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Polymeric multimaterials by photochemical

patterning of crystallinity

Adrian K. Rylski', Henry L. Cater't, Keldy S. Mason't, Marshall J. Allen2t, Anthony J. Arrowood?,
Benny D. Freeman?, Gabriel E. Sanoja?, Zachariah A. Page'*

An organized combination of stiff and elastic domains within a single material can synergistically
tailor bulk mechanical properties. However, synthetic methods to achieve such sophisticated
architectures remain elusive. We report a rapid, facile, and environmentally benign method to
pattern strong and stiff semicrystalline phases within soft and elastic matrices using stereo-
controlled ring-opening metathesis polymerization of an industrial monomer, cis-cyclooctene. Dual
polymerization catalysis dictates polyolefin backbone chemistry, which enables patterning of

compositionally uniform materials with seamless stiff

and elastic interfaces. Visible light—induced activation

of a metathesis catalyst results in the formation of semicrystalline trans polyoctenamer rubber,
outcompeting the formation of cis polyoctenamer rubber, which occurs at room temperature. This bottom-up
approach provides a method for manufacturing polymeric materials with promising applications in soft

optoelectronics and robotics.

ultimaterial structures that synergisti-
cally combine stiff and elastic compo-
nents are ubiquitous in living systems,
providing unparalleled combinations
of mechanical properties (e.g., strength,
toughness, and durability) (I-3). However, creat-
ing synthetic materials with integrated stiff and
elastic domains remains an ongoing challenge
(4-6). A scalable solution to achieving such
structures would prove transformative for fun-
damental and applied research in soft materials

and in advanced technologies that benefit from

compliant, tough, and lightweight objects,
such as programmable actuators (7) and bio-
electronics (8). State-of-the-art strategies to
pattern stiffness rely on spatially varying the
cross-link density of polymer networks using
orthogonal two-stage and/or wavelength-
selective lithographic curing processes (9-14).
However, costly fabrication, material waste,
brittle failure, and/or incumbent interfacial
stress preclude access to synthetic materials
and structures that mimic those found ubiq-
uitously in nature. Herein, we overcome these

limitations using a single, inexpensive feedstock
to photopattern stiff and strong domains within
a soft and elastic matrix using dual-initiated,
stereo-controlled ring-opening metathesis poly-
merization (ROMP) of an olefinic monomer, cis-
cyclooctene (COE) (Fig. 1A).

Twelve ruthenium (Ru)-based catalysts were
screened and characterized in terms of reactivity
and stereochemical control during ROMP (Fig.
1B and fig. S11). The use of COE as a low-viscosity
liquid enabled bulk polymerizations (>99 vol %
COE), minimizing hazardous solvent waste
and postprocessing requirements. The trans:
cis alkene ratios were characterized using 'H
nuclear magnetic resonance (NMR) spectros-
copy, integrating the two peaks between ~5.3 and
54 parts per million (ppm), narrowing the cat-
alyst scope to those that resulted in either high
trans- or cis-alkene content (Fig. 1C, table S1,
and fig. S12). Three representative catalysts were
selected for further study: (i) Grubbs second
generation (G2) as a control, (ii) a thermally
latent bis-N-heterocyclic carbene (bis-NHC) cat-
alyst (15) (Ru-1), and (iii) a stereoretentive cat-
alyst (16) (Ru-2) (tables S1 to S3 and fig. S13).
The use of G2 (50 ppm relative to COE, ~23°C,
<5 min) resulted in complete COE consump-
tion to produce ¢rans polyoctenamer rubber
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(TOR) with ~85% trans-alkene content, whereas
Ru-1 (50 ppm relative to COE, ~100°C, 60 min)
resulted in ~78% trans-alkene content. This
result suggested that latent activation of Ru-1
could enable selective TOR synthesis.

