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Abstract—The speed of distributed matrix computations over
large clusters is often dominated by the stragglers (slow or
failed worker nodes). Several techniques based on coding theory
have been introduced to mitigate the straggler issue where every
worker node is assigned smaller task(s) of multiplying encoded
submatrices of the original matrices. However, many of these
methods consider the stragglers as erasures, i.e., they discard
the potentially useful partial computations done by the slower
workers. Moreover, the “input” matrices can be sparse in many
scenarios. In this case encoding schemes that combine a large
number of input submatrices can adversely affect the worker
computation time.

In this work, we proposed an integrated approach which
addresses both of the issues mentioned above. We allow limited
amount of encoding for the submatrices of both A and B;
this helps us to preserve the sparsity of the encoded matrices,
so that the worker computation can be fast. Our approach
provides a trade-off between straggler resilience and worker
computation speed, while utilizing partial computations at the
workers. Crucially, at one operating point we can ensure that
the failure resilience of the system is optimal. Comprehensive
numerical analysis done in Amazon Web Services (AWS) cluster
confirms the superiority of our approach when compared with
previous methods.

I. INTRODUCTION

Distributed matrix computation is often used repeatedly in

several large scale machine learning problems. Typically, the

job is subdivided into smaller tasks and assigned to multiple

worker nodes within the cluster. However, these cluster often

suffer from the issue of stragglers (slow or failed workers).

Recently, several coding theory techniques [1]–[12] have been

proposed to mitigate the effect of stragglers for matrix-vector

and matrix-matrix multiplications (see [13] for a tutorial

overview). For instance, consider a matrix A ∈ R
t×r and

a vector x ∈ R
t; the approach in [1] proposes to compute

ATx by partitioning the matrix A into two block-columns as

A = [A0 |A1], and assigning the job of computing AT
0 x, AT

1 x
and (A0 +A1)

T
x, respectively, to three different workers. In

this way, ATx can be recovered if any two out of three workers

return their results; in other words, the system is resilient to

one straggler. In general, if we have n worker nodes, we define

the recovery threshold as the minimum number of workers

(τ ) that need to finish their jobs such that the result ATx
(for matrix-vector multiplication), or ATB (for matrix-matrix

multiplication; where B ∈ R
t×w) can be recovered from any

subset of τ ≤ n worker nodes.

This work was supported in part by the National Science Foundation (NSF)
under grant CCF-1910840 and grant CCF-2115200.

Although the recovery threshold is a very important metric

considered in coded computation literature, there are certain

other important issues that also need to be addressed. For

example, in many of the machine learning problems or

optimization problems, the corresponding matrices A and/or B
can be sparse. If we have a linear combination of m submatrices

of A, then the density of non-zero entries in the encoded

matrices can be up to m-times higher than the density of

A depending on the corresponding sparsity pattern. This can

result in a significant increase in the worker node computation

time [14], [15]. Thus, developing a scheme that combines

relatively few submatrices while continuing to have a good

recovery threshold is important. Moreover, the idea of recovery

threshold implicitly assumes that no partial computation is

received from the remaining n− τ workers. Thus many of the

prior works (see [14]–[22] for some exceptions) treat stragglers

as erasures. But a slower worker may not be a useless worker

and efficient utilization of the partial computations done by the

slower workers could enhance the overall job execution speed.

In this paper, we have proposed a distributed matrix-matrix

multiplication approach which can utilize partial computations

obtained from the slower workers and deal with the sparse

‘input’ matrices too. In this approach, most of the assigned

A submatrices are uncoded which can preserve the sparsity

of original matrix A and enhances the worker computation

speed. Moreover, in comparison to [15] and [19], we reduce the

weight of coding for the encoded submatrices of both A and B
which further makes the computation faster. Our approach also

enjoys the optimal recovery threshold (see [3]) for worker node

storage capacities of the form 1/kA and 1/kB , respectively.

Owing to space limitations, most of the proofs appear in [23].

