. Flocke [2015] presents an
approach for evaluating starting positions for Newton iterations that would guarantee convergence
with relatively few steps. However, it begins with rescaling the given polynomial, which is an
expensive process itself (involving a cubic root operation for cubic polynomials).
Quartic (fourth order) polynomials have also received special attention [Christianson 1991;

Shmakov 2011; Strobach 2010; Yacoub and Fraidenraich 2012]. In fact, Flocke [2015] also describes
a solution for quartic polynomials, which begins with solving the roots of their derivatives. This is
similar to our method, but aims at finding a good starting point for Newton iterations, as opposed
to our approach of simply isolating the roots without rescaling the polynomial.

For higher-order polynomials, the RPOLY method of Jenkins and Traub [1970] can numerically
compute all roots, including complex ones. Another popular alternative involves solving the
eigenvalues of the polynomial’s companion matrix using QR decomposition. These methods are
relatively complicated to implement and do not provide a desirable performance for polynomials
of relatively low degrees (i.e. ≤ 10).

1.2 Contributions
The main contribution of this work is to show that polynomials of relatively low degrees (i.e. ≤ 10)
can be solved efficiently and that they can be safely used in high-performance graphics applications.
Our solution of splitting the given polynomial into monotonic pieces is simple and straightforward,
though we show that is it highly effective in practice.
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Specifically for cubic polynomials, we show that regular Newton iterations are highly unreliable.
Our method is not only significantly faster on average but also provides a robust solution. Just like
regular Newton iterations, for high-performance graphics applications that can tolerate numerical
errors, our method can be used with a fixed number of iterations. This is particularly important for
high-performance GPU implementations. Also, our method uses iterations only when a valid root
is detected and quickly returns without any numerical iteration when there is no root.

For higher-order polynomials, we show that a high-performance solution exists and that it can
outperform prior methods used in graphics.

2 QUADRATIC POLYNOMIALS
For completeness, we begin with quadratic polynomials. The roots 𝑥1 and 𝑥2 of a quadratic polyno-
mial 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 can be efficiently computed using the commonly-known formula

𝑥1,2 =
−𝑏 ±

√
Δ

2𝑎
where Δ = 𝑏2 − 4𝑎𝑐 . (1)

However, −𝑏 ±
√
Δ can suffer from excessive truncation error for large 𝑏 that is close to

√
Δ, so the

following variant is recommended for improved numerical stability [Press et al. 1992]

𝑥1 = − 2𝑐
𝑏 + (sgn 𝑏)

√
Δ

and 𝑥2 = −𝑏 + (sgn 𝑏)
√
Δ

2𝑎
. (2)

Note that this variant works even when 𝑎 = 0, producing 𝑥1 = −𝑐/𝑏 and 𝑥2 = ±∞. Blinn [2005]
suggests a slightly different version in homogeneous form that avoids division by zero.

3 CUBIC POLYNOMIALS
Our numerical solution for cubics outperforms the analytical solutions on average with similar
accuracy. It also allows achieving up to the full precision of the floating point representation or using
limited precision for faster computation. Notably, we can quickly determine the absence of a root
within a given interval and entirely skip numerical root finding. In this section, we consider roots
within a given finite target interval 𝑥 ∈ [𝑥start, 𝑥end]. We discuss how to handle infinite intervals
later in Section 5.

3.1 Splitting Cubic Polynomials
Given a cubic polynomial 𝑓 (𝑥), our first step is to split it into monotonic pieces within the given
target interval 𝑥 ∈ [𝑥start, 𝑥end]. A cubic polynomial can have up to 2 critical points, where its
derivative is zero. In between and beyond these critical points, it is monotonic. Thus, for splitting 𝑓

into monotonic pieces, we simply need to find the zero-crossings of its derivative 𝑓 ′(𝑥). This forms
a quadratic equation, which has an efficient analytical solution. Once we find the roots of 𝑓 ′, 𝑥1
and 𝑥2, within [𝑥start, 𝑥end], if any, we can split 𝑓 up to 3 pieces with intervals [𝑥start, 𝑥1), [𝑥1, 𝑥2)
and [𝑥2, 𝑥end].
Because each piece of 𝑓 is monotonic, there cannot be more than one root within its interval.

The existence of a root is also easy to check. For example, consider the interval [𝑥1, 𝑥2). For this
monotonic piece to include a root, one and only one of 𝑓 (𝑥1) and 𝑓 (𝑥2) must be negative. If both
of them are positive or both of them are negative, 𝑓 cannot pass through zero within [𝑥1, 𝑥2). Note
that this definition does not include special cases like 𝑓 (𝑥1) = 0 when 𝑓 (𝑥2) > 0.
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3.2 Fast Numerical Root Finding for Cubic Polynomials
Once we identify the existence of a root by testing its end points, the remaining task is to efficiently
find the root. We build our numerical root finding method on Newton iterations. Starting with a
guess 𝑥 (0)

𝑟 , at each Newton iteration 𝑗 the next guess is computed using

𝑥
( 𝑗+1)
𝑛 = 𝑥

( 𝑗)
𝑟 − 𝑓 (𝑥 ( 𝑗)

𝑟 )
𝑓 ′(𝑥 ( 𝑗)

