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Numerically Stable Coded Matrix Computations via
Circulant and Rotation Matrix Embeddings

Aditya Ramamoorthy , Senior Member, IEEE, and Li Tang

Abstract— Polynomial based methods have recently been used
in several works for mitigating the effect of stragglers (slow or
failed nodes) in distributed matrix computations. For a system
with n worker nodes where s can be stragglers, these approaches
allow for an optimal recovery threshold, whereby the intended
result can be decoded as long as any (n − s) worker nodes
complete their tasks. However, they suffer from serious numerical
issues owing to the condition number of the corresponding
real Vandermonde-structured recovery matrices; this condition
number grows exponentially in n. We present a novel approach
that leverages the properties of circulant permutation matrices
and rotation matrices for coded matrix computation. In addition
to having an optimal recovery threshold, we demonstrate an
upper bound on the worst-case condition number of our recovery
matrices which grows as ≈O(ns+5.5); in the practical scenario
where s is a constant, this grows polynomially in n. Our schemes
leverage the well-behaved conditioning of complex Vandermonde
matrices with parameters on the complex unit circle, while still
working with computation over the reals. Exhaustive experimen-
tal results demonstrate that our proposed method has condition
numbers that are orders of magnitude lower than prior work.

Index Terms— Coded computation, Vandermonde matrix, con-
dition number, numerical stability.

I. INTRODUCTION

PRESENT day computing needs necessitate the usage of
large computation clusters that regularly process huge

amounts of data on a regular basis. In several of the relevant
application domains such as machine learning, datasets are
often so large that they cannot even be stored in the disk of
a single server. Thus, both storage and computational speed
limitations require the computation to be spread over several
worker nodes. Such large scale clusters also present attendant
operational challenges. These clusters (which can be hetero-
geneous in nature) suffer from the problem of “stragglers”,
which are defined as slow nodes (node failures are an extreme
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form of a straggler). The overall speed of a computational job
on these clusters is typically dominated by stragglers in the
absence of a sophisticated assignment of tasks to the worker
nodes. In particular, simply creating multiple copies of a task
to protect against worker node failure can be rather wasteful
of computational resources.
In recent years, approaches based on coding theory (referred

to as “coded computation”) have been effectively used for
straggler mitigation. Coded computation offers significant ben-
efits for specific classes of problems such as matrix com-
putations. The essential idea is to create redundant tasks so
that the desired result can be recovered as long as a certain
number of worker nodes complete their tasks. For instance,
suppose that a designated master node wants to compute
AT x where the matrix A is very large. It can decompose
A into block-columns so that A = [A0 A1] and assign
three worker nodes the tasks of determining AT

0 x, AT
1 x and

(AT
0 + AT

1 )x respectively. It is easy to see that even if one
worker node fails, there is enough information for the master
node to compute the final result [1]. Thus, the core idea is
to introduce redundancy within the distributed computation by
coding across submatrices of the input matricesA and B. The
worker nodes are assigned computational tasks, such that the
master node can decode AT B as long as a certain minimum
number of the worker nodes complete their tasks.
There have been several works, that have exploited the cor-

respondence of coded computation with erasure codes (see [2]
for a tutorial introduction and relevant references). The matrix
computation is embedded into the structure of an underlying
erasure code and stragglers are treated as erasures. A scheme
is said to have a threshold τ if the master node can decode the
intended result (matrix-vector or matrix-matrix multiplication)
as long any τ nodes complete their tasks. The work of [3], [4]
has investigated the tradeoff between the threshold and the
tasks assigned to the worker nodes. We discuss related work
in more detail in the upcoming Section III.
In this work we examine coded computation from the per-

spective of numerical stability. Erasure coding typically works
with operations over finite fields. Solving a linear system of
equation over a finite field only requires the corresponding
system to be full-rank. However, when operating over the real
field, a numerically robust solution can only be obtained if
the condition number (ratio of maximum to minimum singular
value) [5] of the system of the equations is small. It turns out
that several of the well-known coded computation schemes
that work by polynomial evaluation/interpolation have serious
numerical stability issues owing to the high condition num-
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ber of corresponding real Vandermonde system of equations.
In this work, we present a scheme that leverages the properties
of structured matrices such as circulant permutation matrices
and rotation matrices for coded computation. These matrices
have eigenvalues that lie on the complex unit circle. Our
scheme allows us to exploit the significantly better behaved
conditioning of complex Vandermonde matrices while still
working with computation over the reals. We also present
exhaustive comparisons with existing work.
This paper is organized as follow. Section II presents

the problem formulation and Section III overviews related
work and summarizes our contributions. Section IV and V
discuss our proposed schemes, while Section VI presents
numerical experiments and comparisons with existing
approaches. Section VII concludes the paper with a dis-
cussion of future work. Several of our proofs appear in
the Appendix.

II. PROBLEM FORMULATION

Consider a scenario where the master node has a large t×r
matrixA ∈ Rt×r and either a t×1 vector x ∈ Rt×1 or a t×w
matrix B ∈ Rt×w. The master node wishes to compute AT x
or AT B in a distributed manner over n worker nodes in the
matrix-vector and matrix-matrix setting respectively. Towards
this end, the master node partitions A (respectively B) into
ΔA (respectively ΔB) block-columns. Each worker node is
assigned δA ≤ ΔA and δB ≤ ΔB linearly encoded block-
columns of A0, . . . ,AΔA−1 and B0, . . . ,BΔB−1, so that
δA/ΔA ≤ γA and δB/ΔB ≤ γB , where γA and γB represent
the storage fraction constraints for A and B respectively.
In the matrix-vector case, the i-th worker is assigned

encoded submatrices ofA and the vector x and computes their
inner product. In the matrix-matrix case it computes pairwise
products of submatrices assigned to it (either all or some
subset thereof). We say that a given scheme has computation
threshold τ if the master node can decode the intended result
as long as any τ out of n worker nodes complete their tasks.
In this case we say that the scheme is resilient to s = n − τ
stragglers. We say that this threshold is optimal if the value
of τ is the smallest possible for the given storage capacity
constraints.
The overall goal is to (i) design schemes that are resilient

to s stragglers (s is a design parameter), while ensuring that
the (ii) desired result can be decoded in a efficient manner,
and (iii) the decoded result is numerically robust even in the
presence of round-off errors and other sources of noise.
An analysis of numerical stability is closely related to the

condition number of matrices. Let ||M|| denote the maximum
singular value of a matrix M of dimension l × l.

Definition 1 (Condition Number): The condition number of
a l × l matrix M is defined as κ(M) = ||M||||M−1||. It is
infinite if the minimum singular value of M is zero.
Consider the system of equations My = z, where z is

known and y is to be determined. If κ(M) ≈ 10b, then the
decoded result loses approximately b digits of precision [5].
In particular, matrices that are ill-conditioned lead to signifi-
cant numerical problems when solving linear equations.

III. BACKGROUND, RELATED WORK AND SUMMARY OF
CONTRIBUTIONS

A significant amount of prior work [3], [4], [6], [7]
has demonstrated interesting and elegant approaches based
on embedding the distributed matrix computation into the
structure of polynomials. Specifically, the encoding at the
master node can be viewed as evaluating certain polynomials
at distinct real values. Each worker node gets a particular
evaluation. When at least τ workers finish their tasks, the
master node can decode the intended result by performing
polynomial interpolation. The work of [6] demonstrates that
when A and B are split column-wise and δA = δB = 1,
the optimal threshold for matrix multiplication is ΔAΔB

and that polynomial based approaches (henceforth referred to
as polynomial codes) achieve this threshold. Prior work has
also considered other ways in which the matrices A and B
can be partitioned. For instance, they can be partitioned
both along rows and columns. The work of [3], [4] has
obtained threshold results in those cases as well. The so-
called Entangled Polynomial and Mat-Dot codes [3], [4],
also use polynomial encodings. The key point is that in all
these approaches, polynomial interpolation is required when
decoding the required result. We note here that to our best
knowledge, the idea of embedding matrix multiplication using
polynomial maps goes back much further to Yagle [8] (the
motivation there was fast matrix multiplication).
Polynomial interpolation corresponds to solving a real Van-

dermonde system of equations at the master node. In the
work of [6], this would require solving a ΔAΔB × ΔAΔB

Vandermonde system. Unfortunately, it can be shown that
the condition number of these matrices grows exponentially
in ΔAΔB [9]. This is a significant drawback and even for
systems with around ΔAΔB ≈ 30, the condition number is
so high that the decoded results are essentially useless (see
Section VI).
In Section VII of [3], it is remarked that when operating

over infinite fields such as the reals, one can embed the
computation into finite fields to avoid numerical errors. They
advocate encoding and decoding over a large enough finite
field of prime order p. However, this method would require
“quantizing” real matrices A and B so that the entries are
integers. We demonstrate that the performance of this method
can be catastrophically bad. In particular, for this method to
work, the maximum possible absolute value of each entry
of the quantized matrices, α should be such that α2t < p,
since each entry in the result corresponds to the inner product
of columns of A and columns of B. This “dynamic range
constraint (DRC)” means that the error in the computation
depends strongly on the actual matrix entries and the value
of t is quite limited. If the DRC is violated, the error in the
underlying computation can be catastrophic. Even if the DRC
is not violated, the dependence of the error on the entries can
make it very bad. We discuss this issue in detail in Section VI.
The issue of numerical stability in the coded computation

context has been considered in a few recent works [10]–[18].
The work of [11], [13] presented strategies for distributed
matrix-vector multiplication and demonstrated some schemes
that empirically have better numerical performance than
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polynomial based schemes for some values of n and s. How-
ever, both these approaches work only for the matrix-vector
problem. Reference [14] presents a random convolutional
coding approach that applies for both the matrix-vector and the
matrix-matrix multiplications problems. Their work demon-
strates a computable upper bound on the worst-case condition
number of the decoding matrices by drawing on connections
with the asymptotic analysis of large Toeplitz matrices. The
work of [16] presents constructions that are based on random
linear coding ideas where the encoding coefficients are chosen
at random from a continuous distribution. These exhibit better
condition number properties.
Reference [15] which considers an alternative approach for

polynomial based schemes by working within the basis of
orthogonal polynomials is most closely related to our work.
It demonstrates an upper bound on the worst-case condition
number of the decoding matrices which grows as O(n2s)
where s is the number of stragglers that the scheme is resilient
to. They also demonstrate experimentally that their perfor-
mance is better than the polynomial code approach. In contrast
we demonstrate an upper bound that is ≈ O(ns+5.5). Further-
more, in Section VI we show that in numerical experiments
our worst-case condition numbers are much better than [15]
(even when s ≤ 6).

A. Summary of Contributions

The work of [9] shows that unless all (or almost all) the
parameters of the Vandermonde matrix lie on the unit circle,
its condition number is badly behaved. However, most of
these parameters are complex-valued (except±1), whereas our
matrices A and B are real-valued. Using complex evaluation
points in the polynomial code scheme, will increase the
cost of computations approximately four times for matrix-
matrix multiplication and around two times for matrix-vector
multiplication. This is an unacceptable hit in computation time.
The main idea of our work is to consider alternate embed-

dings of distributed matrix computations that are based on
rotation and circulant permutation matrices. We demonstrate
that these are significantly better behaved from a numerical
stability perspective. Furthermore, the worker nodes only work
with real computation, thus our method does not incur the
complex arithmetic overhead.

• Our main finding in this paper is that we can work
with matrix embeddings that allow the worker nodes to
perform real-valued computation. Our scheme (i) contin-
ues to have the optimal threshold of polynomial based
approaches when the storage fractions are 1

kA
and 1

kB

and (ii) enjoys the low condition number of complex
Vandermonde matrices with all parameters on the unit
circle. In particular, we demonstrate that rotation matrices
and circulant permutation matrices of appropriate sizes
can be used within the framework of polynomial codes.
At the top level, instead of evaluating polynomials at
real values, our approach evaluates the polynomials at
matrices.

• Using these embeddings we show that the worst-case con-
dition number over all

(
n

n−s

)
possible recovery matrices

is upper bounded by ≈ O(ns+5.5). Furthermore, our

experimental results indicate that the actual values are
significantly smaller, i.e., the analytical upper bounds are
pessimistic.

• An exhaustive numerical comparison with other
approaches in the literature shows that the numerical
stability of our scheme is currently the best known.

Table I contains a comparison of our work with other schemes
in the literature. The columns indicate the corresponding stor-
age fractions, matrix splitting methods, threshold and bounds
on the condition number.