II. OVERVIEW OF THE PROPOSED SCHEME

We assume that the system has n workers each of which can

store γA = 1
kA

and γB = 1
kB

fractions of matrices A and B, re-

spectively. We partition matrix A into ΔA = LCM(n, kA) sub-

matrices (block-columns) as A0,A1,A2, . . . ,AΔA−1 and ma-

trix B into ΔB = kB submatrices as B0,B1,B2, . . . ,BΔB−1

and set Δ = ΔAΔB . We denote the number of assigned

submatrices from A and B to any worker as �A and �B
respectively, so �A = ΔA

kA
and �B = ΔB

kB
= 1. Any worker will

compute all pairwise block-products, thus the worker will be

responsible for computing � = �A�B = �A block-products.

We say that any submatrix Ai, for i = 0, 1, . . . ,ΔA − 1,

appears within a worker node as an uncoded block if Ai is
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Algorithm 1: Proposed scheme for distributed matrix-

matrix multiplication

Input : Matrices A and B, n-number of worker

nodes, s-number of stragglers, storage fraction

γA = 1
kA

and γB = 1
kB

; s ≤ sm = n− kAkB .

1 Set x = sm − s and y = �kAx
sm

�;

2 Set ΔA = LCM(n, kA) and ΔB = kB and Partition A
and B into ΔA and ΔB block-columns, respectively;

3 Set Δ = ΔAΔB , p = Δ
n and � = ΔA

kA
;

4 Number of coded submatrices of A in each worker

node, �c = �− p;

5 Set ω = 1 + � sm
kB

� and ζ = 1 + kB −
⌈
kB

ω

⌉
;

6 Define Ci =
{
Ai, A�+i, . . . , A(kA−1)�+i

}
, and

λi = 0, for i = 0, 1, . . . , �− 1;

7 for i ← 0 to n− 1 do
8 u ← i× ΔA

n ;

9 Define T = {u, u+ 1, . . . , u+ p− 1} (modulo

ΔA);

10 Assign all Am’s sequentially from top to bottom to

worker node i, where m ∈ T ;

11 for j ← 0 to �c − 1 do
12 v ← u+ p+ j (mod �);
13 Denote Y ∈ Cv as the set of the element

submatrices at locations (modulo kA)

λv, λv + 1, λv + 2, . . . , λv + kA − y− 1 of Cv;

14 Assign a random linear combination of Aq’s

where Aq ∈ Y;

15 λv ← λv + kA − y (modulo kA);

16 end
17 Define V = {i, i+ 1, . . . , i+ ζ − 1} (modulo ΔB);

18 Assign a random linear combination of Bq’s where

Bq ∈ V;

19 end
Output : 〈n, γA, γB〉-scheme for distributed

matrix-matrix multiplication.

assigned to that worker as an uncoded submatrix. Similarly,

Ai is said to appear within a worker node in a coded block if

a random linear combination of some submatrices including

Ai is assigned to that worker. In each worker node there are

locations numbered 0, 1, . . . , �− 1 where 0 indicates the top

location and �− 1 the bottom location. For this system, if the

central node can decode ATB from any Q block products

(respecting the top-to-bottom computation order), we say that

the scheme has the corresponding Q/Δ value. A smaller Q/Δ
value of a system indicates that the system can utilize the

partial computations of the slower workers more efficiently

than a system with higher Q/Δ value.