𝑟 )
. (3)

However, we cannot simply use 𝑥 ( 𝑗+1)
𝑛 as the next guess 𝑥 ( 𝑗+1)

𝑟 , since Newton iterations are unstable,
particularly when |𝑓 ′(𝑥 ( 𝑗)

𝑟 ) | is small. For cubics, this happens near the critical points 𝑥1 and 𝑥2.
Thus, the resulting guess 𝑥 ( 𝑗+1)

𝑛 might be arbitrarily far from the root, possibly even more so than
the previous guess 𝑥 ( 𝑗)

𝑟 .
Yet, since our root finding operates within a given interval [𝑥min, 𝑥max], we can simply contain

the next guess within this interval, using

𝑥
( 𝑗+1)
𝑟 = max

(
𝑥min,min

(
𝑥max, 𝑥

( 𝑗+1)
𝑛

))
. (4)

This simple solution ensures convergence with cubics (even when 𝑥min = −∞ or 𝑥max = ∞), except
for a special case when

𝑓 (𝑥 ( 𝑗+1)
𝑟 )

𝑓 ′(𝑥 ( 𝑗+1)
𝑟 )

= − 𝑓 (𝑥 ( 𝑗)
𝑟 )

𝑓 ′(𝑥 ( 𝑗)
𝑟 )

, (5)

which produces a next guess 𝑥 ( 𝑗+2)
𝑟 = 𝑥

( 𝑗)
𝑟 , resulting in an infinite loop.

Fortunately, this special case can be easily avoided. It can only happen for the interval within
the two critical points [𝑥1, 𝑥2] and only when two consecutive guesses are on either side of the
inflection point 𝑥𝑐 , where the second derivative changes sign, which is exactly at the center of
the two critical points 𝑥𝑐 = (𝑥1 + 𝑥2)/2. To avoid it, we simply split the interval between the two
critical points into two intervals [𝑥1, 𝑥𝑐 ] and [𝑥𝑐 , 𝑥2]. Only one of these intervals can contain a root
(determined by evaluating 𝑓 (𝑥𝑐 )) and the other one can be safely discarded.

In practice, however, infinite loops are possible (though rare) in other cases as well because of
inaccuracies due to numerical truncation. Instead of trying to detect and prevent all such cases,
which would unavoidably increase the cost of each iteration, we opt for using a fixed number of
iterations without any convergence guarantee. In the rare cases when this unsafe loop fails to
converge, we move to the numerical root finding solution with guaranteed convergence described
below in Section 3.3. For performance-critical applications, however, it might be preferable to
ignore such rare special cases and simply terminate when the iteration limit is reached.

We continue Newton iterations until the step size |𝑥 ( 𝑗+1)
𝑛 − 𝑥

( 𝑗)
𝑛 | is below the given error threshold

𝜖 . This is a safe termination condition for cubic polynomials within the intervals we iterate.
Note that the given error threshold 𝜖 bounds the maximum error. The expected error can be

significantly smaller than 𝜖 . This is because Newton iterations typically have quadratic convergence,
meaning each iteration can find about half of the remaining bits. In our experiments, we have
observed average error values that are 2 to 3 orders of magnitude smaller than 𝜖 with single (32-bit)
precision and 3 to 8 orders of magnitude smaller than 𝜖 with double (64-bit) precision.

3.3 Numerical Root Finding with Guaranteed Convergence
The numerical root finding approach we adopt for guaranteed convergence is a hybrid solution that
combines Newton iterations and bisection [Press et al. 1992]. This is achieved using two strategies,
as explained below.
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First, we iteratively shorten the root finding interval. Starting with the initial interval [𝑥 (0)
min, 𝑥

(0)
max],

at each iteration we update it by splitting the interval at the current guess 𝑥 ( 𝑗)
𝑟 . By using the sign

of 𝑓 (𝑥 ( 𝑗)
𝑟 ), we can tell which side of this guess contains the root. Thus, the updated interval can be

written as
𝑥
( 𝑗+1)
min = 𝑥

( 𝑗)
𝑟 , if sgn 𝑓 (𝑥 ( 𝑗)

min) = sgn 𝑓 (𝑥 ( 𝑗)
𝑟 )

𝑥
( 𝑗+1)
max = 𝑥

( 𝑗)
𝑟 , if sgn 𝑓 (𝑥 ( 𝑗)

max) = sgn 𝑓 (𝑥 ( 𝑗)
𝑟 ) .

(6)

Since we already compute 𝑓 (𝑥 ( 𝑗)
𝑟 ) for each Newton iteration, shortening the interval requires

minimal additional computation.
Second, we fall back on bisection when we detect that Newton iteration fails to produce a next

guess inside the interval:

𝑥
( 𝑗+1)
𝑟 =

{
𝑥
( 𝑗+1)
𝑛 , if 𝑥 ( 𝑗+1)

min < 𝑥
( 𝑗+1)
𝑛 < 𝑥

( 𝑗+1)
max(

𝑥
( 𝑗+1)
min + 𝑥

( 𝑗+1)
max

)
/2, otherwise .

(7)

This occasional bisection step reduces the interval size by half. Thus, we guarantee shortening the
interval at each iteration.

