2022 IEEE International Symposium on Information Theory (ISIT) | 978-1-6654-2159-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISIT50566.2022.9834346

2022 IEEE International Symposium on Information Theory (ISIT)

An Integrated Method to Deal with Partial Stragglers
and Sparse Matrices in Distributed Computations

Anindya Bijoy Das and Aditya Ramamoorthy
Department of Electrical and Computer Engineering, lowa State University, Ames, IA 50011 USA
{abd149, adityar}@iastate.edu

Abstract—The speed of distributed matrix computations over
large clusters is often dominated by the stragglers (slow or
failed worker nodes). Several techniques based on coding theory
have been introduced to mitigate the straggler issue where every
worker node is assigned smaller task(s) of multiplying encoded
submatrices of the original matrices. However, many of these
methods consider the stragglers as erasures, i.e., they discard
the potentially useful partial computations done by the slower
workers. Moreover, the “input” matrices can be sparse in many
scenarios. In this case encoding schemes that combine a large
number of input submatrices can adversely affect the worker
computation time.

In this work, we proposed an integrated approach which
addresses both of the issues mentioned above. We allow limited
amount of encoding for the submatrices of both A and B;
this helps us to preserve the sparsity of the encoded matrices,
so that the worker computation can be fast. Our approach
provides a trade-off between straggler resilience and worker
computation speed, while utilizing partial computations at the
workers. Crucially, at one operating point we can ensure that
the failure resilience of the system is optimal. Comprehensive
numerical analysis done in Amazon Web Services (AWS) cluster
confirms the superiority of our approach when compared with
previous methods.

I. INTRODUCTION

Distributed matrix computation is often used repeatedly in
several large scale machine learning problems. Typically, the
job is subdivided into smaller tasks and assigned to multiple
worker nodes within the cluster. However, these cluster often
suffer from the issue of stragglers (slow or failed workers).
Recently, several coding theory techniques [1]-[12] have been
proposed to mitigate the effect of stragglers for matrix-vector
and matrix-matrix multiplications (see [13] for a tutorial
overview). For instance, consider a matrix A € R**" and
a vector x € RY; the approach in [1] proposes to compute
ATx by partitioning the matrix A into two block-columns as
A = [A(| A;], and assigning the job of computing Al'x, ATx
and (Ao + A1) x, respectively, to three different workers. In
this way, A”'x can be recovered if any two out of three workers
return their results; in other words, the system is resilient to
one straggler. In general, if we have n worker nodes, we define
the recovery threshold as the minimum number of workers
(7) that need to finish their jobs such that the result A7x
(for matrix-vector multiplication), or A”B (for matrix-matrix
multiplication; where B € R'*™) can be recovered from any
subset of 7 < n worker nodes.

This work was supported in part by the National Science Foundation (NSF)
under grant CCF-1910840 and grant CCF-2115200.

Although the recovery threshold is a very important metric
considered in coded computation literature, there are certain
other important issues that also need to be addressed. For
example, in many of the machine learning problems or
optimization problems, the corresponding matrices A and/or B
can be sparse. If we have a linear combination of m submatrices
of A, then the density of non-zero entries in the encoded
matrices can be up to m-times higher than the density of
A depending on the corresponding sparsity pattern. This can
result in a significant increase in the worker node computation
time [14], [15]. Thus, developing a scheme that combines
relatively few submatrices while continuing to have a good
recovery threshold is important. Moreover, the idea of recovery
threshold implicitly assumes that no partial computation is
received from the remaining n — 7 workers. Thus many of the
prior works (see [14]-[22] for some exceptions) treat stragglers
as erasures. But a slower worker may not be a useless worker
and efficient utilization of the partial computations done by the
slower workers could enhance the overall job execution speed.