Our proposed scheme is specified formally in Algorithm 1

and incorporates several ideas that allow us to guarantee the

straggler resilience and the Q/Δ value for the scheme. In the

discussion below, we provide a top-level overview by appealing

to Fig. 1 which shows an example of our scheme with n = 12

W0 W1 W2 W3

W4 W5 W6 W7

W8 W9 W10 W11

A0

A1

A2

{A3,A7,A11}

r0B0 + r1B1

A1

A2

A3

{A4,A8,A0}

r2B1 + r3B2

A2

A3

A4

{A5,A9,A1}

r4B2 + r5B0

A3

A4

A5

{A6,A10,A2}

r6B0 + r7B1

A4

A5

A6

{A7,A11,A3}

r8B1 + r9B2

A5

A6

A7

{A8,A0,A4}

r10B2 + r11B0

A6

A7

A8

{A9,A1,A5}

r12B0 + r13B1

A7

A8

A9

{A10,A2,A6}

r14B1 + r15B2

A8

A9

A10

{A11,A3,A7}

r16B2 + r17B0

A9

A10

A11

{A0,A4,A8}

r18B0 + r19B1

A10

A11

A0

{A1,A5,A9}

r20B1 + r21B2

A11

A0

A1

{A2,A6,A10}

r22B2 + r23B0

Fig. 1: Distributed matrix multiplication over n = 12 worker nodes
with γA = γB = 1

3
; so ΔA = 12 and ΔB = 3. Any {Ai,Aj ,Ak}

means a random linear combination of Ai,Aj and Ak. Coefficients
ri’s are chosen i.i.d. at random from a continuous distribution.

workers, γA = γB = 1/3 so that ΔA = 12 and ΔB = 3.

Weight of the linear combination of A and B submatrices: Note

that sm = n − kAkB is the maximum number of stragglers

that the scheme can be resilient to, whereas we want resilience

to s ≤ sm stragglers. Line 1 in Alg. 1 sets the parameter

x = sm − s. Thus, x measures the relaxation of the straggler

resilience that we are able to tolerate. This allows us to reduce

the weight of the linear combination of the A submatrices.

In particular, let y = �kAx
sm

�. Then our algorithm combines at

most kA − y submatrices of A.

The encoded submatrices of B are obtained by combining

ζ submatrices of {B0,B1, . . . ,BΔB−1}. Line 5 specifies the

assignment of ζ; it can be observed that ζ ≤ ΔB = kB .

Assignment of encoded submatrices of A: We further di-

vide the set {A0,A1, . . . ,AΔA−1} into � disjoint classes

C0, C1, . . . , C�−1, i.e.,

Cm =
{
Am, A�+m, A2�+m, . . . , A(kA−1)�+m

}
. (1)

This implies that |Cm| = kA, for m = 0, 1, . . . , � − 1, and

submatrix Ai belongs to Ci (mod �).
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The worker nodes are assigned submatrices from each class

Cm, 0 ≤ m ≤ �− 1 in a block-cyclic fashion; the block shift is

specified by ΔA/n (line 8). In each worker node, the first p =
Δ/n assignments are uncoded, i.e., they correspond to a specific

element of the corresponding class. The remaining �c = �− p
assignments are coded. Each coded assignment corresponds to

random linear combination of an appropriate (kA − y)-sized

subset of the corresponding class. This is discussed in line 8 –

16 in Alg. 1.

As each location of every worker node is populated by a

submatrix from a class Cm where 0 ≤ m ≤ � − 1, we will

occasionally say that the class Cm appears at a certain location

(between 0 to �− 1) at a certain worker node. To ensure that

each submatrix of Cm participates in “almost” the same number

of coded assignments, we use a counter λi to keep track of the

linear combination that will be formed from the corresponding

class Ci, 0 ≤ i ≤ �− 1 (lines 6, 13 – 15 in Alg. 1).

Example 1. In Fig. 1, we set x = 0 so that y = 0 and the

classes are specified by

C0 = {A0,A4,A8}, C1 = {A1,A5,A9},
C2 = {A2,A6,A10}, and C3 = {A3,A7,A11}.

In this specific case the value of the block shift equals ΔA/n =
1. It can be observed that the assignment in worker W0 follows

the pattern C0, C1, C2, C3 from top to bottom. The assignments

from C0, C1, C2 are uncoded, whereas the last one is a random

linear combination of all the submatrices in C3. We also note

that there are p = Δ/n = 3 uncoded A submatrices and one

coded A submatrix in each worker node.