Note that Newton iterations are more likely to fail (i.e. produce a next guess outside the current
interval) when the derivative 𝑓 ′ approaches zero and thereby the Newton step size approaches
infinity. In our case, we know that 𝑓 ′ is zero at the two ends of our initial interval, since they are
critical points. Therefore, to reduce the probability of a failed Newton step (and thereby improve
convergence), we begin with an initial guess 𝑥 (0)

𝑟 at the center of the initial interval, which places
it away from the two known critical points.

This process can be used with 𝜖 = 0 to find the root up to the numerical precision of the floating-
point representation by simply checking if the Newton or bisection step moves the guess at all (i.e.
when the difference between guesses falls below numerical precision).

3.4 Optimizing Cubic Root Finding via Deflation
The procedure explained above can be used for finding all (up to 3) roots of a cubic polynomial. Yet,
when there is more than one root within the target interval, deflation is a more efficient strategy.
After the first root 𝑥𝑅 is found and the existence of at least one other root within the target interval
is verified (by comparing the values of the polynomial at the end points of the intervals), we can
deflate the cubic polynomial using the root 𝑥𝑅 that we have already found, such that

𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = (𝑥 − 𝑥𝑅) (𝑎′𝑥2 + 𝑏 ′𝑥 + 𝑐 ′) , (8)

where the deflated quadratic polynomial has coefficients

𝑎′ = 𝑎 𝑏 ′ = 𝑏 + 𝑎′𝑥𝑅 𝑐 ′ = 𝑐 + 𝑏 ′𝑥𝑅 = 𝑑 . (9)

After deflation, we can simply solve the resulting quadratic polynomial. This is considerably
faster than using numerical root finding for the remaining roots. On the other hand, it may not
satisfy the given error bound 𝜖 (with small 𝜖) due to any numerical truncation error during quadratic
root finding. This can be fixed by polishing the resulting roots of the deflated quadratic polynomial
via additional Newton iterations. Alternatively, this deflation optimization can be skipped when
the application requires a tight error bound. We use the latter strategy in our tests.

4 HIGHER-ORDER POLYNOMIALS
We solve higher-order polynomials recursively. Remember that our solution for a cubic polynomial
begins with finding its critical points by solving its quadratic derivative. Similarly, for solving a
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quartic (fourth order) polynomial, we begin with finding its critical points by solving its cubic
derivative. Then, we similarly split the given interval into 4 pieces.
Thus, our solution for a polynomial of degree 𝑑 begins with solving a polynomial of degree

𝑑 − 1 to split the given interval up to 𝑑 monotonic pieces. Then, within each piece that contains a
root, we perform numerical root finding. This results in an algorithm with quadratic worst-case
complexity in the polynomial degree 𝑑 .

Our results show that this is an effective approach for polynomials with relatively small degrees
that are of interest in graphics. With increasing 𝑑 , however, one must not only consider the
additional computation cost but also the fact that simply evaluating high-order polynomials is
prone to numerical truncation errors. Nonetheless, as long as the floating-point representation
provides the desired accuracy, our numerical root finding for high-order polynomials can find the
roots with the given error bound 𝜖 .

The typical termination condition we use for cubics, which compares the Newton step size to a
given tolerance 𝜖 , is not guaranteed to achieve the desired accuracy with higher-order polynomials.
This is because the error is bounded by the size of the interval 𝑥 ( 𝑗)

max − 𝑥
( 𝑗)
min, which can be arbitrarily

larger than 𝜖 , even when the last Newton step size is smaller than or equal to 𝜖 .
One problem with Newton iterations for bounding the error is that the guesses 𝑥 ( 𝑗)

𝑛 often remain
on one side of the root. Therefore, our iterations can bring one end of the interval close to the root,
while keeping the other end unchanged. The bisection step can help, but it is used only when the
Newton step fails to provide a valid guess within the interval. Often times, the bisection step is
used only after Newton iterations converge to the exact root with the numerical precision of the
floating-point representation, which may require too many steps.

Our solution to quickly bound the error by 𝜖 is to produce a guess that is likely to appear on the
other side of the root. We accomplish this by replacing Equation 7 with

𝑥
( 𝑗+1)
𝑟 = 𝑥

( 𝑗+1)
𝑛 +

{
𝜖, if sgn 𝑓 (𝑥 ( 𝑗)

min) = sgn 𝑓 (𝑥 ( 𝑗)
𝑟 )

−𝜖, otherwise
(10)

only when |𝑥 ( 𝑗+1)
𝑛 − 𝑥

( 𝑗)
𝑛 | ≤ 𝜖 . If the resulting guess 𝑥 ( 𝑗+1)

𝑟 is on the other side of the root, we can
safely return 𝑥

( 𝑗+1)
𝑛 as our final guess, knowing that it is at most 𝜖 away from the exact root.

Otherwise, we continue using 𝑥 ( 𝑗+1)
𝑟 as the next guess, which is even closer to the root than 𝑥

( 𝑗+1)
𝑛 .

When 𝜖 = 0 (or when 𝜖 is smaller than numerical precision limit), we simply set 𝑥 ( 𝑗+1)
𝑟 as the next

representable floating point number.
In our experiments, however, we have not observed a case when this additional test is required to

bound the error. Therefore, in our tests we use it only when 𝜖 = 0. Otherwise, we simply terminate
the iterations when the Newton step size is smaller than or equal to 𝜖 .

