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Abstract

The ability to estimate the 3D human shape and pose
from images can be useful in many contexts. Recent ap-
proaches have explored using graph convolutional networks
and achieved promising results. The fact that the 3D shape
is represented by a mesh, an undirected graph, makes graph
convolutional networks a natural fit for this problem. How-
ever, graph convolutional networks have limited representa-
tion power. Information from nodes in the graph is passed
to connected neighbors, and propagation of information re-
quires successive graph convolutions. To overcome this lim-
itation, we propose a dual-scale graph approach. We use
a coarse graph, derived from a dense graph, to estimate
the human’s 3D pose, and the dense graph to estimate the
3D shape. Information in coarse graphs can be propagated
over longer distances compared to dense graphs. In ad-
dition, information about pose can guide to recover local
shape detail and vice versa. We recognize that the connec-
tion between coarse and dense is itself a graph, and intro-
duce graph fusion blocks to exchange information between
graphs with different scales. We train our model end-to-
end and show that we can achieve state-of-the-art results
for several evaluation datasets. The code is available at
the following link, https://github.com/yuxwind/
BiGraphBody .

1. Introduction

Recovering 3D human shapes and poses from 2D im-
ages is a fundamental task for numerous real-world appli-
cations, such as animation and dressing 3D people [4, 17].
Some recent approaches restrict themselves to only estimate
3D poses [45,50,52], while other approaches need multiple

*Work mainly done when Xin Yu was an intern at MERL.
†Corresponding author.

Local Connection

(a) Mesh-only graph

Non-Local Connection via a Bi-Graph

(b) Bilayer graphs

Figure 1: By associating the mesh graph to the input im-
age with a skeleton graph, the bilayer graph structure will
shorten the paths between remote mesh nodes (1723 nodes
here), when we connect a joint with the mesh nodes it con-
trols. With the body parts are correlated, such as the ankle
and the wrist, this bilayer graph implicitly learn the inter-
action between joints and mesh vertices and further shorten
the path among the remote body mesh vertices.

images to achieve reliable shape recovery [19,25]. Here we
consider joint 3D human shape recovery and pose estima-
tion from a single image.

As an undirected graph, a 3D mesh can represent a hu-
man shape, making graph-based techniques a natural fit to
this task. For example, graph CMR [25] deforms a template
human mesh in a neutral pose to a desired shape through
a graph convolutional network. Graph convolutional layers
then propagate the node features over the mesh. However,
this mesh-graph only approach suffers from the issue node
feature propagation will be extremely slow when the mesh
has dense vertices, such as 1723 nodes used for human in
general. We illustrate this limitation of mesh based graph
in Fig. 1. The recent work [29] use transformer to reduce
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the distance between any two nodes to 1 via self-attention
mechanisms. However, self-attention over a down-sampled
423 mesh nodes is still not efficient; positional encoding
may maintain the base coordinates information in the se-
quential ordering of the mesh nodes, still ignores the struc-
tured correlations between body parts.

To resolve the above issues, we propose a bilayer graph
structure, where one layer is a mesh graph for human
shapes, and the other layer is a newly added skeleton graph
for body joints. As shown in Fig. 1, the newly added
skeleton graph can associate the 2D body joints estimated
from an image with their coordinates in 3D space. 1 This
body-joint-based correspondence allows us to attach de-
tailed local image features to each body joint in the skeleton
graph. In previous mesh-only graph approaches, as shown
in Fig. 1a, the ankle and wrist nodes in the mesh graph
can only connect to each other via multiple iterations of
aggregation-and-combine operations in GCN. Image fea-
ture propagation will be extremely slow when the mesh
template has 1723 nodes. This bilayer graph structure (see
Fig. 1b) use sparse skeleton graph to guide the mesh nodes
to exchange information in a more efficient way. It further
shortens the paths between remote mesh nodes when con-
necting them via joints. We thus leverage the spatial non-
locality of the mesh graph.

An added benefit of this two-layer graph structure is
multi-tasking: achieving shape recovery and pose estima-
tion at the same time. Two layers naturally model a human
body from mesh and skeleton scales, handling shape recov-
ery and pose estimation, respectively. The cross or fusion
layer is a trainable bipartite graph that connects body joints
and mesh nodes. Instead of imposing any fixed connections,
such a bipartite graph can adaptively adjust the relationships
between the mesh nodes and body joints. It enables the fea-
ture fusion between two scales of a human body, mutually
enhancing two tasks. This is related to linear blend skin-
ning [22], however, where skinning provides an analytical
transformation, our cross layer learns a data-adaptive trans-
formation between body joints and mesh nodes in the high-
dimensional feature space.