IV. NUMERICALLY STABLE DISTRIBUTED MATRIX
COMPUTATION SCHEMES

Our schemes in this work will be defined by the encoding
matrices used by the master node, which are such that the
master node only needs to perform scalar multiplications and
additions. The computationally intensive tasks, i.e., matrix
operations are performed by the worker nodes. We begin
by defining certain classes of matrices, discuss their relevant
properties and present an example that outlines the basic idea
of our work.
In what follows, we let i =

√−1 and let [m] denote the set
{0, . . . , m− 1}. For a matrix M, M(i, j) denotes its (i, j)-th
entry, whereas Mi,j denotes the (i, j)-th block sub-matrix
of M. We use MATLAB inspired notation at certain places.
For instance, diag(a1, a2, . . . , am) denotes a m×m diagonal
matrix with ai’s on the diagonal and M(:, j) denotes the j-th
column of matrix M. The notation M1 ⊗ M2 denotes the
Kronecker product of M1 and M2 and the superscript ∗ for
a matrix denotes the complex conjugation operator.

Definition 2 (Rotation Matrix): The 2×2 matrix Rθ below
is called a rotation matrix.

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
= QΛQ∗, where (1)

Q =
1√
2

[
i −i
1 1

]
, and Λ =

[
eiθ 0
0 e−iθ

]
. (2)

Definition 3 (Circulant Permutation Matrix): Let e be a
row vector of length m with e = [0 1 0 . . . 0]. Let P
be a m × m matrix with e as its first row. The remaining
rows are obtained by cyclicly shifting the first row with the
shift index equal to the row index. Then Pi, i ∈ [m] are
said to be circulant permutation matrices. Let W denote
the m-point Discrete Fourier Transform (DFT) matrix, i.e.,
W(i, j) = 1√

m
ωij

m for i ∈ [m], j ∈ [m] where ωm = ei 2π
m

denotes the m-th root of unity. Then, it can be shown [19]
that P = Wdiag(1, ωm, ω2

m, . . . , ω
(m−1)
m )W∗.

Example 1: For m = 4, the four possible circulation
permutation matrices are

P =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ ,P0 = I4 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

P2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,P3 =

⎡
⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ .
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TABLE I

COMPARISON WITH EXISTING SCHEMES IN THE LITERATURE. THE LAST COLUMN INDICATES THE KNOWN ANALYTICAL RESULTS ABOUT THE
WORST-CASE CONDITION NUMBER OF THE CORRESPONDING RECOVERY MATRICES. THE ABBREVIATIONS M-V AND M-M IN THE LAST FOUR
ROWS REFER TO MATRIX-VECTOR AND MATRIX-MATRIX MULTIPLICATION, RESPECTIVELY. FOR THE M-V CASES ONLY THE STORAGE

FRACTION γA IS RELEVANT. FOR THE CIRCULANT EMBEDDING q̃ NEEDS TO BE PRIME. THE CONSTANT c1 = 5.5

Remark 1: Rotation matrices and circulant permutation
matrices have the useful property that they are “real” matrices
with complex eigenvalues that lie on the unit circle. We use
this property extensively in the sequel.

Definition 4 (Vandermonde Matrix): Am×m Vandermonde
matrix V with parameters s0, s1, . . . , sm−1 ∈ C is such that
V(i, j) = si

j , i ∈ [m], j ∈ [m]. If the si’s are distinct, then V
is nonsingular [20]. In this work, we will also assume that the
si’s are non-zero.

Condition Number of Vandermonde Matrices: Let V be a
m×m Vandermonde matrix with parameters s0, s1, . . . , sm−1.
The following facts about κ(V) follow from prior work [9].

• Real Vandermonde matrices. If si ∈ R, i ∈ [m], i.e., if V
is a real Vandermonde matrix, then it is known that its
condition number is exponential in m.

• Complex Vandermonde matrices with parameters “not”
on the unit circle. Suppose that the si’s are complex
and let s+ = maxm−1

i=0 |si|. If s+ > 1 then κ(V) is
exponential in m. Furthermore, if 1/|si| ≥ ν > 1 for
at least β ≤ m of the m parameters, then κ(V) is
exponential in β.

Based on the above facts, the only scenario where the con-
dition number is somewhat well-behaved is if most or all of
the parameters of V are complex and lie on the unit-circle.
In Section C in the appendix, we show the following result
which is one of our key technical contributions.

Theorem 1: Consider a m × m Vandermonde matrix V
where m < q (where q is odd) with distinct parameters
{s0, s1, . . . , sm−1} ⊂ {1, ωq, ω

2
q , . . . , ωq−1

q }. Let c1 = 5.5.
Then,

κ(V) ≤ O(qq−m+c1).

Remark 2: For the remainder of the paper, we continue
to use this theorem with c1 = 5.5. If q − m is a constant,
then κ(V) grows only polynomially in q. In the subsequent
discussion, we will leverage Theorem 1 extensively.

Example 2 (Polynomial Codes): Consider the matrix-vector
case where ΔA = 3 and δA = 1. In the polynomial approach,
the master node formsA(z) = A0+A1z+A2z

2 and evaluates
it at distinct real values z1, . . . , zn. The i-th evaluation is sent
to the i-th worker node which computesAT (zi)x. From poly-
nomial interpolation, it follows that as long as the master node
receives results from any three workers, it can decode AT x.
However, when ΔA is large, the interpolation is numerically
unstable [9].
The basic idea of our approach to tackle the numer-

ical stability issue is as follows. We further split each
Ai into two equal sized block-columns. Thus, we now
have six block-columns, indexed as A0, . . .A5. Consider the
6 × 2 matrix defined below; its columns are specified by g0

and g1.

[g0 g1] =

⎡
⎣ I

Ri
θ

R2i
θ

⎤
⎦

The master node forms “two” encoded matrices for the
i-th worker:

∑5
j=0 Ajg0(j) and

∑5
j=0 Ajg1(j) (where

gi(l) denotes the l-th component of the vector gi).
Thus, the storage capacity constraint fraction γA is
still 1

3 .
Worker node i computes the inner product of these two

encoded matrices with x and sends the result to the master
node. It turns out that in this case when any three workers
i0, i1, and i2 complete their tasks, the decodability and numer-
ical stability of recovering AT x depends on the condition
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number of the following matrix.⎡
⎣ I I I

Ri0
θ Ri1

θ Ri2
θ

R2i0
θ R2i1

θ R2i2
θ

⎤
⎦ .

Using the eigen-decomposition of Rθ (cf. (1)) the above block
matrix can expressed as⎡

⎣Q 0 0
0 Q 0
0 0 Q

⎤
⎦
⎡
⎣ I I I

Λi0 Λi1 Λi2

Λ2i0 Λ2i1 Λ2i2

⎤
⎦

︸ ︷︷ ︸
Σ

⎡
⎣Q∗ 0 0

0 Q∗ 0
0 0 Q∗

⎤
⎦ .

As the pre- and post-multiplying matrices are unitary, the
condition number of the above matrix only depends on the
properties of the middle matrix, denoted by Σ. In what
follows, we show that upon appropriate column and row
permutations, Σ can be shown equivalent to a block diagonal
matrix where each of the blocks is a Vandermonde matrix with
parameters on the unit circle. Thus, the matrix is invertible if
the corresponding parameters are distinct. Furthermore, even
though we use real computation, the numerical stability of our
scheme depends on Vandermonde matrices with parameters on
the unit circle. Theorem 1 shows that the condition number of
such matrices is much better behaved.
In the sequel we show that this argument can be significantly

generalized and adapted for the case of circulant permutation
embeddings. The matrix-matrix case requires the development
of more ideas that we also present. In this section we con-
sider (i) the matrix-vector case where the storage fraction
γA = 1/kA and (ii) the matrix-matrix case where the storage
fractions are γA = 1/kA, γB = 1/kB respectively.

A. Matrix Splitting Scheme

We partition the matrices A and B into ΔA = kA� and
ΔB = kB� block-columns respectively. However, we use
two indices to refer to their respective constituent block-
columns as this simplifies our later presentation. To avoid
confusion, we use the subscript 〈i, j〉 to refer to the
corresponding (i, j)-th block-columns. In particularA〈i,j〉, i ∈
[kA], j ∈ [�] and B〈i,j〉, i ∈ [kB], j ∈ [�] refer to the (i, j)-th
block-column of A and B respectively, such that

A=[A〈0,0〉 . . .A〈0,�−1〉| . . . |A〈kA−1,0〉 . . .A〈kA−1,�−1〉], and
B = [B〈0,0〉 . . .B〈0,�−1〉| . . . |B〈kB−1,0〉 . . .B〈kB−1,�−1〉].

(3)

B. Distributed Matrix-Vector Multiplication

In the matrix-vector case, the encoding matrix for A will
be specified by a kA� × n� “generator” matrix G such that

Â〈i,j〉 =
∑

α∈[kA],β∈[�]

G(α� + β, i� + j)A〈α,β〉 (4)

for i ∈ [n], j ∈ [�]. The worker node i stores Â〈i,j〉 for j ∈ [�]
and x, i.e., it stores γA = �/ΔA = 1/kA fraction of matrix A.
Furthermore, it computes ÂT

〈i,j〉x for j ∈ [�] and transmits
them to the master node.

Algorithm 1 Encoding Scheme for Distributed Matrix-Vector
Multiplication

Input: Matrix A and vector x. Storage fraction γA = 1/kA,
positive integer � and encoding matrix G of dimension
kA� × n�.
Output: Worker task assignment.

Partition A into ΔA block-columns as in (3).
for i = 0 to n − 1 do
Worker i is assigned Â〈i,j〉 =

∑
α∈[kA],β∈[�] G(α� +

β, i� + j)A〈α,β〉, for all j ∈ [�] and the vector x.
end for
Worker i computes ÂT

〈i,j〉x for j ∈ [�].

Thus, the master node receives ÂT
〈i,j〉x of length r/ΔA for

j ∈ [�] from a certain number of worker nodes and wants
to decode AT x of length r. Based on our encoding scheme,
this can be done by solving a ΔA × ΔA linear system of
equations r/ΔA times. The structure of this linear system is
inherited from the encoding matrix G. The precise details
of the encoding schemes can be found in Algorithm 1 (an
example appears above).

1) Rotation Matrix Embedding: Let q be an odd number
such that q ≥ n, θ = 2π/q and � = 2 (cf. block column
decomposition in (3)). We choose the generator matrix such
that its (i, j)-th block-submatrix for i ∈ [kA], j ∈ [n] is given
by

Grot
i,j = Rji

θ . (5)

Theorem 2: The threshold for the rotation matrix based
scheme specified above is kA. Furthermore, the worst-case
condition number of the recovery matrices is upper bounded
by O(qq−kA+c1).

Proof: Suppose that workers indexed by i0, . . . , ikA−1

complete their tasks. We extract the corresponding block-
columns of Grot to obtain

G̃rot =

⎡
⎢⎢⎢⎢⎣

I I · · · I
Ri0

θ Ri1
θ · · · R

ikA−1

θ
...

...
. . .

...

Ri0(kA−1)
θ Ri1(kA−1)

θ · · · R
ikA−1(kA−1)

θ

⎤
⎥⎥⎥⎥⎦ .

We note here that the decoder attempts to recover each entry
of AT

〈i,j〉x from the results sent by the worker nodes. Thus,
we can equivalently analyze the decoding by considering the
system of equations as

mG̃rot = c,

where m, c ∈ R1×kA� are row-vectors such that

m =[m0, · · · ,mkA−1]
=[m〈0,0〉, · · · ,m〈0,�−1〉, · · · ,

· · · ,m〈kA−1,0〉, · · · ,m〈kA−1,�−1〉], and
c =[ci0 , · · · , cikA−1 ]

=[c〈i0,0〉, · · · , c〈i0,�−1〉, · · · ,

· · · , c〈ikA−1,0〉, · · · , c〈ikA−1,�−1〉].
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In the expression above, terms of the form m〈i,j〉 and c〈i,j〉
are scalars. We need to analyze κ(G̃rot). Towards this end,
using the eigenvalue decomposition of Rθ, we have

G̃rot =

⎡
⎢⎣Q

. . .
Q

⎤
⎥⎦ Λ̃

⎡
⎢⎣Q∗

. . .
Q∗

⎤
⎥⎦ , where (6)

Λ̃ =

⎡
⎢⎢⎢⎣

I I · · · I
Λi0 Λi1 · · · ΛikA−1

...
...

. . .
...

Λi0(kA−1) Λi1(kA−1) · · · ΛikA−1(kA−1)

⎤
⎥⎥⎥⎦

and Λ is specified in (2). Note that the pre- and post-
multiplying matrices in the RHS of (6) above are both unitary.
Therefore κ(G̃rot) is the same as κ(Λ̃) [20].
Using Claim 2 in Section E in the appendix, we can permute

Λ̃ to put it in block-diagonal form so that

Λ̃d =
[
Λ̃d[0] 0

0 Λ̃d[1]

]
,

where Λ̃d[0] and Λ̃d[1] are Vandermonde matrices with para-
meter sets {eiθi0 , . . . , eiθikA−1} and {e−iθi0 , . . . , e−iθikA−1}
respectively. Note that these parameters are distinct points on
the unit circle. Thus, Λ̃d[0] and Λ̃d[1] are both invertible which
implies that Λ̃ is invertible. This allows us to conclude that
the threshold of the scheme is kA. The upper bound on the
condition number follows from Theorem 1.