Though using the deflation strategy accelerates root finding for cubic polynomials, it leads to an
algorithm with exponential complexity (in terms of 𝑑) with higher-order polynomials. In theory,
deflation can still reduce the number of numerical root finding operations for quartic polynomials
when they have more than three roots. In practice, however, the overhead of checking for such
cases may not always pay off. Therefore, in our tests with quartic and higher-order polynomials,
we do not perform deflation (except when solving their cubic derivatives).

5 INFINITE INTERVALS
Finite intervals are far more common in graphics. Even for problems like ray intersections, where
the ray parameters can go to infinity, the resulting polynomial equation can still be bounded, using
a different parameter. Nonetheless, our solution can be extended to infinite intervals as well.
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One simple solution for handling infinite intervals is rescaling the polynomial, which ensures that
all coefficients are in [−1, 1] and all roots are in [−2, 2] (see Flocke [2015] for a detailed explanation).
This entirely circumvents the problem of working with infinite intervals. On the other hand, the
computation cost of rescaling is substantial (particularly for higher-order polynomials) and often
leads to an inefficient solution. Therefore, we favor directly working with infinite intervals.

With an infinite target interval, our splitting process forms (up to) two infinite pieces: one before
the first critical point (−∞, 𝑥1) and one after the last critical point [𝑥𝑑−1,∞). We can easily tell if
there is a root within these intervals by checking the sign of the highest-order coefficient 𝑎𝑑 :

sgn 𝑓 (±∞) =

sgn 𝑎𝑑 , if 𝑑 is even

±sgn 𝑎𝑑 , if 𝑑 is odd .
(11)

Note that care must be taken when 𝑎𝑑 = 0, in which case we can use the remaining terms and treat
it as a polynomial of degree 𝑑 − 1.

Let [𝑥min,∞) be an infinite interval that contains a root. To find the root, we perform numerical
root finding starting with an initial guess of 𝑥 (0)

𝑟 = 𝑥min + 𝛿 , where 𝛿 is an arbitrary offset. Here, 𝛿
is used for moving the initial guess sufficiently far from the critical point 𝑥min, where the derivative
𝑓 ′ is zero and would cause numerical problems with Newton iterations.
We cannot perform bisection within an infinite interval, so we replace the bisection case in

Equation 7 with 𝑥
( 𝑗+1)
𝑟 = 𝑥

( 𝑗+1)
min + 𝛿 , which is used only when 𝑥

( 𝑗+1)
𝑟 = 𝑥

( 𝑗+1)
min and 𝑥 ( 𝑗+1)

max = ∞.
Thus, when using infinite intervals, the only change to the entire algorithm is replacing bisection

operations with a shift by an arbitrary amount 𝛿 , as long as one end of the current interval remains
∞ or −∞. When the next guess falls on the other side of the root, the interval becomes finite and
we can continue with bisection when needed, as explained above.

If 𝑓 has no critical points, we end up with a single infinite interval (−∞,∞). In that case, we can
start with an arbitrary initial guess 𝑥 (0)

𝑟 . After the first iteration, one side of the interval becomes
finite (using Equation 6), and we can continue as explained above. Note that 𝑓 must always have a
critical point when the polynomial’s degree 𝑑 is even, so single infinite intervals (−∞,∞) can only
happen when 𝑑 is odd, in which case there is always a real root.

6 EVALUATION
We evaluate our polynomial root finding solution using both randomly-generated polynomials
and an example rendering application using polynomials up to degree 10. All performance results
are measured on an Intel Xeon CPU E5-2643 v3 at 3.4 GHz using single-threaded computation.
All polynomials are pre-generated and all compared methods process exactly the same data. The
source code of our polynomial root finding method is available online [Yuksel 2022].

6.1 Cubic Polynomials
Cubic polynomials are commonplace in computer graphics. For example, roots of cubic equations
are needed for continuous collision detection [Tang et al. 2012] and some curve formulations [Yan
et al. 2017; Yuksel 2020]. That is why we begin our evaluation with cubic polynomials.

We compare the performance of our method to the standard analytical solution [Press et al. 1992],
Blinn’s analytical solution [Blinn 2007b], Flocke’s numerical solution [Flocke 2015], and regular
Newton iterations up to 40 steps. We use an error threshold 𝜖 that produces a similar average error
with our method as compared to Blinn’s analytical solution. Note that 𝜖 bounds the maximum error
and the expected error is typically orders of magnitude smaller. The standard analytical solution,
however, produces higher error, so we also include results with a lower-precision version of our
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0 ns

50 ns

100 ns

150 ns

All polynomials No valid root 1 valid root 2 valid roots 3 valid roots
Ours (no deflation) Ours Ours (low) Analytical Blinn Flocke

Fig. 1. Cubic polynomial single precision (32-bits) performance tests for finding all roots
within [0, 1] for randomly-generated Bernstein polynomials with coefficients in [−1, 1]. The “all
polynomials” group includes 27% with no root, 48% with a single root, 23% with two roots, and 2%
with three roots. The other groups show the computation times for polynomials with different numbers
of roots within [0, 1]. All numerical methods use 𝜖 = 3.5 × 10−4, except for “Ours (low)” that uses
𝜖 = 10−2, producing an average error of 5 × 10−8 with “Ours” and 5 × 10−5 with “Ours (low).”

