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Abstract— Distributed matrix computations over large clusters
can suffer from the problem of slow or failed worker nodes
(called stragglers) which can dominate the overall job execution
time. Coded computation utilizes concepts from erasure coding
to mitigate the effect of stragglers by running “coded” copies
of tasks comprising a job; stragglers are typically treated as
erasures. While this is useful, there are issues with applying,
e.g., MDS codes in a straightforward manner. Several practical
matrix computation scenarios involve sparse matrices. MDS
codes typically require dense linear combinations of submatrices
of the original matrices which destroy their inherent sparsity.
This is problematic as it results in significantly higher worker
computation times. Moreover, treating slow nodes as erasures
ignores the potentially useful partial computations performed
by them. Furthermore, some MDS techniques also suffer from
significant numerical stability issues. In this work we present
schemes that allow us to leverage partial computation by
stragglers while imposing constraints on the level of coding that is
required in generating the encoded submatrices. This significantly
reduces the worker computation time as compared to previous
approaches and results in improved numerical stability in the
decoding process. Exhaustive numerical experiments on Amazon
Web Services (AWS) clusters support our findings.

Index Terms— Distributed computing, MDS code, stragglers,
condition number, sparsity.

I. INTRODUCTION

ISTRIBUTED computation plays a major role in several
Dproblems in machine learning. For example, large scale
matrix-vector multiplication is repeatedly used in gradient
descent which in turn plays a key role in high dimensional
machine learning problems. The size of the underlying matri-
ces makes it impractical to perform the computation on a
single computer (both from a speed and a storage perspective).
Thus, the computation is typically subdivided into smaller
tasks that are run in parallel across multiple worker nodes.

In these systems the overall execution time is typically
dominated by the speed of the slowest worker. Thus, the
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presence of stragglers (as slow or failed workers are called) can
negatively impact the performance of distributed computation.
In recent years, techniques from coding theory (especially
maximum-distance-separable (MDS) codes) [1]-[4] have been
used to mitigate the effect of stragglers for problems such as
matrix-vector and matrix-matrix multiplication. For instance,
the work of [1] proposes to partition the computation of ATx
by first splitting A = [Agp | A4] into two block-columns
(with an equal number of column vectors) and assigning three
workers, the task of computing ATx, ATx and (A + A;)” x,
respectively. Evidently, the computational load on each node
is half of the original job. Furthermore, it is easy to see that
ATx can be recovered as soon as any two workers complete
their tasks (with some minimal post-processing). Thus, this
system is resilient to one straggler. The work of [3], poses
the multiplication of two matrices in a form that is roughly
equivalent to a Reed-Solomon code. In particular, each worker
node’s task (which is multiplying smaller submatrices) can be
imagined as a coded symbol. As long as enough tasks are
complete, the master node can recover the matrix product by
polynomial interpolation.

For such coded computing systems we can define a so-called
recovery threshold. It is the minimum value of T, such that the
master node can recover the result as long as any T workers
complete their tasks. Thus, at the top level, in these systems
stragglers are treated as the equivalent of erasures in coding
theory, i.e., the assumption is that no useful information can
be obtained from the stragglers.

While these are interesting ideas, there are certain issues
that are ignored in the majority of prior work (see [5]-[9] for
some exceptions). Firstly, several practical cases of matrix-
vector or matrix-matrix multiplication involve sparse matrices.
Using MDS coding strategies in a straightforward manner will
often destroy the sparsity of the matrices being processed by
the worker nodes. In fact, as noted in [7], this can cause the
overall job execution time to actually go up rather than down.
Secondly, in the distributed computation setting, we make the
observation that it is possible to leverage partial computations
that are performed by the stragglers. Thus, a slow worker may
not necessarily be a useless worker. Fig. 1 (which also appears
in [10]) shows the variation of speed of different £2 .micro
machines in AWS (Amazon Web Services) cluster, and it can
be seen that for a particular job, even the slowest worker node
may have approximately 60%— 70% of the speed of the fastest
worker.

In this work we propose schemes which are not only
resilient to full stragglers, but also can exploit slow workers
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Fig. 1. Variation of worker speeds for the same job over 100 runs across
40 workers within AWS; the job involves multiplying two random matrices
of size 4000 x 4000 twice. The average time is shown by the small circle for
each worker. The upper and lower edges indicate the maximum and minimum
time over the 100 runs. The required time exhibits a wide variation from
5.85 seconds to 8.71 seconds.

by utilizing their partially finished tasks. The works in [11]
and [12] also address this issue but they are applicable only for
matrix-vector multiplication whereas in this work, we propose
schemes for matrix-matrix multiplication too. Furthermore,
in several of our schemes we can specify the number of
block-columns of the individual A and B matrices that are
linearly combined to arrive at the encoded matrices. This is
especially useful in the case of sparse matrices (A and B)
that often appear in practical settings. Thus, in short, our
proposed approaches can leverage the partial computations of
the stragglers and exploit the sparsity of the input matrices,
both of which can enhance the overall speed of the whole
system.

This paper is organized as follows. Section II describes the
background and related work and summarizes the contribu-
tions of our work. Section III outlines some basic definitions
and observations which are required for the subsequent pre-
sentation. Section IV discusses our proposed [-level coding
schemes which constrain the level of coding in the encoded
submatrices while leveraging partial computations. Following
this, Section V proposes schemes for both matrix-vector
and matrix-matrix multiplication which can be optimal in
terms of resilience to full stragglers and can improve the
utilization of the partial stragglers. Section VI discusses the
experimental performance of our proposed methods and shows
the comparison with other available approaches. We conclude
the paper with a discussion about future work in Section VIL.

II. BACKGROUND AND RELATED WORK

Consider the case where a master node has a matrix A and
either a matrix B or a vector x and needs to compute either
ATB or ATx. The computation needs to be carried out in a
distributed fashion over n worker nodes. Each worker receives
the equivalent of a certain fraction (denoted by v4 and g,
respectively) of the columns of A and B or the whole vector x.
The node is responsible for computing its assigned submatrix-
submatrix or submatrix-vector products.
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We discuss the matrix-matrix scenario below where each
worker node receives coded versions of submatrices of A and
B respectively'. The corresponding matrix-vector case can be
obtained as a special case. Consider a p x u and p x v block
decomposition of A and B respectively as shown below.

Agp Agu
B | : :
[Ap_1p0 Ap 1w
[ Bo,o Bo,v—1
B = : (1)
| Bp—1,0 Bgeagioa

The master node creates coded submatrices by computing
appropriate scalar linear combinations of the A; ; submatrices
and respectively the B, ; submatrices. This implies that the
master node only performs scalar multiplications and addi-
tions. It is not responsible for any of the computationally
intensive matrix operations. Following this, it sends the cor-
responding coded submatrices to each of the workers who
perform the matrix operations.

In this work we only consider a decomposition of A and
B into block-columns, which indicates that we set p = 1 in
(1). Next we partition the columns of A and B into Ay
and A g block-columns, thus comparing with (1), we can say

= A4 and v = Apg. These block columns are denoted
as Ag,Aq,...,Ar,—1and By, B1,...,Ba,_1. We assume
that the storage fraction v4 (or ) can be expressed as
£a/A4 (likewise £g/Ag) where both £4 and A, (and {g
and Apg) are integers. We also assume that A and B are
large enough and satisfy divisibility constraints so that we can
choose any large enough value of A4 and Ag. Now each
node is assigned the equivalent of ¢4 block-columns of A
and /g block-columns of B. Each of those £,4 block-columns
from A will be multiplied with each of the £g block-columns
from B, so a particular worker node will compute, in total,
{ = f£4¢p block-products for matrix-matrix multiplication.
In case of matrix-vector multiplication, the worker node will
compute ¢ = £4 block products, where each of £4 blocks from
A will be multiplied with x.

The  assignment can simply be  subsets of
{Ag,A1,...,An, 1} 0r{Bo,B1,...,Ba,_1}; in this case
we call the solution “uncoded”. Alternatively, the assignment
can be suitably chosen functions of {Ag, A1,...,Aa,_1}
or {Bg,B1,...,Ba,_1}; in this case we call the solution
“coded”. The assignment also specifies a sequential order
from top to bottom in which each worker node needs to
process its tasks. This implies that if a node is currently
processing the i-th assignment (0 < ¢ < ¢ — 1), then it
has already processed assignments 0 through i — 1. In this
work, we assume that each time a node computes a product,
it transmits the result to the master node. As we shall show,
the processing order matters in this problem.

' A general formulation need not restrict the assignment to coded submatri-
ces of A and B. Nevertheless, all known schemes thus far and our proposed
schemes work with equal-sized submatrices, so we present the formulation in
this way.
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Fig. 2. Matrix A is partitioned into three submatrices. Each worker is
assigned two of those uncoded submatrices. Here Q@ = 4.
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Fig. 3. Matrix A is partitioned into three submatrices. Each worker is
assigned one uncoded and one coded task. Here ) = 3.

There are two requirements that our system needs to have.
The master node should be able to decode the intended result
(ATB or ATx) from any n — s workers for s as large as
possible. i.e., n— s is the recovery threshold of the scheme [3].
The second requirement is that the master node should be able
to recover ATB or AT x as long as it receives any Q products
from the worker nodes. This formulation subsumes treating
stragglers as non-working nodes. To our best knowledge, this
second requirement has not been examined systematically
within the coded computation literature, even though it is a
natural constraint that allows for succinct treatment of recovery
in distributed computing clusters where the workers have
differing speeds.

Example 1: Consider a system with n = 3 worker nodes
with v4 = 2/3. We partition A into A4 = 3 block-columns
and the assignment of block-columns to each node is shown
in Fig. 2 (this is an uncoded solution). We emphasize that
the order of the computation also matters here, i.e., worker
node Wy (for example) computes AT x first and then AT x.
For the specific assignment it is clear that the computation is
successful as long as any four block products are returned by
the workers. Thus, for this system Q = 4.

On the other hand, Fig. 3 demonstrates a coded solution,
where the bottom assignment in the workers are some suitably
chosen functions of the elements of {A7x, ATx, ATx}. For
this assignment, it is obvious that the master node can recover
ATx as long as any three block products are returned by the
workers, so in this system @ = 3.

For any time ¢, we let w;(¢) represent the state of compu-
tation of the i-th worker node, i.e., w;(f) is a non-negative
integer such that 0 < w;(¢) < £ which represents the number
of tasks that have been processed by worker node . Thus, our
system requirement states as long as Z::Ol w;(t) = Q, the
master node should be able to determine ATB or ATx. As A,
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the number of unknowns to be recovered, is a parameter that
can be chosen, our objective is to minimize the value of /A
for such a system where we note that @ > A. For matrix-
vector multiplication, A = A4, whereas for matrix-matrix
multiplication, A = A Ap. This formulation minimizes
the worst case overall computation performed by the worker
nodes.

A. Related Work

Several coded computation schemes have been proposed for
matrix multiplication [1]-[3], [5]-[7], [11], [13]-[15], most
of which are designed to mitigate full stragglers; see [16]
for a tutorial overview. We illustrate the basic idea below
using the polynomial code approach of [3] for a system with
n = 5 workers where each of these worker nodes can store
4 = 1 fraction of matrix A and vz = 1 fraction of matrix B.
Consider u = v = 2 and p = 1, thus we partition both A and
B into two block-columns Ay, A; and By, B; respectively.
Next, we define two matrix polynomials as

A(z)=Ap+A;z and B(z) =By + Bi2%
so AT(2)B(z) = ATBo + ATBoz + AIB;2% + ATB; 2%,

The master node evaluates these polynomial A(z) and B(z)
at distinct real values zg,z1,...,2n_1, and sends the cor-
responding matrices to worker node W;. Each worker node
computes the product of its assigned submatrices. It follows
that decoding at the master node is equivalent to decoding a
degree-3 real-valued polynomial. Thus, the master node can
recover ATB as soon as it receives the results from any
four workers, i.e., in this example, the recovery threshold is,
7 = 4. When v4 = 1/k4 and v = 1/kg and p = 1,
the work of [13] shows that their scheme has a threshold
7 = kakp which is optimal. Random coding solutions for
this problem were investigated in [17]. Approaches based on
convolutional coding were presented in [10], [18]. In these
schemes (analogous to linear block codes) there are systematic
workers that only contain uncoded assignments and parity
workers that contain coded assignments.

The case when p > 1 was considered in the work
of [2], [13]-[15]. Structuring the computation in this manner
increases the computational load on the workers and the
communication load from the workers to the master node but
can reduce the recovery threshold as compared to the case
of p=1.

It is well-recognized that in several practical situations the
underlying matrices A and B are sparse. Computing the
inner product aT’x of n-length vectors a and x where a
has around én (0 < § < 1) non-zero entries takes ~ 26n
floating point operations (flops) as compared to ~ 2 n flops
in the dense case. In general, the encoding process within
coded computation increases the number of non-zero entries
in the resultant encoded matrices. For instance, polynomial
evaluations of degree d will increase the number of non-
zero entries by approximately d times. This results in a
d-fold increase in the worker computation times which can be
unacceptably high. Thus, it is important to consider schemes
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TABLE I

COMPUTATION TIME FOR SPARSE MATRIX MULTIPLICATION. WE CHOOSE
MATRICES A AND B BOTH OF S1ZE 10, 000 x 10, 000. BOTH OF THEM
HAVE SPARSITY 0 = 3%, THUS RANDOMLY CHOSEN 3% ENTRIES
OF A AND B ARE NON-ZERO

JoB REQUIRED TIME

9.41 SECONDS
0.58 SECONDS
2.13 SECONDS

To compuTE ATB
TO COMPUTE (UNCODED) AT B;
To COMPUTE (CODED) ATB;

where the encoding only combines a limited number of
submatrices.