In this paper, we have proposed a distributed matrix-matrix
multiplication approach which can utilize partial computations
obtained from the slower workers and deal with the sparse
‘input’ matrices too. In this approach, most of the assigned
A submatrices are uncoded which can preserve the sparsity
of original matrix A and enhances the worker computation
speed. Moreover, in comparison to [15] and [19], we reduce the
weight of coding for the encoded submatrices of both A and B
which further makes the computation faster. Our approach also
enjoys the optimal recovery threshold (see [3]) for worker node
storage capacities of the form 1/k, and 1/kp, respectively.
Owing to space limitations, most of the proofs appear in [23].

II. OVERVIEW OF THE PROPOSED SCHEME

We assume that the system has n workers each of which can
store 74 = - and yp = 7 fractions of matrices A and B, re-
spectively. We partition matrix A into A4 = LCM(n, k4) sub-
matrices (block-columns) as Ag, Aj, Ay, ..., Ax,—1 and ma-
trix B into Ap = kp submatrices as By, B1,Bs,...,Ba,_1
and set A = A, Ap. We denote the number of assigned
submatrices from A and B to any worker as ¢4 and /p
respectively, so £4 = %:‘ and /g = %—5 = 1. Any worker will
compute all pairwise block-products, thus the worker will be
responsible for computing ¢ = ¢4¢p = {4 block-products.

We say that any submatrix A;, for i = 0,1,..., A4 — 1,
appears within a worker node as an uncoded block if A; is

AuBiBBzdd GEmde 1EDihitd @16 33WA GtAANARMEE Eibrary. Downloade® driNovember 27,2022 at 18:25:33 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE International Symposium on Information Theory (ISIT)

Algorithm 1: Proposed scheme for distributed matrix-
matrix multiplication

: Matrices A and B, n-number of worker
nodes, s-number of stragglers, storage fraction
VA:i andfyB:é;sgsm:n—kAkB.

1Setx=s,,—sand y = L%J

2 Set Ay =LCM(n,k4) and Ap = kp and Partition A

and B into A4 and Ap block-columns, respectively;

3 SetA:AAAB,p:%andéz%;

4 Number of coded submatrices of A in each worker

node, . = ¢ — p;

 Setw=1+ 3] and C =1+ kp - [2]

Input

kB
6 Define Cz = {Aq, Ag+i, ey (kA—l)Z—i-i}v and
Ai=0,fori=0,1,...,0—1;
7fori<0ton—1do

8 | w<ix 84

9 Define T' = {u,u+1,...,u+ p— 1} (modulo
An);

10 Assign all A,,’s sequentially from top to bottom to

worker node i, where m € T';

11 for j < 0to/.—1do

12 v u—+p+j (mod £);

13 Denote Y € C, as the set of the element
submatrices at locations (modulo k4)

As Ao+ 1L, 0 +2,..., 0, +ka—y—10f Cp;

14 Assign a random linear combination of A,’s
where A, €Y;

15 Av < Ay + ka —y (modulo k4);

16 end

17 Define V ={i,i+ 1,...,i+ ¢ — 1} (modulo Ap);

18 Assign a random linear combination of B,’s where
B, cV;

19 end

Output : (n,v4,vp)-scheme for distributed
matrix-matrix multiplication.

assigned to that worker as an uncoded submatrix. Similarly,
A, is said to appear within a worker node in a coded block if
a random linear combination of some submatrices including
A, is assigned to that worker. In each worker node there are
locations numbered 0, 1,...,¢ — 1 where 0 indicates the top
location and ¢ — 1 the bottom location. For this system, if the
central node can decode A”B from any @ block products
(respecting the top-to-bottom computation order), we say that
the scheme has the corresponding @/A value. A smaller /A
value of a system indicates that the system can utilize the
partial computations of the slower workers more efficiently
than a system with higher Q/A value.