method, “Ours (low),” with larger 𝜖 to match the average error of the standard analytical solution. In
addition, we include a variant of our method, “Ours (no deflation),” which does not use deflation for
computing the second and third roots, demonstrating the significance of the deflation optimization.
For ours tests, we use Bernstein polynomials with randomly-generated coefficients within

[−1, 1]. The resulting expanded polynomials (needed for efficient computation), however, can have
coefficients with many orders of magnitude difference, particularly with higher-order polynomials,
providing a wide range of numerical values.

Our test results for finding all roots within the target interval [0, 1] using single-precision (32-bit)
floating-point numbers are summarized in Figure 1. Comparing all randomly-generated polynomials
(the first group), we can see that our method with either threshold produces the best performance.
This is mainly because we can quickly identify the cases with no valid root (the second group),
which is 27% of all polynomials in these tests. Still, our method maintains a slight advantage over
the analytical alternatives even when there is a root. Notice that “Ours (low)” has slightly lower
computation times than “Analytical” and “Ours” has a more prominent saving as compared to the
analytical solution of “Blinn.”

Notice that deflation can provide a sizable performance boost when there are 3 valid roots, since,
after computing the fist one, the other two can be found by solving a quadratic instead.
The numerical solution of “Flocke” can converge with fewer Newton steps than ours, but this

does not make up for the overhead of rescaling the polynomial and the cost of operating on the
deflated polynomial, resulting in clearly lower performance in all cases. Note that Flocke’s method
also uses deflation.

Regular Newton iterations, on the other hand, cannot be used for finding all roots. Nonetheless,
for many applications, simply finding the first root can be sufficient. Therefore, we provide test
results for finding the first root in Figure 2.
One important difficulty with regular Newton iterations is determining the absence of a root.

Our implementation begins iterations at the start of the target interval and clamps the guesses
to the target interval for stability. The absence of a root is detected only when Newton iterations
do not converge or they are stuck at one end of the interval due to clamping. As a result, regular
Newton iterations have the worst performance when there is no root (second group in Figure 2).
When there is a root, however, regular Newton iterations do not incur the overhead of our

method and perform faster. Yet, the results are unreliable. In these tests, for about one third of the
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Fig. 2. Cubic polynomial single precision (32-bits) performance for finding the first root
using the same test setup in Figure 1. Note that regular “Newton” iterations fail to find an existing root
for 18% of all polynomials (33% of polynomials with one root and 11% of them with two roots).

polynomials that contain one valid root, regular Newton iterations failed to find it. For polynomials
with two valid roots, the failure rate of regular Newton iterations is 11%. Therefore, skipping our
overhead and directly using Newton iterations leads to highly unreliable results, even when it
provides a performance advantage.
In addition, when regular Newton iterations converge, the resulting root is not always the one

closest to the starting point and there is no simple way to check or find the other root, if it exists.
In these tests for finding the first root, our method provides a more prominent performance

advantage over the analytical solutions, Blinn’s variant, and Flocke’s method. This is because our
root finding is performed at most once and the other methods cannot skip their overheads.
In our supplemental document, we provide a more extensive evaluation of cubic polynomials,

including special cases when Newton iterations converge linearly (as opposed to quadratically).
We also include variants of our method that replace our numerical root finding with pure bisection,
Ridder’s method, and regula falsi (i.e. the false positionmethod), showing that they uniformly provide
inferior performance, except for one trivial special case of three repeated roots (i.e. polynomials of
the form 𝑎𝑥3 + 𝑑 = 0) when Newton iterations converge slower than bisection.

A notable failure case for all methods we tested, including ours, is polynomials with two repeated
(i.e. duplicated) roots. This forms curves that are tangent to the 𝑦 = 0 line. All numerical and
analytical methods we tested can fail to detect such roots (see the supplemental document for more
details). In practice, duplicated roots appear close to cases with no solution, for example when a
ray is tangent to the surface or a vertex barely grazes the surface of a triangle.

6.2 Higher-Order Polynomials
For evaluating higher-order polynomials, we compare our method to RPOLY [Jenkins and Traub
1970], a popular polynomial root-finder that is optimized for polynomials with real coefficients and
also appears in a relatively recent graphics article [Chlumský et al. 2018]. The implementation we
use for RPOLY is based on the open-source Simbody multibody physics API [Sherman et al. 2011]
with additional optimizations that eliminate memory allocation inside the solver.

Again, we use randomly-generated Bernstein polynomials with coefficients in [−1, 1]. The results
are summarized in Table 1.
In these tests, we include three different error thresholds for our method: “Ours (low)” uses

𝜖 = 5 × 10−4, “Ours (high)” uses 𝜖 = 10−8, and “Ours (full)” uses 𝜖 = 0, which computes the roots to
the full floating-point precision. To minimize the error, “Ours (full)” does not use deflation while
computing the cubic derivatives, thereby incurs a considerable performance hit. For both “Ours

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article 27. Publication date: July 2022.