Complexity Analysis: Creating an encoded matrix requires
a total of ΔA scalar multiplications and ΔA − 1 additions of
block-columns of size t×r/ΔA. Therefore, the total encoding
complexity is given by O(rtn). Each worker node computes
the product of submatrix of size r/ΔA × t with a vector of
size t, i.e., the computational cost is O(rt/ΔA). Finally, the
decoding process involves inverting a ΔA × ΔA matrix once
and using the inverse to solve r/ΔA systems of equations.
Thus, the overall decoding complexity is O(Δ3

A+rΔA) where
typically, r � Δ2

A.
2) Circulant Permutation Embedding: Let q̃ be a prime

number which is greater than or equal to n. We set � = q̃− 1,
so thatA is sub-divided into kA(q̃−1) block-columns as in (3).
In this embedding we have an additional step. Specifically, the
master node generates the following “precoded” matrices.

A〈i,q̃−1〉 = −
q̃−2∑
j=0

A〈i,j〉, i ∈ [kA]. (7)

In the subsequent discussion, we work with the set of block-
columns A〈i,j〉 for i ∈ [kA], j ∈ [q̃]. The coded submatrices
Â〈i,j〉 for i ∈ [n], j ∈ [q̃] are generated by means of a kAq̃×nq̃
matrix Gcirc using Algorithm 1. The (i, j)-th block of Gcirc

can be expressed as

Gcirc
i,j = Pji, for i ∈ [kA], j ∈ [n], (8)

where the matrix P denotes the q̃ × q̃ circulant permutation
matrix introduced in Definition 3. For this scheme the storage
fraction γA = q̃/(kA(q̃ − 1)), i.e., it is slightly higher
than 1/kA.

Algorithm 2 Decoding Algorithm for Circulant Permutation
Scheme
Input: Gcirc

I where |I| = kA (block-columns of G corre-
sponding to block-columns in I). Row vector c corresponding
to observed values in one system of equations. Permutation π
specified in the proof of Theorem 3.
Output: m which is the solution to mGcirc

I =
c.

1. procedure: Block Fourier Transform and permute c.
for j = 0 to kA − 1 do
Apply FFT to cij = [c〈ij ,0〉, · · · , c〈ij ,q̃−1〉] to obtain cFij

=
[cF〈ij ,0〉, · · · , cF〈ij ,q̃−1〉].

end for
Permute cF = [cFi0 , · · · , cFikA−1

] by π to

obtain cF ,π = [cF ,π
0 , · · · , cF ,π

q̃−1] where cF ,π
j =

[cF〈i0,j〉, c
F
〈i1,j〉, · · · , cF〈ikA−1,j〉], for j = 0, . . . , q̃ − 1.

end procedure
2. procedure: Decode mF ,π from cF ,π.
For i ∈ {1, . . . , q̃− 1}, decode mF ,π

i from cF ,π
i by polyno-

mial interpolation or matrix inversion of G̃F
d [i] (see (13) in

Section B in the appendix). Set mF ,π
0 = [0, · · · , 0].

end procedure
3. procedure: Inverse permute and Block Inverse Fourier
Transform mF ,π.
Permute mF ,π by π−1 to obtain mF = [mF

0 , · · · ,mF
kA−1].

Apply inverse FFT to each mF
i in mF to obtain m =

[m0, · · · ,mkA−1].
end procedure

Theorem 3: The threshold for the circulant permutation
based scheme specified above is kA. Furthermore, the worst-
case condition number of the recovery matrices is upper
bounded by O(q̃q̃−kA+c1) and the scheme can be decoded
by using Algorithm 2.
The proof appears in Section B in the appendix. It is

conceptually similar to the proof of Theorem 2 and relies
critically on the fact that all eigenvalues of P lie on the
unit circle and that P can be diagonalized by the DFT
matrix W.

Complexity Analysis: The complexity analysis closely mir-
rors the analysis for the case of the rotation matrix embedding.
However, we note that for the circulant permutation embed-
ding, the Â〈i,j〉’s can simply be generated by additions since
Gcirc is a binary matrix. Furthermore, the fact that P can
be diagonalized by the DFT matrix W suggests an efficient
decoding algorithm where the fast Fourier Transform (FFT)
plays a key role (see Algorithm 2). In particular, we have the
following claim (see Section A in the appendix for proof).

Claim 1: The decoding complexity of recovering AT x is
O(r(log q̃ + log2 kA)).

Remark 3: Both circulant permutation matrices and rota-
tion matrices allow us to achieve a specified threshold for
distributed matrix vector multiplication. The required storage
fraction γA is slightly higher for the circulant permutation
case and it requires q̃ to be prime. However, it allows for an
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efficient FFT based decoding algorithm. On the other hand, the
rotation matrix case requires a smaller ΔA, but the decoding
requires solving the corresponding system of equations the
complexity of which can be cubic in ΔA. We note that when
the size of A is large, the decoding time will be much lesser
than the worker node computation time; we demonstrate this
numerically as well in Section VI. In Section VI, we show
results that demonstrate that the normalized mean-square error
when circulant permutation matrices are used is lower than the
rotation matrix case.

C. Distributed Matrix-Matrix Multiplication

The matrix-matrix case requires the introduction of newer
ideas within this overall framework. In this case, a given
worker obtains encoded block-columns of both A and B
and representing the underlying computations is somewhat
more involved. Once again we let θ = 2π/q, where q ≥ n
(n is the number of worker nodes) is an odd integer and set
� = 2. Furthermore, let kAkB < n. The (i, j)-th blocks of the
encoding matrices are given by appropriate powers of rotation
matrices, i.e.,

GA
i,j = Rji

θ , for i ∈ [kA], j ∈ [n], and

GB
i,j = R(jkA)i

θ , for i ∈ [kB ], j ∈ [n].

The master node operates according to the encoding rule
discussed previously in the matrix-vector case; the details
can be found in Algorithm 3. Thus, each worker node stores
γA = 1/kA and γB = 1/kB fraction of A and B respectively.
The i-th worker node computes the pair-wise product of
the matrices ÂT

〈i,l1〉B̂〈i,l2〉 for l1, l2 = 0, 1 and returns the
result to the master node. Thus, the master node needs to
recover all pair-wise products of the form AT

〈i,α〉B〈j,β〉 for
i ∈ [kA], j ∈ [kB] and α, β = 0, 1. Let Z denote a 1× 4kAkB

block matrix that contains all of these pair-wise products. The
details of the encoding scheme can be found in Algorithm 3
(an example appears below).

Example 3: Suppose kA = 2, kB = 2. Let n = q = 5,
θ = 2π/5. The matrix A and B can be partitioned as follows.

A = [A〈0,0〉 A〈0,1〉 | A〈1,0〉 A〈1,1〉], and
B = [B〈0,0〉 B〈0,1〉 | B〈1,0〉 B〈1,1〉].

The encoding matrices GA and GB are given by

GA =
[
I I I I I
I Rθ R2

θ R3
θ R4

θ

]
, and

GB =
[
I I I I I
I R2

θ R4
θ R6

θ R8
θ

]
.

Thus, for the i-th worker node, the encoded matrices are
obtained as

Â〈i,0〉 = A〈0,0〉 + Ri
θ(0, 0)A〈1,0〉 + Ri

θ(1, 0)A〈1,1〉,

Â〈i,1〉 = A〈0,1〉 + Ri
θ(0, 1)A〈1,0〉 + Ri

θ(1, 1)A〈1,1〉,

B̂〈i,0〉 = B〈0,0〉 + R2i
θ (0, 0)B〈1,0〉 + R2i

θ (1, 0)B〈1,1〉, and

B̂〈i,1〉 = B〈0,1〉 + R2i
θ (0, 1)B〈1,0〉 + R2i

θ (1, 1)B〈1,1〉.

Algorithm 3 Encoding Scheme for Distributed Matrix-Matrix
Multiplication

Input:MatricesA andB. Storage fractions γA = 1/kA, γB =
1/kB, positive integer � and encoding matrices GA and GB

of dimensions kA� × n� and kB� × n respectively.
Output: Worker task assignment.

PartitionA and B into ΔA and ΔB block-columns as in (3).
for i = 0 to n − 1 do
Worker i is assigned

Â〈i,j〉 =
∑

α∈[kA],β∈[�]

GA(α� + β, i� + j)A〈α,β〉, and

B̂〈i,j〉 =
∑

α∈[kB ],β∈[�]

GB(α� + β, i� + j)B〈α,β〉

for all j ∈ [�].
end for
Worker i computes ÂT

〈i,l1〉B̂〈i,l2〉 for all pairs l1 ∈ [�], l2 ∈
[�].

The i-th worker node computes ÂT
〈i,0〉B̂〈i,0〉, ÂT

〈i,0〉B̂〈i,1〉,
ÂT

〈i,1〉B̂〈i,0〉, ÂT
〈i,1〉B̂〈i,1〉. We can represent the computa-

tions in the i-th worker node using Kronecker products.
We take ÂT

〈i,0〉B̂〈i,1〉 as an example. Let Z denote a
1 × 16 block matrix that contains all of the pair-wise products
AT

〈a,k1〉B〈b,k2〉, a, b, k1, k2 = 0, 1. Consider the following
vector (of length 16).⎡

⎢⎢⎣
I(0, 0)
I(1, 0)

Ri
θ(0, 0)

Ri
θ(1, 0)

⎤
⎥⎥⎦⊗

⎡
⎢⎢⎣

I(0, 1)
I(1, 1)

R2i
θ (0, 1)

R2i
θ (1, 1)

⎤
⎥⎥⎦ .

Then the computation of ÂT
〈i,0〉B̂〈i,1〉 can be denoted as the

product of each of the elements of Z with the correspond-
ing component of the above vector followed by their sum.
For the sake of convenience we represent this operation by
the · operator below. Then we can verify that the computations
in i-th worker node can be denoted as

Z ·
[

I
Ri

θ

]
⊗
[

I
R2i

θ

]
.

Suppose that four different worker nodes i0, i1, i2, i3 have
finished their work. The master node obtains

Z ·Gd = Z ·
([

I
Ri0

θ

]
⊗
[

I
R2i0

θ

] ∣∣∣∣
[

I
Ri1

θ

]
⊗
[

I
R2i1

θ

] ∣∣∣∣[
I

Ri2
θ

]
⊗
[

I
R2i2

θ

] ∣∣∣∣
[

I
Ri3

θ

]
⊗
[

I
R2i3

θ

])
.

We formalize the above construction and prove the Gd has
full rank in Theorem 4.

Theorem 4: The threshold for the rotation matrix based
matrix-matrix multiplication scheme is kAkB . The worst-case
condition number is bounded by O(qq−kAkB+c1).

Proof: Let τ = kAkB and suppose that the workers
indexed by i0, . . . , iτ−1 complete their tasks. Let GA

l denote
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the l-th block column of GA (with similar notation for GB).
Note that for k1, k2 ∈ {0, 1} the l-th worker node computes
ÂT

〈l,k1〉B̂〈l,k2〉 which can be written as⎛
⎝ ∑

α∈[kA],β∈{0,1}
GA(2α + β, 2l + k1)AT

〈α,β〉

⎞
⎠×

⎛
⎝ ∑

α∈[kB ],β∈{0,1}
GB(2α + β, 2l + k2)B〈α,β〉

⎞
⎠

≡ Z · (GA(:, 2l + k1) ⊗ GB(:, 2l + k2)),

using the properties of the Kronecker product. Based on this,
it can be observed that the decodability of Z at the master
node is equivalent to checking whether the following matrix
is full-rank.

G̃ = [GA
i0 ⊗ GB

i0 |GA
i1 ⊗ GB

i1 | . . . |GA
iτ−1

⊗ GB
iτ−1

].

To analyze this matrix, consider the following decomposition
of GA

l ⊗ GB
l , for l ∈ [n].

GA
l ⊗ GB

l

=

⎡
⎢⎢⎢⎣

QQ∗

QΛlQ∗
...

QΛl(kA−1)Q∗

⎤
⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎣

QQ∗

QΛlkAQ∗
...

QΛlkA(kB−1)Q∗

⎤
⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎝(IkA ⊗ Q)

⎡
⎢⎢⎢⎣

I
Λl

...
Λl(kA−1)

⎤
⎥⎥⎥⎦ [Q∗]

⎞
⎟⎟⎟⎠⊗

⎛
⎜⎜⎜⎝(IkB ⊗ Q)

⎡
⎢⎢⎢⎣

I
ΛlkA

...
ΛlkA(kB−1)

⎤
⎥⎥⎥⎦ [Q∗]

⎞
⎟⎟⎟⎠ ,

where the first equality uses the eigen-decomposition of Rθ.
Applying the properties of Kronecker products, this can be
simplified as

((IkA ⊗ Q) ⊗ (IkB ⊗ Q))︸ ︷︷ ︸
Q̃1

×

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

I
Λl

...
Λl(kA−1)

⎤
⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎣

I
ΛlkA

...
ΛlkA(kB−1)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Xl

([
Q∗]⊗2

)
︸ ︷︷ ︸

Q̃2

.