Our proposed scheme is specified formally in Algorithm 1
and incorporates several ideas that allow us to guarantee the
straggler resilience and the /A value for the scheme. In the
discussion below, we provide a top-level overview by appealing
to Fig. 1 which shows an example of our scheme with n = 12

i

Aj
A, A, Aj Ay
A2 A3 A4 A5
{A3, A7, A1} {A4, Ag, Ao} {As, Ag, A1} {Ag, A1, Az}
| roBo +m1B1 | | r9B1 + 13B3 | | r4B2 + 15Bg | | reBo + r7B1
Ay A; Ag Ay
A; Ag Az As
Ag Az Ag Ay
{A7, A1, Az} {As, Ao, Ay} {Ag, Ay, A5} {A10, A2, Ag}
| rsB1 +19Bs | | r10B2 +r11Bo | | r12Bo + r13B1 | | r14B1 + r15B2
Ag Ay A Ay
Ay A An Ay
A A Ao Ay
{A11,A3, A7} {Ao, Ay, As} {A1, A5, Ao} {A2,As, Ao}
| r16B2 + r17Bo | | r18Bo + r19B1 | | ro0B1 4 121B2 | | ro2By +123Bg |

Fig. 1: Distributed matrix multiplication over n = 12 worker nodes

with y4 = v = %; so Ay =12 and Ap = 3. Any {A;, A;, Ay}

means a random linear combination of A;, A; and Aj. Coefficients
r;’s are chosen i.i.d. at random from a continuous distribution.

workers, y4 =y = 1/3 so that Ay, = 12 and Ap = 3.
Weight of the linear combination of A and B submatrices: Note
that s,, = n — kakp is the maximum number of stragglers
that the scheme can be resilient to, whereas we want resilience
to s < sy, stragglers. Line 1 in Alg. 1 sets the parameter
T = S, — S. Thus, x measures the relaxation of the straggler
resilience that we are able to tolerate. This allows us to reduce
the weight of the linear combination of the A submatrices.
In particular, let y = [’“SAJJ Then our algorithm combines at
most ka — y submatrices of A.

The encoded submatrices of B are obtained by combining
¢ submatrices of {Bg,B1,...,Ba,_1}. Line 5 specifies the
assignment of (; it can be observed that { < Apg = kp.
Assignment of encoded submatrices of A: We further di-
vide the set {Ag,Aq,...,Aa,—1} into ¢ disjoint classes
Co,cl, . ,Cg_1, i.e.,

Cm - {Am; Al—i-nu A2Z+ma .. (1)

This implies that |C,,| = ka, for m = 0,1,...,£ — 1, and
submatrix A; belongs t0 C; (moq)-

o) A(k:A—l)€+7rz} .

Authorized licensed use limited to: lowa State University Library. Downloade®dnINovember 27,2022 at 18:25:33 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE International Symposium on Information Theory (ISIT)

The worker nodes are assigned submatrices from each class
Cm,0 < m < {¢—1 in a block-cyclic fashion; the block shift is
specified by A 4/n (line 8). In each worker node, the first p =
A /n assignments are uncoded, i.e., they correspond to a specific
element of the corresponding class. The remaining /. = ¢ — p
assignments are coded. Each coded assignment corresponds to
random linear combination of an appropriate (k4 — y)-sized
subset of the corresponding class. This is discussed in line 8 —
16 in Alg. 1.

As each location of every worker node is populated by a
submatrix from a class C,, where 0 < m < ¢ — 1, we will
occasionally say that the class C,,, appears at a certain location
(between 0 to £ — 1) at a certain worker node. To ensure that
each submatrix of C,, participates in “almost” the same number
of coded assignments, we use a counter \; to keep track of the
linear combination that will be formed from the corresponding
class C;,0 <4 < ¢ —1 (lines 6, 13 — 15 in Alg. 1).

Example 1. In Fig. 1, we set z = 0 so that y = 0 and the
classes are specified by

CO = {A()7A47A8}7
Co = {A2,As, Ao},

Cl = {A17A57A9}7
and C3 = {A3,A7,A11}.