Example 2: Consider an example with two large sparse
matrices A and B both of whose sizes are 10,000 x 10, 000.
Both of them have sparsity o = 3%, i.e., randomly chosen
approximately 3% entries of A and B are non-zero (we
have used MATLAB command sprand for this example).
We partition matrices A and B into 4 and 5 block-columns,
respectively. First we choose a block-column A; and a block-
column Bj, and next we obtain two coded submatrices A;
and B; which are random linear combinations of the uncoded
block-columns of A and B, respectively. Table I shows that
it is around 4 times more expensive to compute the coded
product than the uncoded product, although the sizes of the
corresponding matrices are exactly the same. The reason is
that the number of non-zero entries in the coded submatrices
have gone up significantly.

An important aspect of coded computation is “numerical
stability” of the recovered result. Indeed, while coded compu-
tation borrows techniques from classical coding theory (over
finite fields), it differs in the sense that the coded submatrices
and the decoding operates over the reals. Over finite fields,
the invertibility of a matrix is sufficient to solve a system
of equations. In contrast, over the reals if the corresponding
matrix is ill-conditioned, then the recovery will in general
be inaccurate. It is well-recognized that real Vandermonde
matrices corresponding to polynomial interpolation have con-
dition numbers that grow exponentially in the matrix sizes.
This is a serious issue with the polynomial-based approaches
of [3], [19]. There have been some works that have addressed
these issues [10], [12], [17], [20]-[23] in part.

Yet another feature of the coded computation problem
that distinguishes it from classical codes is the processing
order. The worker nodes process the assigned tasks in a
specific order, such that if a worker node is processing a
given task, it has already completed the previously assigned
tasks. Thus, at any given time the pattern of tasks that have
been completed is restricted. Interestingly, codes for such
systems have been investigated in [24], [25]. These ideas
were adapted for the distributed matrix-vector multiplication
problem in [11] and [12].

We note here that in principle using polynomial approaches
can allow us to address both the optimal threshold and the
optimal @/A = 1 by simply placing multiple evaluations
of the polynomials at distinct points within each worker
node. However, this approach is not practical, firstly because
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Fig. 4.  Partitioning matrix A into five submatrices and assigning three
uncoded tasks in a cyclic fashion to the workers. The system is resilient to
two stragglers and ¢ = 10. The tasks enclosed in dots can be processed
without processing any copy of AT x.

of numerical stability issues. Secondly, as discussed above
when considering sparse A and B matrices, the polynomial
approaches result in dense coded submatrices which can cause
an unacceptable increase in the worker node computation
times. Numerical experiments supporting these conclusions
can be found in Section VL

B. Summary of Confributions

The contributions of our work can be summarized as
follows.

» We present a fine-grained model of the distributed matrix-
vector and matrix-matrix multiplication that allows us
to (i) leverage the slower workers using their partial
computations and (ii) impose constraints on what extent
coding is allowed in the solution. This allows us to
capture a scenario where workers have differing speeds
and the intended result can be recovered as long as
the workers together complete a minimum number (Q)
of the assigned tasks. This applies to the practically
important case where the underlying matrices are sparse.
The formulation leads to new questions within coded
computing that to our best knowledge have not been
investigated before systematically within the coded com-
puting literature.

+ We present systematic methods for both matrix-vector
and matrix-matrix multiplication that address both the
recovery threshold and the @ /A metric. For the uncoded
assignment case, we present a lower bound on the
performance of any scheme that our constructions are
able to match.

+ We have proposed two different schemes for distributed
computations, first of which is named as $3-level coding.
In this approach, we have used resolvable combinatorial
designs [26] to improve the recovery threshold and the
@ /A metric over the uncoded approach. We have shown
that the metrics can be further improved if we utilize
certain relations among the blocks of different parallel
classes within the resolvable designs.

» Prior work has demonstrated schemes with the optimal
recovery threshold for certain storage fractions. In this
work we present novel schemes that retain the optimal
recovery threshold and also have low /A values.
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TABLE II

COMPARISON BETWEEN OUR PROPOSED APPROACHES. HERE 74 AND yg INDICATE THE STORAGE FRACTIONS
FOR MATRICES A AND B, RESPECTIVELY, AND n DENOTES THE TOTAL NUMBER OF WORKERS

APPROACH PROPERTIES PARAMETER REGIME ADVANTAGES
B-LEVEL COMBINE 3 SUBMATRICES FOR a4 = z—; AND vB = :—; ASSIGNED SUBMATRICES
CODING OF A (OR B) WE NEED n = casbs ARE SPARSE

SCS OPTIMAL MAIJORITY OF ASSIGNED FOR YA = p; AND7B = ¢, OPTIMAL RECOVERY
SCHEME SUBMATRICES ARE UNCODED WHERE k4 AND kg ARE INTEGERS THRESHOLD (kakg)

TABLE III
COMPARISON WITH EXISTING WORKS

CODEY MAT-MAT OPTIMAL NUMERICAL  PARTIAL  SPARSELY

MULT? THRESHOLD?  STABILITY? CoMPUT?  CODED?
REPETITION CODES v X v X v
RATELESS CODES [6] X X v X X
PrOD. CoDES [27], FACTORED CODES [23] v X v X X
PoLYNOMIAL CODES [3] v v X X X
Biv. HERMITIAN POLY. CODE [32] v v X v X
DyYNAMIC HETERO.-AWARE CODE [30] X X v v X
ORTHOPOLY [21], RKRP CODE[17] v v v X X
Conv. CoDE [10], CIRC. & ROT. MAT. [20] v v v X X
C3LES [11] X X v v/ v
B-level Coding (proposed) v X v v v
SCS Optimal Scheme (proposed) v v v v v

« Finally, we present exhaustive experimental comparisons in the order Afx, ATx,..., A};_lx. On the other hand

that demonstrate the benefit of our schemes while con-
sidering sparse matrices in terms of worker node compu-
tation times and numerical stability.
In Table II, we present a summary of the properties and the
advantages of both of our proposed approaches, 3-level coding
and sparsely coded straggler (SCS) optimal scheme. Moreover,
a detailed comparison of the properties of our methods with
other available schemes is demonstrated in Table III.

It should be noted that there are other issues within
various coded matrix computation approaches. Several
approaches [6], [7], [27] are sub-optimal in terms of straggler
resilience. Some other works [28], [29] have considered
the issue of private computation along with the straggler
mitigation issue. Here the goal is that no information about
the matrices A or B can be obtained from any set of at
most m workers. Another class of codes [30], [31] assumes
the workers to be heterogeneous and time-varying, so that
the system may have access to different number of workers
at different moments where the workers may have different
speeds and/or different storage capacities. These issues are
out of the scope of this paper.

III. PRELIMINARIES

In this section we discuss some basic facts and
observations that serve to explain our proposed distrib-
uted matrix computation schemes. Suppose that a given
worker node is assigned encoded block-columns Ai =
0iloseya — 1 Wl Bhyf = 0,1s058n — 1= The
assignment also specifies a top to bottom order. For the
matrix-vector problem, the node processes them simply

for the matrix-matrix problem the node computes in the
order Ag'BP,A%—'Bl ..... A’%S—'Bfg—hA'{BD;---:A'{Bﬂg—la

5 .,A{A_IBO, S Ag;_lBgB_l.

Definition 1: A coding scheme for distributed matrix com-
putation is said to be a 3-level coding scheme if the assigned
block-columns are a linear combination of exactly 3 block-
columns of A and B. The case of 5 = 1 represents an uncoded
scheme.

Our constructions leverage the properties of combinatorial
structures known as resolvable designs [26]. These have also
been used in different contexts in [33]-[35].

Definition 2: [26] A resolvable design is a pair (X, .A)
where A is a set of elements (called points) and A is a family
of non-empty subsets of A" (called blocks) that have the same
cardinality. A subset P C A in a design (X, A) is called
a parallel class if Ug. 4,ep3Ai = A and if 4, N A; =0
for A;, A; € P when i # j. A partition of A into several
parallel classes is called a resolution and (X, .A4) is said to be
a resolvable design if A has at least one resolution.

A resolvable design always exists if the cardinality of a block
divides |X|.

Example 3: Let X = {0,1,2,3} and A = {{0,1},{0,2},
{0,3},{1,2},{1,3},{2,3}}. Now (X,.A) forms a resolv-
able design with parallel classes, Py = {{0,1},{2,3}},
P ={{0,2}, {133}} and Py = {{033}1 {1, 2}}

We note that the specification of the “incidence relations’
between the points and blocks of a design can also be shown
by means of an incidence matrix.

Definition 3: The incidence matrix A of a design (X, .A)
is a |X| x |.A| binary matrix such that the (i, j)-th entry is

t]
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a 1 if the i-th point is a member of the j-th block and zero,
otherwise.

For example, the incidence matrix for the resolvable design
in Example 3 is given by

N:

oD =
== T i - I
L= =]
[ R =]
= oo
i = =]

We will use a cyclic assignment of tasks extensively in our
constructions. We illustrate this by means of the following
matrix-vector multiplication example.

Example 4: Consider an example of computing ATx,
where we have n = 5 workers and each worker can process
~v = 3/5 fraction of the total job. We partition A into A =
5 block-columns: Ag, Aj,..., Ay Let X' = {0,1,2,3,4}.
If we do not incorporate any coding among the block-columns,
then for 3 = 1, we have the trivial parallel class P =
{{0},{1},...,{4}}. Fig. 4 shows a cyclic assignment of jobs
where three uncoded submatrices are allocated to each of the
workers in a cyclic fashion according to the indices of three
elements of P. It can be easily verified that the system is
resilient to s = 2 stragglers. In the sequel, our assignment can
be coded as well.

More generally, suppose that we have A symbols denoted
0,...,A -1, n = A worker nodes and £ symbols to be
placed in each worker node where ¢ < A. The symbols can
be encoded block-columns of A or the product of encoded
block-columns of A and B. A cyclic assignment in this case
assigns the set {j, 7+1,...,7+¢—1} (mod A) to worker W;
symbol j appears at the top and sequentially symbol (j+£—1)
(the values are reduced modulo A) at the bottom. The node
W; processes the tasks specified by the symbols from top to
bottom. Within a node, the position of a symbol is denoted by
an integer between 0 and £ — 1, where 0 denotes the top and
£ — 1 denotes the bottom.

Lemma 1: The cyclic assignment satisfies the following
properties.

« Each symbol appears £ times across n worker nodes. Fur-
thermore, it appears in each position 0, ..., ¢ — 1 exactly
once, across all n workers.

» Let a, be the maximum number of symbols that can be
processed across all worker nodes such that a specific
symbol j is processed exactly ¢ times (where 0 < ¢ < {).
Then, o = Al—2EF) 4 577 (i), independent of j.

Proof: The first claim follows since £ < A = n and
symbol j, where 0 < j < A — 1, appears in workers
4, 7—1,7—2,...,5— £+ 1 (indices reduced modulo-A).

For the second claim we proceed by contradiction. Sup-
pose that there is a symbol j for which the condition is
violated. From part (a), symbol j appears once in positions
0,...,£—1 across the workers. Thus, one can process at most
(A-0)+ Zf;é t — Al @ symbols without processing
any copy of j. Following this, any symbol processed will
necessarily process symbol j. If we process the copy of j at
position ¢, we can process another £ — 1 — ¢ symbols without
processing another copy of j. Therefore, the maximum number
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of symbols that can be processed such that ¢ copies of j are
processed are Al — 2 4 s~emtp gy, |

IV. B-LEVEL CODING FOR DISTRIBUTED COMPUTATIONS

We begin our discussion of [-level coding by considering
the uncoded 3 = 1 case. In this scenario, the assignments
are simply elements such as AT x (in the matrix-vector case)
or elements such as AETB j (in the matrix-matrix case). In the
discussion below we refer the assignment of “symbols” to treat
both cases together, where a symbol can either be of the form
ATx or ATB,. Note that we can disregard the case when
multiple copies of a symbol appear within the same worker
node. Consider a (n, £, A, r)-uncoded system with n workers
each of which can process ¢ > 1 symbols out of a total of A
symbols. We assume that each symbol appears r times across
the different worker nodes, so nf = Ar. Now we show a lower
bound on the value of @ for such a system.

Theorem 1: For a (n,f, A,r)-uncoded system we have
Q=i - E {5 T) 10

Proof: For the system under consideration, let Q); rep-
resent the maximum number of symbols that are processed
in the worst case without processing symbol j (see Fig. 4
for an example). It is evident in this case that @ =
maxj—o,... A-1Q; + 1.

Our strategy is to calculate the average Q = % Z;..ﬁ:_ol Q;
and use the simple bound @ = Q@ + 1. Toward this end, note
that for any uncoded solution, we can calculate E}ﬁ:_ul Q; in
a different way. For any worker i, there are £ assigned block-
columns and the other A — £ do not appear in it. Thus, in the
calculation of E?;OI Q;, worker node i contributes

3
(A—6)¢+) (k—1) symbols,
k=1
which is clearly independent of i. Therefore,

]

LE (E-1)+(A- E’)If]
a — A = A

Thus, we have the lower bound as

QzAr—%(eﬂ)ﬂ

nf

2

since nf = Ar. [ |

Remark 1: In general, we are given the number of workers
n and the storage fraction «. The parameters A and ¢ can be
treated as design parameters. In this setting, from (2), we have

Qe BE WO,
A="TT2A 2AT A’
Q ¥ nyy 1
— S T M1 M
but 7 = nv, thus A_m(l 2)+(1 Q)A 3)

If r = ny > 2, then the second term in the RHS above is
negative and has an inverse dependence on A.

The lower bound in (2) is met with equality when we
consider the cyclic assignment scheme. For instance, Fig. 4
shows an example where A = n = 5, and it can be verified
that @ = 10 and meets the lower bound in (2). A similar result
holds for the matrix-matrix case. These results are discussed
in the relevant parts of the remainder of this section.
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A. Matrix-Vector Multiplication

We consider a 3-level coding matrix-vector scenario where
the storage fraction v = aj/as for positive integers a; and
ag with a; < ag such that v < % We assume that the number
of worker nodes n = caz where c is a positive integer.