In summary, our main contributions are:
• We are the first to propose a neural network based

on a two-layer graph structure that jointly achieves 3D hu-
man shape and pose recovery. The skeleton graph mod-
ule propagates pose (coarser-scale) information, the mesh
graph module propagates detailed shape (finer-scale) infor-
mation, and the fusion graph module allows us to exchange
information across the two modules.
• We propose an adaptive graph fusion block to learn

the trainable correspondence between body joints and mesh
nodes, promoting information exchange across two scales.
• We validate our method on several datasets (H36M,

12D body joints can be well estimated from an image, e.g., [7, 42].

UP-3D, LSP), and show that exchanging local and global
image information from different scales provides a signifi-
cant improvement and speedup over single graph methods.

2. Related Work
Human Shape Recovery Over the years there have been
many approaches to recover 3D human shapes from im-
ages. Several methods propose to recover clothed humans
from either single or multi-view images [1, 10, 17, 35, 38,
40, 41, 49, 53]. These approaches rely on well segmented
humans in the images, and do not emphasize accurate 3D
shape and pose. Our goal instead is to capture the 3D shape
and pose accurately without relying on any prior segmenta-
tion. Other methods rely on the video input to recover 3D
human shapes [21, 36, 43, 51]. While Our goal is to recover
accurate 3D shape and pose from a single image only. To
handle the alignment issue between neutral and deformed
poses, [5] proposes an optimization procedure to iteratively
refine the estimate. The authors in [8, 33] introduce a se-
quential and iterative approach from 2D poses. In this work,
we propose a trainable two-layer graph structure to resolve
the alignment issue which does not require iterations.
Graph CNNs for 3D Reconstruction Recently, graph con-
volutional neural networks (GCNs) have been used to re-
cover 3D objects from images. In this method, objects are
represented as meshes [46, 47]. Meshes are the de facto
representation of 3D objects in computer graphics, and a
mesh can be considered an undirected (3D) graph. The ini-
tial mesh before refinement may be a mesh obtained from a
volumetric estimation [11]. The authors in [9] state the lim-
itations of GCN for 3D pose estimation. To overcome this
limitation, they propose learnable weights for the structure
of the graph. To address the limited representation capabil-
ity of GCN, we propose a two-layer-graph neural networks
with adaptive edge weights to share information between
two graph layers. Our work is an extension to the regression
based approach called Graph CMR [25]. The input to Graph
CMR is a human mesh in neutral pose along with global
image features. Graph CMR then relies solely on graph
convolutions to propagate information between nodes, and
finally provide a 3D estimate. The mesh is refined by esti-
mating SMPL parameters. We propose a two-layer graph to
more efficiently propagate information. Multi-scale graphs
have been explored in some other applications. The authors
in [12] use multiple graph scales and exchange informa-
tion via connectivity between different scales for the pur-
pose of human parsing. The authors in [28] use multi-scale
graphs for the purpose of joint human action recognition
and motion prediction. The information between scales is
fused according to feature replication and concatenation be-
tween the different graphs. In comparison, our fusion ap-
proach relies on a learnable graph adjacency matrix, which
exchanges information between two body scales.
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Figure 2: Our proposed bilayer graph architecture. Given an input image, the mesh graph module (Mesh-GCN) is a regression
which outputs 3D vertex coordinates, and the skeleton graph module (Skeleton-GCN) estimates a skeleton with twelve 3D
joint locations. The input to the Mesh-GCN is a template mesh together with a global perceptual feature extracted using
a CNN, from the bounding box around the person in the image. Each global perceptual feature is attached to the XYZ
coordinates of the vertices in the mesh. For clarity, we omit the SMPL part. The input to each joint node in the Skeleton-
GCN is a local perceptual feature extracted from the image regions around the 2D joints estimated by HRNet. The two
modules exchange information via so-called fusion graph, which is a bipartite graph between all mesh nodes and joints.