Therefore, we can express

G̃ = [GA
i0 ⊗ GB

i0 |GA
i1 ⊗ GB

i1 | . . . |GA
iτ−1

⊗ GB
iτ−1

]

= Q̃1[Xi0 |Xi1 | . . . |Xiτ−1 ]

⎡
⎢⎢⎢⎣
Q̃2 0 . . . 0
0 Q̃2 . . . 0
...

...
. . .

...
0 0 . . . Q̃2

⎤
⎥⎥⎥⎦ .

Once again, we can conclude that the invertibility and the
condition number of G̃ only depends on [Xi0 |Xi1 | . . . |Xiτ−1 ]

as the matrices pre- and post- multiplying it are both unitary.
The invertibility of [Xi0 |Xi1 | . . . |Xiτ−1 ] follows from an
application of Claim 3 in Section E in the appendix. The
proof of Claim 3 also shows that upon appropriate row-
column permutations, the matrix [Xi0 |Xi1 | . . . |Xiτ−1 ] can
be expressed as a block-diagonal matrix with four blocks
each of size τ × τ . Each of these blocks is a Vandermonde
matrix with parameters from the set {1, ωq, ω

2
q , . . . , ωq−1

q }.
Therefore, [Xi0 |Xi1 | . . . |Xiτ−1 ] is non-singular and it follows
that the threshold of our scheme is kAkB . An application of
Theorem 1 implies that the worst-case condition number is at
most O(qq−τ+c1).

Remark 4: The proofs of Theorem 2 and 4 involve a diag-
onalization argument with pre- and post-multiplying matrices
that are unitary. We emphasize that this is only for the analysis
of the scheme and the encoding and decoding schemes do not
require multiplication by these matrices.

Complexity Analysis: Creating the Â〈i,l〉 matrix requires a
total of ΔA scalar multiplications and ΔA − 1 additions of
block-columns of size t×r/ΔA; a similar argument applies for
creating the B̂〈i,l〉 matrix (note that ΔA = 2 kA, ΔB = 2kB).
Thus, the total encoding complexity is given by O((r+w)tn).
Each worker node computes four submatrix products. Thus,
the worker node computational cost is O(4× rtw/ΔAΔB) =
O(rtw/kAkB). The decoding process involves inverting a
matrix of dimension ΔAΔB × ΔAΔB followed by solving
rw/ΔAΔB systems of equations. Thus, the overall decoding
complexity is given by O((ΔAΔB)3 + rwΔAΔB). It can be
seen that the decoding complexity is independent of t. Thus,
when the input matrices are large, i.e., r, w and t are large, then
the overall cost is dominated by the worker node computation
time.

V. GENERALIZED DISTRIBUTED MATRIX
MULTIPLICATION

In the previous section, we consider the case that A and B
are partitioned into block-columns. In this section, we consider
a more general scenario where A and B are partitioned into
block-columns and block-rows. This construction resembles
the entangled polynomial codes of [3].

A. Matrix Splitting Scheme

We partition the matrices A and B into 2p block-rows and
ΔA = kA block-columns, and 2p block-rows and ΔB = kB

block-columns respectively. We use two indices for the block-
rows to simplify our presentation. In particular, we denote

A = [A(〈i,l〉,j)], i ∈ [p], l ∈ {0, 1}, j ∈ [kA], and
B = [B(〈i,l〉,j)], i ∈ [p], l ∈ {0, 1}, j ∈ [kB], (9)

where A(〈i,l〉,j) denotes the submatrix indexed by the 〈i, l〉-th
block row and j-th block-column of A. A similar interpreta-
tion holds for B(〈i,l〉,j). We let θ = 2π/q, where q ≥ n >
2kAkBp − 1 (recall that n is the number of worker nodes) is
an odd integer.
The encoding in this scenario is more complicated to

express. We simplify this by leveraging the following simple
result which can be easily verified.
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Algorithm 4 Encoding Scheme for Generalized Distributed
Matrix-Matrix Multiplication
Input: Matrices A and B. Storage fractions γA =
1/pkA, γB = 1/pkB. Integer ζ = t

2p .
Output: Worker task assignment.

Partition A and B into 2p × ΔA and 2p × ΔB blocks as
in (9).
for k = 0 to n − 1 do
Worker k is assigned[
Â〈k,0〉
Â〈k,1〉

]
=

p−1∑
i=0

kA−1∑
j=0

(Rk((j−1)p+i+1)
−θ ⊗ Iζ)

[
A(〈i,0〉,j)
A(〈i,1〉,j)

]
,

[
B̂〈k,0〉
B̂〈k,1〉

]
=

p−1∑
i=0

kB−1∑
j=0

(Rk(p−1−i+jpkA)
θ ⊗ Iζ)

[
B(〈i,0〉,j)
B(〈i,1〉,j)

]
.

end for
Worker k computes[

Â〈k,0〉
Â〈k,1〉

]T [
B̂〈k,0〉
B̂〈k,1〉

]
.

Lemma 1: Suppose that matrices M1 and M2 both have ζ
rows and the same column dimension. Consider a 2×2 matrix
Ψ = [Ψi,j ], i = 0, 1, j = 0, 1. Then[

Ψ0,0M1 + Ψ0,1M2

Ψ1,0M1 + Ψ1,1M2

]
= (Ψ ⊗ Iζ)

[
M1

M2

]
.

The complete encoding algorithm appears in Algorithm 4.

The k-th worker node stores Â〈k,l〉, B̂〈k,l〉, l = 0, 1. Thus,
each worker node stores γA = 2

2pkA
= 1

pkA
and γB =

2
2pkB

= 1
pkB

fraction of A and B respectively. Worker node
k computes [

Â〈k,0〉
Â〈k,1〉

]T [
B̂〈k,0〉
B̂〈k,1〉

]
. (10)

Before presenting our decoding algorithm and the main
result of this section, we discuss the following example that
helps clarify the underlying ideas.

Example 4: Suppose kA = 1, kB = 1, p = 2. Let n = 4.
The matrix A and B can be partitioned as follows.

A =

⎡
⎢⎢⎣
A(〈0,0〉,0)
A(〈0,1〉,0)
A(〈1,0〉,0)
A(〈1,1〉,0)

⎤
⎥⎥⎦ , and B =

⎡
⎢⎢⎣
B(〈0,0〉,0)
B(〈0,1〉,0)
B(〈1,0〉,0)
B(〈1,1〉,0)

⎤
⎥⎥⎦ .

In this example, since kA = kB = 1, there is only
one block column in A and B. Therefore, the index j in
A(〈i,l〉,j) and B(〈i,l〉,j) is always 0. Accordingly, to sim-
plify our presentation, we only use indices i and l to
refer to the respective constituent block rows of A and B.
That is, we simplify A(〈i,l〉,j) and B(〈i,l〉,j) to A〈i,l〉 and
B〈i,l〉, respectively. Our scheme aims to allow the master
node to recover AT B = AT

〈0,0〉B〈0,0〉 + AT
〈0,1〉B(〈0,1〉 +

AT
〈1,0〉B〈1,0〉 + AT

〈1,1〉B〈1,1〉. Suppose that A〈i,l〉 and B〈i,l〉
have ζ rows. The encoding process (cf. Algorithm 4) can be

defined as

[
Â〈k,0〉
Â〈k,1〉

]
=

∑1
i=0(R

k(i−1)
−θ ⊗ Iζ)

[
A〈i,0〉
A〈i,1〉

]
, and[

B̂〈k,0〉
B̂〈k,1〉

]
=
∑1

i=0(R
k(1−i)
θ ⊗ Iζ)

[
B〈i,0〉
B〈i,1〉

]
.

The computation in worker node k (cf. (10)) can be ana-

lyzed as follows. Let

[
AF

〈i,0〉
AF

〈i,1〉

]
= (Q∗ ⊗ Iζ)

[
A〈i,0〉
A〈i,1〉

]
and[

BF
〈i,0〉

BF
〈i,1〉

]
= (Q∗ ⊗ Iζ)

[
B〈i,0〉
B〈i,1〉

]
. Then

[
Â〈k,0〉
Â〈k,1〉

]T [
B̂〈k,0〉
B̂〈k,1〉

]
(a)
=
(

(Q∗ ⊗ Iζ)
[
Â〈k,0〉
Â〈k,1〉

])∗
(Q∗ ⊗ Iζ)

[
B̂〈k,0〉
B̂〈k,1〉

]

=
(

(Q∗ ⊗ Iζ)(R−k
−θ ⊗ Iζ)

[
A〈0,0〉
A〈0,1〉

]
+

(Q∗ ⊗ Iζ)(I2 ⊗ Iζ)
[
A〈1,0〉
A〈1,1〉

])∗

(
(Q∗ ⊗ Iζ)(Rk

θ ⊗ Iζ)
[
B〈0,0〉
B〈0,1〉

]
+

(Q∗ ⊗ Iζ)(I2 ⊗ Iζ)
[
B〈1,0〉
B〈1,1〉

])
(b)
=
(

(Q∗R−k
−θQ⊗ Iζ)(Q∗ ⊗ Iζ)

[
A〈0,0〉
A〈0,1〉

]
+

(Q∗I2Q⊗ Iζ)(Q∗ ⊗ Iζ)
[
A〈1,0〉
A〈1,1〉

])∗

(
(Q∗Rk

θQ⊗ Iζ)(Q∗ ⊗ Iζ)
[
B〈0,0〉
B〈0,1〉

]
+

(Q∗I2Q⊗ Iζ)(Q∗ ⊗ Iζ)
[
B〈1,0〉
B〈1,1〉

])
(c)
=
(([

ω∗
q
−k 0
0 ω∗

q
k

]
⊗ Iζ

)
(Q∗ ⊗ Iζ)

[
A〈0,0〉
A〈0,1〉

]
+([

1 0
0 1

]
⊗ Iζ

)
(Q∗ ⊗ Iζ)

[
A〈1,0〉
A〈1,1〉

])∗

(([
ωq

k 0
0 ωq

−k

]
⊗ Iζ

)
(Q∗ ⊗ Iζ)

[
B〈0,0〉
B〈0,1〉

]
+([

1 0
0 1

]
⊗ Iζ

)
(Q∗ ⊗ Iζ)

[
B〈1,0〉
B〈1,1〉

])
(d)
=
([

ω∗
q
−kAF

〈0,0〉
ω∗

q
kAF

〈0,1〉

]
+

[
AF

〈1,0〉
AF

〈1,1〉

])∗

([
ωq

kBF
〈0,0〉

ωq
−kBF

〈0,1〉

]
+

[
BF

〈1,0〉
BF

〈1,1〉

])
=(AF∗

〈0,0〉B
F
〈1,0〉 + AF∗

〈1,1〉B
F
〈0,1〉)ω

−k
q +

(AF∗
〈0,0〉B

F
〈0,0〉 + AF∗

〈1,0〉B
F
〈1,0〉+

AF∗
〈0,1〉B

F
〈0,1〉 + AF∗

〈1,1〉B
F
〈1,1〉)+

(AF∗
〈1,0〉B

F
〈0,0〉 + AF∗

〈0,1〉B
F
〈1,1〉)ω

k
q

where

• (a) holds because Q∗ ⊗ Iζ is unitary,
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• (b) holds by the mixed-product property of Kronecker
product. For example,

(Q∗ ⊗ Iζ)(R−k
−θ ⊗ Iζ) = (Q∗R−k

−θ) ⊗ Iζ

= (Q∗R−k
−θQQ∗) ⊗ Iζ

= (Q∗R−k
−θQ⊗ Iζ)(Q∗ ⊗ Iζ).

• (c) holds because Q∗RθQ =
[
ωq 0
0 ω−1

q

]
, and

• (d) holds by Lemma 1.
Thus, it is clear that whenever the master node collects

the results of any three distinct worker nodes, it can recover
AF∗

〈0,0〉B
F
〈0,0〉 + AF∗

〈1,0〉B
F
〈1,0〉 + AF∗

〈0,1〉B
F
〈0,1〉 + AF∗

〈1,1〉B
F
〈1,1〉.

However, we observe that for i = 0, 1[
AF

〈i,0〉
AF

〈i,1〉

]∗ [
BF

〈i,0〉
BF

〈i,1〉

]
=
[
A〈i,0〉
A〈i,1〉

]T [
B〈i,0〉
B〈i,1〉

]
.

Thus, we can equivalently recover AT B.
The analysis in the example above can be generalized to

show the following result. The proof appears in Section D in
the appendix.

Theorem 5: The threshold for scheme in this section is
2pkAkB−1. The worst-case condition number of the recovery
matrices is upper bounded by O(qq−2pkAkB+1+c1).