27:10 Cem Yuksel

Table 1. Bounded root finding times for double (64-bit) precision higher-order polynomials.

no 1 2+ Ours Ours Ours
𝑑 root root roots (low) (high) (full) RPOLY
3 27% 48% 24% 0.08 𝜇s 1.0× 0.09 𝜇s 1.2× 0.17 𝜇s 2.1× 0.57 𝜇s 7.1×
4 22% 45% 33% 0.17 𝜇s 1.0× 0.21 𝜇s 1.2× 0.56 𝜇s 3.3× 1.35 𝜇s 7.9×
5 18% 42% 41% 0.29 𝜇s 1.0× 0.36 𝜇s 1.3× 1.03 𝜇s 3.6× 2.42 𝜇s 8.4×
6 15% 38% 47% 0.45 𝜇s 1.0× 0.58 𝜇s 1.3× 1.63 𝜇s 3.6× 3.40 𝜇s 7.5×
7 12% 35% 53% 0.64 𝜇s 1.0× 0.83 𝜇s 1.3× 2.33 𝜇s 3.7× 4.28 𝜇s 6.7×
8 10% 32% 58% 0.86 𝜇s 1.0× 1.14 𝜇s 1.3× 3.16 𝜇s 3.7× 5.20 𝜇s 6.0×
9 9% 29% 62% 1.13 𝜇s 1.0× 1.52 𝜇s 1.3× 4.19 𝜇s 3.7× 6.22 𝜇s 5.5×
10 8% 27% 66% 1.45 𝜇s 1.0× 1.97 𝜇s 1.4× 5.45 𝜇s 3.8× 7.36 𝜇s 5.1×
20 2% 12% 86% 9.04 𝜇s 1.0× 12.19 𝜇s 1.3× 43.13 𝜇s 4.8× 22.36 𝜇s 2.5×
30 1% 6% 93% 24.61 𝜇s 1.0× 43.73 𝜇s 1.8× 174.05 𝜇s 7.1× 47.44 𝜇s 1.9×

(low)” and “Ours (high),” the average error values we get in these tests are lower than RPOLY, while
“Ours (full)” converges to the root values up to double (64-bit) precision.

As can be seen in Table 1, “Ours (low)” achieves significantly faster computation than RPOLY,
starting with 8.2× for cubic polynomials and down to 1.9× for degree 30 polynomials. “Ours (high)”
also maintains a faster performance with orders of magnitude improved accuracy. “Ours (full)”
converges to the exact root with faster computation than RPOLY up to degree 10.
The performance advantage of our method over RPOLY should not be simply attributed to the

fact that our method can quickly skip roots that are outside of the target interval, though it certainly
helps. As can be seen in Table 1, a majority of the polynomials have a valid root and more of them
have 2 or more roots with increasing polynomial degree 𝑑 in these tests.

RPOLY, however, computes all roots, including complex ones. Therefore, it is entirely reasonable
that it requires more computation time. On the other hand, these complex roots and the roots
outside of the target interval have no use in practical applications. In fact, this incurs the additional
cost of identifying the valid real roots, some of which may be misclassified as complex numbers
with small (but nonzero) imaginary components.

Also notice that the relative computation time of “Ours (full)” is significantly higher for degree 30
polynomials. This hints that 64-bit floating-point representation we use in these tests may become
insufficient for our method as the degree of the polynomial increases. Indeed, even if our method
could deliver a desirable performance for even higher degree polynomials, it would not be advisable
without using a higher-precision floating-point representation than 64 bits.

6.3 Infinite Intervals
We evaluate the performance of our method with infinite intervals by comparing it to RPOLY
and “Ours (high rescaled)” that applies polynomial rescaling, which ensures that all real roots are
within [−2, 2], prior to using our method for root finding within this finite interval. The results are
presented in Table 2.
Comparing “Ours (high)” and “Ours (high rescaled),” we can see that our method for handling

infinite interval provides superior performance to bounding the intervals by first rescaling the
polynomial (which also scales 𝜖). In fact, our approach is highly-efficient for handling infinite
intervals. The performance drop of this unbounded case in Table 2 as compared to the bounded
case in Table 1 is mainly due to the fact that more roots must be computed for the unbounded case.
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Table 2. Unbounded root finding times for double (64-bit) precision higher-order polynomials.