Assignment of encoded submatrices of B: For worker Wi,

consider the set V = {i, i + 1, . . . , i + ζ − 1} (mod ΔB). A

random linear combination of Bk for k ∈ V is assigned to

worker Wi. We note here that ζ ≤ kB and can in fact be as

small as �kB/2� depending upon the values of kB and sm.

Order of jobs: Each worker node computes the product of its

assigned submatrices in the top to bottom order.

Example 2. In Fig. 1, sm = 3 and kB = 3, so that ω = 2
which implies that ζ = 2. Thus, for instance for worker W8, the

set V = {8, 9} and it is assigned a random linear combination

of B2 and B0. The order of the jobs in W0 (for example) will

be AT
0 (r0B0 + r1B1),A

T
1 (r0B0 + r1B1),A

T
2 (r0B0 + r1B1)

and finally (r′3A3 + r′7A7 + r′11A11)
T (r0B0 + r1B1), where

r′3, r
′
7 and r′11 represent the random coefficients for the coded

A submatrix in worker W0.

III. CHARACTERISTICS OF THE PROPOSED METHOD

In this section, we discuss the coding methods for both

matrices A and B; and state the corresponding lemmas and

theorems which describe the properties of our proposed scheme.

A. Coding for Matrix A

Let Ui denote the subset of worker nodes where Ai appears

in an uncoded block, for i = 0, 1, . . . ,ΔA − 1. Likewise, Vi

denotes the subset of worker nodes where Ai appears in a

coded block. Our first claim states that the number of coded

appearances of any two submatrices in a class can differ by at

most one. The detailed proof is given in [23].

Claim 1. If the jobs are assigned to the workers according to

Alg. 1, for any Ai,Aj ∈ Cm,∣∣∣|Vi| − |Vj |
∣∣∣ ≤ 1.

We now present a lemma which outlines the key properties

of the structure of encoding submatrices of A. It includes the

details on how a given submatrix Ai and the different classes

appear at different locations over all the worker nodes. The

detailed proof of the lemma is given in [23].

Lemma 1. Assume that the jobs are assigned to the workers

according to Alg. 1, and consider any submatrix Ai, for i =
0, 1, 2, . . . ,ΔA − 1. Then (i) |Ui| = kB , (ii) |Vi| ≥ s and

Ui∩Vi = ∅, and (iii) a given class Cm, where 0 ≤ m ≤ �−1,

appears at all different locations 0, 1, . . . , � − 1 within the

worker nodes of any worker group Gλ, where 0 ≤ λ ≤ c− 1.

The following corollary states that the submatrices in Cm
are assigned to kAkB distinct workers as uncoded blocks and

to the remaining sm = n − kAkB workers as coded blocks.

The proof appears in Appendix of [23].

Corollary 1. If Cm =
{
Am, A�+m, . . . , A(kA−1)�+m

}
, then

(i)

∣∣∣∣
(

∪
i:Ai∈Cm

Ui

)∣∣∣∣ = kAkB ,

∣∣∣∣
(

∪
i:Ai∈Cm

Vi

)∣∣∣∣ = sm ; and

(ii)

(
∪

i:Ai∈Cm

Ui

)
∩

(
∪

i:Ai∈Cm

Vi

)
= ∅ .

B. Coding for Matrix B

To discuss the coding for matrix B, first we consider a

kB × n matrix, where each column has ζ ≤ kB non-zero

entries which are chosen i.i.d. from a continuous distribution.

Moreover, the indices of non-zero entries are consecutive and

shifted in a cyclic fashion, reduced modulo kB . For example,

if we have a system with n = 12 workers with kA = 2 and

kB = 5, then ζ = 3 and the corresponding coding matrix for

B, denoted as RB
kB ,n, can be written as

RB
kB ,n =

⎡
⎢⎢⎢⎢⎣

∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗
0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0

⎤
⎥⎥⎥⎥⎦ . (2)

Here ∗ indicates the non-zero entries. The entries at indices

i, i+1, . . . , i+ζ−1 (reduced modulo kB) are non-zero (chosen

i.i.d. from a continuous distribution) within column i of RB
kB ,n

and the other entries are set to zero. The non-zero coefficients

are used to specify the random linear combination of the

submatrices of B assigned to worker Wi.