Remark 5: When kA = kB = 1, the threshold of this
scheme matches the Entangled Polynomial code [3] and the
MatDot codes [4], with the added advantage of excellent
numerical stability.
The decoding algorithm in this case requires more steps.

It is specified in Algorithm 5. In particular, it requires us
to work with the inverse of a complex matrix (see (11))
which is essentially (upto a unitary scaling) a Vandermonde
matrix with parameters on the unit circle. The underlying
reason can be found by examining the proof of Theorem 5.
Thus, the decoding in this case is more expensive than prior
methods that work exclusively with real valued decoding.
Nevertheless, we emphasize that the worker node computation
is still real-valued.
Suppose that the k-th worker node computes ÂT

k B̂k and
that the master node receives the computation results from
any τ = 2pkAkB − 1 worker nodes, which are denoted by
i0, · · · , iτ−1. By (16), the useful and interference terms can
be decoded by computing the inverse of

Gvand
I =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
−i0(pkAkB−1)
q ω

−i1(pkAkB−1)
q · · · ω

−iτ−1(pkAkB−1)
q

ω
−i0(pkAkB−2)
q ω

−i1(pkAkB−2)
q · · · ω

−iτ−1(pkAkB−2)
q

...
...

. . .
...

1 1 · · · 1
...

...
. . .

...

ω
i0(pkAkB−1)
q ω

i1(pkAkB−1)
q · · · ω

iτ−1(pkAkB−1)
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

and using it to solve r
kA

× w
kB
systems of equations. We point

out that by multiplying Gvand
I from the right by the unitary

matrix [diag(ωi0
q , . . . , ω

iτ−1
q )]pkAkB−1, it can be seen that

Algorithm 5 Decoding Scheme for Generalized Distributed
Matrix-Matrix Multiplication

Input: Gvand
I (cf. (11)) where |I| = 2pkAkB − 1 (columns

of Gvand corresponding to columns in I). Row vectors c
corresponding to the observed values in each of the r

kA
× w

kB

system of equations.
Output: Decoded estimate C̃ of AT B.

1. procedure: Decode m̂ from c
m̂ = [m̂−pkAkB , · · · , m̂0, · · · , m̂pkAkB ] by m̂ =
c(Gvand

I )−1.
end procedure
2. procedure: Repeat above procedure for each of the r

kA
×

w
kB
systems of equations. Upon appropriate indexing, we can

form a matrix M̂i,j ,−(kA − 1) ≤ i ≤ kA − 1,−(kB − 1) ≤
j ≤ kB − 1 using the decoded components m̂ip+jpkA .
end procedure
3. procedure: Recover C̃i1,j1 for i1 ∈ [kA], j1 ∈ [kB ].
if i1 = 0, j1 = 0 then

C̃0,0 = M̂0,0.
else

C̃i1,j1 = M̂i1,j1 + M̂−i1,−j1 .
end if
end procedure

κ(Gvand
I ) is the same as the condition number of a Vander-

monde matrix of size (2pkAkB − 1) × (2pkAkB − 1) with
parameters ωi0

q , . . . , ω
iτ−1
q .

Finally, the result C = [Ci,j ], i ∈ [kA], j ∈ [kB] can
be recovered since Ci,j =

∑p−1
u=0(A

T
(〈u,0〉,i)B(〈u,0〉,j) +

AT
(〈u,1〉,i)B(〈u,1〉,j)) =

(∑p−1
u=0(A

F∗
(〈u,0〉,i)B

F
(〈u,0〉,j)

)
+(∑p−1

u=0 AF∗
(〈u,1〉,i)B

F
(〈u,1〉,j))

)
. The precise decoding algorithm

is summarized in Algorithm 5.
Complexity Analysis: We note here that the decoding algo-

rithm involving inverting a (2pkAkB − 1) × (2pkAkB − 1)
complex Vandermonde matrix once and using the inverse
to solve r

kA
× w

kB
systems of equations in Steps 1 and 2.

Step 3 involves the sum of matrices of size r
kA

× w
kB

so its
complexity is O(rw). Thus, the overall decoding complexity is
O((2pkAkB−1)3+rw+ rw

kAkB
(2pkAkB−1)2) ≈ O(p3k3

Ak3
B+

rwp2kAkB), where typically, rw � pk2
Ak2

B .

VI. COMPARISONS AND NUMERICAL EXPERIMENTS

We now present a comparison of our techniques with
other approaches in the literature. Towards this end we will
compare the worst-case and the average condition numbers of
the recovery matrices of the different schemes. Furthermore,
we will also present corresponding normalized mean-squared-
error (MSE) vs. SNR curves. For matrix-vector multiplication,
let AT x denote the true value of the computation and ÂT x
denote the result of using one of the discussed methods. The

normalized MSE is defined as ||AT x−̂AT x||F
||AT x||F (the notation

||·||F denotes the Frobenius norm of the matrix). Similarly, for
the matrix-matrix multiplication, the normalized MSE is given

by ||AT B−̂AT B||F
||AT B||F whereAT B is the true product and ÂT B is
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the decoded product using one of the methods. We will also
report the computation threshold, worker computation times
and decoding times for all the methods under consideration.
Suppose that the number of workers n is odd, so that

we can pick q = n for the rotation matrix embedding.
From a theoretical perspective our schemes have a worst-case
condition number (over the different recovery submatrices)
that is upper bounded by O(qq−τ+c1) where τ is the recovery
threshold. Equivalently, the worst-case condition number is
upper bounded by O(ns+c1) (recall that c1 = 5.5). We note
here that this upper bound is definitely loose and our numerical
experiments which will be presented shortly indicate that the
actual condition number values are much smaller. The work
of [15] shows a condition number upper bound which is
O(n2s). While this is larger than our upper bound for values of
s ≥ 6 we emphasize that our actual condition number values
are much lower than [15] even for s ≤ 6.
As discussed previously, the scheme of [6] has condition

numbers that are exponential in the recovery threshold τ .
This is corroborated by our numerical experiments as well.
In Section VII of [3], the authors propose a finite field
embedding approach as a potential solution to the numerical
issues encountered when operating over the reals. For this
purpose the real entries will need to multiplied by large enough
integers and then quantized so that each entry lies with 0 and
p − 1 for a large enough prime p. All computations will be
performed within the finite field of order p, i.e., by reducing
the computations modulo-p. This technique requires that each
AT

i Bj needs to have all its entries within 0 to p − 1,
otherwise there will be errors in the computation. Let α
be an upper bound on the absolute value of matrix entries
in A and B. Then, this means that the following dynamic
range constraint (DRC),

α2t ≤ p − 1

needs to be satisfied. Otherwise, the modulo-p operation will
cause arbitrarily large errors.
We note here that the publicly available code for [6] uses

p = 65537. Now consider a system with kA = 3, kB = 2.
Even for small matrices with A of size 400× 200, B of size
400 × 300 and entries chosen as random integers between
0 to 30, the DRC is violated for p = 65537 since 302 ×
400 > 65537. In this scenario, the normalized MSE of the [6]
approach is 0.7746. In contrast, our method has a normalized
MSE ≈ 2× 10−28 for the same system with kA = 3, kB = 2.
When working over 64-bit integers, the largest integer

is ≈ 1019. Thus, even if t ≈ 105, the finite-field embedding
method can only support α ≤ 107. Thus, the range is
rather limited. Furthermore, considering matrices of limited
dynamic range is not a valid assumption. In machine learning
scenarios such as deep neural networks, matrix multiplications
are applied repeatedly, and the output of one stage serves as the
input for the other. Thus, over several iterations the dynamic
range of the matrix entries will grow. Consequently, applying
this technique will necessarily incur quantization error.
The most serious limitation of the method comes from

the fact the error in the computation (owing to quanti-
zation) is strongly dependent on the actual entries of the

TABLE II

PERFORMANCE OF MATRIX INVERSION OVER A LARGE PRIME ORDER
FIELD IN PYTHON 3.7. THE TABLE SHOWS THE COMPUTATION TIME
FOR INVERTING A �×�MATRIXG OVER A FINITE FIELD OF ORDER

p. LET ̂G−1 DENOTE THE INVERSE OBTAINED BY APPLYING
THE SYMPY FUNCTION Matrix(G) .inverse_mod(p).

THE MSE IS DEFINED AS 1
�
||ĜG−1 − I||F

A and B matrices. In fact, we can generate structured integer
matrices A and B such that the normalized MSE of their
approach is exactly 1.0. Towards this end we first pick the
prime p = 2147483647 (which is much larger than their
publicly available code) so that their method can support
higher dynamic range. Next let r = w = t = 2000. This
implies that α has to be ≤ 1000 by the dynamic range
constraint. For kA = kB = 2, the matrices have the following
block decomposition.

A =
[
A0,0 A0,1

A1,0 A1,1

]
, and

B =
[
B0,0 B0,1

B1,0 B1,1

]
.

Each Ai,j and Bi,j is a matrix of size 1000 × 1000, with
entries chosen from the following distributions. A0,0, A0,1

are distributed Unif(0, . . . , 9999) and A1,0, A1,1 distributed
Unif(0, . . . , 9). Next,B0,0, B0,1 are distributed Unif(0, . . . , 9)
and B1,0,B1,1 distributed Unif(0, . . . , 9999). In this scenario,
the DRC requires us to multiply each matrix by 0.1 and
quantize each entry between 0 and 999. Note that this implies
that A1,0,A1,1,B0,0,B0,1 are all quantized into zero sub-
matrices since the entry in these four submatrices is less
than 10. We label the quantized matrices by the superscript ·̃.
We emphasize that the finite field embedding technique only
recovers the product of these quantized matrices. However,
this product is

ÃT B̃ =
[
Ã0,0 Ã0,1

0 0

]T [
0 0

B̃1,0 B̃1,1

]
= 0.

Thus, the final estimate of the original product AT B, denoted
as ÂT B is the all-zeros matrix. This implies that the nor-
malized MSE of their scheme is exactly 1.0. Thus, the per-
formance of the finite field embedding technique has a strong
dependence on the matrix entries. We note here that even if we
consider other quantization schemes or larger 64-bit primes,
one can arrive at adversarial examples such as the ones shown
above. Once again for these examples, our methods have a
normalized MSE of at most 10−27.
In our experience, the finite field embedding technique also

suffers from significant computational issues in implementa-
tion. Note that the technique requires the computation of the
inverse matrix at the master node that is required for decoding

Authorized licensed use limited to: Iowa State University Library. Downloaded on November 27,2022 at 18:19:46 UTC from IEEE Xplore.  Restrictions apply.



RAMAMOORTHY AND TANG: NUMERICALLY STABLE CODED MATRIX COMPUTATIONS 2695

the final result. We implemented this within the Python 3.7,
sympy library (see [21] Git hub repository). We performed
experiments with p = 65537 and p = 2147483647. As shown
in Table II, for the smaller prime p = 65537, the inverse
computation is accurate up to 15 × 15 matrices; however,
the computation time of the inverse is rather high and can
dominate the overall execution time. On the other hand for the
larger prime p = 2147483647, the error in in the computed
inverse is very high for 12 × 12 and 15 × 15 matrices; the
corresponding time taken is even higher. It is possible that
very careful implementations can perhaps avoid these issues.
However, we are unaware of any such publicly available code.
To summarize, the finite field embedding technique suffers
from major dynamic range limitations and associated computa-
tional issues and cannot be used to support real computations.
The work most closely related to ours is by [15], which

demonstrates an upper bound of O(q2(q−τ)) on the worst-
case condition number. It can be noted that this grows
much faster than our upper bound in the parameter q − τ .
In numerical experiments, our worst-case condition numbers
are much smaller than the work of [15]; we discuss this in the
upcoming Section VI-A. We note that the results in [15] are
given in terms of the condition number calculated using the
Frobenius norm,1 i.e., for matrix M, they define κ(M) =
||M||F ||M−1||F . However, there are well-known relations
between different matrix norms. In particular when M is of
size �×�, then ||M||2 ≤ ||M||F ≤ √

�||M||2. This allows us to
compare the corresponding Frobenius-norm induced condition
number as well.
Both our scheme and [15] have the optimal threshold when

A andB are only divided into block-columns (cf. Section IV)).
However, when the matrices are split across both rows and
columns (cf. Section V) the polynomial code approach of [3]
has a lower threshold of pkAkB + p − 1, while our threshold
is 2pkAkB −1; the thresholds match when kA = kB = 1. The
work of [15] in this scenario, i.e., when p > 1 has a threshold
denoted τF−C given by

τF−C = 4kAkBp − 2(kAkB + pkA + pkB)
+ kA + kB + 2p − 1.