In this specific case the value of the block shift equals A4 /n =
1. It can be observed that the assignment in worker W follows
the pattern Cy,C1,Cs,C3 from top to bottom. The assignments
from Cy,Cy1,Cs are uncoded, whereas the last one is a random
linear combination of all the submatrices in C3. We also note
that there are p = A/n = 3 uncoded A submatrices and one
coded A submatrix in each worker node.

Assignment of encoded submatrices of B: For worker W;,
consider the set V = {i,i+1,...,i+(— 1} (mod Ap). A
random linear combination of By for k € V is assigned to
worker W;. We note here that (< kp and can in fact be as
small as [kp/2] depending upon the values of kg and s,,.
Order of jobs: Each worker node computes the product of its
assigned submatrices in the top to bottom order.

Example 2. In Fig. 1, s, = 3 and kg = 3, so that w = 2
which implies that { = 2. Thus, for instance for worker Wy, the
set V = {8,9} and it is assigned a random linear combination
of B, and By. The order of the jobs in Wy (for example) will
be Ag(roBo + T‘1B1), A,{(T()BO + 7“1B1), Ag(roBo + 7‘1B1)
and finally (r3As + A7 + 1) A11)T (roBo + r1B1), where
r4, % and 77, represent the random coefficients for the coded
A submatrix in worker W.

III. CHARACTERISTICS OF THE PROPOSED METHOD

In this section, we discuss the coding methods for both
matrices A and B; and state the corresponding lemmas and
theorems which describe the properties of our proposed scheme.

A. Coding for Matrix A

Let U; denote the subset of worker nodes where A, appears
in an uncoded block, for i = 0,1,..., A4 — 1. Likewise, V;
denotes the subset of worker nodes where A; appears in a

coded block. Our first claim states that the number of coded
appearances of any two submatrices in a class can differ by at
most one. The detailed proof is given in [23].

Claim 1. If the jobs are assigned to the workers according to
Alg. 1, for any A;, A; € Cppy,

Vil = v, <.

We now present a lemma which outlines the key properties
of the structure of encoding submatrices of A. It includes the
details on how a given submatrix A; and the different classes
appear at different locations over all the worker nodes. The
detailed proof of the lemma is given in [23].

Lemma 1. Assume that the jobs are assigned to the workers
according to Alg. 1, and consider any submatrix A;, for ¢ =
0,1,2,...,A4 — 1. Then (i) |U;| = kg, (i) |V;| > s and
U, NV, =, and (iii) a given class C,,, where 0 < m < £—1,
appears at all different locations 0,1,...,¢ — 1 within the
worker nodes of any worker group Gy, where 0 < A < c— 1.

The following corollary states that the submatrices in C,,
are assigned to kakp distinct workers as uncoded blocks and
to the remaining s,, = n — kakp workers as coded blocks.
The proof appears in Appendix of [23].

Corollary 1. If C,,, = {Am7 Apim,y oo, A(kA—l)Hm}» then

" Ki:A"'UeC’"'Ui)‘ = ks, (i:A}»JecmViN = Sm; and

(i1) (U UZ) N (U Vi) = 0.
A, ECH, i:A;ECy
B. Coding for Matrix B

To discuss the coding for matrix B, first we consider a
kp x n matrix, where each column has (< kp non-zero
entries which are chosen i.i.d. from a continuous distribution.
Moreover, the indices of non-zero entries are consecutive and
shifted in a cyclic fashion, reduced modulo kp. For example,
if we have a system with n = 12 workers with k4 = 2 and
kp =5, then (= 3 and the corresponding coding matrix for
B, denoted as RkBB’n, can be written as

* 0 0 x x % 0 0 *x *x *x 0

* x 0 0 *x % x 0 0 * %
RkBB,n: x % % 0 0 x x x 0 0 *x x|. (2

0 * = x 0 0 x *x % 0 0 =

0 0 = % x 0 0 % % x 0 O

Here * indicates the non-zero entries. The entries at indices
i,1+1,...,1+(—1 (reduced modulo kp) are non-zero (chosen
i.i.d. from a continuous distribution) within column 7 of RkBB,n
and the other entries are set to zero. The non-zero coefficients
are used to specify the random linear combination of the

submatrices of B assigned to worker W.