To facilitate spatial control over the stereo-
chemistry of polyoctenamer, Ru-1 was examined
for photolatency (figs. S14 and S15). Inspired by
the work of Rovis and co-workers (17) on the use
of pyrylium photoredox catalysis for ROMP, a
pyrylium derivative, 2,4,6-tris(4-dodecylphenyl)
pyrylium tetrafluoroborate (hereafter pyr.)
(Fig. 1B), was synthesized to provide solubility
in COE (figs. S16 to S23) and used to activate
bis-NHC catalysts bearing indenylidene (Ru-1),
benzylidene, or alkenylcarbene groups with
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visible light. Of the three derivatives, only
Ru-1 was inactive in the absence of light (<1%
conversion of COE, 50 ppm catalyst, 75 ppm
pyr., ~23°C, 1 hour), which is attributed to the
steric hindrance and Lewis basicity of inden-
ylidene (78). Irradiation with a blue LED resulted
in quantitative COE consumption, indicating ex-
cellent temporal control (~460 nm, 170 mW/cm?,
~23°C, 5 min) (Fig. 1C and table S1). The resulting
TOR polymers had a trans content of 91%, a
modest increase relative to those obtained
through thermal activation (78% trans), pos-
sibly arising from a decrease in polymerization
temperature.

Polyoctenamers with high cis-alkene content,
cts polyoctenamer rubber (COR), were achieved
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by examining four commercial stereoregulat-
ing catalysts (Fig. 1B and fig. S11) (16, 19). The
stereoselective catalysts (i.e., double-bond con-
figuration defined by the catalyst) were unable
to reach high conversions of COE at both
room and elevated temperatures (<30%, 100°C,
18 hours). Conversely, low concentrations
(20 ppm relative to COE) of the stereoretentive
catalysts (i.e., double-bond configuration de-
fined by the monomer) proved effective at reach-
ing high conversions of COE (>99%, ~23°C,
<2 hours) to produce COR with a cis content
of ~99% (Fig. 1C and table S1).

The mechanical properties of TOR and COR
were examined under uniaxial tension until
failure (Fig. 2A, table S5, and figs. S24 to S27).

2of5

220T ‘LT JOqUISAON] UO UNSNY SBX L JO AJISIOATU(] J& S10°00UI0S MmM,//:Sd}Y WOIj popeo[umo(]



RESEARCH | REPORT
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Five different polymerization conditions were
analyzed: (i) G2 (50 ppm) with trimethyl
phosphite (50 ppm) (20) to facilitate thermally
latent casting (80°C, 1 hour); (ii) Ru-1 (50 ppm)
and pyr. (75 ppm) with blue light irradiation
(~460 nm, ~170 mW/cm?, 5 min); (iii) Ru-2
(20 ppm, room temperature, 1 hour); and
(ivand v) Ru-1 (50 ppm), pyr. (75 ppm), and
Ru-2 (20 ppm) with (5 min) (iv) or without
(60 min) (v) light irradiation. Conditions
that produced TOR (conditions i, ii, and iv)
gave strong, stiff materials with a maximum
stress (o,,,) from ~23 to 27 MPa and a Young’s
modulus (E) from ~800 to 1000 MPa. By con-
trast, conditions that produced COR (conditions
iii and v) provided a soft and stretchable mate-
rial, with o,,, ~ 12 MPa, E ~ 3 MPa, and strain at
failure (g¢) of ~800%. This mechanical behavior
resembles that of conventional thermoplastic
elastomers such as self-assembled polyolefin
block copolymers (21, 22); however, the com-
position and architecture of COR are those of a
simple rubbery homopolymer. Specifically, at
small strains, (<100%) the hysteresis of COR
was low and comparable to that of natural
rubber (fig. S25), whereas at large strains,
COR yields and plastically deforms (€>100%;
Fig. 2A), similar to other thermoplastics such
as styrene-isoprene-styrene of low styrene
fraction. Therefore, the mechanical properties
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of polyoctenamer could be substantially varied
with mixtures of Ru-1 and Ru-2 catalysts by
simply toggling visible light-emitting diode
(LED) irradiation.

This difference in mechanical properties was
hypothesized to stem from backbone stereo-
chemistry and crystallization. TOR is opaque
with visible light transmittance <1%, whereas
COR is transparent (fig. S28), indicating that
high trans content leads to more crystalline
polymer domains. Differential scanning cal-
orimetry was used to characterize the melting
temperature (7,) and degree of crystallinity
(Fig. 2B and figs. S29 and S30). Using a
modulated heat ramp and integrating the
change in enthalpy versus “100%” crystalline
polyoctenamer (216 J/g) (23) provided a Ty, =
72°C and ~65% crystallinity for TOR and a
T = 16°C and ~20% crystallinity for COR. In
addition, a T, = -80°C was identified for both
TOR and COR (fig. S31), confirming that at
room temperature, TOR is a semicrystalline
thermoplastic with mechanical properties
strongly influenced by the crystalline domains,
and COR is an amorphous polymer melt.