It can be seen that if kA = 1 or kB = 1, then τF−C ≤
2pkAkB − 1. However, when kA > 1 and kB > 1, simple
analysis shows that our threshold ≤ τF−C (see Claim 4 in the
Appendix).
Certain approaches [11]–[13], [22] only apply for matrix-

vector multiplication and furthermore do not provide any
explicit guarantees on the worst-case condition number. Other
approaches include the work of [16] which uses random linear
encoding of the A and B matrices and the work of [14] that
uses a convolutional coding approach to this problem. Both
these approaches require random sampling and do not have a
theoretical upper bound on the worst-case condition number.
However, for a given set of random choices, it is possible
to numerically compute an upper bound on the worst-case
condition number of [14].

1For measuring the error in decoding a system of equations corresponding
to M it is more natural to consider an induced norm, like the one we use.

A. Numerical Experiments
The central point of our work is that we can leverage

the well-conditioned behavior of Vandermonde matrices with
parameters on the unit circle while continuing to work with
computation over the reals. We compare our results with the
work of [6] (called “Real Vandermonde”), a “Complex Vander-
monde” scheme where the evaluation points are chosen from
the complex unit circle, the work of [14], [15] and [16]. For
the normalized MSE simulations below, we always pick the set
of worker nodes that correspond to the worst-case condition
number of the corresponding method. Additive Gaussian noise
is added to the encoded matrix and vector in the matrix-
vector case and both encoded matrices in the matrix-matrix
case (details in [23]).
All experiments were run on the AWS EC2 system with a

t2.2xlarge instance (for master node) and t2.micro instances
(for slave nodes). The source code can be found in [23].

1) Matrix-Vector Case: In Table III, we compare the aver-
age and worst-case condition number of the different schemes
for matrix-vector multiplication. The system under consider-
ation has n = 31 worker nodes and a threshold specified by
the third column (labeled as τ ). The evaluation points for [6]
were uniformly sampled from the interval [−1, 1] [24]. The
Complex Vandermonde scheme has evaluation points which
are the 31-st root of unity. The [15] and [16] schemes are not
applicable for the matrix-vector case. It can be observed from
Table III that both the worst-case and the average condition
numbers of our scheme are over eleven orders of magnitude
better than the Real Vandermonde scheme. Furthermore, there
is an exact match of the condition number values for all
the other schemes. This can be understood by following
the discussion in Section IV-B. Specifically, our schemes
have the property that the condition number only depends
on the eigenvalues of corresponding circulation permutation
matrix and rotation matrix respectively. These eigenvalues lie
precisely within 31-th roots of unity. The methods of [14] have
some divisibility constraints on the number of columns in A.
Accordingly, we considered a matrix with 21924 columns
for it. We performed 200 random trials for picking the best
Random Conv. code [14]. The worst-case condition number of
these methods are still around one to two orders of magnitude
higher than ours.
It can be observed that the decoding flop count for both

matrix-vector and matrix-matrix multiplication is independent
of t, i.e., in the regime where t is very large the decoding time
may be neglected with respect to the worker node computation
time. Nevertheless, from a practical perspective it is useful to
understand the decoding times as well.
When the matrixA is of dimension 28000×19720 and x is

of length 28000, the last two columns in Table III indicate the
average worker node computation time and the master node
decoding time for the different schemes. These numbers were
obtained by averaging over several runs of the algorithm. It can
be observed that the Complex Vandermonde scheme requires
about twice the worker computation time as our schemes.
Thus, it is wasteful of worker node computation resources.
On the other hand, our schemes leverage the same condition
number with computation over the reals. The decoding times
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TABLE III

COMPARISON FOR MATRIX-VECTOR CASE WITH n = 31, A HAS SIZE 28000 × 19720 AND x HAS LENGTH 28000 FOR THE FIRST FOUR METHODS.
FOR THE ALL ONES CONV. AND RANDOM CONV. (FROM [14]),A HAS 21924 COLUMNS

TABLE IV

COMPARISON FORAT B MATRIX-MATRIXMULTIPLICATION CASE WITH n = 31, kA = 4, kB = 7. A HAS
SIZE 8000 × 14000, B HAS SIZE 8400 × 14000

of almost all the schemes are quite small. However, the Circu-
lant Permutation Matrix scheme requires decoding time which
is somewhat higher than the rotation matrix embedding even
though we can use FFT based approaches for it. We expect
that for much larger scale problems, the FFT based approach
may be faster.
Our next set of results compare the mean-squared

error (MSE) in the decoded result for the different schemes.
To simulate numerical precision problems, we added i.i.d
Gaussian noise (of different SNRs) to the encoded submatrices
of A and the vector x (the encoded submatrices of B) in
each worker node. The master node then performs decoding
on the noisy vectors. The plots in Figure 1 correspond to the
worst-case choice of worker nodes for each of the schemes.
It can be observed that the Circulant Permutation Matrix
Embedding has the best performance. This is because many
of the matrices on the block-diagonal in (13) (see Section B
in the appendix) have well-behaved condition numbers and
only a few correspond to the worst-case. We have not shown
the results for the Real Vandermonde case here because the
normalized MSE was very large.

2) Matrix-Matrix Case: In the matrix-matrix scenario we
again consider a system with n = 31 worker nodes and
kA = 4 and kB = 7 so that the threshold τ = kAkB = 28.
Once again we observe (cf. Table IV) that the worst-case
condition number of the Rotation Matrix Embedding is about
eleven orders of magnitude lower than the Real Vandermonde
case. Furthermore, the schemes of [15] and [16] have a worst-
case condition numbers that are two orders of magnitude
higher than our scheme. For both [16] and [14] schemes we
performed 200 random trials and picked the scheme with the
lowest worst-case condition number. For [14], we only report
the upper bound on the worst-case condition number. Finding
the actual worst-case recovery set takes a long time.
When the matrix A is of dimension 8000 × 14000 and B

is of dimension 8000 × 14000, the worker node computation

Fig. 1. Consider matrix-vector AT x multiplication system with n = 31,
τ = 29. A has size 28000 × 19720 and x has length 28000.

times and decoding times are listed in Table IV. As expected
the Complex Vandermonde scheme takes much longer for
the worker node computations, whereas the Rotation Matrix
Embedding, [15] and [16] take about the same time. The
decoding times are also very similar. As shown in Figure 2, the
normalized MSE of our Rotation Matrix Embedding scheme
is much about five orders of magnitude lower than the scheme
of [15]. The normalized MSE of the Real Vandermonde case
is very large so we do not plot it. Since we did not determine
the worst-case recovery set for [14], we have not included the
data and corresponding curves for it.
In the matrix-matrix multiplication scenario with p ≥ 2,

we consider a system with n = 17 worker nodes and uA =
2, uB = 2, p = 2. Note that in this case the threshold of [3]
is lower than our threshold and [15]. Accordingly, we picked
a setting where the our and [15]’s threshold match and only
compare these results.
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TABLE V

COMPARISON FOR MATRIX-MATRIXAT B MULTIPLICATION CASE WITH n = 17, uA = 2, uB = 2, p = 2, A IS OF
SIZE 4000 × 16000, B IS OF 4000 × 16000

Fig. 2. Consider matrix-matrix AT B multiplication system with n = 31,
kA = 4, kB = 7, A is of size 8000 × 14000, B is of 8400 × 14000.

Fig. 3. Consider matrix-matrix AT B multiplication system with n = 18,
uA = 2, uB = 2, p = 2, A is of size 4000×16000, B is of 4000×16000.

We observe that the condition number of the Rotation
Matrix Embedding scheme is about four orders of magnitude
lower than [15]. Figure 3 shows that the normalized MSE
of our Rotation Matrix Embedding scheme is much lower
than [15]. The Rotation Matrix Embedding scheme has higher
decoding time since its decoding algorithm operates over the
complex field.

VII. CONCLUSION AND FUTURE WORK

In this work we demonstrated that polynomial based
schemes for coded computation suffer from serious numerical
stability issues in practice. This stems from the provably bad
conditioning of real Vandermonde matrices. We demonstrated
a technique that exploits the properties of circulant and rota-
tion matrices for coded computation. In essence, our method
allows us to leverage the superior conditioning of complex

Vandermondematrices with parameters on the unit circle while
still working with real computations at the worker nodes.
The worst-case condition number of our recovery matrices is
upper bounded by O(ns+5.5) (where n- number of workers,
s- number of stragglers) and our schemes have excellent
performance in numerical experiments.
It is to be noted that our upper bound grows with the number

of stragglers. In fact, it can be shown that if s is a large fraction
of n, then the condition number of the corresponding recovery
matrices can be quite large even in the complex Vandermonde
on unit circle case. It would be interesting to investigate coded
computation schemes that continue to be numerically stable in
the large s regime.

APPENDIX

A. Proof of Claim 1

Proof: Note that Algorithm 2 is applied for recovering the
corresponding entries of AT

i,jx for i ∈ [kA], j ∈ [q̃] separately.
There are r/(kA(q−1)) such entries. The complexity of com-
puting a N -point FFT is O(N log N) in terms of the required
floating point operations (flops). Computing the permutation
does not cost any flops and its complexity is negligible as
compared to the other steps. Step 1 of Algorithm 2 therefore
has complexity O(kAq̃ log q̃). In Step 2, we solve the degree
kA − 1 polynomial interpolation, (q̃ − 1) times. This takes
O((q̃−1)kA log2 kA) time [25]. Finally, Step 3, requires apply-
ing the inverse permutation and the inverse FFT; this requires
O(kAq̃ log q̃) operations. Therefore, the overall complexity is
given by

r

kA(q̃ − 1)
(
O(kAq̃ log q̃) + O((q̃ − 1)kA log k2

A)
)

≈ O(r(log q̃ + log2 kA)).

B. Proof of Theorem 3

Proof: The arguments are conceptually similar to the
proof of Theorem 2. Suppose that the workers indexed by
i0, . . . , ikA−1 complete their tasks. The corresponding block-
columns of Gcirc can be extracted to form

G̃ =

⎡
⎢⎢⎢⎣

I I · · · I
Pi0 Pi1 · · · PikA−1

...
...

. . .
...

Pi0(kA−1) Pi1(kA−1) · · · PikA−1(kA−1)

⎤
⎥⎥⎥⎦ .

As in the proof of Theorem 2 we can equivalently analyze
the decoding by considering the system of equations

mG̃ = c,
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where m, c ∈ R1×kA q̃ are row-vectors such that

m =[m0, · · · ,mkA−1]
=[m〈0,0〉, · · · ,m〈0,q̃−1〉, · · · ,

· · ·m〈kA−1,0〉, · · · ,m〈kA−1,q̃−1〉], and
c =[ci0 , · · · , cikA−1 ]

=[c〈i0,0〉, · · · , c〈i0,q̃−1〉, · · · ,

· · · , c〈ikA−1,0〉, · · · , c〈ikA−1,q̃−1〉].

Note that not all variables in m are independent owing to (7).
LetmF and cF denote the q̃-point “block-Fourier” transforms
of these vectors, i.e,

mF = m

⎡
⎢⎣W

. . .
W

⎤
⎥⎦ and

cF = c

⎡
⎢⎣W

. . .
W

⎤
⎥⎦ ,

where W is the q̃-point DFT matrix. Let G̃k,l = Pilk

denote the (k, l)-th block of G̃. Using the fact that P can
be diagonalized by the DFT matrix W, we have

G̃k,l = Wdiag(1, ωilk
q̃ , ω2ilk

q̃ , . . . , ω
(q̃−1)ilk
q̃ )W∗.

Let G̃F
k,l = diag(1, ωilk

q̃ , ω2ilk
q̃ , . . . , ω

(q̃−1)ilk
q̃ ), and G̃F rep-

resent the kA × kA block matrix with G̃F
k,l for k, l = 0, . . . ,

kA − 1 as its blocks. Therefore, the system of equations

mG̃ = c,

can be further expressed as

m

⎡
⎢⎣W

. . .
W

⎤
⎥⎦
⎡
⎢⎣W∗

. . .
W∗

⎤
⎥⎦ G̃

⎡
⎢⎣W

. . .
W

⎤
⎥⎦

= c

⎡
⎢⎣W

. . .
W

⎤
⎥⎦ ,

=⇒ [mF
0 , · · · ,mF

kA−1]G̃
F = [cFi0 , · · · , cFikA−1

]

upon right multiplication by the matrix

⎡
⎢⎣W

. . .
W

⎤
⎥⎦. Next,

we note that as each block within G̃F has a diagonal structure,
we can rewrite the system of equations as a block diagonal
matrix upon applying an appropriate permutation (cf. Claim 2
in Section E in the appendix). Thus, we can rewrite it as

[mF ,π
0 , · · · ,mF ,π

q̃−1]G̃
F
d = [cF ,π

0 , · · · , cF ,π
q̃−1], (12)

where the permutation π is such that mF ,π
j =

[mF
0,j mF

1,j . . . mF
kA−1,j] and likewise cF ,π

j =
[cFi0,j cFi1,j . . . cFikA−1,j]. Furthermore, G̃F

d is a block-
diagonal matrix where each block is of size kA × kA. Now,
according to (7), we have mF

i,0 =
∑q̃−1

j=0 mi,j = 0 for

i = 0, . . . , kA − 1, which implies that mF ,π
0 is a 1 × kA zero

row-vector and thus cF ,π
0 is too.