Definition 1. A type 7 submatrix, for ¢ = 0,1,2...,kp —
1, is a random linear combination of the submatrices,
Bi,Bit1,...,Bit¢—1 (indices reduced modulo k). Thus we

Authorized licensed use limited to: lowa State University Library. Downloade®drdovember 27,2022 at 18:25:33 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE International Symposium on Information Theory (ISIT)

can say worker node W; is assigned a type j (mod kp)
submatrix (line 18 of Alg. 1).

Consider the case of x+ = 0 and any A,;, ¢« =
0,1,2,...,A4 — 1. From Lemma 1, we know |U;| = kp
and |V;| = s;,, (since z = 0, = s,,). Thus A; appears at
o = kp + s, worker nodes. We now provide a claim about
the types (cf. Def. 1) of the coded submatrices of B in those
o worker nodes; whose proof is given in [23].

Claim 2. Consider the construction in Alg. 1 with = 0 and
let k be the minimum index of the worker node where A;
appears (uncoded or coded) and consider the worker nodes
in U; UV,. The assigned submatrices of B for those worker
nodes are, respectively, from types k, k+1,k+2,..., k+o—1
(reduced modulo kp), which are o consecutive types.

First we provide a lemma which states the property; and the
proof is given in details in [23].

Lemma 2. Consider any A;, i = 0,1,2,...,A4 — 1, for
the case of x = 0. Construct a kg X o matrix R; where
the columns of R,; correspond to the coefficients for coded
submatrices of the worker nodes in U; UV;; 0 = kg + Sp,.
If(>kp— , any kp X kp submatrix of R; is full rank,

where w = 1+ [kB]

For any class C,,, the encoded submatrices of A within
different worker nodes can be specified in terms of a k4 x n
“generator” matrix. Similarly the encoded submatrices of B
within different worker nodes can be specified in terms of a
kp xn “generator” matrix, as shown by an example in (2). We
use this formalism in the discussion below, where we provide
the theorem for straggler resilience of our proposed scheme;
whose proof is detailed in [23].

Theorem 1. Alg. 1 proposes a distributed matrix-matrix
multiplication scheme which is resilient to s = s, —
stragglers, where s, = n — kakp.

Now we present the result of our work on utilizing the partial
computations. It provides the calculation of the value of () for
our scheme for different system parameters. The detailed proof
of this theorem is given in Appendix of [23].

Theorem 2. Alg. 1 proposes a distributed matrix-matrix multi-
plication scheme which provides @) such that Q;, < Q < Qup-
Here the bounds are given by

-1
n(ﬁfl) . . 0 0 SmY
le:24“3;(4—1)"'02(5_01)"‘{]%—“"1
cf—1
and Qub— +CZ —i)+cs(l—cf)+1;

1| ,
where ¢ = %, ¢f = {W%“J,cgzkf;kg—i—x—l—cc%

and y = V“ J

m

When 2 = 0, then 7 = kakp, ¢f = ¢ and ¢ = 9, hence

Qi = Quv = Q.

Example 3. We consider an example with n = 8 and y4 =
+,98 = 3. We partition A into Ay = LCM(n,ky) = 24
submatrices and B into Ay = kp = 2 submatrices. For
x = 0, the recovery threshold is 6, and Q;p, = Q. = @ = 59.
However, it should be noted that the central node requires)
block-products to recover A7 B in the worst case scenario. In
a random scenario, the central node may be able to recover the
result from a significantly smaller number of block-products.

Moreover, for x = 1, the recovery threshold is 7 and Q;, =
60 < Q = 61 < Qup = 62 where Qup — Qip = 2. While Q
increases with the increase of x, the worker computation will
be faster for sparse “input” matrices.