We partition A into A block-columns where A is divisible
by (3. Next, we pick a resolvable design (X', A) where X' =
{0, ..., A—1}. The size of the blocks in A is 5. Let Py, P, . ..
denote distinct parallel classes of this design. We will refer to
the blocks of the design as meta-symbols (to avoid potential
confusion with the term block-columns which we also have
used extensively). Thus, the elements of a parallel class are
meta-symbols.

The overall idea is to partition the set of worker nodes into
c groups denoted Jo,...,G.—1. For each group we pick a
parallel class and place meta-symbols from the parallel class
in a cyclic fashion. The parallel classes for the different groups
can be the same as well. For each meta-symbol, we generate a
coded block-column by choosing a random linear combination
of the 3 block-columns within it. In the discussion below we
refer to the block-columns as “unknowns” as they need to be
decoded by the master nodes. A precise description appears in
Algorithm 1. We illustrate it by means of an example below.

Algorithm 1 [-Level Coding Scheme for Distributed
Matrix-Vector Multiplication

: Matrix A and vector X. Storage fraction
¥ = % < %, (3-allowed coding level, and
number of workers n = cas where c is a
positive integer.

1 Set A = [Bas. Partition A into A block-columns;

2 Number of assigned blocks per worker, £ = A~;

3 Assume & = {0,1,2,...,A — 1} and find ¢ parallel
classes P; having a block size 3,1 =0,1,...,¢—1;

afori«<—0toc—1do

5 | Let the blocks of P; be denoted as pg,p1,...,pa_q

Input

6 for_;.w—OtoE—ldo
7 Assign meta-symbols p;, pji1,...,Pjre—1 from
top to bottom (indices reduced modulo ay) and
vector x to worker %z‘ + 3;
8 For each meta-symbol choose a random linear
combination of length-3 of the constituent
block-columns;
9 | end
10 end

Output: S-level coding scheme for distributed
matrix-vector multiplication.

Example 5: Consider a scenario with n = 12, v = 1/4 and
B =3, and set A = 12. We let X = {0,1,...,11} and pick
P = {{0,1,2},{3,4,5},{6,7,8},{9,10,11}}. In this exam-
ple, all three groups use the same parallel class . As shown in
Fig. 5, in each group the meta-symbols are arranged in a cyclic
fashion. For each meta-symbol a random linear combination
is chosen, e.g. in worker Wy the meta symbol {0,1,2} will
be replaced by Ay = z0Ag + z1A1 + 22A5 where the z;’s
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0 9 9

{0.1,2} | {3,4,5} {6,7,8) | [{9,10,11}
{3,4,5} {6,7,8} {9,10,11} {0,1,2}
{6,7,8} {9,10,11} {0,1,2} {3,4,5}

Fig. 5. Job assignment for worker group Gp for S-level matrix-vector

multiplication scheme for n = 12 with y4 = 1 and A 4 = 12 using a single
parallel class with 3 = 3. The indices {i, 7, k} indicates a random linear
combination of the submatrices A;, A; and A ;. G1 and G2 are assigned the
same symbols as workers 0 — 3 but with different random coefficients.

are chosen at random. This implies that Wy is responsible
for computing AZx, and the unknowns ATx, ATx and ATx
can be decoded if three copies of the meta-symbol {0,1,2}
are obtained from the workers as the corresponding equations
are linearly independent with probability 1.

Theorem 2: Consider a distributed matrix-vector multipli-
cation scheme for n = cas workers where each worker can
store y = '11 fraction of matrix A. Suppose that ¢ > [ and we
use the same parallel class P over all the worker groups. Then,
the scheme described in Alg. 1 will be resilient to s = cf — 3
stragglers, and QQ = nf — # +4B3—-1)+1.

Proof: Based on our construction we know that any meta-
symbol € P will appear in ¢ distinct workers in each worker
group consisting of A/ = as workers (¢f. Lemma 1). Thus
there are % = ¢ such worker groups and it follows that there
are a total of ¢/ appearances of that meta-symbol across all the
worker nodes. Furthermore, each meta-symbol corresponds to
a random linear combination of the corresponding unknowns
(block-columns). As the choice of these random coefficients
is made from a continuous distribution, as long as any
meta-symbols are processed across all the worker nodes, the
constituent unknowns will be decodable with probability 1.
Thus, the scheme is resilient to the failure of any cf — 3
stragglers.

For the second claim, suppose that there exists a meta-
symbol = € P that is processed at most 5 — 1 times when
nf— c’““” +£(3—1)+1 meta-symbols have been processed.
For each worker group, the meta-symbol % appears in all the
positions 0,...,¢ — 1. Suppose that = appears 7 times in 7;
worker groups for = 1,...,y. Thus, Z?:l i < 3 —1 and
the maximum number of meta-symbols that can be processed
is

y v
= mai+(c— Y m)ao
i=1 i=1

£(£+1)
2

where ap = %B — and o; = ap + Z;;lu(f —j) =

ag+il— # as specified in Lemma 1 (by setting the number
of symbols to A/[3). Thus,

y y St
Q =cao+£3 i~y n

i=1 i=1

5 <ecapg+ 4B —1)
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@

since we have Z?zl in; < (3 — 1. Equality holds in (4) if we
havey=1land ;y =3 — L.

In the worst case therefore, we can process «; symbols from
3—1 groups and ag symbols from the remaining groups. This
gives a total of

cl(f+1)
T 9

symbols, which is the same as the upper bound in (4). Thus
if Q= nf— % + €(3 — 1) + 1 then we are guaranteed
that every meta-symbol is processed at least [ times. This
concludes the proof. |

It can be verified that the distributed matrix-vector multi-
plication scheme shown in Fig. 5 is resilient to s =¢f — 3 =
3 x 3 — 3 = 6 stragglers and has @ = 25. Theorem 2
provides the value for s and @ for distributed matrix-vector
multiplication when # < ¢. In Appendix A, we show the
calculation for s and @ for the case when 3 > c.

Remark 2: The proposed f3-level coding scheme leads to
an algorithm for uncoded matrix-vector multiplication when
we set 3 = 1 (see Fig. 4 for an example). In that case, Q =
Ar—3 (€+1)+1; since A = az, n = caz and nf = Ar. The
ratio @ /A for the construction in Alg. 1 is lower in general as
compared to the scheme in [11]. For instance, with n = 10 and
v = 2/5, Alg. 1 results in a scheme with @ /A = 3.0, whereas
the [11] scheme has /A = 3.1. The reduction is due to the
lower value of A (c¢f. Remark 1).

Remark 3: For 3 > 1 the Q/A ratio can be reduced
significantly as compared to the uncoded (f = 1) case.
To see this consider n = caz and v = 2—;, where ¢ > [.
For the uncoded case, we set Ayn. = a2, and we have
Qune = nf — w + 1 where £ = a;. On the other
hand for (-level coding, we set Ag = [as, and we have
Qs = nt — &) 4 g(3 — 1) + 1 where £ = fBay. This
implies that

thc Qﬁ_ cay 1
- =00 (3(F )+ 5) >0

It turns out that the recovery threshold can be further
reduced if we judiciously choose different parallel classes for
the different worker groups in Alg. 1. Utilizing these parallel
classes, we present a method that improves on Theorem 2 if we
assume the property that the blocks among different parallel
classes have intersection size to be at most one. Before stating
the theorem, we discuss the decodabilty of the approach since
this is not as straightforward as the single parallel class [3-level
coding.

To understand the decoding in this setting we consider a
bipartite graph Gg.. = U UV whose vertex set consists of
the unknowns ({f) on the left and the processed meta-symbols
(V) on the right; an example is shown in Fig. 6. A meta-
symbol is connected to its constituent unknowns. Note that
G specifies a system of equations in A unknowns and we
need to argue that this system is invertible. In the argument
below, suppose that the random linear coefficients of each

(B—1ar1+(c—B+1)ag=nt +4B-1)
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Unknowns

Symbols

Fig. 6. For the case § = 2, every symbol is a random linear combination
of two unknowns, thus there is a bipartite graph between the unknowns and
symbols.

meta-symbol are indeterminates and we argue that there exists
a matching in G4, where all the unknowns in I/ are matched.

Consider a set I/ of d unknowns from G 4., and the corre-
sponding neighborhood V=N (f:(). Suppose we have a set of
equations where these d unknowns, namely ug, u1,...,uq_1,
participate in £y, ¢, ..., €31 equations. Thus the number of
outgoing edges from Uis E::ul £;. On the other hand, because
of the structure of [-level coding approach, any symbol
in V has a degree [, thus the number of incoming edges
in Vis 3|V|.

Now, suppose that a matching where all the elements of
U are matched does not exist. Hall’s marriage theorem [36]
gives a necessary and sufficient condition for the existence
of the matching. It says that there is a perfect {/-matching in
Ggec = U UV if and only if [U| < |N(U)| for every subset
U of U. Suppose that Hall’s condition is violated for the set
U (consisting of d unknowns), i.e., |V| < d — 1. This means
that

d—1
Y 4 < Bd-1). )
i=0

Lemma 2: Suppose that Gge. is such that each of A
unknowns has at least degree 1 and at least A — 1 unknowns
have degree at least /3 each. Then, the master node can decode
all the unknowns.

Proof: First, consider d = 1, so |[U/| = 1. Since each
unknown has at least degree 1, thus Z::é £ > 1> p(d—1).
Next we consider any set of d > 2 unknowns, where we know
that at least (d — 1) unknowns have degree at least 3. In that
case, > £; > 1+ B(d—1) > B(d—1). Thus (5) cannot be
satisfied for any d > 2. So, there exists a matching in Gge.
where all the unknowns are matched, hence the master node
can decode all the unknowns. ]

Now we state the result when different parallel classes are
utilized.
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Theorem 3: Consider c distinct parallel classes (with block
size [3) such that the size of the intersection between any
two blocks from different parallel classes is at most 1. Using
Alg. 1, the distributed matrix-vector multiplication scheme can
be resilient to at least ¢/ — 3 + A stragglers, when ¢ > 3+ A
and A < 5.

Proof: The main idea is to find the scenario where
Lemma 2 can be directly applicable. To establish that we
consider two unknowns up and u;. The event that a pair of
unknowns belong to the same meta-symbol can happen within
at most one parallel class (in other words, within only one
worker group) according to our choices of parallel classes.
Thus in the remaining (¢ — 1) worker groups, those two
unknowns exist in different meta-symbols. If they appear in the
same meta-symbol, then there are £ workers within the worker
group where they appear. On the other hand, if they appear in
different meta-symbols, then there are at least £ 4+ 1 workers
within the worker group where either ug or u; or both appear
as part of a meta-symbol.

So, the unknowns ug or u; or both participate in different
meta-symbols in at least in £ + (£ + 1)(c — 1) workers. Now
since we have cf — 3+ A stragglers, using ¢ > 3+ A, we have
still

+(+1)(c—1)—(cl—B+A)>28—1

workers left. This means that either ug or uq; or both exist
in at least 23 — 1 workers after the stragglers are removed.
This in turn implies that the corresponding Gg.. has at least
2/3—1 edges emanating from the pair of unknowns up and u4,
so that at least one of them has degree > (3. Thus Lemma 2
is satisfied and we can decode all the unknowns. ]

Example 6: Consider a scenario with n = 20 workers with
= %, thus ¢ = 4, and we apply [-level coding approach
with 8 = 3. In this case, we incorporate four different parallel
classes of block size 3 = 3 obtained from the solution of
the famous Kirkman’s Schoolgirl problem [37]. These parallel
classes are given by

Po=1{{0,1,2}, {3,4,5}, {6,7,8},{9,10,11}, {12,13, 14} },
P1=1{{0,3,6},{1,4,7},{2,9,12}, {5,10,13}, {8,11, 14} },
P,=1{{0,4,14},{1,8,9},{2,3,13},{5,7,11}, {6,10,12}},
P3={{0,8,12},{1,3,11},{2,4,10}, {5,6,14}, {7,9,13}},

where any two blocks from any two different parallel classes
have an intersection size at most one. It can be verified that
the distributed matrix-vector multiplication scheme will be
resilient to at least s = ¢f — 3+ 1 = 10 stragglers whereas the
straggler resilience if we used the single parallel class would
have been 9.

Table IV compares experimental results for different matrix-
vector multiplication approaches in terms of number of strag-
glers and @)/ A values. For every case, we observe a significant
improvement of the metrics if we incorporate multiple parallel
classes instead of a single parallel class. We note here that the
Q/A was computed via computer experiments.

The analysis in Theorem 3 above is somewhat loose as we
only assume that the intersection sizes between blocks from
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different parallel classes is at most 1. Indeed, exploiting more
structure in the choice of the parallel classes can yield better
results, though the analysis becomes significantly harder. Here
we present a method that improves on Theorem 2 when ¢ =
B=2£<Af2—2and A >8 Let X ={0,1,...,A—1}
where A = n = 2as. The block size of the design is two and
the parallel classes are given as follows.

Po—J0,3%. 128} oo [A—Z N TJ]

and P; = {{0,5},{2,7},...,{A —2,3}}. (6)

Thus, the i-th block in Py and Py, for 0 < i < A/2 -1 is
given by {2i,2i+ 1} and {2i,2i+5} (mod A), respectively.
We follow the Alg. 1 for the specification of the coding
scheme.

Theorem 4: Letc==2,£{ < A/2—2and A = 8. If we
use the parallel classes in (6), then the matrix-vector scheme
described in Alg. 1 will be resilient to s = 2£ — 1 stragglers,
and Q@ =nf —£(£+1)+ 1.