Definition 1. A type i submatrix, for i = 0, 1, 2 . . . , kB −
1, is a random linear combination of the submatrices,

Bi,Bi+1, . . . ,Bi+ζ−1 (indices reduced modulo kB). Thus we
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can say worker node Wj is assigned a type j (mod kB)
submatrix (line 18 of Alg. 1).

Consider the case of x = 0 and any Ai, i =
0, 1, 2, . . . ,ΔA − 1. From Lemma 1, we know |Ui| = kB
and |Vi| = sm (since x = 0, s = sm). Thus Ai appears at

σ = kB + sm worker nodes. We now provide a claim about

the types (cf. Def. 1) of the coded submatrices of B in those

σ worker nodes; whose proof is given in [23].

Claim 2. Consider the construction in Alg. 1 with x = 0 and

let k be the minimum index of the worker node where Ai

appears (uncoded or coded) and consider the worker nodes

in Ui ∪Vi. The assigned submatrices of B for those worker

nodes are, respectively, from types k, k+1, k+2, . . . , k+σ−1
(reduced modulo kB), which are σ consecutive types.

First we provide a lemma which states the property; and the

proof is given in details in [23].

Lemma 2. Consider any Ai, i = 0, 1, 2, . . . ,ΔA − 1, for

the case of x = 0. Construct a kB × σ matrix Ri where

the columns of Ri correspond to the coefficients for coded

submatrices of the worker nodes in Ui ∪Vi; σ = kB + sm.

If ζ > kB −
⌈
kB

ω

⌉
, any kB × kB submatrix of Ri is full rank,

where ω = 1 + � sm
kB

�.

For any class Cm, the encoded submatrices of A within

different worker nodes can be specified in terms of a kA × n
“generator” matrix. Similarly the encoded submatrices of B
within different worker nodes can be specified in terms of a

kB×n “generator” matrix, as shown by an example in (2). We

use this formalism in the discussion below, where we provide

the theorem for straggler resilience of our proposed scheme;

whose proof is detailed in [23].

Theorem 1. Alg. 1 proposes a distributed matrix-matrix

multiplication scheme which is resilient to s = sm − x
stragglers, where sm = n− kAkB .

Now we present the result of our work on utilizing the partial

computations. It provides the calculation of the value of Q for

our scheme for different system parameters. The detailed proof

of this theorem is given in Appendix of [23].

Theorem 2. Alg. 1 proposes a distributed matrix-matrix multi-

plication scheme which provides Q such that Qlb ≤ Q ≤ Qub.

Here the bounds are given by

Qlb =
n(�− 1)

2
+ c

c01−1∑
i=0

(�− i) + c02(�− c01) +
⌈smy

kA

⌉
+ 1

and Qub =
n(�− 1)

2
+ c

cx1−1∑
i=0

(�− i) + cx2(�− cx1) + 1 ;

where c = n
� , cx1 =

⌊
kAkB+x−1

c

⌋
, cx2 = kAkB + x − 1− ccx1

and y =
⌊
kAx
sm

⌋
.

When x = 0, then τ = kAkB , cx1 = c01 and cx2 = c02, hence

Qlb = Qub = Q.

Example 3. We consider an example with n = 8 and γA =
1
3 , γB = 1

2 . We partition A into ΔA = LCM(n, kA) = 24
submatrices and B into ΔB = kB = 2 submatrices. For

x = 0, the recovery threshold is 6, and Qlb = Qub = Q = 59.

However, it should be noted that the central node requires Q
block-products to recover ATB in the worst case scenario. In

a random scenario, the central node may be able to recover the

result from a significantly smaller number of block-products.

Moreover, for x = 1, the recovery threshold is 7 and Qlb =
60 ≤ Q = 61 ≤ Qub = 62 where Qub − Qlb = 2. While Q
increases with the increase of x, the worker computation will

be faster for sparse “input” matrices.