3. Problem Formulation
As shown in Fig. 1, to resolve the issues of lacking de-

tailed local information and inefficient long-range interac-
tions, we use a bilayer graph structure to jointly estimate
a 3D human pose and recover a complete 3D mesh based
on a single input RGB image (without knowing camera pa-
rameters). Mathematically, let I ∈ RH×W×3 be an RGB
image with the height H and the width W . Both 3D hu-
man pose and 3D mesh structure can be represented as a
graph with a set of node coordinates and an adjacency ma-
trix indicating their connecting relations. For the 3D pose,
we denote the skeleton pose coordinates as Vs ∈ RNs×3,
where Ns is the total number of body joints, thus the corre-
sponding skeleton adjacency matrix is As ∈ RNs×Ns . For
the 3D mesh structure, we denote the mesh node coordi-
nates as Vm ∈ RNm×3, where Nm is the number of mesh
nodes. Then the adjacency matrix for the mesh structure is
Am ∈ RNm×Nm . We aim to propose a model F(·):

V̂s, V̂m = F(I,Am,As), (1)

to estimate human pose V̂s and the recovered human
mesh V̂m, which precisely approximate the targets
Vs,Vm, respectively.

This joint task naturally requires to model a human
body at two scales: a sparse graph at the skeleton scale
and a dense graph at the mesh scale. To explicitly model
the vertex correlations at two scales, we introduce a fu-
sion graph to learn how the joints control the deforma-
tion of the body mesh vertices, and vice versa. Thus
we propose a two-layer graph structure that consists of a
skeleton graph Gs(Vs,As), a mesh graph Gm(Vm,Am)
and a fusion graph Gf (Vs ∪ Vm,Af ), where Af ∈
R(Nm+Ns)×(Nm+Ns) is the adjacency matrix for the fu-
sion graph. Note that As,Am are fixed and given based

on the human body prior; see the predefined graph topology
in Fig. 1; while Af is data-adaptive during training.

The graph-based formulation makes Graph CNN (GCN)
a natural fit for this task. We propose a Bilayer-Graph GCN
to address this task effectively and efficiently. As a core of
the proposed system, it brings two benefits: First, it natu-
rally models a human body from both mesh and skeleton
aspects, promoting local and non-local topology learning,
which will speedup the convergence of training and im-
prove the joint pose and shape recovery. Second, a fusion
graph enables information exchange between two scales of
a human body, mutually enhancing feature extraction at two
scales and further improving the performances in two tasks.

4. Two-scale Graph Neural Network
To model the two-scale skeleton and mesh graph, and a

fusion graph connecting them, we propose a bilayer graph
neural network. Fig. 2 shows an overview of the this ar-
chitecture. In this section, we introduce the detailed imple-
mentation of each building block in our proposed method.

4.1. Architecture Overview

As shown in Fig. 2, given a single input image, an im-
age encoder will be firstly used to extract the features from
it, and a 2D-pose detector will processes the image into a
skeleton graph. Then on the top part, skeleton graph mod-
ule attaches local joint features, and propagate the features
in skeleton graph layer. While at the bottom part, mesh
graph module attach the global image features and models
the mesh graph layer. Between them, fusion graph module
connects between all the skeleton joints and mesh nodes,
and exchange dual-scale information in a structured way.
Finally, the learned joint and mesh node representation will
be used to regress the 3D pose and mesh coordinates.
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4.2. Image Encoder

The functionality of an image encoder module is to ex-
tract informative visual features from an RGB image, which
would be the input for the subsequent modules. Given an
input RGB image I, we use a multi-layer CNN to obtain a
collection of intermediate image features from the output of
each layer l, {X(`)

im}L`=1 = Fim (I), where Fim(·) is a CNN
whose architecture follows ResNet50 [14]. 2

4.3. Bilayer Graph Module

We propose to employ Graph CNN to jointly regress the
3D coordinates of the mesh and skeleton vertices. It consists
of three sub-graphs: the mesh graph module, the skeleton
graph and the fusion graph module.
For each sub-graph, we employ the same basic graph con-
volutions to formulate them [23], which is defined as:

X`+1 = AX`W ∈ RN×d`+1 (2)

where ` indicates the `-th convolutional layer, A ∈ RN×N
is a graph adjacency matrix for the (sub)graph, W ∈
Rd`×d`+1 is a convolution weight matrix, X` ∈ RN×d` is
the input feature vector. As shown in Eq. (2), given a set of
vertices initialized with input features (X0) and their ad-
jacency matrices (A), the graph convolution layer allows
feature propagating and updating over the (sub)graph so that
each vertex can aggregate information from its neighbors.
In the following, we will introduce the functions of the three
sub-graphs separately, and comparatively study the input
and adjacency matrix of them.