Proof: The detailed proof is discussed in Appendix B. W

B. Matrix-Matrix Multiplication

Now we consider the case of matrix-matrix multiplication,
where we assume that each of the n» worker nodes can store
YA = 2—; and yg = g—; fractions of matrices A and B. In this
case, we consider S4 and Sp-level coding for A and B,
respectively so that y4 < ﬁ%\ and vp < ﬁig We partition
matrices A and B into A4 and Ap block-columns, respec-
tively, and so, we have, in total, A = A4Ap unknowns.
Next we assign £4 = A4y block-columns from A and
fg = Apgvyp block-columns of B to each of the workers.
Thus, each worker computes ¢ = £4¢p submatrix products
according to the natural order discussed in Section III.

Once the matrices are decomposed into block-columns,
we allow 3 4-level and 3p-level coding for matrices A and B,
respectively. In this case we choose two separate resolvable
designs with block sizes 34 and (g supported on point
sets {0,1,...,A4 —1} and {0,1,..., A — 1} respectively.
Furthermore, we assume that the number of worker nodes
n =c % azbs where ¢ is a positive integer.

Let P# and PB denote parallel classes for the matrices A
and B respectively. As in the matrix-vector scheme, the coding
scheme is specified by the meta-symbols (blocks) of P# and
PB. Let Na and Np denote the corresponding incidence
matrices of these parallel classes. Recall that each meta-
symbol is in one-to-one correspondence with the columns of
the incidence matrices. Consider the matrix N4 p formed by
considering pair-wise Kronecker products of columns from
N4 and Ng. Then the rows of A4 g correspond to unknowns
of the form ATB; and the columns correspond to the support
of the random linear equations that are formed by considering
the pairwise products. We will refer to the meta-symbols of
Nap as product meta-symbols and denote it by P45, For
example, suppose that 54 = g = 2 and consider two meta-
symbols {0,1} € P4 and {0,1} € PB. If these symbols
are placed in a worker, the corresponding product would be
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TABLE IV
COMPARISON OF DIFFERENT METRICS FOR DIFFERENT APPROACHES
D C 8- C 8- C
SESTEM METRICS [3E]I:Iff?],0[gEl? (SlNGL;E:aiLALSED:Pé?,ASS) (MULTIPL;E:AE;ALEEI_I.I\E:]}_.ASSES)
n==8,v4=75 s 4 2 3
AND f3 = Q/A = 13/8 11/8
n=28v4 =7 s 4 3 4
AND 8=3 Q/A - 19/12 14/12
n=10,v4 = + s 5 3 4
AND 3=3 Q/A = 25/15 20/15
{0, 1} {23} |{4,5}] ({0,1}] [{2,3}| |{4,5}| [{0,1}] [{2,3}] |{4,5}
{2,3H {45} |{0,1}] ({2,3}] [{4,5}| [{0,1}| [{2,3}] [{4,5}] |{0,1}
{0, 13| [{0,1}] [{0,1}] |{2,3}] [{2,3}| |{2.3}] [{4.5}| |{4.5}] [{4.5}
{2,3}| [{2,3}| |{2:3}| |{4,5}] |{4,5}| [{4,5}] [{0,1}] [{0,1}] [{0,1}
Fig. 7. Job assignment for worker group Go for 3-level matrix-matrix multiplication scheme with n = 36 with y4 = v = % and Ay = Apg = 6 using

a single parallel class with 34 = Bg = 2. The indices {i, j} on top and bottom parts indicate random linear combinations of the submatrices of A and B,
respectively. G;. Go and Gy are assigned the same symbols as workers Wy — Wy, but with different random coefficients.

(zoAf +z1AT)(yoBo+y1B1) = zoyoA§ Bo+zoy1 A B1+
t190AT By + 7191 ATB; where xo,1,v0,y1 are chosen
i.i.d. at random from a continuous distribution. Thus, the
coefficients of the corresponding equation can be expressed
as

[zo 1] ® [yo ¥1] (7

where @ denotes the Kronecker product.

Claim 1: If Na (of size Ay x As/Ba) and Np (of
size¢ Ap x Apg/fBg) correspond to incidence matrices of
parallel classes, then N 4p also forms a parallel class of size
AAAB x AAAB/,BAIBB.

Proof: Let u;@v; for i = 0, 1 denote two distinct columns
of Nap such that u; and v; are columns in A4 and N
respectively. Then,

(1 ® vo)T (w1 ® vi) = uduy x vi vy
=0

AsAp

since either 1y # u; or vy # vy. Moreover, there are T
distinct columns in A4p each with a support of size LfA,GB.
This implies that together all the product meta-symbols in
Nagp cover all the Ay Ap points. [ ]

As in the matrix-vector case, the scheme operates by
placing cyclically shifted meta-symbols from P4 with £4
meta-symbols in each worker for the first A4/34 workers.

For these workers, the assignment of meta-symbols from
PB is the same. For the next set of As/34 workers
the assignment of meta-symbols from P4 repeats; however,
we now employ a cyclic shift for the assignment of meta-
symbols from PZ. The complete algorithm is specified in
Alg. 2 and an example is depicted in Fig. 7. As before,
a group in this setting contains A/ workers and there a
total of 575 = c groups denoted G;,7 = 0,1,...,c — 1. Let
Xag = {AEBO A%—-Bl, AgBQ, rszs 3A£A—1B&B—1} denote
the set of unknowns. The product of two assigned coded
block-columns consists of a random linear combination of
3 = 3435 unknowns from X 5.

Example 7: We consider an example with n = 36 workers
in Fig. 7, each of which can store y4 = vp = % of each
of matrices A and B, and 84 = 8B = 2. We set Ay =
Ap = 6, thus the cardinality of X4 is 36. In terms of indices,
we use the same parallel class, {{0,1},{2, 3}, {4,5}} for both
A and B. Finally we use random vectors of length 54 = B =
2 to obtain the symbols from the submatrices of the elements
of the parallel classes, P;* and PP in any worker group G;,
fori=0,1,2,3,as ¢=36/9=4.

Lemma 3: The matrix-matrix multiplication scheme in
Alg. 2 is such that there are £ = £ 45 symbols corresponding
to any product meta-symbol € PAB in a group G;. Fur-
thermore, this product meta-symbol appears in all locations
0,1,2,...,¢ —1 within G,.
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Algorithm 2 [-Level Coding Scheme for Matrix-Matrix
Multiplication

Input : Matrices A and B, storage fractions of the
workers y4 = gl yp = g—;, Ba, Bp-coding level
for A and B, respectively, and number of
worker nodes, n = ¢ x agbs, where c is a
positive integer.

1 Partition A into A4 = B4a2 block-columns and partition
B into Ag = 8gby block-columns;
2 A=AuAR, sy = Axya, € = Ay, B = BaBB;
3 Assume X4 = {0,1,2,...,A4 — 1} and find parallel

classes P{" having block size 34,1 =0,1,...,e—1;
4 Assume Xg ={0,1,2,...,Ap — 1} and find parallel

classes Pf having block size g, i1 =0,1,...,¢—1;
sfori+—0toc—1do
6 | Let the blocks of P;! be denoted as
PAgsPAys - - - !IpAaA—l 5
7 | Let the blocks of PP be denoted as
PBo3PBys--- )pBQB—l ;
8 forj<—0t0%—1d0
9 Assign sets PA;1PAj41s -+ PAjpe, 1 from top to
bottom (indices reduced modulo a3) to worker
A 5 i
BT
10 k— L‘J_ZJ’ and assign sets
PBysPBiry1s--- !ka+£B—l from tOp to bottom
(indices reduced modulo bs) to worker %z‘ + 7;
11 Choose random linear combinations of the
constituent block-columns of the meta-symbols of
P and PP of length 34 and (g respectively;
12 | end

13 end
Output: Distributed matrix-matrix multiplication scheme
having (-level coding.

Proof: Any group G; can be partitioned into ag = %gi
disjoint subgroups each of which consists of ay = L

workers. These subgroups are denoted as H; where in terms
of group worker indices, H; = {jaa,jaa +1,...,(j +1)
gL TR =0 L o g s

If meta-symbols = € P/ and y € PP appear at locations
i1 and ji, respectively, 0 <43 <f4—1and 0 < j; < {p—1,
then the product meta-symbol x @y appears at location i1 {5+
j1 in the ordering. In our case, meta-symbol = appears 4
times within subgroup H; at distinct locations 0, ...,f4 — 1.
Thus, if meta-symbol y € PP appears in H; at location
j1 then the product meta-symbol = ® y appears £4 times at
locations j1,fg+ 71,265+ j1,...,(£a —1)£p+ j1. The result
follows by realizing that there are {5 subgroups where meta-
symbol y appears. Moreover, y € PP appears at all locations
0,...,£p — 1 across these subgroups. [ ]

Theorem 5: If we use a single parallel class P4 for A and
a single parallel class Pg for B across all the worker groups,
then the scheme described in Alg. 2 will be resilient to s =
cf— 3 stragglers and will have, Q = nf— W—l—f(,@— 1)+1,
where £ = f4fg and 3= 3405 < c.
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Proof: The proof is very similar to the proof of Theorem 2
once we use the fact that each product meta-symbol appears in
all locations 0,. .., ¢ — 1 within the group in which it appears
(cf. Lemma 3). O

It can be verified that the distributed scheme shown in Fig. 7
is resilient to s = ¢/ — 3 = 4 x 4 — 4 = 12 stragglers
and has @ = 117. Theorem 5 provides the value for s and
Q@ for distributed matrix-matrix multiplication when 3 < ec.
In Appendix A, we explicitly calculate the values for s and @
for the case when 3 > c.

Remark 4: Similar to the matrix-vector case, the uncoded
matrix-matrix multiplication scheme can also be thought as a
special case of 3-level coding scheme with 3 = 1. The lower
bound given in (2) is matched by the proposed scheme here
with B4 = g = 1 (i.e., the uncoded scheme). An example
appears in Fig. 8 where we have n = 12 workers and the
master node can recover the final product as soon as it receives
@ = 52 symbols across all the workers.

In the matrix-matrix case for 34 = 2, 85 = 1 we can show
that using different parallel classes can improve the straggler
resilience of the system. The corresponding @) analysis is
harder to do and is part of future work.

Theorem 6: Let £4 < ‘5—2“‘ — 2 and A4 > 8. If we use the
parallel classes in (6) for encoding A, then the matrix-matrix
multiplication scheme described in Alg. 2 will be resilient to
s = 2£ — 1 stragglers, when 34 = 2 and S = 1 such that
o= F—=2.

Proof: Consider the set B,, = {A}B,,,ATB,,,...,
A£A_1Bm}, i.e., the set of all unknowns corresponding to
Bp, for m = 0,1,...,Ag — 1, so |[Bp| = As. As B is
uncoded, the equations consisting of the unknowns in B,
are disjoint of the equations consisting of the unknowns of
By, (m # p). Thus, we can form G, using the unknowns
corresponding to the set By, and analyze the decoding using
it. The rest of the argument follows analogous to the proof of
Theorem 4. ]

It should be noted that there is certainly a trade-off between
the coding parameters (/3) and the properties of the scheme.
For example, in case of matrix-vector multiplication, when
the matrix has % non-zero entries, the assigned submatrices
can have approximately Sup% non-zero entries (when g is
small) in case of [3-level coding. It indicates that the worker
computation time can increase by approximately [ times in
compared to the uncoded approach. On the other hand, the
recovery threshold will reduce (according to Theorem 2) which
indicates resilience to more number of stragglers than the
uncoded case (3 = 1).

C. Coded at Bottom Scheme

Intuitively, the [-level coding schemes can be improved
if we allow for the inclusion of some densely coded block-
columns. We now consider a variant of the uncoded scheme
where such densely coded block-columns are added at the end
of uncoded computations. This improves both the straggler
resilience and the Q) value of the scheme.

We now assume that each node receives v = 4, + 7.
fraction of the columns of A and the vector x. Here -,
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i

A;
A, A, Ag A A, Ay A A, Ay A, A, Ag
By By By B, B, B, B; B, B, B3 B3 B3
B, ||B,||B,|[B]||B|[Bs]||Bs||[Bs||[Bs||Bo|]|Bs || Bo
B B; B B3 B3 B; Bo By Bo B, B, B,

Fig. 8. Uncoded matrix-matrix multiplication with n = 12 and s = 5 with y4 = % and yp = % where Ag =3 and Ag = 4.

Algorithm 3 Cyclic Coded at the Bottom Scheme for
Distributed Matrix-Vector Multiplication
Input : Matrix A and vector x, n-number of worker
nodes, total storage capacity fraction -,
replication factor for uncoded portion 7.
1 Set N = 0, =1 =9\, .= —E:
2 Partition A into A block-columns Ag, A4, ..
3fori«—0Oton—1do
4 | Define T ={7,i+1,...,24+ £, — 1} (mod A);
5 | Assign all A,,’s sequentially from top to bottom to
worker node i, where m € T';
6 | Assign ¢, different random linear combinations of
AsformeT,
7 end
Output: Cyclic coded at the bottom scheme for
matrix-vector multiplication.

ogrlhihesg

corresponds to the storage fraction of the uncoded parts of
A, whereas 7, corresponds to the coded portion. The coded
blocks appear at the bottom of each node. Thus, under normal
operating circumstances (no slow or failed nodes), the master
node can simply decode the intended result from the uncoded
computations. If some nodes are operating slower than normal,
then the coded computations can be leveraged.