C. Dealing with Sparse Input Matrices

We now discuss the performance of different schemes when

the input matrices are sparse. Consider that A ∈ R
t×r and

B ∈ R
t×w are two sparse random matrices, where the entries

are chosen independently to be non-zero with probability

η. Thus, when we obtain a coded submatrix as the linear

combination of kA submatrices of A, the probability of any

entry to be non-zero is approximately kAη; we assume η is

very small. Similarly, the probability of any entry in a coded

submatrix of B to be non-zero is approximately kBη, if it is

obtained by a linear combination of kB submatrices. Now for

the dense coded approaches [3], [7], [8], every worker node

stores 1/kA and 1/kB fractions of matrices A and B, and

thus the computational complexity of every worker node is

approximately O
(
(ηkAηkB × t)× r

kA

w
kB

)
= O

(
η2 × rwt

)
.

In our proposed approach with x = 0, the coded sub-

matrix for B is obtained by a random linear combination

of ζ uncoded submatrices. Thus, the computational com-

plexity to compute the block product between an uncoded

A and coded B submatrix is O
(
(η × ηζ × t) r

ΔA

w
kB

)
=

O
(
η2 × rwt× ζ

ΔAΔB

)
; and to compute the block prod-

uct between a coded A and coded B submatrix is

O
(
(ηkA × ηζ × t) r

ΔA

w
kB

)
= O

(
η2 × rwt× ζkA

ΔAΔB

)
. Since

the workers need to compute p uncoded-coded and �−p coded-

coded block products, the total computation cost is approxi-

mately O
(
η2 × rwt×

(
ζ
n + ζsm

nkB

))
. Thus, the computational

complexity of every worker node of our approach is around

O
(

ζ
n

(
1 + sm

kB

))
times smaller than that of the dense coded

approaches. Thus our approach is much more suited to sparse

input matrices than the dense coded approaches in [3], [7], [8].

Remark 1. Our scheme is also applicable for distributed matrix-

vector multiplication. In that case, the usual assumption is that

each worker can store the whole vector x, and we can prove

similar theorems by substituting γB = 1 (or kB = 1).

IV. NUMERICAL EXPERIMENTS AND COMPARISONS

In this section, we compare the performance of our approach

with different competing methods in terms of various metrics.

It should be noted that [3], [7], [8], [15], [19] and our

proposed method (for x = 0) have the same recovery threshold,

communication load and worker computational load when
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TABLE I: Comparison of worker computation time (in seconds) for

matrix-matrix multiplication for n = 24, γA = 1
4

and γB = 1
5

(*for

[10], we assume γA = 2
5

and γB = 1
4

) when randomly chosen 95%,

98% and 99% entries of both of matrices A and B are zero.

METHODS S
WORKER COMPUTATION TIME (S)
μ = 99% μ = 98% μ = 95%

POLY CODE [3] 4 1.23 3.10 8.21
ORTHO-POLY [7] 4 1.25 3.13 8.14
RKRP CODE [8] 4 1.21 3.09 8.10

CONV. CODE* [10] 4 1.92 5.07 10.72
SCS OPT. SCH. [15] 4 0.91 1.89 4.67

METHOD IN [19] 4 0.76 1.45 4.71
PROP. SCH. (x = 0) 4 0.54 0.97 3.68
PROP. SCH. (x = 2) 2 0.45 0.81 3.21

the “input” matrices are dense. However in case of sparse

matrices, our proposed method has some significant advantages.

Exhaustive numerical experiments done in AWS (Amazon Web

Services) cluster support our claims. In order to carry out the

experiments, a t2.2xlarge machine is used as the central

node and t2.small machines are used as the worker nodes.