4.3.1 Mesh Graph Module

The functionality of a mesh graph module is to regress the
posed 3D mesh conditioned on the input image features. It
is identical to graph layers of GraphCMR [25]. We start
from the template mesh in neutral (T-) pose introduced by
SMPL and deform them to the shaped and posed mesh with
the graph convolutions.
Inputs We employ the template coordinates as the position
embedding of the mesh vertices, and attach it with the
2048-D global feature vector of ResNet-50 [14] to feed in
the mesh graph module.
Let xg

im ∈ RDg be the global image feature after the
average pooling layer and vTm,i ∈ R3 is the 3D coordinate
of a i-th template mesh vertex. For each mesh vertex, we
have an initialized feature defined as:

X0
m,i = F0

m(vTm,i ⊕ xg
im) ∈ Rd0 (3)

2Any “typical” CNN auto-encoder can be used for the image feature
extraction.

Where ⊕ denotes feature vector concatenation and F0
m de-

notes the linear layer to reduce the dimension (the typi-
cal reduced dimension is 512) of the concatenated features
whose weights shared among all mesh vertices.
Mesh adjacency matrix Am is initialed as a binary matrix
to indicate the connectivity among the vertices as shown in
Fig. 1 and further row-normalized.

4.3.2 Skeleton Graph Module

The functionality of a skeleton graph module is to lift the
2D pose estimated from an input RBG image to a 3D pose.
As shown in Fig. 1b, the sparse skeleton graph can promote
the non-local topology features of the dense mesh graph and
enhance the correlations between different body parts. Fur-
thermore, we extracted the local features around the joints
for precise pose.
Inputs Instead of using global image features for all the
joint nodes, we use joint-aware local features for joint
nodes. Given the image, we use HRNet [42] off-the-shelve
to estimate the 2D positions of body joints in this image.
For each body joint, we crop a patch centered at the esti-
mated 2D positions with the size of the average estimated
bone length from the joints per image, using RoI Align [13]
from the k-th image feature map (K layers in total) xkim
of ResNet-50 [14]. This feature patch reflects the local vi-
sual information around the corresponding body joint. We
concatenate the image feature patches with the positional
embedding as the initial skeleton features as:

X0
s,i = F0

s (v̂s,i ⊕RoI(v̂s,i,x
1
im, . . .x

K
im)) ∈ Rd0 (4)

where i-th body joint estimated by HRNet as ŝi ∈ R2,
RoI(·) returns image feature patches from xkim using RoI
Align [13] with the patch centered at ŝi. Similarly, F0

s is a
linear layer and share the weights among the skeleton ver-
tices. We also experimented with the skeleton template co-
ordinates as the positional embedding but we did not ob-
serve quantitative improvement in the results and thus keep
the 2D embedding for all experiments.
Skeleton adjacency matrix We use fixed adjacency matrix
for As. The element is initialized as the reciprocal of the
Euclidean distance between two template joint vertices.

4.3.3 Fusion Graph Module

The functionality of a fusion graph is to correlate the sparse
skeleton graph and the dense mesh graph and enable infor-
mation exchange between them and mutually enhance both
tasks of 3D shape recovery and pose estimation. As shown
in Fig. 1b, the fusion graph connection can shorten the path
of two remote mesh vertices dramatically and will speedup
the non-local information propagation of the mesh graph.
Inputs The fusion graph consists of the vertex from both
the Mesh Graph and Skeleton Graph and applies the same
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initial feature as those two sub-graphs. The intermediate

input of this module are the intermediate features from the

Skeleton Graph and Mesh Graph, which fuses those inter-

mediate features and populates them back to both Skeleton-

GCN and Mesh-GCN.