As in the uncoded setup let £, = A~, be the number
of uncoded block-columns and r, be the replication factor.
Likewise ¢, = A+, represents the number of coded blocks
in each worker. In this construction we set A = n so that
Ty = £y. In this case, the results from Theorem 2 immediately
imply that @ > max(A, Ary — 5(€y + 1)+ 1). This follows
by applying S = 1 to the uncoded part of the solution
where r, = £,. A construction that meets these bounds is
outlined in Algorithm 3. The algorithm uses a random matrix

of dimension nf, x A.
Theorem 7: The scheme in Alg.3 satisfies Q =

max(A, Ary — 2 (€y + 1) + 1). Furthermore, it is resilient
to wl} stragglers.

nYe 1
Proof: The detailed proof is discussed in Appendix C. H

At x AT x Al x AT x Alx

iy
Al x

AT x Al ATx Al x

= Cfx CIx Gy x CTx

Fig. 9. Partitioning matrix A into five submatrices and assigning two uncoded
and one coded task to each of the five workers. The coded submatrix assigned
to W; is denoted as C;.

Example 8: Consider the setting where we have

5 workers with v = % where we set A = n = 5.
Fig. 4 shows the job assignments according to the uncoded
scheme (8 = 1). According to Theorem 2 in Section IV,
the system is resilient to S(ny — 1) = 2 stragglers and
Q =5 x 3—344+1 = 10 which can be verified
from Fig. 4.

Now we assume that the whole storage fraction can be

distributed into an uncoded storage fraction 7, = % and a
1

n —=

coded storage fraction 7. = . Using the coded scheme,
we get the job assignments shown in Fig. 9. This scheme
n*yetnyy—1

is resilient to J = 3 stragglers and it can be

nye+1
verified from that ATx can be computed once any Q =
Ary — 5+ (€y+1)+1 = 8 block-columns have been processed.
Thus, we can conclude that introducing a single coded block in
each worker (at the bottom), helps to improve both @ and the
straggler resilience of the system as compared to an uncoded
system.

Similar schemes can be arrived at for the matrix-matrix
case. We assume that the uncoded storage fraction for A is
YAy = z—; and the coded storage fraction is 4, = 2=
so that the total storage fraction is y4 =

g—; fraction of the uncoded columns of

a az’
é. Each worker

also receives yg =

matrix B.
Theorem 8: The recovery threshold for the matrix-
matrix multiplication scheme Alg. 4 is given by,
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Algorithm 4 Cyclic Coded at the Bottom Scheme for
Distributed Matrix-Matrix Multiplication

Algorithm 5 SCS Optimal Scheme for Matrix-Vector
Multiplication

Input : Matrices A and B, n-number of workers.
Storage fractions v4, = Z—: and y4. = 2—;,
so that y4 = 2 and yg = 2.
1 Set Ay = ag, Ap = mby, m = 14~ Partition A and
B into A4 and Ag block-columns, respectively;
2fori«—0ton—1do
3 | DefineT ={7,i+1,...,i+a, — 1} (mod A,);
4 | Assign all A,,;’s sequentially from top to bottom to
worker node i, where m € T';
Assign a, different random linear combinations of
ApsforméT,
6 | j+ |4 | and assign B;,Bj;1,...,Bjimp, 1 from
top to bottom (subscripts reduced modulo Ag) to
worker node i;
7 end
Output: Cyclic coded at the bottom scheme for
matrix-matrix multiplication.

n

T = n—maabi + Kmin, Where kmin is the minimum
positive integer for « satisfying the inequality

[i1 + Kae > az —ay + 1.
mbl

Proof: The detailed proof is discussed in Appendix D. B
Example 9: We consider the scenario as before, where

Ya = 3and yg = },and n = 12,50 m = & = L

3x4d
According to Alg. 4, we set £4 =2, Ay = 3 and {5 = 3,

Apg = 4. So, we need to recover A = AsAp = 12 block
products. Figs. 8 and 10 show the job assignments to the
workers for the uncoded case and the proposed coded scheme,
respectively. For the coded scheme, we assume 74, = % and
YAe = %, and on the other hand, for the uncoded scheme,
we have y4. =0, so a, = 0.

Now for the uncoded case, according to Theorem 5, the
recovery threshold is 7 =n — (¢f — 3) =12 — (1 x €alp —
1) = 7. On the other hand, according to Theorem 8, the
recovery threshold for the coded case is, 7 = n—magb1 +k =
12 —3 x 3+ 2 = 5 since the minimum positive integer « that
satisfies [%5] + K >3 is 2.

We expect that the benefits of having densely coded block-
columns at the bottom should extend for the case of general
B > 1 and the /A analysis should be possible to perform
for the matrix-matrix case. However, this appears to be more
challenging and will be investigated as part of future work.

V. SPARSELY CODED STRAGGLER (SCS)
OPTIMAL MATRIX COMPUTATIONS

In this section, we develop schemes for distributed matrix
computations which perform optimally in terms of straggler
resilience. For example, in matrix-matrix multiplication case,
if the storage fractions of each worker node are v4 = 1/ka
and yg = 1/kg then it can be shown the lowest possi-
ble threshold is k4kp [3]. Similarly, for the matrix-vector

Input : Matrix A and vector x, n-number of worker
1

nodes, storage fraction y4 = s

1 Set A = LCM(n, k4). Partition A into A block-columns

AU: AI'.! vas 1Azﬁ—1;
2 Number of coded submatrices of A in each worker node,
sz A A.
g(_‘, == E = n?
fori<— 0ton—1do
uU+—1x %;

Define T = {u,u+1,...,u+ 2 — 1} (mod A);
Assign all A,,’s sequentially from top to bottom to
worker node i, where m € T';
7 | Assign £, different random linear combinations of
ApsforméT,
s end

Output: (n,~4) SCS optimal-scheme for matrix-vector
multiplication with Q/A = 1.

= LY | B N ]

multiplication case the optimal threshold is k4. Prior work
has also demonstrated schemes that achieve these thresholds.
In what follows, we present schemes that are similar in spirit
to our constructions in Section IV which are suitable for sparse
matrices while continuing to enjoy the optimal threshold
kakp. Moreover, unlike the previously available dense coded
approaches, our proposed sparsely coded straggler (SCS)
optimal scheme can utilize the partial computations of the slow
workers and can provide significantly small Q/A.

A. Matrix-Vector Multiplication

In our proposed scheme in Alg. 5, we set A = LCM(n, k4)
and assign the uncoded jobs in such a way that all the workers
are assigned the uncoded jobs in an equal manner and the
replication factor of the uncoded symbols over all n workers
is, 7y, = 1. Thus, each of the workers is assigned A /n uncoded
jobs and the rest £, = £ — 2 jobs are assigned using a
random linear encoding matrix, R of size nf, x A. Since
any (A — A) x (A — A) submatrix of R is full rank with
probability 1, the master node can decode all the unknowns
if it receives any A uncoded symbols and any A — A coded
symbols from all the workers. Thus we can say that Q = A,
and since each worker stores A/k4 block-columns, we have
the recovery threshold, 7 = ﬁ —uleii

Example 10: We consider an example in Fig. 11 with
n==6andy=1,s0 kg =4 We set A = LCM(6,4) = 12,
and £, = 12 — 22 = 1. Thus, we assign two uncoded
jobs and one coded job to each worker where the coded job
assignment would be incorporated using a random matrix R
of size 6 x 12. In this case, @ = 12, thus Q/A = 1, and
o=l

Remark 5: On the surface Fig. 11 may appear equivalent
to a systematic version of the RKRP coded scheme [17] with
the same number of matrix partitions. However, there is a
significant difference that the idea in the RKRP coded scheme
is to assign the systematic versions to some workers and the
coded versions to other workers, whereas we assign the jobs
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D i

A,
Co C, C, Cs Cy Cs Cs C- Cs Cy Cio Cu
By By By B: B, B: B> B> B B3 Bj B3
B; B, B, Bs B> Bs Bs B3 Bj By By By
B, B, B, B3 B3 B3 By By By B, B, B,

Fig. 10. Coded matrix-matrix multiplication with n = 12 with y4, = %, N e — % and yg = % where A4 = 3 and Ag = 4. The coded submatrix for

A assigned to W; is denoted as C;.

Al x| |ATx

ATx| |Alx| [ATx]| |ALx

AT x Al x ATx AT x AT x| [ALx

oTx CTx| |CcTx| |CTx CTx eF x
Fig. 11. Partitioning matrix A into A = 12 submatrices and assigning to

n = 6 workers each of which has been assigned two uncoded and one coded
task to be resilient to s = 2 stragglers. The coded submatrix assigned to W;
is denoted as C;.

in a symmetric fashion so that every worker receives same
number of uncoded and same number of coded jobs. If the
input matrices are sparse, then the parity workers in the RKRP
coded scheme will be significantly slower than the systematic
workers.

B. Matrix-Matrix Multiplication

We propose a matrix-matrix multiplication scheme in Alg. 6
with storage fractions v4 = 1/k4 and v = 1/kp and
recovery threshold kskg. Furthermore, Q/A = 1 + (kg —
1)¢./ A, where £, is the number of coded-coded matrix-matrix
products assigned to each worker node.

Theorem 9: Alg. 6 proposes a distributed matrix-matrix
multiplication scheme being resilient to s = n — kakp
stragglers.

Proof: According to this scheme, we know that every
worker is assigned ‘i—f block-columns (uncoded and coded)
from A and one coded block-column from B, which indicates
that we can obtain, in total, ‘i—: products from each of the
workers. Thus from any k4kp workers, the master node can
obtain ‘i—: % kakp = Askp = AjsAp = A products.
A simple counting argument applied to Alg. 6 shows that any
uncoded block-column of A appears exactly kg times over
all n workers.

Algorithm 6 SCS Optimal Scheme for Distributed Matrix-
Matrix Multiplication
Input : Matrices A and B, n-number of worker nodes,
storage fraction y4 = ﬁ and vg = ﬁ So,
s=n—=k Ak B-
1 Set Ay =LCM(n,kas) and Ap = kg;
2 Partition A and B into A4 and Ay block-columns, and
A=A AB;
3 Number of coded submatrices of A in each worker node,
l, = Asa _ A,
ka n?
afori+<—0ton—1do
u—ix 2a.
Define T = {u,u+1,...,u+ 2 — 1} (modulo A,);
Assign all A,,’s sequentially from top to bottom to
worker node i, where m € T';
8 | Assign /. different random linear combinations of
AsformeT,
9 | Assign a single random linear combination of all
block-columns of B;
10 end
Output: (n,~v4,vs) SCS optimal-scheme for distributed
matrix-matrix multiplication.

-~ &

In what follows we show that each of these block prod-
ucts corresponds to a linearly independent equation where
the variables are ATB; for i = 0,1,...,A4 — 1,j =
0,1,...,Ag — 1. Let e; denote the ¢-th unit vector of
length Ay, i = 0,...,A4 — 1. It follows that the product

(Zi‘*{luiAi)T(Z;.ﬁfo_lvaj) corresponds to the vector

Z?:’B_l u;(€e; @ v), where v is the vector [ug vy ...
(cf. discussion around (7)).

Now, suppose that we consider a subset of £ = kakg
workers indexed by the set 7 = {ig, i1, ..., ix—1}. Within this
worker node set, let 7; denote the index set of the worker
nodes where A,; appears uncoded. The random encoding
vectors for A and B in worker W, are denoted by u(f7)

UAB—I]T
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(of length Ay) for 7 = 0,1,.
Ap) respectively.

It follows that the products involving the uncoded block-
column A; can be expressed as

..;2. — 1 and v (of length

e; v for L € J;.

Our first observation is that the collection of vectors
{e; @ v®O} for £ € Jii = 0,...,A4 — 1 is linearly
independent. This follows because any linear combination of
these vectors can equivalently be expressed as

Aa—1 )
52 (1o 5 )

i=0 e i

where a?)’s are the linear combination coefficients and each
term in the above sum needs to be forced to zero. Note
that |J;| < kg. Therefore, the vectors v® for £ € J; are
linearly independent with probability 1, since v® has length
Ap = kg. Thus, there is no setting of aga) ’s for which the
above sum can be forced to the zero vector.

The product of the coded A and B matrices can be
represented by u7) @ v® for j = 0,1,...,4,—1and £ € T.
We will now show that the overall collection of vectors that
we obtain is linearly independent with probability 1. To see
this suppose that there exist coefficients a?)’s and .«;E,J)’s not
all zero such that

Aa—1 £.—1
Y @Y af® =3 3 kDuled) @ o®
i=0 T £cT j=0
E 0 E @
i £,j _
£cT j=0 j1=0

It can be observed that this decouples into finding solutions
for
pay

€ ® Z agﬂvm =€ ® Z Z ngﬂug&'j)vm

e £eT j=0

where the agﬂ values on the LHS can be chosen freely given
the RHS. For a given choice of the H,E_,:" )’ the above equation
can definitely be satisfied if |J;| = kg. If we |J;| < kp then
this may not be true depending on the values of the .«;g“" Vs,

The n — kakp stragglers together contain (n —
kakp)Aakgp/n uncoded block-columns of A. It is not too
hard to see that not all A;’s that appear within the stragglers
appear kg times within the stragglers (see Appendix F). Thus,
the number of A;’s with |7;| < kg is = (n—kakg)Aa/n+1.

In the argument below we only consider the a?)’s corre-
sponding to these uncoded block-columns and suppose that
there is an assignment of a?)’s that satisfy (8). In this case
the problem of finding the corresponding .«:EJ Vs is equivalent
to solving a block system of equations described below.

Let A; be an uncoded block-column that appears less than
kp times in Z. The block row corresponding to it (cf. (8)) is

®)

given by V & U where £,
VvV = [;(io) - s U(ioﬂ s |;(%'k—1) — v(fk—d] , and
U :[u((ssa‘,t}) ugio,fc—1)| |ugm_1,ﬂ) ugﬁk_l,fc—l)]
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where © represents the Khatri-Rao product that corresponds
to column-wise Kronecker products.

Appendix E shows that the concatenation of block rows in
VoU corresponding to the different A;’s is such that any
Lckakp x €okakp matrix is full rank with probability-1. This
implies that from the first £.k4 block rows we can decode all
the ngf)’s.