C. Dealing with Sparse Input Matrices

We now discuss the performance of different schemes when
the input matrices are sparse. Consider that A € R*" and
B € R¥™% are two sparse random matrices, where the entries
are chosen independently to be non-zero with probability
7. Thus, when we obtain a coded submatrix as the linear
combination of k4 submatrices of A, the probability of any
entry to be non-zero is approximately k47n; we assume 7 is
very small. Similarly, the probability of any entry in a coded
submatrix of B to be non-zero is approximately kpgn, if it is
obtained by a linear combination of kp submatrices. Now for
the dense coded approaches [3], [7], [8], every worker node
stores 1/k4 and 1/kp fractions of matrices A and B, and
thus the computational complexity of every worker node is
approximately O ((nkAnkB X 1) X LE) =0 (n? x rwt).

In our proposed approach with x = 0, the coded sub-
matrix for B is obtained by a random linear combination
of ¢ uncoded submatrices. Thus, the computational com-
plexity to compute the block product between an uncoded

A and coded B submatrix is O ((17 xn¢ X t)xs kB)

0] (772 X rwt X ﬁ); and to compute the block prod-
uct between a coded A and coded B
O((nk‘Axant)AAk)—O(n X rwt X ACkA
the workers need to compute p uncoded-coded and ¢ —p coded-
coded block products, the total computation cost is approxi-

submatrix is
. Since

mately O (n? x rwt x
complexity of every worker node of our approach is around
< Sm
0% (1+52)
approaches. Thus our approach is much more suited to sparse
input matrices than the dense coded approaches in [3], [7], [8].

% + %’g)) Thus, the computational

> times smaller than that of the dense coded

Remark 1. Our scheme is also applicable for distributed matrix-
vector multiplication. In that case, the usual assumption is that
each worker can store the whole vector x, and we can prove
similar theorems by substituting v = 1 (or kg = 1).

IV. NUMERICAL EXPERIMENTS AND COMPARISONS

In this section, we compare the performance of our approach
with different competing methods in terms of various metrics.
It should be noted that [3], [7], [8], [15], [19] and our
proposed method (for © = 0) have the same recovery threshold,
communication load and worker computational load when

Authorized licensed use limited to: lowa State University Library. Downloade®dnNovember 27,2022 at 18:25:33 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE International Symposium on Information Theory (ISIT)

TABLE I: Comparison of worker computation time (in seconds) for
matrix-matrix multiplication for n = 24,v4 = i and v = % (*for
[10], we assume ya4 = % and v = i) when randomly chosen 95%,
98% and 99% entries of both of matrices A and B are zero.

WORKER COMPUTATION TIME (S
METHODS (5)

w

nw=9% u=98% pn=95%
PoLy CODE [3] 4 1.23 3.10 8.21
ORTHO-POLY [7] 4 1.25 3.13 8.14
RKRP CODE [8] 4 1.21 3.09 8.10
Conv. CoDE* [10] 4 1.92 5.07 10.72
SCS OPT. ScH. [15] 4 0.91 1.89 4.67
METHOD IN [19] 4 0.76 1.45 4.71
PrOP. SCH. (x =0) 4 0.54 0.97 3.68
PROP. SCH. (z =2) 2 0.45 0.81 3.21

the “input” matrices are dense. However in case of sparse

matrices, our proposed method has some significant advantages.

Exhaustive numerical experiments done in AWS (Amazon Web
Services) cluster support our claims. In order to carry out the
experiments, a t2.2xlarge machine is used as the central
node and t2.small machines are used as the worker nodes.

Worker Computation Time: We consider a distributed
1

matrix multiplication system with n = 24 workers with v4 = 3
and vp = % The input matrices A and B, of sizes 12000 x
15000 and 12000 x 13500, are assumed to be sparse. We
assume three different cases where sparsity (i) of the input
matrices are 95%, 98% and 99%, respectively, which indicates
that randomly chosen 95%, 98% and 99% entries of both of
matrices A and B are zero. Table I shows the corresponding
comparison of the different methods for the worker computation
time for this example. It can easily be verified from the table
that the workers take significantly less time to compute the
submatrix products for our proposed approach than the other
methods [3], [7], [8], [10]. This is because in the other methods
the coded submatrices are linear combinations of all k4 = 4

submatrices from A (or kg = 5 submatrices from B).