Fusion adjacency matrix To fuse features from the skele-

ton and mesh graph, we leverage a trainable fusion graph

to reflect the data-driven connectivity between body joints

and mesh nodes. Besides defining a fixed connection part,

denoted as Af,s, we allow an extra dynamic connection, de-

noted as Wf , to be trainable to capture the connectivity in

the hidden feature space in a data-driven manner. We define

the final adjacency matrix as:

Af = RowNorm(Af,s �Wf ) (5)

where Af,s,Wf ∈ R(Nm+Ns)×(Nm+Ns), RowNorm() in-

dicate a row normalization, � denotes element wise prod-

uct. Wf is learnable and its element is initialized as 1

for vertex-joint correlation and 0 for joint-joint and vertex-

vertex (the Skeleton and Mesh Graphs have cover those con-

nections). The element of Af,s for a connection between a

skeleton vertex and mesh vertex is fixed to the reciprocal of

their Euclidean distance; otherwise, it is zero.

We also experiment the RowNorm() with a softmax on

each row and apply additive optation between Afs and Wf ,

both of which bring minor change to the performance. We

adopt the row normalization and element-wise product for

their simplification of computation.

4.3.4 Architecture Implementation

Bilayer-Graph Block At the heart of this approach, we

propose a Bilayer-Graph block as an elementary computa-

tional unit for feature learning and propagation based on

the bilayer-graph structure. As illustrated in Fig. 3, the

Skeleton-GCN Block, Fusion-GCN Block and Mesh-GCN

Block apply graph convolutions on skeleton graph, fusion

graph and mesh graph respectively. The Fusion-GCN Block

collects features from both Mesh-GCN and Skeleton-GCN

and distributes the updated features back to the other mod-

ule. Each block consists of a sequence of a graph linear

layer, a graph convolution layer, and another graph linear

layer, with a residual connection from the input directly to

the output of this block. Each layer follows a group nor-

malization layer [48] and ReLU. Please note that the graph

linear layer is a special graph convolution layer, which sim-

ply substitutes the graph adjacency matrix A in the graph

convolution layer ( see Eq. (2)) to an identity matrix.

In this network, we stack five Bilayer-Graph blocks

for feature propagation, followed by two graph linear

layers to regress the skeleton vertices and joint vertices

separately. The first linear layers also follows a group

normalization [48] and ReLU.

Graph Linear 
Layer

Graph Convolution 
Layers

Graph Linear 
Layer

Graph Linear 
Layer

Graph Convolution 
Layers

Graph Linear 
Layer

Graph Linear 
Layer

Graph Convolution 
Layers

Graph Linear 
Layer

x N

Skeleton-GCN 
Block

Fusion-GCN 
Block

Mesh-GCN 
Block

Figure 3: A Bilayer-Graph Block consists of a Fusion-GCN

block, a Mesh-GCN block and a Fusion-GCN block. The

fusion block depicted here has its input from the previous

Skeleton-GCN and Mesh-GCN blocks prior to this Bilayer-

Graph block, and adds its output back to each branch after

their respective blocks.

SMPL regressor As the parametric representation of the

human body can be very useful for down-stream tasks (e.g.,

body manipulation), we follow [25] to train a MLP module

to regress pose (̂θ) and shape (̂β) parameters for a SMPL

model [32] from the predicted mesh ̂Vm.

4.4. Training

Losses To train the Bilayer GCN, we apply loss functions

on the output of the Bilayer GCN and SMPL regressor and

minimize the errors between the predictions and ground

truths. Firstly, we use the a per-vertex L1 loss between

the ground truth Vm and predicted mesh vertices V̂m from

Mesh-GCN, denoted as Lm, and between the GT and pre-

dicted joint vertices V̂s from Skeleton-GCN, denoted as Ls.

We follow [20, 25] to multiply the predicted mesh V̂m

by a predefined matrix to get 3D joints, denoted as V̂j3d
m .

L1 loss is also applied to it and its GT Vs, denoted as Lj3d
m .

As we trained on mixed datasets consisting of both 3D

and 2D data, we have additional supervision on the predict

a weak perspective camera parameters from the intermedi-

ate features of the Mesh-GCN with two graph linear layers.

Apply this camera parameters to V̂j3d
m and V̂s, we get two

sets of 2D pose and use a L1 loss on them and the 2D GT

pose, denoted as J j2d
m and J j2d

s respectively.