On the other hand the equations in (8) need to be satisfied
for at least (n — kakg)Aa/n+ 1 different A;’s based on the
argument above. However

A kaksA
(n—kAkB)f =Ny — 22B2A4

and thus (n — kakg)Aa/n+ 1 > £.k4. This implies that
there is at least one equation that need to be satisfied with a
fixed choice of the n;)’s. But this probability is zero since
each of the remaining equations involve random ugg’i) values
that have not appeared in the first £/.k4 block rows. [ |

Theorem 10: Alg. 6 proposes a distributed matrix-matrix
multiplication scheme with Q = A + (kg — 1)£..

Proof: As in the proof of the previous result, we let
u®7) for j=0,...,£.— 1 denote the j-th random encoding
vector for A in worker W, and v(®) the corresponding random
encoding vector for B. We will demonstrate that the system
of equations that corresponding to decoding the ATB;’s is
nonsingular with probability 1. Let e; denote the i-th unit
vector of length A 4. For a given A;, suppose that it appears
uncoded in J; worker nodes where |7;| < kg we obtain
certain equations from the uncoded part which correspond to
e;ov® forl € J;. If |7;| < kg then it needs to use the coded-
coded products for decoding the unknowns corresponding
to Ag‘.

The block system of equations under consideration cor-
responds to a Agkp x Askp square matrix with random
entries. For A; such that |7;| = kp the matrix consists of
a kg x kg block on the diagonal with kp distinct vectors
v(®). This block is nonsingular with probability-1 owing to
the random choice of the v(9)’s.

For the other A;’s where |7;| < kg we will demonstrate
a setting of the u®7)s such that the entire matrix is a
block diagonal matrix with kg x kg blocks of distinct 2®
vectors. This demonstrates that there exists a choice of random
coefficients for which the system of equations is nonsingular.
Following this the result holds with probability-1 when the
choice is made at random.

Towards this end, suppose that the pattern of obtained
products is such that we get A — A uncoded-coded products
and A + (kg — 1)¢. coded-coded products. Without loss of
generality we assume that we need to decode the products that
involve Ag, Ai,...,A;_1 using the coded-coded products.
Furthermore we suppose that A; appears kg —1; times within
the uncoded-coded products, so that o +m1+ - - +n5-1 = A

Under this setting, there are at least (kg —1)6.+A— (kg —
nmo)le = (mo — 1)€e. + A coded-coded products that can be
obtained from worker nodes that do not contain an uncoded
copy of Ay. Furthermore, these are spread out in at least
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Fig. 12. Matrix-matrix multiplication with n = 5 and s = 1 with y4 = v = % Here R4 and Rp are random matrices whose superscripts indicate their

corresponding rows and columns.

np distinct worker nodes. Next, we pick np encoding vectors
for A from the 7 distinct workers and set them all to eg.
With this setting we obtain a kg x kg block (corresponding
to decoding A%"Bj-: j=0,...,Ag—1) that consists of distinct
v® vectors that are nonsingular with probability 1.

At this point we are left with (kg — 1)£. + A — o coded-
coded products. The argument can be repeated for A; since
there are at least (171 — 1)£. + A — mp coded-coded products
that can be obtained from workers where A; does not appear,
which in turn correspond to at least 7; distinct workers. In this
case we will set the 1, encoding vectors to e;. The process
can be continued in this way until the coded-coded products
are assigned to each of Ag, Ay,...,As_1.

At the end of the process we can claim that we have a block
diagonal matrix where each block is a kg x kg square matrix
with distinct v(¥) vectors. Thus, each block and consequently
the entire system of equations is nonsingular.

Finally, as there exists a choice of random values that
makes the system of equations nonsingular, it continues to
be nonsingular with probability 1 under a random choice. B

To summarize, Theorems 9 and 10 demonstrate that our
proposed scheme has the optimal threshold k4 kg and

3 Aa
Q_H(ks—l)ec_1+(R-B—1)(H_%)
A~ T X

Aks - 1) (g - 2)

A
(kB—l)srﬁ:l_’_ s :

= ) nkAkB
if kg is significantly larger than 1. Moreover in the practical
cases, we usually have s < nk4, thus in this SCS optimal
scheme, we have @Q/A =~ 1. Thus the proposed SCS optimal
scheme can exploit the partial stragglers quite efficiently
irrespective of whether the ‘input’ matrices are sparse or

not. While being resilient to optimal number of stragglers
as [3], [17], [21], this is clearly a significant advantage of
our propose method over those approaches.

Example 11: We consider an example in Fig. 12 with
n = 5 and k4 = kg = 2, so the system is resilient
s =5 —4 =1 straggler. We set Ay = LCM(n,k4) = 10
and Agp = kg = 2, and in this example, @ = 21, thus
Q/A =1.05.

VI. NUMERICAL EXPERIMENTS AND COMPARISONS

In this section, we discuss the results of the numerical exper-
iments for our proposed approaches and compare them with
other available methods. First we compare all the approaches
in terms of number of stragglers that a scheme can be resilient
to, and in terms of @) values. Next we compare the approaches
in terms of the worker computation time, overall computation
time and numerical stability during the decoding process.
Software code for recreating these experiments can be found
at [38].

A. Comparison With the Proposed [3-Level Coding Scheme

Here we choose examples for distributed matrix-vector
and matrix-matrix multiplications; and compare our proposed
B3-level coding schemes with other available methods in terms
of different metrics.

1) Number of Stragglers and Q Value: Table V shows
the comparison for matrix-vector multiplication for n =
30 workers, each of which can store v4 = % fraction of
matrix A. For the convolutional code approach, we assume
15 so that n—s = 15 > - = 10 which satisfies
the required condition in [10]. And for the coded at bottom
approach, we assume v, = % and v, = %, so that
Y = 7Yu + V.. Similarly, Table VI shows the comparison
for different approaches for matrix-matrix multiplication for

g =
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COMPARISON OF NUMBER OF STRAGGLERS, (J VALUES, WORKER COMPUTATION TIME (IN ms&) AND WORST CASE CONDITION NUMBER(&wm—sg) FOR

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

TABLE V

MATRIX-VECTOR MULTIPLICATION FOR Tt = 30 AND 74 = % (*FOR CONVOLUTIONAL CODE, WE ASSUMED s = 15)

WORKER COMPUTATION TIME

METHODS STRAGGLERS % VALUE SPARSITY 98% SPARSITY 95% Kuworst
POLYNOMIAL CODE [3] 20 N/A 62.8 87.1 5.99 x 10°
ORTHO-POLY CODE [21] 20 N/A 62.3 86.4 4.34 x 10*

RKRP CoODE[17] 20 N/A 62.9 86.8 5.44 x 10®

CONVOLUTIONAL CODE* [10] 15 N/A 63.1 87.7 6.24 x 10*
UNCODED [11] 2 85/30 19.1 32.9 1.7321
UNCODED (PROPOSED) 2 84/30 19.2 33.1 1.7321
B-LEVEL CODING (8 = 2) 4 81/30 25.3 40.2 242.89

[B-LEVEL CODING (8 = 3) 6 79/30 29.2 47.9 1.53 x 103

CODED AT BOTTOM 15 58/30 24.1 37.8 1.41 x 103

TABLE VI

COMPARISON OF NUMBER OF STRAGGLERS, () VALUES, WORKER COMPUTATION TIME (IN SECONDS) AND WORST CASE CONDITION NUMBER (ﬁworstj
FOR MATRIX-MATRIX MULTIPLICATION FOR Tt = 18 AND Y4 = VB = % (*FOR CONVOLUTIONAL CODE, kg = kp = 4)

WORKER COMPUTATION TIME

METHODS STRAGGLERS 2 VALUE —gpioeroooor—oaRSITY O5%  fowerst
PoLYNOMIAL CODE [3] 9 N/A 2.58 10.16 7.33 x 10°
ORTHO-POLY CODE [21] 9 N/A 2.51 10.08 1.33 x 107

RKRP CODE[17] 9 N/A 2.63 10.23 2.15 x 10°

CONVOLUTIONAL CODE* [10] 2 N/A 2.44 10.19 1.82 x 10°
UNCODED (PROPOSED) 1 17/9 0.69 1.96 1.41

B-LEVEL CODING (84 = 85 = 2) 4 16/9 1.02 3.68 8.89 x 10°

n = 18 workers, each of which can store y4 = % and y5 = 1
fraction of matrices A and B respectively. Here we assume
ka=kgp=4> ,)%A = LB = 3 for the approach in [10].

In case of both matrix-vector and matrix-matrix multiplica-
tions, we know that the dense coded approaches [3], [17], [10]
and [21] are MDS but they do not consider the partial
computations of the slower workers. On the other hand, our
proposed approaches are able to utilize the partial compu-
tations of the stragglers for both matrix-vector and matrix-
matrix multiplications. We can see that the [-level coding
approaches, with 3 = 2 or 3, have smaller /A values than
the uncoded approaches, one of which is introduced in [11]
and the other is a special case of our proposed (3-level coding
where 3 = 1. We emphasize that a larger value of 3 or a
larger value of ~, will provide smaller values of }/A for our
proposed [3-level coding approach and the coded-at the bottom
scheme, respectively. It should be noted that the approach
in [10] requires the condition n—s > 1 to hold to be resilient
to s stragglers, so as mentioned in AIl"ables V and VI, this
convolutional code-based approach is resilient to less number
of stragglers than the other dense coded approaches.

2) Worker Computation Time: Now we compare the worker
computation time required by different approaches. Worker
computation time indicates the required time for a single
worker node to finish all its assigned tasks. We performed the
experiments on an Amazon Web Services (AWS) cluster where
we choose a t2.2xlarge machine as the master node and
t2.small machines as the worker nodes, which are, in fact,
responsible for computing the submatrix products.

For matrix-vector multiplication, We choose a matrix A of
size 40,000 x 17,640 and a vector x of length 40, 000, and
the job is to compute AT x in a distributed fashion. We assume
that the matrix A is sparse, which indicates that the most of
the entries of A are zero. For example, the sparsity of A can
be 98% (or 95%), which indicates that randomly chosen 2%
(or 5%) entries of matrix A are non-zero. We consider the
same scenario where we have n = 30 workers, each of which
can store yq4 = 1—10 fraction of matrix A. The comparison
among different approaches for different sparsity values is
shown in Table V. Next a similar experiment is carried out
with n = 18 workers with v4 = v = % for matrix-matrix
multiplication where both A and B are sparse and of sizes
12000 x 13680 and 12000 x 10260, respectively, and the
corresponding results are shown in Table VI.

From the experimental results shown in Tables V and VI,
we can see that the workers require much more time to
complete their assigned tasks in case of the dense coded
approaches ( [3], [17], [10] and [21]) than our proposed
approaches. The reason is that the dense coded approaches
cannot preserve the sparsity of the matrices A or B, so the
corresponding coded submatrices are quite dense even if A and
B are sparse. On the other hand, our proposed approaches can
preserve the sparsity in the submatrices, and can complete the
jobs 3 ~ 4 times faster than the available approaches. It should
be noted that a smaller value of 3 or a smaller value of ~,
will lead to less worker computation time for our proposed
B3-level coding approach and the coded at the bottom scheme,
respectively.
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We note here that while there is a significant difference
between the required time of the dense coded approaches
and our proposed approaches, this difference can be much
higher. For example, in Table V, we can see that the
polynomial code approach is around 3 ~ 4 times slower
than the uncoded approach, but the gap according to the
theoretical analysis should be as large as 10 times, since
~v4 = 1/10. The reason underlying the smaller gap is the use
of two different commands in Python to compute products
between the matrix and the vector. Since the proposed uncoded
or the (-level coding approaches can preserve the sparsity
up to certain level, we have leveraged the sparse matrix-
multiplication commands in these cases, whereas for the
dense coded approaches which cannot preserve the sparsity,
regular matrix-multiplication command provided better results.
A more optimized sparse matrix-multiplication scheme could
result in bigger multiplicative gaps between these approaches.
Furthermore, the difference of the required time would be
certainly higher and more significant if the matrix sizes were
higher (for example, in millions). However, owing to the
memory limitations of the machines that we are using (in this
case, t2.small), we cannot conduct experiments with such
large matrices.

3) Overall Computation Time: We consider the same exam-
ple of n = 18 workers with y4 = vp = %, and compare
all these matrix-matrix multiplication approaches in terms
of overall computation time to recover ATB. Overall com-
putation time is the time required by the worker nodes to
compute the products so that the master node is able to
decode all the unknowns corresponding to ATB. It should
be noted that the overall computation time is different than
the worker computation time discussed above. For example,
let these 18 worker nodes in polynomial code approach [3]
(having recovery threshold to be 9) require {p,t1,22,...,%17
to compute their respective block-products, then the overall
computation time for this approach is z.

In Figs. 13 and 14, we compare the overall computation
time where the ‘input’ matrices are 98% and 95% sparse.
We simulate the speed of worker nodes such that the slower
workers operate at either % or %-th of the speed of the
standard worker nodes. From the figures, it is clear that the
proposed 3-level coding scheme takes significantly less overall
computation time than [3], [21] and [17] for different numbers
of slower workers. It should be noted that the approaches in [3]
and [21] have a spike in overall worker computation time when
there are 10 slower worker nodes, since the recovery threshold
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nodes and the slower workers are simulated in such a way so that they have half of the speed of the non-straggling workers.

is 9; and they cannot leverage the partial computations. In case
of [17], the message workers can leverage the whole sparsity
of the ‘input matrices’ in absence of slower worker nodes.
Thus there is a spike in overall worker computation time
for [17], in Figs. 13 and 14 when there is a slower worker
node.