The observation that COR was fracture re-
sistant prompted the characterization of its
fracture energy (i.e., toughness) as measured
by the critical energy release rate (G.). Pre-
cracked, pure-shear specimens of polyocten-
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amers were uniaxially stretched until failure,
and G, was calculated as Wpg x h (24), where
Whps is the strain energy density in the bulk at
the critical stretch of crack propagation and
hy is the initial specimen height (Fig. 2C, fig.
S32, and table S6). This analysis revealed G,
values of 150 + 40 kJ/m? (Ru-2, dark) and
190 + 40 kJ/m? (Ru-1+Ru-2, dark) for COR
and 10 + 3 kJ/m? (Ru-1+Ru-2, light) for TOR
(Fig. 2D). Compared with commercial materials,
COR was an order of magnitude tougher than
soft elastomers (E < 10 MPa), such as rubbers
and polyurethanes 40A and 90A, and equiva-
lent to the polyurethane Elastollan (G, = 138 +
13 kJ/m? and E = 7 MPa) (25). Conversely, TOR
had a toughness between that of other stiff
plastics such as acrylonitrile butadiene styrene
(ABS) and high-density polyethylene (HDPE)
(Fig. 2D, fig. S32, and table S6). Furthermore,
lowering the Ru-2 catalyst concentration from
20 to 3.3 ppm increased the G, to 280 + 17 kJ/m?
(figs. S33 to S35), which is postulated to arise
from the increased COR molecular weight (figs.
S36 to S38). Thus, stereoregulated ROMP of
COE provides a facile pathway to designing
soft and tough materials for applications that
require large deformations at “soft/hard” in-
terfaces, such as wearable electronics (26).
The role of crystallinity on the mechani-
cal properties of polyoctenamers was further
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Fig. 4. Mechanical metamaterial
characterization. (A) Images of
backlit array of TOR squares in a
COR matrix with and without
crossed polarizers at 0 and 100%
strain. (B) Images of a patterned
sample during the first and last
strain cycles used for digital
image correlation analysis. (C and
D) Images of backlit samples
between crossed polarizers during
uniaxial tension applied vertically,
showing the effect of suture
design on strain-stiffening behav-
ior (C) and corresponding stress-
strain curves (D).

—

backlit

Line (control)

0% strain

assessed and compared with natural rubber
using a combination of birefringence (Fig. 2E
and fig. S39) and wide-angle x-ray scattering
(WAXS) (Fig. 2F and figs. S40 to S44). At low
strains (100%), both natural rubber and COR
showed a stress concentration in the vicinity
of the crack tip, whereas at larger strains
(500%), COR distinctly delocalized the stress
and dissipated energy by undergoing plastic
deformation throughout the bulk (movies S1
and S2). Characterization with WAXS con-
firmed that at room temperature, COR was
amorphous before stretching but crystallized
when deformed above 100% (Fig. 2F). Thus,
like natural rubber, COR is first toughened by
strain-induced crystallization but then dissi-
pates elastic energy both in the vicinity of the
crack tip and in the bulk to erase the stress
concentration that constitutes a driving force
for fracture.

The ability to control the stereochemistry
and mechanical properties of polyoctenamers
enabled photopatterning TOR and COR from
COE using a mixed-catalyst system with Ru-1
(50 ppm + 75 ppm pyr.) and Ru-2 (20 ppm).
ROMP Kkinetics for different catalyst systems
were characterized by "H NMR spectroscopy
(Fig. 3A and figs. S20 to S23). Blue light ir-
radiation (~460 nm, ~170 mW/cm?) of the
mixed-catalyst system in COE resulted in ~90%
conversion to TOR in ~5 min, comparable to

Rylski et al., Science 378, 211-215 (2022)

Selective Straining B

Cross
polarized

the control without Ru-2. By contrast, the mixed-
catalyst system in the dark resulted in rela-
tively slow COR formation: <10% conversion
in ~5 min. However, after ~60 min in the dark,
COE was fully consumed, forming COR, and
this was comparable to what happened in the
control without Ru-1 and pyr. present. This
method also enabled fabrication of thick
TOR specimens with ¢trans-alkene contents
of ~80% up to a depth of ~4 mm (fig. S45),
likely due to the low concentration and photo-
bleaching of pyr. (75 ppm) during photo-
induced ROMP. These distinct differences
in light versus dark ROMP Kkinetics enabled
photopatterning of stiff TOR domains in a soft
COR matrix.