Finally, we apply MSE loss on the predicted SMPL

shape (θ̂) and pose (β̂) parameters, denoted as Lθ and Lβ

respectively. And we have the final loss as below:

L = Lm + Lj3d
m + Lj2d

m + Ls + Lj2d
s + Lθ + λLβ , (6)

Focal loss for regression We observe that in the above

losses on 3D vertices, the error caused by each body part

varies a lot. For example, the joints on legs and arms usually

have much larger error than the other parts. The intuition is

that the variation for body limbs is much larger compared

to torso and head. We generalizes the focal loss [30], which
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addresses class imbalance by down-weighting the loss for
well-classified samples, to this regression tasks to addresses
the imbalanced vertex error. We modify it based on the L1

loss of the target, i.e.,

Lfl = −(αL)γ log(1−max(τ, αL)),

where L is the L1 loss, α is a factor to scale L to (0,1),
τ < 1 is a threshold that truncates αL with a maximum
value to avoid unreasonably large loss when αL approaches
1, (αL)γ is a factor to reduce the relative loss for well-
regressed vertices with γ > 0.

5. Empirical Evaluations
We have evaluated our proposed method and present the

results in this section. The datasets have different 2D anno-
tations. We have selected the 12 joint annotations in com-
mon for the skeleton graph to define its graph structure.

5.1. Datasets and Evaluation metrics

Human 3.6M This indoor 3D dataset [15, 16] comprises
eleven subjects performing 17 common scenarios, e.g. sit-
ting down, talking on the phone. The training data con-
tains ground truth 2D joints, 3D joints, and SMPL (pose
and shape) parameters. The entire dataset contains 3.6M
images. For training we only have access to subjects 1, 5, 6,
7, and 8 (about 1.55M images). Subjects 9 and 11 are held
out for evaluation (about 0.5M images).
UP-3D Unite the People 3D [27] consists of images with
annotations by humans doing sports and other miscella-
neous activities. Besides ground truth 2d keypoints, SMPL
fits have been performed on the 2D keypoints to produce
ground truth SMPL parameters. About 7K images are used
for training, and 639 held out for evaluation.
LSP Leeds Sports Pose [18] contains 2K images with 2D
joint annotations of people playing sports. We use 1000 im-
ages for training, and 1000 for evaluation.
COCO Common Object in Context [31] also contains im-
ages of people annotated 2D keypoints. About 28K images
are used for training. We do not evaluate for this dataset.
MPII MPII Human Pose dataset contains images with an-
notated body joints of people performing 410 different ac-
tivities [2]. We use about 15K training images from this
dataset, and do not evaluate on this dataset.
Evaluation metrics For H36M we report the mean Eu-
clidean distance (mm) between the predicted and ground
truth 3D joints after root joint alignment (MPJPE), and
rigid alignment error (PA-MPJPE) as in [54]. For UP-3D
we report MPVE, which is a mean per-vertex error between
the predicted and ground truth shape, and for LSP we report
accuracy (Acc.) and F1 score on foreground-background
(FB seg) and part segmentation (Parts seg). We report non-
parametric (np) and SMPL parametric (p) predictions for
H36M P1, P2 and UP-3D datasets.

H36M P1 H36M P2
Methods MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓
SMPLify [5] - - - 82.3
Lassner [27] - - - 93.9
HMR [19] 88.5 58.1 - 56.8
NBF [34] - - - 59.5
Pavlakos [37] - - - 75.9
Kanazawa [21] - - - 56.9
Arnab [3] - - 77.8 54.3
GraphCMR [25] 75.0 51.2 72.7 49.3
SPIN [24] - - - 41.1
I2L-MeshNet [33] - - 55.7 41.1
METRO [29] - - 54.0 36.7
Ours 61.2 35.4 58.5 34.0

Table 1: Comparison with the state-of-the-art on Hu-
man3.6M (Protocal 1 and 2) for estimated 3D poses (see
suppl. mat. for per-activities results).

Methods FB seg Parts seg
Acc.↑ F1↑ Acc.↑ F1↑

SMPLify oracle [6] 92.17 0.88 88.82 0.67
SMPLify [6] 91.89 0.88 87.71 0.64
SMPLify on [37] 92.17 0.88 88.24 0.64
Bodynet [44] 92.75 0.84 - -
HMR [19] 91.67 0.87 87.12 0.60
SPIN [24] 91.83 0.87 89.41 0.68
GraphCMR [25] 91.46 0.87 88.69 0.66
Ours 93.15 0.89 90.96 0.73

Table 2: Comparison with the state-of-the-art on LSP for
2D projection from the predicted non-parametric mesh.