Next in Fig. 15, we compare the overall computation time
where the ‘input’ matrices are 50% sparse and fully dense.
Again, we simulate the speed of worker nodes in such a way so
that the standard worker nodes are twice faster than the slower
worker nodes. In this figure, we can see the effect of utilizing
the partial computations in 3-level coding scheme which takes
less overall computation time than [3], [21] and [17] for
different numbers of slower workers.

4) Numerical Stability: Now we do another experiment to
compare the numerical stability of different schemes. We know
that for decoding a system of equations, errors in the input
can get amplified by the condition number (ratio of maximum
and minimum singular values) of the associated decoding
matrix; hence, a low condition number is critical [10], [20]. For
example, let us consider the polynomial codes [3] for matrix
vector multiplication, where each of n workers can store
4 = % fraction of matrix A. Now partitioning A into A =k
submatrices lead to A unknowns, A7x, ATx,..., AL x.
Now in order to assign the coded jobs to n workers, we need
to choose a polynomial of degree k—1 and n evaluation points,
thus the coding matrix is of size n x k. Since the recovery
threshold here is 7 = k, we are interested in all choices of
k x k submatrices of that n x k coding matrix. It can be
shown that the system will be numerically more stable in the
worst case if the evaluation points are chosen uniformly spaced
in [—1, 1], rather than choosing the integers 1,2,...,n [15].
In other words, choosing interpolation points uniformly spaced
in [—1, 1] will lead to a smaller worst case condition number
(ﬁwwst)-

In this experiment we compare the condition numbers
for different approaches in case of the worst choice of full
stragglers. Tables V and VI show the comparison of worst
case condition numbers (Kyorst) for matrix-vector and matrix-
matrix multiplication, respectively, for the previously chosen

scenario. We can see that the dense coded approaches (3], [17]
and [21]) have a very high worst case condition number, thus
suffer from numerical instability which leads to erroneous
results. On the other hand, our proposed [3-level coding
approach has a much smaller worst case condition number. The
reason is that even in the worst case, the decoding of some /3
unknowns depends on a 3 x (3 system matrix whose entries
are randomly chosen. Thus a smaller [ leads to a smaller
Kworst, fOr example, we can see that the uncoded case (same
as the case with 3 = 1) is the scheme having the smallest
Kworst-

We point out that in this work, we do not have analytical
results on the numerical stability of our schemes; the compar-
isons are based on exhaustive experiments. A comprehensive
analysis of numerical stability of our schemes is part of future
work.

B. Comparison With the Proposed SCS Optimal Scheme

In this experiment, we compare the dense coded approaches
with our proposed SCS optimal coding scheme in terms of dif-
ferent metrics, for example, /A values, worker computation
time etc.

1) Number of Stragglers and Q Value: First we do the
comparison for matrix-vector multiplication where we choose
a square sparse matrix A of size 27,720 x 27,720, and a
vector x of length 27,720. The job is to compute ATx in
a distributed system of n = 18 workers, each of which can
store y4 = % fraction of matrix A. We consider two different
choices of matrix A. In the first case, A is a band matrix [39]
where the entries are non-zero along the principal diagonal and
in 1000 other k-diagonals just above and below the principal
diagonal. In the second case, the entries are non-zero along
the principal diagonal and in 2000 other randomly chosen
k-diagonals. The comparison is shown in Table VII where
we can see that all the competing schemes are resilient to
s = n—1/v4 = 3 stragglers. While the proposed SCS optimal
scheme is also resilient to 3 stragglers, it can also efficiently
leverage the partial computations done by the slower workers,
since in this scheme, Q/A = 1.
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TABLE VII
COMPARISON OF (@ VALUES, WORKER COMPUTATION TIME (IN ms) AND WORST CASE CONDITION NUMBER (-‘iworst) FOR MATRIX-VECTOR

MULTIPLICATION FOR . = 18,74 = 1—15 (*FOR CONVOLUTIONAL CODE, WE ASSUME Y4 =

1
10)

WORKER COMPUTATION TIME

Q
METHODS NO OF STRAGGLERS X VALUE BAND RANDOM Kworst
POLYNOMIAL CODE [3] 3 N/A 29.7 30.2 4.03 x 107
ORTHO-PoLY CODE [21] 3 N/A 30.1 29.8 2.13 x 10*
RKRP CODE[17] 3 N/A 29.3 30.0 6.35 x 10°
CONVOLUTIONAL CODE* [10] 3 N/A 35.2 34.7 1.21 x 10®
SCS OPTIMAL SCHEME 3 1 14.8 20.3 6.81 x 10°
TABLE VIII

COMPARISON OF () VALUES, WORKER COMPUTATION TIME (IN SECONDS) AND WORST CASE CONDITION NUMBER (ﬁworst) FOR MATRIX-MATRIX

MULTIPLICATION FOR . = 24,74 = % ANDYg = % (*FOR CONVOLUTIONAL CODE, WE ASSUME 74 = % AND YR = %]. THE VALUES IN THE
PARENTHESES FOR THE SCS OPTIMAL SCHEME SHOWS THE TIME REQUIRED FOR UNCODED AND CODED PORTIONS, RESPECTIVELY

WORKER COMPUTATION TIME

Q
METHODS NO OF STRAGGLERS % VALUE SPARSITY 08%  SPARSITY 05% RKuworst

POLYNOMIAL CODE [3] 4 N/A 3.11 8.29 2.40 x 10'°
ORTHO-POLY CODE [21] 4 N/A 3.08 8.16 1.96 x 108
RKRP CoDE[17] 4 N/A 3.15 8.22 2.83 x 10°
CONVOLUTIONAL CODE* [10] 4 N/A 5.16 10.92 2.65 x 10*
1.93 4.76 6

SCS OPTIMAL SCHEME 4 31/30 (0.91 + 1.02) (2.71 + 2.05) 4.93 x 10

Next to show an example for distributed matrix-matrix mul-
tiplication, we choose two random sparse matrices A and B
of sizes 12000 x 15000 and 12000 » 13500, where randomly
chosen any 2% and 5% entries are non-zero. We consider a
distributed system having n = 24 workers, each of which can
store 74 = 1 fraction of matrix A and yg = % fraction
of matrix B. The comparison is shown in Table VII where
we can see that, similar to the most of the dense coded
approaches [3], [21], [17], our proposed SCS optimal scheme
is also resilient to s = n — kakp stragglers, where v4 = ﬁ
and yp = % Moreover, our proposed approach leverages
the partial computations done by the slower workers quite
efficiently, since in this scheme, Q/A = 31/30, very close
to 1. We point out that we did not compare with the approach
in [7] since their approach does not respect the storage
constraints for the matrices at each worker node and only has a
high-probability guarantee on the recovery threshold. Similarly
we did not compare with [32] which assumes heterogeneous
workers, but we note that this approach provides with a better
value of /A (can be even 1) compared to the proposed SCS
optimal scheme for the example shown in Table VIIL.

2) Worker Computation Time: We show the comparison
of worker computation time for distributed matrix-matrix
multiplication in Table VIII. It confirms the superiority of the
proposed SCS optimal scheme in terms of workers’ computa-
tion speeds. The major reason behind the enhancement of the
speed in the SCS optimal scheme lies in its ability to leverage
the sparsity of the matrices up to certain level, whereas the
approaches in [3] or [21] use the dense linear combinations
of the submatrices which destroy the sparsity. The approaches
in [10] and [17] consider some parity worker nodes where

all the assigned submatrices are dense, which leads to high
worker computation time for those workers. On the other hand,
in the proposed SCS optimal scheme the submatrices, obtained
from dense linear combinations, are assigned uniformly within
the workers. This removes the asymmetry between the worker
node computation times.

Similarly we can see the comparison of worker computation
time for distributed matrix-vector multiplication in Table VII.
It is clear that the proposed SCS optimal scheme requires less
time from the worker nodes in comparison to the other dense
coded approaches, which in fact, cannot leverage the sparsity
of matrix A.

3) Overall Computation Time: Now we compare all these
matrix-matrix multiplication approaches in terms of overall
computation time. In Figs. 16 and 17, we show the simulation
results where the ‘input’ matrices are 98% and 95% sparse,
respectively. We simulate the speed of worker nodes such that
the slower workers operate at either % or %-th of the speed of
the standard worker nodes. From the figures, it is clear that the
proposed SCS optimal scheme takes significantly less overall
computation time than [3] and [21] for different numbers of
slower workers. It should be noted that the message workers in
the approach [17] do not involve any coding (so the message
worker computation time is less), hence there are certain cases
(for example, no slower workers) where it takes less overall
computation time than the proposed SCS optimal scheme.
However, if the slower workers have a very slow speed that
the situation changes and the SCS optimal scheme takes less
time than [17]. Thus, unlike [17], our proposed approach can
be fast even in the presence of full stragglers (failure of worker
nodes).
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Next in Fig. 18, we compare the overall computation time
where the ‘input’ matrices are 50% sparse and fully dense.
Again, we simulate the speed of worker nodes in such a way so
that the standard worker nodes are twice faster than the slower
worker nodes. In this figure, we can see the effect of utilizing
the partial computations in SCS optimal scheme which takes

less overall computation time than [3], [21] and [17] for
different numbers of slower workers.

4) Numerical Stability: Tables VII and VIII show the
comparisons of worst case condition number (Kyorst) among
different approaches for matrix-vector and matrix-matrix mul-
tiplication, respectively. In both cases, we can see that the
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TABLE IX
COMPARISON OF THE Q/A VALUES, WORKER COMPUTATION TIME (IN SECONDS) AND WORST CASE CONDITION

NUMBERS FOR MATRIX-MATRIX MULTIPLICATIONFOR nn = 10,74 = g = L

§,Sos=1

W/0 PARTIAL COMPUTATIONS

W/ PARTIAL COMPUTATIONS

METHOD
208 2 VALUE  Kuorst ~ WORKER TIME 2 VALUE Kworst WORKER TIME
PoLY CODE [3] N/A  88x10° 2.46 1 1.86 x 10" 7.09
ORTHO-POLY [21] N/A 16.66 2.49 1 4.33 x 10° 7.06
RKRP CoODE[17] N/A 11.96 2.41 1 1.16 x 10* 7.14
SCS OPTIMAL SCHEME - & 5 1.02 2.15 x 10° 2.04

approach in [3] provides very high k.rs: values; whereas
our proposed SCS optimal scheme has Kyore: values in a
similar range as [21] and [17]. It indicates that our proposed
scheme will be numerically stable even in the worst choice of
s stragglers.

It should be noted that in the dense coded approaches,
we can decode all A = kakp unknowns from any kakg
submatrix block products, and in that sense we have % — 1 ]
But it does not necessarily mean that those schemes can utilize
the partial computations done by the slower workers, since in
those cases the master requires k4kp workers to finish their
jobs, and discard the computations done by others.

However, one can still use those approaches to utilize the
partial computations, by partitioning the matrices into more
submatrices. We can consider an example of n = 10 workers
with v4 = vp = 1/3 and 98% sparse matrices A and B,
both having size 12,000 x 12,000. Now we can partition
matrix A into Ay = 3 or A4 = 9 submatrices for the dense
coded approaches. We can see the comparison of &yore; and
worker computation time in Table IX for these two values
of Ay. In case of Ay = 9, we will require polynomials of
higher degrees (for [3] or [21]) or more random coefficients
(for [17]) than in the case of A4 = 3. It leads to a very high
condition number (=~ 10'%) which will make the whole system
numerically unstable. Besides, a larger A4 would make the
submatrices even denser, which will lead to higher worker
computation time for the workers. The case is similar for the
work in [32] which uses larger A4 and Ap to utilize the
partial computations. On the other hand, in the proposed SCS
optimal scheme, uncoded submatrices are placed at the top,
and coded submatrices are placed at the bottom. Moreover
the coded jobs are allocated uniformly among all the workers
which does not let the worker computation time go high for
any particular worker.

VII. CoNCLUSION AND FUTURE WORK

In this work we have presented several coded matrix
computation schemes that (i) leverage partial computations by
stragglers and (ii) impose constraints on the extent to which
coding is allowed in the solution.

The second feature is especially valuable in the practical
case of computations with sparse matrices and provides
significant reductions in worker node computation time and
better numerical stability as compared to the previous schemes.
Prior work has demonstrated schemes with optimal recovery
threshold in certain cases. We present schemes that match the

optimal threshold while enjoying lower worker node com-
putation times and improved numerical stability. Exhaustive
numerical experiments corroborate our findings.

There are several opportunities for future work. We have
demonstrated that carefully chosen different parallel classes
provide improved recovery thresholds and @/ A metrics for the
matrix-vector problem. We expect that this should help even
in the case of matrix multiplication. Schemes that apply for a
larger range of storage fractions are also of interest. Analytical
results quantifying the numerical stability of our constructions
may be an interesting direction to pursue. In this work we
defined the value of @) as the worst case number of symbols
that allows for recovering the intended result. Analysis and
constructions for the random case would be natural extensions.

APPENDIX A
PROPERTIES OF 3-LEVEL CODING WHEN 3 > ¢

In Section IV, we have discussed [-level coding for dis-
tributed matrix computations when ¢ > 3 and here we prove
the properties of [3-level coding when 3 > c. The difference
is that the constraint ¢ > 3 ensures that we will have at least
3 worker groups, whereas it is not the case when 3 > c.

A. Matrix-Vector Multiplication

Suppose that we have n = cay workers, each of which can
store v = %; fraction of matrix A. To incorporate (3-level
coding, matrix A is partitioned into A = Bas block-columns,
and thus each worker will be assigned ¢ = A~y = [Ba; jobs.
It should be noted that we have aim = ¢ worker groups among
the workers because of the cyclic fashion of job assignments.

Lemma 4: If we use a single parallel class in Alg. 1, then
the number of stragglers will be s = ¢/ — 3 and we will have

e1—1
Q=c[%e—@] B T LY
i=0

where ¢ :1Jh%1 and ¢c; = 8 — 1—cey.