The works most closely related to our approach are our
prior works in [15] (SCS optimal scheme, see Section V in
[15]) and [19]. All these approaches partition A and B into
A4 =LCM(n,ks) and Ap = kp submatrices, respectively.
Moreover, all of them assign some uncoded submatrices of A
and then some coded submatrices of A; and assign a coded
submatrix of B to each of the worker nodes.

However, there are some crucial differences. [15] requires
the weight of the encoding of the A submatrices to be Aj —p
which is much higher than k4 — y. Furthermore [15] and [19]
do not allow for a trade-off between the number of stragglers
and the weight of the coded A submatrices; this is a salient
feature of our approach. Moreover, for the coding of B, the
schemes in [15] and [19] assign linear combinations of kp
submatrices, whereas in our proposed approach we assign linear
combinations of (submatrices where (can be significantly
smaller than kp. We emphasize that the our proposed approach
continues to enjoy the optimal straggler resilience when x = 0.
However, we point out that we lose a small amount in the

11SCS optimal scheme [15]
nMethod in [19]
nProposed Scheme x = 0
nProposed Scheme x = 2

—_
DO

<
©

Worker Computation Time (in sec)
o o
w D

0 uncoded A - coded B coded A - coded B

Fig. 2: The comparison of worker computation time for p = 98%
sparse matrices. We show the time required for multiplying p uncoded
A submatrices with the coded B submatrix and the time required for
multiplying ({—p) coded A submatrices with the coded B submatrix.

TABLE II: Comparison of utilization of partial stragglers and
numerical stability among different approaches

METHODS Q/A Kworst
PoLy CODE [3] N/A 2.40 x 10"°
ORTHO-POLY [7] N/A 1.96 x 10°
RKRP CODE [8] N/A 2.83 x 10°
CONV CODE* [10] N/A 2.65 x 10*
SCS OPT. SCH. [15] 124/120 4.93 x 10°
METHOD IN [19] 139/120 2.94 x 10°
PROP. SCH. (z = 0) 139/120 2.37 x 10°
PROP. SCH. (z = 2) WM<z 29510

Q/A metric, with respect to SCS optimal scheme in [15], but
we match the value of [19] for z = 0.

Value of (Q/A: Many of the available approaches in coded
matrix computations literature [3], [7], [8], [10] cannot leverage
the slow workers, because they assign exactly one job to each
of the worker nodes. On the other hand, the proposed approach
assigns multiple jobs to each of the worker nodes which allows
the opportunity to leverage partial stragglers.

Table IT shows the comparison among different methods in
terms of Q/A for the same example of n = 24 worker nodes.
We can see that our approach has a slightly higher @ /A than
the approach in [15] and the value of Q/A can increase for
the choice of © > 0. However our proposed approach has a
significant gain over [15] in terms of worker computation speed
as shown in Table I. It should be noted that the approaches in
[3], [7], [8] can be extended to utilizing the partial stragglers,
but that can lead to numerically instability of the systems [15].

Numerical Stability: For the same system we find the worst
case condition number (Ky,0rst) Of the decoding matrices over
all different choices of s stragglers for different methods and
present them in Table II. As expected, the polynomial code
approach [3] has a very high Korst- The works in [7], [8],
[10] have significantly smaller r,,,,st; however they cannot
leverage the partial computations of the slower worker nodes.
Our proposed methods, [15] and [19] can utilize the partial
stragglers and provide similar k,,.-s¢ values compared to [6].