Methods MPVE (np) ↓ MPVE(p) ↓
GraphCMR [25] 104.5 122.9
Ours 59.0 61.1

Table 3: Comparison with the mesh-only graph method [25]
on UP-3D for estimated 3D mes (MPVE is in mm).

5.2. Experiment Details

We use a pre-trained ResNet-50 to extract perceptual fea-
tures. Our model is trained end-to-end with a batch size of
64 and learning rate of 2.5e−4. Mini-batches during train-
ing are assembled by selecting images from the five train-
ing datasets. The composition is 30%, 20%, 10%, 20% and
20% for Human3.6M, UP-3D, LSP, COCO and MPII re-
spectively. The Adam optimizer is used to determine the
weight updates. We train our model for fifty epochs, but
we observed fewer epochs could suffice (see Section 5.3).
During training, we apply the focal loss Lfl (with α = 1,
γ = 1) to the estimated 3D pose from Mesh-GCN (V̂s)
and the coefficient before this loss term is 5.0. We mixed
the ground truth and the estimated 2D joint location to get
feature patches during training with a mixture ratio which
gradually decreases to zero at the last epoch during training
and only use the estimated 2D joints during inference.

5.3. Main Results and Analysis

We compare our method to state-of-the-art methods on
H36M, UP-3D and LSP datasets, which evaluates 3D poses,
3D mesh, and 2D projections of the mesh respectively.
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Figure 4: A visualization of the learned fusion adjacency matrix (Af ). Left: the connections between the right ankle and the
mesh vertices. Top row on the right: right knee, left elbow, left ankle; Bottom row on the right: right hip, right wrist, right
shoulder. Red, yellow and gray color indicate strong, weak and trivial connections.

The results are shown in Tables 1, 3 and 2 for those three
datasets. Our method either outperforms or achieves com-
parable performance as the prior methods on those datasets.

First of all, we aim to investigate how the bi-layer graph
performs for body recovery. To this end, we first focus on
the Human3.6M dataset and UP-3D dataset. The rich hu-
man activities in their images is a natural target to study the
correlation between body parts, which requires long-range
interactions. We evaluate the regressed mesh by our bi-
layer graph through 3D pose accuracy, in comparison to the
mesh-only graph method [26] and the self-attention in trans-
former [29] as shown in Table 1. In both cases, we outper-
form them in reconstruction error (PA-MPJPE), indicating
that our proposed bi-layer graph uses the non-local inter-
actions efficiently for body recovery. We also evaluate the
regressed mesh and the mesh calculated from the regressed
SMPL on the UP-3D dataset in Table 3, which demonstrates
that our method can promote the fine-grained interactions
between mesh vertices for improved body shape. We also
evaluate 3D shape through silhouette projection on the LSP
dataset in Table 2. Our proposed bi-layered graph again
outperforms prior methods.

Our model aim to jointly model local vertex-vertex (de-
fined by mesh neighbourhood), non-local vertex-joint, and
joint-joint interactions. We get insight of vertex-joint in-
tersections by the learned fusion adjacency matrix (Af ) in
Fig. 4. Firstly, strong interactions between a joint and its
nearby mesh vertices are encouraged, thus the joint will
guide the mesh recovery. We achieve this by setting the
initial values of Af , s (see Eq. (5)) as the reciprocal of the
Euclidean vertex-join distance in T-pose mesh. This inter-
sections cover a range larger than the fine-grained vertex-
vertex interactions predefined by mesh neighborhood. Sec-
ondly, long-range joint-vertex interactions are learnt be-
tween a joint and remote vertices near another joint, when

the body part correlation happens. Please see the exam-
ple of the right ankle and right wrist in the left sub-figure
of Fig. 4. Our intersections differ from the transformer-
based METRO [29] in two ways: the local vertex-vertex in-
tersections avoid huge computation of the brute-force self-
attention; and joint-vertex intersections learnt from the Fu-
sion Graph efficiently model the most important topology
knowledge between body mesh and joints. Together with
the localized image features, our model achieves compara-
ble performance to METRO [29] of the strong representa-
tion ability for the fully connected intersections. We believe
that attention and knowledge-aware bi-layer graph network
can be integrated to learn the interactions.