To pattern TOR domains in a COR matrix,
the mixed-catalyst system in COE was loaded
between a photomask and black glass sepa-
rated by 250-um shims and irradiated with
blue light for 5 min (Fig. 3B and figs. S46 and
S47). Pattern fidelity was characterized using
both bright-field and dark-field 1951 USAF stan-
dardized photomasks, which define resolution
as the smallest discernible line pair (Fig. 3C).
The resolution for bright-field (majority TOR)
and dark-field (majority COR) was ~9.0 line
pairs/mm (~55 um) and ~1.3 line pairs/mm
(~400 um), respectively, with differences hy-
pothesized to arise from crystal growth outside
of irradiated areas, as evidenced by features
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smaller (Fig. 3Ci) and larger (Fig. 3Cii) than
those on the mask. Nanoindentation at a TOR/
COR interface (Fig. 3Ciii) also revealed a change
in E from ~1000 to ~10 MPa over ~200 um,
consistent with differences in polyoctenamer
stereochemistry and crystallinity and the me-
chanical properties of TOR and COR (Fig. 3D
and fig. S48).

As a final proof of concept, patterns were
designed to access unusual bulk mechanical
behaviors (i.e., metamaterials) that require
synergy between stiff and soft domains (Fig. 4.
First, selective straining was demonstrated
with a square array of TOR patterned into
a continuous COR matrix, a construct with
potential utility as a substrate for stretchable
electronics (27). Cycling these specimens to
100% strain qualitatively showed that defor-
mation was localized in the soft COR domains
(Fig. 4A and movie S3). Quantification of this
behavior using digital image correlation on a
specimen containing 5-mm-wide lines revealed
<1% strain in the TOR domains relative to the
bulk (Fig. 4B, figs. S49 to S51, and movie S4).
Thus, TOR may act as a support structure (i.e.,
substrate) for brittle (electronic) components
in stretchable devices. Moreover, the mitigation
of interfacial failure upon application of sub-
stantial global stress (>4 MPa) suggests the
presence of strongly interwoven domains,
which may result from a combination of tie
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chains and physical entanglements between
TOR and COR and/or continuity of TOR/
COR polymer backbones as a result of cross-
metathesis.

More sophisticated sutures were also examined
as a means to control strain stiffening, a com-
mon mechanism used by natural tissue to
prevent rupture (28) (Fig. 4C). Three patterns
holding constant COR:TOR ratios (~0.35:0.65)
were characterized by uniaxial tension between
crossed polarizers. Straight-line (control), anti-
trapezoidal, and rectangular sutures showed
stress-strain localization on COR. Distinct strain-
stiffening behavior was apparent for each suture
pattern due to the increase in stress that oc-
curs as regions of TOR approach each other at
specific global strain values (Fig. 4D, fig. S52,
and movies S5 to S7). Thus, photopatterning of
polyoctenamer stereochemistry enables the bulk
preparation of mechanical metamaterials.

This report describes a simple and scalable
synthetic method to prepare polymeric multi-
materials with stiff (TOR) and elastic (COR)
domains. Specifically, a mixed-catalyst sys-
tem sensitive to visible light enables ROMP
of COE with spatiotemporal control over the
resultant polyoctenamer backbone stereochem-
istry. Polyolefins with a combination of tough-
ness, elasticity, and moduli were patterned
with microscopic precision, providing access
to materials with mechanically robust “hard/
soft” interfaces.
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A reactive way to make a composite

Blending different materials to form a composite is a way to tune properties to achieve something not possible in a
single material. However, it can be challenging to mix or pattern dissimilar materials. Rylski et al. developed a way to
produce multimaterials by patterning a strong domain within an elastic domain. They used a dual-catalyst system that
polymerizes cis-polycyclooctene in the dark but forms trans-polycyclooctene when exposed to light. This approach led
to a polyoctenamer with cohesively connected viscoelastic (soft) and semicrystalline (hard) domains and provided the
ability to spatially control the properties of the polymer. —MSL
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