Ours Ours Ours Ours
𝑑 (low) (high) (high rescaled) (full) RPOLY
3 0.09 𝜇s 1.0× 0.11 𝜇s 1.2× 0.11 𝜇s 1.2× 0.27 𝜇s 2.9× 0.50 𝜇s 5.4×
4 0.26 𝜇s 1.0× 0.32 𝜇s 1.3× 0.48 𝜇s 1.8× 1.09 𝜇s 4.2× 1.26 𝜇s 4.9×
5 0.52 𝜇s 1.0× 0.65 𝜇s 1.3× 0.96 𝜇s 1.9× 2.05 𝜇s 3.9× 2.40 𝜇s 4.6×
6 0.89 𝜇s 1.0× 1.12 𝜇s 1.3× 1.66 𝜇s 1.9× 3.21 𝜇s 3.6× 3.37 𝜇s 3.8×
7 1.36 𝜇s 1.0× 1.70 𝜇s 1.2× 2.59 𝜇s 1.9× 4.60 𝜇s 3.4× 4.27 𝜇s 3.1×
8 1.91 𝜇s 1.0× 2.39 𝜇s 1.2× 3.76 𝜇s 2.0× 6.18 𝜇s 3.2× 5.15 𝜇s 2.7×
9 2.61 𝜇s 1.0× 3.25 𝜇s 1.2× 5.18 𝜇s 2.0× 8.13 𝜇s 3.1× 6.18 𝜇s 2.4×
10 3.44 𝜇s 1.0× 4.27 𝜇s 1.2× 6.90 𝜇s 2.0× 10.46 𝜇s 3.0× 7.24 𝜇s 2.1×
20 21.48 𝜇s 1.0× 26.06 𝜇s 1.2× 47.28 𝜇s 2.2× 70.63 𝜇s 3.3× 22.03 𝜇s 1.0×
30 64.17 𝜇s 1.0× 86.77 𝜇s 1.4× 161.10 𝜇s 2.5× 256.71 𝜇s 4.0× 47.06 𝜇s 0.7×

Our method maintains a significant performance advantage as compared to RPOLY in the
unbounded case as well. Beyond degree 10, however, the performance difference diminishes and
RPOLY catches up to the performance of “Ours (low)” at degree 20.

6.4 An Example Rendering Application
We also evaluate our method using an example graphics application: ray-hair intersections using
polynomial hair curves with thickness. There are two reasons for picking this particular example.
First, this is a challenging polynomial problem for our method, involving degree-10 polynomials and
stress-testing our recursive approach. Second, there exists a relatively recent and highly-efficient
customized solution for this problem: Reshetov and Luebke’s [2018] phantom ray-hair intersector,
providing a strong baseline to compare against.
A common approach for computing ray-hair intersections is comparing the distance of the

closest point along the ray to the curve that passes through hair’s center, the center curve. Ray hit
is registered when this distance is smaller than the hair radius. This is a relatively easier problem
for our method, but it does not provide the correct hit point with the hair’s surface.
The phantom ray-hair intersector, however, computes ray intersections with thick curves, i.e.

surfaces generated by sweeping a circle with varying radius along the center curve on its tangent
plane. It finds the correct hit point with the hair’s surface and catches intersections that the closest
point approach can miss, so it is ideal for rendering close-up hair strands or cloth fibers. It is also
efficient-enough to be used in distant views, where the hair thickness is imperceptible.
Directly solving for ray intersections with thick curves results in polynomials of degree 10 for

cubic curves (see the supplemental document for the derivation), a previously impractical case for
high-performance applications, motivating the phantom intersector method in the fist place. Yet,
this is exactly what we do with our method. More specifically, we construct a degree 10 polynomial
from the Bézier control points of the curve on-the-fly, right before each intersection test. This
representation also includes curve’s thickness variation defined by another cubic polynomial.

Our implementation uses Embree [Wald et al. 2014] ray tracing library for building and traversing
the acceleration structure. Since our goal is to compare the cost of ray-hair intersection computation,
we do not perform any shading and only use primary rays. This minimizes the computation
differences due to possible variations in ray intersection decisions. Also, as with our other tests, we
use a single CPU thread for rendering to avoid any parallelization overhead.
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Table 3. Hair rendering times with different methods using cubic hair curves.

𝑑 Precision Original Curves 5× Longer Curves
Ours, Closest Point 5 32 bits 0.33 𝜇s/ray 0.53× 2.55 𝜇s/ray 0.37×
Ours, Thick Curves 10 64 bits 0.62 𝜇s/ray 1.00× 6.81 𝜇s/ray 1.00×
Phantom Intersector — 32 bits 0.69 𝜇s/ray 1.11× 12.31 𝜇s/ray 1.95×
Ours, Closest Point 5 32 bits 0.53 𝜇s/ray 0.47× 5.28 𝜇s/ray 0.34×
Ours, Thick Curves 10 64 bits 1.13 𝜇s/ray 1.00× 15.74 𝜇s/ray 1.00×
Phantom Intersector — 32 bits 1.50 𝜇s/ray 1.32× 28.90 𝜇s/ray 1.83×

Resulting per-ray render times for primary rays are presented in Table 3. We use two hair models
in these tests. The first one has more straight curves, providing a relatively easier case for phantom
ray-hair intersector. Notice that for both models our method is 11% to 32% faster in these tests.
Using 5× longer curves by down-sampling the original model reduces the efficiency of the ray
tracing acceleration structure and inflates the overall render times with all methods, but it ensures
that ray-hair intersection computation is the bottleneck. In this case, our method provides a more
prominent performance advantage of 83% to 95% speed-up.
We also provide render times using the closest point approach, computed with our method by

generating and then solving a degree 5 polynomial on-the-fly. As expected, it provides much shorter
render times.
Additionally, in Table 4 we provide render times using the quadratic approximation of these

cubic curves, generated using the method of Truong et al. [2020]. In this case, our method uses
degree 6 polynomials with thick quadratic thick curves and cubic polynomials for the closest-point
method. Therefore, this quadratic version significantly reduces the computation cost of our method,
resulting in even more pronounced improvement over the phantom ray-hair intersector with 5×
longer hair curves (more than 3× speed-up). Note that all methods are significantly faster with
these quadratic curves, because they form curves with half the lengths of their cubic counterparts,
improving the effectiveness of the ray tracing acceleration structure.