Authorized licensed use limited to: lowa State University Library. Downloade®drfNovember 27,2022 at 18:25:33 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

[11 K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. on
Info. Th., vol. 64, no. 3, pp. 1514-1529, 2018.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” in Proc. of Adv.

in Neur. Inf. Proc. Syst. (NIPS), 2016, pp. 2100-2108.

[3] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” in Proc. of
Adv. in Neur. Inf. Proc. Syst. (NIPS), 2017, pp. 4403-4413.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
IEEE Trans. on Info. Th., vol. 66, no. 3, pp. 1920-1933, 2020.

[5] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.
on Machine Learning (ICML), 2017, pp. 3368-3376.

[6] A.B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication:

A convolutional coding approach,” in Proc. of IEEE Intl. Symp. on Info.

Th., 2019, pp. 3022-3026.

M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded

computing,” in Proc. of IEEE Intl. Symp. on Info. Th., 2019, pp. 3017—

3021.

[8] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-product codes for numerically-stable distributed matrix
multiplication,” in Proc. of Annual Conf. on Comm., Control, and
Computing (Allerton), Sep. 2019, pp. 253-259.

[91 A. Ramamoorthy and L. Tang, “Numerically stable coded matrix
computations via circulant and rotation matrix embeddings,” IEEE Trans.
on Info. Th., vol. 68, no. 4, pp. 2684-2703, 2022.

[10] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust
distributed matrix computations via convolutional coding,” IEEE Trans.
on Info. Th., vol. 67, no. 9, pp. 62666282, 2021.

[11] A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and
factored raptor codes for large-scale distributed matrix multiplication,”
1IEEE J. Select. Areas Info. Th., vol. 2, no. 3, pp. 893-906, 2021.

[12] L. Tang, K. Konstantinidis, and A. Ramamoorthy, “Erasure coding for
distributed matrix multiplication for matrices with bounded entries,” IEEE
Comm. Letters, vol. 23, no. 1, pp. 8-11, 2019.

[13] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136145,
2020.

[14] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in
Proc. of Intl. Conf. on Machine Learning (ICML), 2018, pp. 5152—5160.

[15] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation
schemes that leverage partial stragglers,” IEEE Trans. on Info. Th., 2022
(to appear), [Online] Available: https://arxiv.org/abs/2012.06065.

[16] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in Proc. of IEEE Intl. Symp. on Info. Th., 2018, pp.
1988-1992.

[17] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” Proceedings of the ACM on Meas. and Analysis
of Comp. Syst., vol. 3, no. 3, pp. 1-40, 2019.

[18] S. Kianidehkordi, N. Ferdinand, and S. C. Draper, ‘“Hierarchical coded
matrix multiplication,” IEEE Trans. on Info. Th., vol. 67, no. 2, pp.
726-754, 2021.

[19] A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers
and sparse matrices in coded matrix computation,” in Proc. of IEEE Info.
Th. Workshop, 2021, pp. 1-6.

[20] E. Ozfatura, S. Ulukus, and D. Giindiiz, “Distributed gradient descent
with coded partial gradient computations,” in Proc. of IEEE Intl. Conf.
on Acoustics, Speech and Sig. Proc. (ICASSP), 2019, pp. 3492-3496.

[21] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable

matrices for distributed matrix-vector multiplication,” in Proc. of IEEE

Intl. Symp. on Info. Th., 2019, pp. 1777-1781.

B. Hasircioglu, J. Gémez-Vilardebd, and D. Giindiiz, “Bivariate hermitian

polynomial coding for efficient distributed matrix multiplication,” in Proc.

of IEEE Glob. Comm. Conf. (GLOBECOM), 2020, pp. 1-6.

[23] A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers
and sparse matrices in coded matrix computation,” preprint, 2021,
[Online] Available: https://arxiv.org/abs/2109.12070.

[2

—

[7

—

[22

Authorized licensed use limited to: lowa State University Library. Downloade®drNovember 27,2022 at 18:25:33 UTC from IEEE Xplore. Restrictions apply.