In what follows, we show that each of the other
diagonal blocks of G̃F

d is non-singular. This means that
[mF

0 , · · · ,mF
kA−1] and consequentlym can be determined by

solving the system of equations in (12). Towards this end,
we note that the k-th diagonal block (1 ≤ k ≤ q̃ − 1) of G̃F

d ,
denoted by G̃F

d [k] can be expressed as follows.

G̃F
d [k] =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
ωi0k

q̃ ωi1k
q̃ · · · ω

ikA−1k

q̃
...

...
. . .

...

ω
(kA−1)i0k
q̃ ω

(kA−1)i1k
q̃ · · · ω

(kA−1)ikA−1k

q̃

⎤
⎥⎥⎥⎥⎦ .

(13)

The above matrix is a complex Vandermonde matrix with
parameters ωi0k

q̃ , . . . , ω
ikA−1k

q̃ . Thus, as long these parameters

are distinct, G̃F
d [k] will be non-singular. Note that we need

the property to hold for k = 1, . . . , q̃ − 1. This condition can
be expressed as

(iα − iβ)k �≡ 0 (mod q̃),

for iα, iβ ∈ {0, . . . , n − 1} and 1 ≤ k ≤ q̃ − 1. A
necessary and sufficient condition for this to hold is that q̃ is
prime. An application of Theorem 1 shows that κ(G̃F

d [k]) ≤
O(q̃q̃−kA+c1) for all k. As decodingm is equivalent to solving
systems of equations specified by G̃F

d [k] for 1 ≤ k ≤ q̃ − 1,
the worst-case condition number is at most O(q̃q̃−kA+c1).

C. Vandermonde Matrix Condition Number Analysis

Let V be a m × m Vandermonde matrix with parameters
s0, s1, . . . sm−1. We are interested in upper bounding κ(V).
Let s+ = maxm−1

i=0 |si|. Then, it is known that ||V|| ≤
m max(1, sm−1

+ ) [9]. Finding an upper bound on ||V−1|| is
more complicated and we discuss this in detail below. Towards
this end we need the definition of a Cauchy matrix.

Definition 5: A m × m Cauchy matrix is specified by
parameters s = [s0 s1 . . . sm−1] and t = [t0 t1 . . . tm−1],
such that its (i, j)-th entry

Cs,t(i, j) =
(

1
si − tj

)
for i ∈ [m], j ∈ [m].

In what follows, we establish an upper bound on the
condition number of Vandermonde matrices with parameters
on the unit circle.
Proof of Theorem 1:

Proof: Recall that ωq = ei 2π
q and ωm = ei 2π

m and define
tj = fωj

m, j = 0, . . . , m − 1 where f is a complex number
with |f | = 1. We let Cs,f denote the Cauchy matrix with
parameters {s0, . . . , sm−1} and {t0, . . . , tm−1}. LetW be the
m-point DFT matrix. The work of [9] shows that

V−1 =diag(fm−1−j)m−1
j=0

√
mW∗

diag(ω−j
m )m−1

j=0 C−1
s,fdiag

(
1

sm
j − fm

)m−1

j=0

.
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It can be seen that the matrix
diag(fm−1−j)m−1

j=0 W∗diag(ω−j
m )m−1

j=0 is unitary. Therefore,

||V−1||

=
√

m||C−1
s,fdiag

(
1

sm
j − fm

)m−1

j=0

||

≤√
m||C−1

s,f || ×
(

1
minm−1

i=0 |sm
i − fm|

)

≤m1.5 × (max
i′,j′

|C−1
s,f(i′, j′)|) ×

(
1

minm−1
i=0 |sm

i − fm|

)
,

(14)

where the first inequality holds as the norm of a product of
matrices is upper bounded by the products of the individual
norms and second inequality holds since for any M, we have
||M|| ≤ ||M||F .
In what follows, we upper bound the RHS of (14). Let s(x)

denote a function of x so that s(x) = Πm−1
i=0 (x − si). The

(i′, j′)-the entry of C−1
s,f can be expressed as [9]

C−1
s,f(i′, j′) = (−1)ms(tj′ )(sm

i′ − fm)/(si′ − tj′ ), so that

|C−1
s,f(i′, j′)| = |s(tj′)||sm

i′ − fm|/|si′ − tj′ |
≤ |s(tj′)|(|sm

i′ | + |fm|)/|si′ − tj′ |
= 2|s(tj′)|/|si′ − tj′ | (since |si′ | = |f | = 1).

Let M = {1, ωq, ω
2
q , . . . , ωq−1

q } \ {s0, s1, . . . , sm−1} denote
the q-th roots of unity that are not parameters of V. Note that

s(tj′) = Πm−1
i=0 (tj′ − si)

=
xq − 1

Παj∈M(x − αj)

∣∣∣∣
x=tj′

, so that

|s(tj′)| =
|tqj′ − 1|

Παj∈M|tj′ − αj |
≤ 2

Παj∈M|tj′ − αj |
(since |tj′ | = 1 and by the triangle inequality).

Thus, we can conclude that

max
i′,j′

|C−1
s,f (i′, j′)|

≤4 max
i′,j′

1
Παj∈M|(tj′ − αj)|

1
|si′ − tj′ |

=4
(

1
mini′,j′ Παj∈M|(tj′ − αj)|

1
|si′ − tj′ |

)
. (15)

Note that in the expression above the αj ’s and si′ are all points
within Ωq = {1, ωq, ω

2
q , . . . , ωq−1

q }. We choose f = ei π
m so

that tj′ = fωj′
m = ei π

m ωj′
m. Now for any i′ and j′ we need

to lower bound Παj∈M|(tj′ − αj)||si′ − tj′ |. Towards this
end, we note that the distance between two points on the unit
circle can be expressed as 2 sin(θ/2) if θ is the induced angle
between them. Furthermore, we have 2 sin(θ/2) ≥ 2θ/π as
long as θ ≤ π.
Let d = q−m. Then, for any choice of tj′ we can consider

lower bounds on the distances of d + 1 points that lie on Ωq.

It can be seen that the closest point to tj′ that lies within Ωq

has an induced angle∣∣∣∣2π�

q
− 2π(j′ + 1

2 )
m

∣∣∣∣≥ 2π

qm

1
2
≥ π

q2
(since q is odd & q > m).

Therefore, the corresponding distance is lower bounded by
2/q2. Similarly, the next closest distance is lower bounded by
2/q, followed by 2(2/q), 3(2/q), . . . , d(2/q). Then,

min
i′,j′

(
Παj∈M|(tj′ − αj)|

) |si′ − tj′ |
≥ 2/q2 × 2/q × 4/q × · · · × 2d/q

= 2d+1d!
1

qd+2
.

Therefore,

max
i′,j′

|C−1
s,f(i′, j′)| ≤ qd+2

Cd

where Cd = 2d−1d! is a constant. Let the i-th parameter si =
ei2π�/q. Then,

|sm
i − fm| = |ei2π�m/q + 1|

= 2| cos(π�m/q)|.
The term �m can be expressed as �m = βq + η for integers β
and η such that 0 ≤ η ≤ q − 1. Now note that η �= q/2 since
by assumption q is odd. Thus, | cos(π�m/q)| takes its smallest
value when η = (q + 1)/2 or (q − 1)/2. In this case

| cos(π�m/q)| =
∣∣∣∣ cos

(
βπ + π

q + 1
2q

) ∣∣∣∣
≥
∣∣∣∣ sin

(
π

2q

) ∣∣∣∣
≥ 1

q
.

Thus, we can upper bound the RHS of (14) and obtain

||V−1|| ≤ m1.5 qd+2

Cd
q

≤ qd+4.5

Cd
(since m < q).

Finally, using the fact that ||V || ≤ m < q. we obtain

κ(V) ≤ qd+5.5

Cd
.

D. Proof of Theorem 5

Proof: We proceed in a similar manner as in Example 4.
Following the encoding rules (cf. Algorithm 4) and worker
computation rules (cf. (10)), we can analyze the computation in

worker k as follows. Let (Q∗⊗Iζ)
[
A(〈i,0〉,j)
A(〈i,1〉,j)

]
=

[
AF

(〈i,0〉,j)
AF

(〈i,1〉,j)

]

and (Q∗⊗Iζ)
[
B(〈i,0〉,j)
B(〈i,1〉,j)

]
=

[
BF

(〈i,0〉,j)
BF

(〈i,1〉,j)

]
. Let Âk =

[
Â〈k,0〉
Â〈k,1〉

]
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and B̂k =
[
B̂〈k,0〉
B̂〈k,1〉

]
. Then, we have

ÂF
k = (Q∗ ⊗ Iζ)Âk

=
p−1∑
i=0

kA−1∑
j=0

(Q∗Rk((j−1)p+i+1)
−θ QQ∗ ⊗ Iζ)

[
A(〈i,0〉,j)
A(〈i,1〉,j)

]

=
p−1∑
i=0

kA−1∑
j=0

(Λ∗k((j−1)p+i+1) ⊗ Iζ)(Q∗ ⊗ Iζ)
[
A(〈i,0〉,j)
A(〈i,1〉,j)

]

=

[ ∑p−1
i=0

∑kA−1
j=0 ω∗

q
k((j−1)p+i+1)AF

(〈i,0〉,j)∑p−1
i=0

∑kA−1
j=0 ω∗

q
−k((j−1)p+i+1)AF

(〈i,1〉,j)

]
, and

B̂F
k = (Q∗ ⊗ Iζ)B̂k

=
p−1∑
i=0

kB−1∑
j=0

(Q∗Rk(p−1−i+jpkA)
θ QQ∗ ⊗ Iζ)

[
B(〈i,0〉,j)
B(〈i,1〉,j)

]

=
p−1∑
i=0

kB−1∑
j=0

(Λk(p−1−i+jpkA) ⊗ Iζ)(Q∗ ⊗ Iζ)

[
BF

(〈i,0〉,j)
BF

(〈i,1〉,j)

]

=

[ ∑p−1
i=0

∑kB−1
j=0 ω

k(p−1−i+jpkA)
q BF

(〈i,0〉,j)∑p−1
i=0

∑kA−1
j=0 ω

−k(p−1−i+jpkA)
q BF

(〈i,1〉,j)

]
.

This implies that

ÂT
k B̂k =((Q∗ ⊗ Iζ)Âk)∗(Q∗ ⊗ Iζ)B̂k

=ÂF∗
k B̂F

k

=
( p−1∑

i=0

kA−1∑
j=0

ωk((j−1)p+i+1)
q AF∗

(〈i,0〉,j)

)
( p−1∑

i=0

kB−1∑
j=0

ωk(p−1−i+jpkA)
q BF

(〈i,0〉,j)

)
+

( p−1∑
i=0

kA−1∑
j=0

ω−k((j−1)p+i+1)
q AF∗

(〈i,1〉,j)

)
( p−1∑

i=0

kB−1∑
j=0

ω−k(p−1−i+jpkA)
q BF

(〈i,1〉,j)

)
. (16)

To better understand the behavior of the sum in (16),
we divide it into the following two cases.

• Case 1: Useful terms. The master node wants to recover
C = AT B = [Ci,j ], i ∈ [kA], j ∈ [kB ], where each
Ci,j is a block matrix of size r/kA × w/kB . Note that
Ci,j =

∑p−1
u=0(A

T
(〈u,0〉,i)B(〈u,0〉,j) +AT

(〈u,1〉,i)B(〈u,1〉,j)).
Moreover, note that

AF∗
(〈u,0〉,i)B

F
(〈u,0〉,j) + AF∗

(〈u,1〉,i)B
F
(〈u,1〉,j)

=

[
AF

(〈u,0〉,i)
AF

(〈u,1〉,i)

]∗ [
BF

(〈u,0〉,j)
BF

(〈u,1〉,j)

]

=
(

(Q∗ ⊗ Iζ)
[
A(〈u,0〉,i)
A(〈u,1〉,i)

])∗(
(Q∗ ⊗ Iζ)

[
B(〈u,0〉,j)
B(〈u,1〉,j)

])

=
[
A(〈u,0〉,i)
A(〈u,1〉,i)

]∗ [B(〈u,0〉,j)
B(〈u,1〉,j)

]
=AT

(〈u,0〉,i)B(〈u,0〉,j) + AT
(〈u,1〉,i)B(〈u,1〉,j).

It is easy to check that
∑p−1

u=0 AF∗
(〈u,0〉,i)B

F
(〈u,0〉,j) is the

coefficient of ω
k(ip+jpkA)
q and

∑p−1
u=0 AF∗

(〈u,1〉,i)B
F
(〈u,1〉,j)

is the coefficient of ω
−k(ip+jpkA)
q . Thus, decoding and

summing the corresponding coefficients, allows us to
recover Ci,j . Note further that the exponent of ωq is a
multiple of p.