Finally, we evaluate the efficiency of the bi-layer graph
structure through the convergence speed of the training
compared to the mesh-only method [25] (see Fig. 5). Our
model (in blue) achieves a lower, more stable loss much
earlier compared to the baseline [25] (in orange), which in-
dicates that the speedup of information propagation along
this bi-layer graph can potentially reduce the training time.

Figure 5: Comparison of training loss on V̂j3dm (left) and
V̂m(right) from the common mesh graph structure of the
baseline [25] and our proposed model. We trained for 50
epochs and one epoch takes about 5,000 steps.

Qualitative Results Fig. 6 and 7 show four successful ex-
amples and two failure cases due to challenging poses and
occlusions (see suppl. mat. for more examples).
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Figure 6: Qualitative results (left to right: input image, non-
parametric pose and shape, two other view perspectives).

Figure 7: Two failure case examples (input, non-parametric,
parametric).

5.4. Ablation Studies

Benefit of bi-layer graph vs. localized features As shown
in Table 4, instead of single-mesh only graph (A), bi-layer
graph only (B) or localized image features only (C) , it is
the combination (D) of Fusion Graph and localized features
that jointly contribute most to the performance gain. This
combination is the core difference from the transformer-
based METRO [29] and other hierarchical structures, such
as CoMA [39] (see suppl. mat. for more discussion).
Benefit of Fusion Graph Since we design a bi-layer graph
structure connected with fusion graph for mesh recovery,
one interesting question is that whether the fusion graph is
useful. In Table 5, We study the fusion graph by limiting its
usage in the bi-layer graph network: replacing with a sim-
ple fusion by pooling (avgpool-as-fusion and maxpool-as-
fusion) and restricting it applied to only the first or the last
graph layer(fusion-at-first and fusion-at-last respectively).
The simple fusion strategy will loss the individual interac-
tion between a joint vertex and a mesh vertex as each joint
(mesh) vertex apply an identical feature from pooling the
mesh (joint) vertices feature. We compare those strategies
to our fusion graph and observe the performance increase
significantly with allowing more fusion connections in the
network and our fusion graph works on best with the full
connections in all graph layers.
Weight sharing We exploit the property of GCN to share

Skeleton Fusion Localized H36M P2 UP-3D
Graph Graph features MPJPE ↓ MPVE ↓

A 7 7 7 54.0 104.5
B 3 3 7 47.5 96.3
C 3 7 3 48.8 100.7
D 3 3 3 34.0 59.0

Table 4: Evaluation of bi-layer graph components and localized
features. All has Mesh Graph with global image features as input
as GraphCMR and has the same training settings.

Methods H36M P2 UP-3D
MPJPE ↓ MPVE ↓

Ours 34.0 59.0
avgpool-as-fusion 47.3 81.1
maxpool-as-fusion 42.9 77.0
fusion-at-first 36.7 64.3
fusion-at-last 38.3 71.3
shared weight 34.2 61.7
no FL 34.7 59.8

Table 5: Evaluation results for ablation studies. See text
for details. FL is for focal loss, shared weight indicates the
model shares weights between skeleton and mesh graph.

weights between skeleton-GCN and Mesh-GCN for com-
pact model size. In Table 5, it is interesting to observe only
marginal performance loss, indicating the strong represen-
tation ability of GCN on the body and skeleton topology.
Focal loss To demonstrate the benefit of the focal loss for
regression, we trained the model with L1 loss on V̂s in-
stead of the proposed focal loss and keep the other losses
the same. In Table 5, we see that L1 loss works a bit infe-
rior to the focal loss. We will explore the use of focal loss
in future work for improving the overall performance.

6. Conclusion

We have proposed a dual-scale graph-based method for
3D human shape and pose recovery from a single image.
A skeleton graph estimates 3D pose, and a mesh graph es-
timates 3D shape. A fusion graph promotes the exchange
of local and global information between the two graphs.
And Fusion Graph employs an adaptive adjacency matrix to
learn which nodes between the two scales influence one an-
other most. Our results show that we can outperform state-
of-the-art methods. Some poses, and partial occlusions re-
main challenging. For future work, We would like to extend
our work to take both single and multi-view images as in-
put, which may help improve performance. In addition, 3D
reconstruction of objects from images in general, not only
humans, is an interesting research direction.
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