Proof: The straggler resilience follows similar to the proof
of Theorem 2 by counting the number of occurrences of the
meta-symbols.

For the @ analysis, assume that there exists a meta-symbol
* that appears at most S — 1 times among the acquired @
symbols where @ is defined in the theorem statement. We have
¢ worker groups and in each group, » appears in positions
U - i [
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Now we know that we can process ag = %E’ = %

meta-symbols from each of the worker groups without
processing *. Any additional processing will necessarily
process . Suppose we choose any particular worker, where
the position index of « is 7. In that case, we can acquire at most
£—1—1 more symbols from that particular worker without any
more appearances of x. Thus, the maximum number of meta-
symbols that can be processed for each additional appearance
of = can be expressed by the following vector.
b AESE (L SRR o e | O g (PPN [ | SRR )
—— — ——— N —

c c c

Here z is a non-increasing sequence, so in order to obtain
the maximum number of symbols where the meta-symbol *
appears at most S — 1 times, we need to acquire symbols
sequentially as mentioned in z. Let ¢; = Bl and ¢y = B—
1—cc;. Thus we can choose the first ce; +co = F— 1 workers
(as mentioned in z) so that we can have Q’ symbols where
appears exactly 3 — 1 times, so

c1—1

Q =cag+c ) (E—i)+e(l—ec1);

i=0
which indicates that Q = Q’ + 1 symbols ensures that =
will appear at least 3 times. This leads to a contradiction and
concludes the proof. |

B. Matrix-Matrix Multiplication

The argument is almost the same for the matrix-matrix case
with appropriate definitions for ¢ and /3. Specifically, recall
that n = ¢ x agbg, and Ay = ,SAGQ and Ag = ,85152. Thus,
we have QL = ¢ worker groups, where A = A 4Ap and
B = PBafp. In each worker, we assign {4 = Ajgvya and
{p = Apvyp coded submatrices of A and B, respectively
and set £ = £4{p. Following this, we can obtain the number
of stragglers as s = ¢f — [3 and

e1—1
Q=c [%IE— 3(331)} +eY (L—i)+e(l—c)+1.
i=0

APPENDIX B
PROOF OF THEOREM 4

Proof:  Straggler Resilience: To prove the straggler
resilience, we note that if there are at 2¢ — 1 stragglers it is
evident that G4, formed by the remaining meta-symbols is
such that each unknown has degree at least one. Let X; and X ;
denote the subset of worker nodes where unknowns ATx and
A}"x appear within a meta-symbol, so that | X;| = |X;| = 2£.
Furthermore, | X; N X;| < 2¢ — 2. To see this we note that
if {i,7} appear together w.Lo.g. in Gy then |X; N X;| =
£+ ¢ — 2 as this implies that they appear together in exactly
£ — 2 workers in Gy (since £ < A/2 — 2). On the other hand
if ¢ and j do not appear together in either Gy or G; then
they appear together in the workers of each group at most
£ — 1 times, so the claim holds. Thus,

| X U X5] = | Xa| + | X;] — | X 0 X
B A
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Now suppose by way of contradiction that we have two
unknowns A x and A7x (where i < j) both of which appear
exactly once across the remaining n — 2¢ + 1 workers. The
preceding argument shows that if 2/ — 1 workers are stragglers
then unknowns ATx or A}"x or both appear in at least three
nodes, i.e., at least one of them appears at least twice. This
contradicts our original assumption. By Lemma 2 the decoding
is successful.

Value of (): Note that ap = %é’ — m denotes the
maximum number of meta-symbols that can be processed
within a group such that a specific meta-symbol is not
processed (cf. Lemma 1). This implies that at most 2cp meta-
symbols can be processed without processing any specific
unknown. Let pp and p; denote the number of meta-symbols
processed in the two groups Gp and G; where we assume
w.lLo.g. that pg > p;.

o Case 1: Suppose that pg > ap + £+ 1. Lemma 1 implies
that each meta-symbol € Py is processed at least twice
in Gp. Then by Lemma 2, the decoding is successful.

e Case 2: If ap + 2 < pg < ap + £, we claim that at
most one meta-symbol in Gy is processed once. The other
meta-symbols are processed at least twice. To see this,
consider two meta-symbols (27,2 + 1) and (27,25 + 1)
in Gy such that j > ¢ such that (2¢,2¢ 4 1) is processed
only once. If j—:i > 2 then there are at least two workers
in Gy where the meta-symbol (23,25 + 1) appears but
(27,274 1) does not. Therefore, if at least cp + 1 meta-
symbols are processed in Go, then (23,27 + 1) appears at
least twice. On the other hand if 7 = ¢ + 1 then there is
only one worker where (27, 25+1) appears but (2z, 2i+1)
does not. Thus, if ap+1 meta-symbols are processed then
we have processed (27, 25+1) at least once. The ap+2-th
meta-symbol cannot be (27,27 + 1) since by assumption
it is processed only once, thus it has to be (27,25 + 1)
(since j =1+ 1).

Now, we argue either unknown AZ;x or A7, ;x appear
within the meta-symbols in G;. Towards this end, we note
that there are exactly two workers in G; where A%, x
appears but AZ.x does not. Therefore, at most ap — (2£—
1) meta-symbols can be processed in G; while avoiding
both the unknowns AZ;x and A7, ;x.

This implies that the total number of meta-symbols that
can be processed such that at least two unknowns appear
only once in Gge. is at most 2ap — £+ 1 < Q.

o Case 3: If pg = ap + 1, then we can have two meta-
symbols (27, 2i41) and (242, 2+ 3) that appear exactly
once in Gg. It can be verified that none of the unknowns
ATx, ..., A7 ox appear together in a meta-symbol in
Gy since A > 8. Thus, if we process p; = ap symbols
in G;, then we can avoid at most one unknown from
the set {AZx,..., A7, 3x}. It follows that at most one
unknown appears once in Gge. and by Lemma 2, the
decoding is successful.

|
APPENDIX C
PROOF OF THEOREM 7
Proof: We need to show that for any pattern of ) symbols
the master node can decode ATx. Towards this end, from
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Theorem 2 (setting S =1 and £ = £, = 1), we know that
any pattern of @ uncoded symbols allows the recovery of all
A unknowns. In other words for any computation state vector
w(t) = [wo(t) walt) ... wp_1(t)] such that w;(t) < £, and
E;:OI w;(t) = @, the master node can decode. Now, consider
a vector w’(¢) such that (w.l.o.g.) wj(t),...,wh_1(t) = €y +
1 and wly(t),...,wh_;(t) < £, and Y7 wi(t) > Q, ie.,
the first o worker nodes process coded blocks whereas the
others do not. It is not too hard to determine a different vector

w(t) with the following properties.

5i(t) £y 1<i<a,
w;(t) =
! wi(t)+ 8 a+1<i<n,

where [3;’s are positive integers such that w}(¢)+ 3; < £, and

;:01 w;(t) = Q. Thus, W(t) corresponds to a pattern of @
uncoded blocks that recovers A distinct blocks.

Now, we compare the vectors w'(t) and W(¢). Let the
uncoded symbols in w’'(z) be denoted by the set .A. Then the
set of uncoded symbols in W(¢) can be expressed as AU B
where the set B results from the transformation above. It is
evidentlthat for computation state vector w’(¢) the master node

o
has ) (wi(t) — £,) equations with A — |.4] variables. Now,
i=0
ax—1
> (i) — ) 2 |B| > [B\ A = A~ |Al.

i=0

In particular, this establishes that we have at least as many
equations as variables. Since any square submatrix of a random
matrix is invertible with probability 1, we have the required
result.

Next, we establish the straggler resilience of our scheme.
Consider worker nodes 0 < 77 < i < --- < i < n—1; each
of these worker nodes has £, uncoded symbols. Consider the
case that i; —i;_1 < £, for t = 2,3,..., k. We claim that
these worker nodes contain at least min(£,, +k—1, A) distinct
uncoded symbols. To see this we proceed inductively. Let X;;
denote the symbols in worker ;. If k = 2, then | X;, UX;,| =
Xyl + Xl — 1Xe, N Xy > 2 — (8w — 1) = by + 1.
We assume the inductive hypothesis, i.e, | X;, U---UX;_ | =
min(fy + k — 2, A).

Now consider | X;, U---UX;,_, UXj;, |. It can be observed
that if 751 + £, — 1 — A < 7, then there exists at least one
symbol in X;, that does not exist in X;, U---UX;,_ . Thus,
in this case | X;, U---UX;, ,UX,| >l +k—1.

On the other hand if 7,7 + ¢, — 1 — A = i; then
Xi, C X, , UX;,. Let § be the smallest integer such that
i +€y—1—A>i butis_1+£€,—1—A < ;. In this case,
we have [Xy; U Xg, =~ U Xy; | — 8t Yoo o(i: —424).
Furthermore, X;; contributes another A + i1 — (i5—1 + fu —
1) — 1 symbols so that

i1

d—1
1 Xi, U UXG, UXyy| = Gyt ) (iz —iz_1)+A
r=2

+i1—(i§_1+£u—l)—1:A.

Thus, there is nothing to prove in this case.
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On the other hand, suppose that 1 < a < k is the least value
such that i, —i,_1 = €. In this case, we know from the above
claim that | X;, U---UX,, ,| = €, + a — 2. It follows that
Xi.....X;,_ each contribute at least one new symbol, namely
ia, ..., k. Therefore | X; U---UX; | = by+a—2+k—a+l =
by +k—1.

Thus, if we think about choosing k& workers, then we need
to ensure that

bt (k—1)+h(E—8)> A
which further implies

T (e e e | _ n—ny, +1
T l—ly+1  ny—ny,+1
as n = A. So, if the system is resilient to s stragglers then
n—ny+1| n’y. +ny, — 1
ny—ny, +1 nye+ 1 '

It should be noted that setting v, = 0 leads to the uncoded
case which is resilient to (ny — 1) workers (same as setting
3 =1 in Theorem 2). [ |

5 < ln—

APPENDIX D
PROOF OF THEOREM 8

Proof: To prove the theorem by contradiction, we assume
that there exists an unknown ATB;, which cannot be
decoded from a particular set of 7 workers where 7 is
defined in the theorem statement. We consider the set B; =
{AlB;,ATB;,...,ATB;,..., AT _;B;}, ie, the set of
all unknowns corresponding to B;, for 5 =0,1,...,Agp — 1,
thus |B;| = A4 = as. It should be noted that the equations
consisting of the unknowns of B; are disjoint with the
equations consisting of the unknowns of B,,, (j # m) since
the assigned submatrices from B are uncoded.

Let S; denote the set of workers where B; does not appear
in the assignments and 7; denote the set of workers where
it appears. According to the scheme in Alg. 4, there are
masby workers each of which has an uncoded copy of B;.
Thus, |S;| = n—maszb;.

Next, partition the workers of 7; into £ = mb; worker
groups, within each of which, all a; uncoded block-columns
of A appear in a cyclic fashion. From the proof of Theorem 7,
we know that any k£ workers within a group will provide
min(a, + k — 1,a2) uncoded symbols corresponding to B;.
Now we have £g such worker groups which indicates that
we have £ workers of 7; which have the same uncoded job

assignments. Thus, from any x workers of 7;, we will obtain

mel — 1, az) uncoded symbols, and ka. coded

symbols. So in order to be able to decode the elements of 1,
we need to find the minimum positive integer for x (which is
denoted as K,in) such that

min(a, + [

a, + [L] — 1+ kae = as.
mb1

It indicates that any k,:n Workers of 7; are enough to recover
all the elements of B; including ATB;. But 7 — |S;| =
Kmin, Which leads to a contradiction and hence concludes the
proof. ]
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APPENDIX E : ~
CONCATENATION OF BLocK Rows INV & U

Let U denote a f.ka x £{.kakp matrix whose

o-th row is given by [u?“’o} ---uf;o’gc—n|---
|ufs“k—"u) ug‘”‘“’f“_n] where we recall that each

entry of U is chosen i.i.d. at random from a continuous
distribution and k = ks kpg. The matrix U can be written as

U=[Up | Uy|...[Ug1]

where each Uj is of dimension {.k4 x £.. We wish to show
that

[Uo Rv@|U; @ v, . U1 ® U(u_l)]

is full-rank with probability 1.

Note that the vectors v(*)’s are also chosen at random and
any collection of kg such vectors is full rank with probability
1. In the argument below we show a specific choice of U
that yields a full-rank matrix. This implies that the matrix
continues to be full-rank under the random choice. Towards
this end, we pick the first £, rows of U to be

[Le.

i.e., the first kg block-columns are identity matrices. It can be
seen that these result in {.kp linearly independent rows. The
next block row of U is a kg block-column shifted version of
the first block row, i.e., it is

g, O s 0

c c

o ... 0 L L, 0 .. 0].

This yields another £.kg linearly independent block rows.
This process can be repeated k4 times to provide the required
result.

APPENDIX F
NUMBER OF A;’s THAT APPEAR LESS
THAN kg TIMES WITHIN THE STRAGGLERS

In the setting of Theorem 6, suppose that we have n—k kg
stragglers that together contain (n — kakg)Aakgp/n uncoded
block-columns of A. We want to show that not all A;’s
appear kp times within the stragglers. To see this consider
a bipartite graph that specifies the placement of the uncoded
block-columns of A. It contains vertices denoting the A;’s
and the worker nodes. An edge connects A; and W; if A;
appears in W;. Thus each A; has degree kg. It can be seen that
this graph is connected as any two neighboring workers W
and W4, (indices reduced modulo-n) have block-columns
in common. Suppose that the stragglers are such that each A;
that appears within the stragglers also appears kp times within
the stragglers. This implies that the subgraph induced by the
stragglers is such that it disconnected from the remaining
workers. This is a contradiction.
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