• Case 2: Interference terms. The terms in (16) with coef-
ficient AF∗

(〈u,l〉,i)B
F
(〈v,l〉,j) with u �= v are the interference

terms and they are the coefficients of ω
±k(ip+u−v+jpkA)
q .

We conclude that the useful terms have no intersection
with interference terms since 1 ≤ |u − v| < p.

Next we determine the threshold of the proposed scheme.
Towards this end, we find the maximum and minimum degree
of ÂF∗

k B̂F
k and then argue that (16) has powers of ωq that lie at

consecutive multiples of k. The threshold can then be obtained
by adding 1 to the difference of the maximum and minimum
degrees divided by k. The maximum degree of ÂF∗

k B̂F
k is the

degree of the term

ωk(pkAkB−1)
q AF∗

(〈p−1,0〉,kA−1)B
F
(〈0,0〉,kB−1),

and the minimum degree is the degree of the term

ω−k(pkAkB−1)
q AF∗

(〈p−1,1〉,kA−1)B̂
F
(〈0,1〉,kB−1).

Next we argue that (16) has powers of ωq that are con-
secutive multiples of k between the maximum and minimum
degree. Towards this end, we show that there always exist
some terms in (16) with degree dk, where −pkAkB +1 ≤ d ≤
pkAkB−1. We observe that the positive powers of ωq

k in (16)
can be written as ±((j1−1)p+ i1+1+p−1− i2+ j2pkA) =
±(j2pkA + j1p + i1− i2), where j1 ∈ [kA], j2 ∈ [kB], i1, i2 ∈
[p]. Consider a positive power d ≤ pkAkB −1. We can always
find a solution such that j2 = � d

pkA
�, j1 = �d mod pkA

p �,
i1 − i2 = (d mod pkA) mod p. A similar result holds when d
is negative. We conclude that the threshold of the scheme is
2pkAkB − 1.
Now suppose that 2pkAkB − 1 workers return their results.

Equation (16) shows that the condition number of the corre-
sponding decoding matrix is equivalent to (up to multiplication
by an appropriately defined unitary matrix) a Vandermonde
matrix whose parameters are a (2pkAkB − 1)- sized subset of
{1, ωq, ω

2
q , . . . , ωq−1

q }. Therefore, an application of Theorem 1
implies that the worst-case condition number is upper bounded
by O(qq−2pkAkB+1+c1).

E. Auxiliary Claims

Definition 6 (Permutation Equivalence): We say that a
matrix M is permutation equivalent to Mπ if Mπ can be
obtained by permuting the rows and columns ofM. We denote
this by M � Mπ.

Claim 2: Let M be a l1q × l2q matrix consisting of blocks
of size q× q denoted by Mi,j for i ∈ [l1], j ∈ [l2] where each
Mi,j is a diagonal matrix. Then, the rows and columns of
M can be permuted to obtain Mπ which is a block diagonal
matrix where each block matrix is of size l1× l2 and there are
q of them.
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Proof: For an integer a, let (a)q denote a mod q. In what
follows, we establish two permutations

πl1(i) = l1(i)q + �i/q�, 0 ≤ i < l1q, and

πl2(j) = l2(j)q + �j/q�, 0 ≤ j < l2q

and show that applying row-permutation πl1 and column-
permutation πl2 to M will result in a block diagonal
matrix Mπ.
We observe that (i, j)-th entry in M is the ((i)q,

(j)q)-th entry in the block M	i/q
,	j/q
 . Under the applied
permutations the (i, j)-th entry in M is mapped to (l1(i)q +
�i/q�, l2(j)q + �j/q�)-entry in Mπ. Recall that M	i/q
,	j/q

is a diagonal matrix which implies that for (i)q �= (j)q , the
(l1(i)q + �i/q�, l2(j)q + �j/q�) entry in Mπ is 0. Therefore
Mπ is a block diagonal matrix with q blocks of size l1×l2.

Example 5: Let l1 = 2, l2 = 3, q = 2. Consider a
4 × 6 matrix M which consists of diagonal matrices Mi,j

of size 2 × 2. For 0 ≤ i ≤ 1, 0 ≤ j ≤ 2

M =
[
M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

]

=

⎡
⎢⎢⎣
1 0 1 0 1 0
0 1 0 1 0 1
1 0 ωq 0 ω2

q 0
0 1 0 ω−1

q 0 ω−2
q

⎤
⎥⎥⎦ .

We use row permutation πrow = (0, 2, 1, 3), which means
0, 1, 2, 3-th row of M permutes to 0, 2, 1, 3-th row. Similarly,
the column permutation is πcol = (0, 3, 1, 4, 2, 5). Thus, Mπ

becomes

Mπ =

⎡
⎢⎢⎣
1 1 1
1 ωq ω2

q

1 1 1
1 ω−1

q ω−2
q

⎤
⎥⎥⎦ .

Claim 3: (i) Let a0(z) =
∑�a−1

j=0 aj0z
j , a1(z) =∑�a−1

j=0 aj1z
−j and b0(z) =

∑�b−1
j=0 bj0z

j�a , b1(z) =∑�b−1
j=0 bj1z

−j�a . Then, ak1(z)bk2(z) for k1, k2 = 0, 1
are polynomials that can be recovered from �a�b distinct
evaluation points in C.
Let D(zj) = diag([zj z−j]) and let

X(z) =

⎡
⎢⎢⎢⎣

I2

D(z)
...

D(z�a−1)

⎤
⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎣

I2

D(z�a)
...

D(z�a(�b−1))

⎤
⎥⎥⎥⎦ .

Then, if zi’s are distinct points in C, the matrix

[X(z1)|X(z2)| . . . |X(z�a�b
)],

is nonsingular.
(ii) The matrix [Xi0 |Xi1 | . . . |Xiτ−1 ] (defined in the proof of

Theorem 4) is permutation equivalent to a block-diagonal
matrix with four blocks each of size τ × τ . Each of these
blocks is a Vandermonde matrix with parameters from
the set {1, ωq, ω

2
q , . . . , ωq−1

q }.
Proof: First we show that ak1(z)bk2(z) for k1, k2 =

0, 1 are polynomials that can be recovered from �a�b distinct

evaluation points in C. Towards this end, these four polyno-
mials can be written as

a0(z)b0(z) =
�a−1∑
i=0

�b−1∑
j=0

ai0bj0z
i+j�a ,

a0(z)b1(z) =
�a−1∑
i=0

�b−1∑
j=0

ai0bj1z
i−j�a ,

a1(z)b0(z) =
�a−1∑
i=0

�b−1∑
j=0

ai1bj0z
−i+j�a , and

a1(z)b1(z) =
�a−1∑
i=0

�b−1∑
j=0

ai1bj1z
−i−j�a .

Upon inspection, it can be seen that each of the polynomials
above has �a�b consecutive powers of z. Therefore, each of
these can be interpolated from �a�b non-zero distinct evalua-
tion points in C.
The second part of the claim follows from the above

discussion. To see this we note that

[a0(z) a1(z)]

=[a00 a01 a10 a11 . . . a(�a−1)0 a(�a−1)1]

⎡
⎢⎢⎢⎣

I2

D(z)
...

D(z�a−1)

⎤
⎥⎥⎥⎦ and

[b0(z) b1(z)]

=[b00 b01 b10 b11 . . . b(�b−1)0 b(�b−1)1]

⎡
⎢⎢⎢⎣

I2

D(z�a)
...

D(z�a(�b−1))

⎤
⎥⎥⎥⎦ .

Furthermore, the four product polynomials under consideration
can be expressed as

[a0(z) a1(z)] ⊗ [b0(z) b1(z)]
=
(
[a00 a01 a10 a11 . . . a(�a−1)0 a(�a−1)1]⊗

[b00 b01 b10 b11 . . . b(�b−1)0 b(�b−1)1]
)
X(z).

We have previously shown that all polynomials in
[a0(z) a1(z)] ⊗ [b0(z) b1(z)] can be interpolated by
obtaining their values on �a�b non-zero distinct evaluation
points. This implies that we can equivalently obtain

[a00 a01 . . . a(�a−1)0 a(�a−1)1]⊗[b00 b01 . . . b(�b−1)0 b(�b−1)1]

which means that [X(z1)|X(z2)| . . . |X(z�a�b
)] is non-

singular. This proves the statement in part (i).
The proof of the statement in (ii) is essentially an exercise

in showing the permutation equivalence of several matrices by
using Claim 2 and the permutation equivalence properties of
Kronecker products. For convenience, we define

Xl,A =

⎡
⎢⎢⎢⎣

I
Λl

...
Λl(kA−1)

⎤
⎥⎥⎥⎦ , and
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XP
l = XP

l,A ⊗ XP
l,B � XP,π

l =

⎡
⎢⎢⎣
Vl,A,1 ⊗ Vl,B,1

Vl,A,2 ⊗ Vl,B,1

Vl,A,1 ⊗ Vl,B,2

Vl,A,2 ⊗ Vl,B,2

⎤
⎥⎥⎦ .

Xl,B =

⎡
⎢⎢⎢⎣

I
ΛlkA

...
ΛlkA(kB−1)

⎤
⎥⎥⎥⎦

so that Xl = Xl,A ⊗ Xl,B . Recall that we are analyzing the
matrix X = [Xi0 |Xi1 | . . . |Xiτ−1 ]. An application of Claim 2
shows that (blank entries in the matrices below indicate zero
blocks)

Xl,A � XP
l,A =

[
Vl,A,1

Vl,A,2

]
, and

Xl,B � XP
l,B =

[
Vl,B,1

Vl,B,2

]
,

where Vl,A,1 = [1, ωl
q, · · · , ω

l(kA−1)
q ]T , Vl,A,2 =

[1, ω−l
q , · · · , ω

−l(kA−1)
q ]T . Also, Vl,B,1 = [1, ωlkA

q , · · · ,

ω
lkA(kB−1)
q ]T , Vl,B,2 = [1, ω−lkA

q , · · · , ω
−lkA(kB−1)
q ]T . Then

we conclude that X � XP = [XP
i0 |XP

i1 | · · · |XP
iτ−1

], where
XP

l = XP
l,A ⊗ XP

l,B . The equation at the top of the page
shows that XP

l is permutation-equivalent to a block-diagonal
matrix.
By the definition of Kronecker product, we have

XP
l,A ⊗ XP

l,B =
[
Vl,A,1 ⊗ XP

l,B

Vl,A,2 ⊗ XP
l,B

]
.

Note that Vl,A,i ⊗ Vl,B,j � Vl,B,j ⊗ Vl,A,i, then

Vl,A,i ⊗ XP
l,B

=Vl,A,i ⊗
[
Vl,B,1

Vl,B,2

]
�
[
Vl,B,1

Vl,B,2

]
⊗ Vl,A,i

=
[
Vl,B,1 ⊗ Vl,A,i

Vl,B,2 ⊗ Vl,A,i

]
�
[
Vl,A,i ⊗ Vl,B,1

Vl,A,i ⊗ Vl,B,2

]
.

Thus, we can conclude that XP
l � XP,π

l . In addition, we have

Vl,A,1 ⊗ Vl,B,1

= [1, ωl
q, · · · , ωl(kAkB−2)

q , ωl(kAkB−1)
q ]T ,

Vl,A,2 ⊗ Vl,B,1

=[ω−l(kA−1)
q , ω−l(kA−2)

q , · · · , ωl(kA(kB−1)−1)
q , ωlkA(kB−1)

q ]T ,

Vl,A,1 ⊗ Vl,B,2

=[ω−lkA(kB−1)
q , ω−l(kA(kB−1)−1)

q , · · · , ωl(kA−2)
q , ωl(kA−1)

q ]T ,

and Vl,A,2 ⊗ Vl,B,2

= [ω−l(kAkB−1)
q , ω−l(kAkB−2)

q , · · · , ω−l
q , 1]T .

Finally, applying Claim 2 again we obtain the required
result.

Claim 4: Let τdiff = 2kAkBp − 2(kAkB + pkA + pkB) +
kA + kB + 2p where kA, kB and p are positive integers with
p > 1. Then, τdiff < 0 only if kA = 1 or kB = 1.

Proof: If kA = 1, then τdiff = 1 − kB < 0 when kB > 1;
a similar argument holds when kB = 1, kA > 1. On the other
hand when kA > 1 and kB > 1, suppose that

2kAkBp + kA + kB + 2p < 2(kAkB + pkA + pkB),

=⇒ 2 +
1

kBp
+

1
kAp

+
2

kAkB
< 2

(
1
p

+
1

kB
+

1
kA

)
(17)

(upon dividing by kAkBp).

We note that if kA, kB and p are all ≥ 3, then we have a
contradiction since the RHS is ≤ 2, whereas the LHS is > 2.
Thus, we only need to consider a limited number of cases
where some of the values equal 2. These can be verified on a
case by case basis.
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