Worker Computation Time: We consider a distributed

matrix multiplication system with n = 24 workers with γA = 1
4

and γB = 1
5 . The input matrices A and B, of sizes 12000×

15000 and 12000 × 13500, are assumed to be sparse. We

assume three different cases where sparsity (μ) of the input

matrices are 95%, 98% and 99%, respectively, which indicates

that randomly chosen 95%, 98% and 99% entries of both of

matrices A and B are zero. Table I shows the corresponding

comparison of the different methods for the worker computation

time for this example. It can easily be verified from the table

that the workers take significantly less time to compute the

submatrix products for our proposed approach than the other

methods [3], [7], [8], [10]. This is because in the other methods

the coded submatrices are linear combinations of all kA = 4
submatrices from A (or kB = 5 submatrices from B).

The works most closely related to our approach are our

prior works in [15] (SCS optimal scheme, see Section V in

[15]) and [19]. All these approaches partition A and B into

ΔA = LCM(n, kA) and ΔB = kB submatrices, respectively.

Moreover, all of them assign some uncoded submatrices of A
and then some coded submatrices of A; and assign a coded

submatrix of B to each of the worker nodes.

However, there are some crucial differences. [15] requires

the weight of the encoding of the A submatrices to be ΔA−p
which is much higher than kA − y. Furthermore [15] and [19]

do not allow for a trade-off between the number of stragglers

and the weight of the coded A submatrices; this is a salient

feature of our approach. Moreover, for the coding of B, the

schemes in [15] and [19] assign linear combinations of kB
submatrices, whereas in our proposed approach we assign linear

combinations of ζ submatrices where ζ can be significantly

smaller than kB . We emphasize that the our proposed approach

continues to enjoy the optimal straggler resilience when x = 0.

However, we point out that we lose a small amount in the

uncoded A - coded B coded A - coded B
0

0.3

0.6

0.9

1.2

W
o
rk

er
C

o
m

p
u
ta

ti
o
n

T
im

e
(i

n
se

c)

SCS optimal scheme [15]
Method in [19]
Proposed Scheme x = 0
Proposed Scheme x = 2

Fig. 2: The comparison of worker computation time for μ = 98%
sparse matrices. We show the time required for multiplying p uncoded
A submatrices with the coded B submatrix and the time required for
multiplying (�−p) coded A submatrices with the coded B submatrix.

TABLE II: Comparison of utilization of partial stragglers and
numerical stability among different approaches

METHODS Q/Δ κworst

POLY CODE [3] N/A 2.40× 1010

ORTHO-POLY [7] N/A 1.96× 106

RKRP CODE [8] N/A 2.83× 105

CONV CODE* [10] N/A 2.65× 104

SCS OPT. SCH. [15] 124/120 4.93× 106

METHOD IN [19] 139/120 2.94× 106

PROP. SCH. (x = 0) 139/120 2.37× 106

PROP. SCH. (x = 2) 141
120

≤ Q
Δ

≤ 142
120

2.25× 104

Q/Δ metric, with respect to SCS optimal scheme in [15], but

we match the value of [19] for x = 0.

Value of Q/Δ: Many of the available approaches in coded

matrix computations literature [3], [7], [8], [10] cannot leverage

the slow workers, because they assign exactly one job to each

of the worker nodes. On the other hand, the proposed approach

assigns multiple jobs to each of the worker nodes which allows

the opportunity to leverage partial stragglers.

Table II shows the comparison among different methods in

terms of Q/Δ for the same example of n = 24 worker nodes.

We can see that our approach has a slightly higher Q/Δ than

the approach in [15] and the value of Q/Δ can increase for

the choice of x > 0. However our proposed approach has a

significant gain over [15] in terms of worker computation speed

as shown in Table I. It should be noted that the approaches in

[3], [7], [8] can be extended to utilizing the partial stragglers,

but that can lead to numerically instability of the systems [15].

Numerical Stability: For the same system we find the worst

case condition number (κworst) of the decoding matrices over

all different choices of s stragglers for different methods and

present them in Table II. As expected, the polynomial code

approach [3] has a very high κworst. The works in [7], [8],

[10] have significantly smaller κworst; however they cannot

leverage the partial computations of the slower worker nodes.

Our proposed methods, [15] and [19] can utilize the partial

stragglers and provide similar κworst values compared to [6].
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