Table 4. Hair rendering times with different methods using half-length quadratic hair curves.

𝑑 Precision Original Curves 5× Longer Curves
Ours, Closest Point 3 32 bits 0.22 𝜇s/ray 0.66× 0.63 𝜇s/ray 0.59×
Ours, Thick Curves 6 64 bits 0.34 𝜇s/ray 1.00× 1.08 𝜇s/ray 1.00×
Phantom Intersector — 32 bits 0.36 𝜇s/ray 1.07× 3.49 𝜇s/ray 3.24×
Ours, Closest Point 3 32 bits 0.29 𝜇s/ray 0.68× 1.01 𝜇s/ray 0.53×
Ours, Thick Curves 6 64 bits 0.43 𝜇s/ray 1.00× 1.90 𝜇s/ray 1.00×
Phantom Intersector — 32 bits 0.59 𝜇s/ray 1.38× 6.75 𝜇s/ray 3.56×

These results show that our generic polynomial root finder, even with the overhead of generating
the polynomials on-the-fly, can compete with and even perform faster than a customized high-
performance solution for this problem. Nonetheless, the exact numbers in these results should not
be overemphasized, as there are various factors determining the effective performance of a hair
intersection routine.

Furthermore, the shapes of the hair curves and the viewing angles impact the relative performance.
Phantom ray-hair intersector exploits the relatively straight shape of typical hair strands and it can
fail to converge with more complex shapes viewed from certain angles, as shown in Figure 3. By
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(a) Phantom Ray-Hair Intersector (b) Ours with 64-bit precision

Fig. 3. A thick cubic curve rendered using (a) phantom ray-hair intersector and (b) our method. Since
our implementation finds all roots, we can also detect intersections with the back side.

(a) Ours with 64-bit precision (b) Ours with 32-bit precision

Fig. 4. An example showing potential consequences of numerical truncation with degree-10 polynomi-
als using our method.

directly evaluating the polynomials, we avoid such limitations and also detect the intersections
with the back side with minimal additional work.

Our solution, however, is not without potential errors either. In particular, numerical truncation
can lead to substantial errors from certain view angles when using 32-bit precision, as shown in
Figure 4. A more careful construction of the polynomials might mitigate such problems for this
example application. Nonetheless, it shows the importance of using higher-precision arithmetic
while working with higher-order polynomials.

7 DISCUSSION
An important property of our approach is its robustness, i.e. it provides guaranteed convergence. Its
accuracy, however, entirely depends on the chosen error threshold and the floating-point precision.

Two consecutive roots that are separated by less than 𝜖 or duplicated roots, forming polynomials
that briefly cross zero, can be missed. This happens when the root is at or near a critical point.
Detecting such roots is not guaranteed even with 𝜖 = 0 due to numerical truncation that can
prevent computing the exact position of the critical point using the polynomial’s derivative. Such
cases may require special handling. Fortunately, they are easy to isolate, as they happen when the
polynomial is close to zero at a critical point.
Duplicated roots can also appear when solving a polynomial’s derivative to find the critical

points. Such occurrences, however, do not pose a problem for our method. This is because, even
when a duplicated root of a polynomial’s derivative is missed and the corresponding critical point
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is not found, the resulting interval that contains this missing critical point after our splitting step is
monotonic. Therefore, any failure to detect such critical points is inconsequential.
Note that our discussions about duplicated roots also apply to any even number of coinciding

roots. When an odd number of roots coincide, however, the polynomial changes sign, so such roots
are easily detected. Yet, Newton iterations offer poor convergence with such roots.

As we show in the supplemental document, Newton iterations become inefficient near duplicated
roots. Particularly with cubic polynomials in the form 𝑎𝑥3 + 𝑑 = 0, where three roots coincide,
Newton iterations converge linearly and even slower than pure bisection. More advanced methods
that consider the second derivative (e.g. [McDougall et al. 2019]) can help and reduce the number
of iterations, but they increase the iteration cost and negatively impact the overall performance in
our experience. Yet, switching to a different numerical root finder for special cases, after computing
the critical points, might be an interesting direction for future work.

Note that we do not use |𝑓 (𝑥) | ≤ 𝜖 as a termination condition for numerical root finding. Though
using such a termination condition is sensible and would help with detecting duplicated roots, in
graphics applications 𝑓 (𝑥) and 𝑥 may have very different units with very different scaling factors.
Therefore, bounding the error in 𝑓 (𝑥) by 𝜖 does not necessarily bound the error in 𝑥 , which is why
we refrain from using this termination condition.

8 CONCLUSION
We have presented an efficient and robust algorithm for computing the real roots of polynomials.
Our solution can be used with polynomials of any degree, but it is more effective for relatively
low-degree polynomials. We have shown that it outperforms both the analytical and numerical
solution for cubic polynomials both in terms of computation speed and robustness. We have also
shown that it can be used to replace existing solutions in graphics applications to deliver improved
performance and accuracy.
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