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Abstract
We combine the parameterization method for invariant manifolds with the finite element
method for elliptic PDEs, to obtain a newcomputational framework for high order approxima-
tion of invariant manifolds attached to unstable equilibrium solutions of nonlinear parabolic
PDEs. The parameterization method provides an infinitesimal invariance equation for the
invariant manifold, which we solve via a power series ansatz. A power matching argument
leads to a recursive systems of linear elliptic PDEs—the so called homological equations—
whose solutions are the power series coefficients of the parameterization. The homological
equations are solved recursively to any desired order N using finite element approximation.
The end result is an N -th order polynomial approximation of a chart map of the manifold,
with coefficients in an appropriate finite element space. We implement the method for a
variety of example problems having both polynomial and non-polynomial nonlinearities, on
non-convex two dimensional polygonal domains (not necessary simply connected), for equi-
librium solutions withMorse indices one and two.We implement a-posteriori error indicators
which provide numerical evidence in support of the claim that the manifolds are computed
accurately.
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1 Introduction

The present work concerns nonlinear stability analysis for parabolic partial differential equa-
tions (PDEs). In particular, we develop high order numericalmethods for approximating local
unstable manifolds attached to equilibrium solutions of finite Morse index (finite number of
unstable eigenvalues counted with multiplicity) for parabolic PDEs formulated on spatial
domains with non-trivial geometry. We show that the Taylor coefficients of an appropri-
ate parameterization of the local unstable manifold solve a homological equation which is
strongly related to the eigenvalue problem/resolvent of the linearization at equilibrium. Our
main goal is to leverage this result in the development of efficient numerical algorithms. We
stress that, since we compute the Taylor coefficients order by order by directly solving the
homological equations, our method does not require numerical integration of the parabolic
PDE.

Recall that the equilibrium solutions of a parabolic PDE are found by solving the steady
state equation, and that this equation usually reduces to an elliptic BVP. Likewise, the eigen-
value problems which determine the linear stability of an equilibrium solution are linear
elliptic BVPs of the same kind. Because of this, there are dramatic differences between
parabolic problems in the case of one spatial variable and in the case of two or more. For
problems with one spatial variable, equilibrium and eigenvalue problems lead to two point
BVPs for ordinary differential equations (ODEs). Such problems are generally amenable
to spectral methods (Fourier series) which diagonalize both differential operators and mul-
tiplication (in Fourier and function space respectively) and which typically have excellent
convergence properties. Parabolic PDEs in two or more spatial variables posed on domains
with non-trivial geometry require fundamentally different theoretical and numerical tools.
Finite element analysis is invaluable in this context, and—since finite element methods typi-
cally employ lower regularity approximation schemes—it is often necessary to study a weak
formulation of the BVP.

Our approach is rooted in the tradition of the qualitative theory of dynamical systems, and
exploits the parameterization method of Cabré, Fontich, and de la Llave [10–12]. The idea
of the parameterization method is to study an auxiliary functional equation, whose solutions
correspond to chart maps of the invariant object. The method is used widely in the field
of computational dynamics. The basic mathematical setup and some additional references
are discussed in Sect. 2.1. We extend the parameterization method to parabolic PDEs on
non-trivial domains, and illustrate it’s utility by implementing numerical computations for a
number of example systems.

• The Fisher Equation: scalar reaction/diffusion equation with logistic nonlinearity. This
pedagogical example illustrates the main steps of our procedure in the easiest possible
setting.

• The Ricker Equation: a modification of the Fisher equation with a more realistic expo-
nential nonlinearity.We show how non-polynomial problems are treated using ideas from
automatic differentiation for formal power series.

• A modified Kuramoto-Shivisinsky Equation: a scalar parabolic PDEs with the bi-
harmonic Laplacian as the leading term and lower order derivatives in the nonlinearities.
The system is a toy model of fluid dynamics.
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For each example we derive the homological equations, and implement numerical proce-
dures for solving them. In the case of a non-polynomial nonlinearity, the necessary formal
seriesmanipulations are simplified by coupling the givenPDEs to auxiliary equations describ-
ing the transcendental nonlinear terms. We provide examples of this procedure, and develop
power series expansions for unstable manifolds attached to equilibria with Morse indices
1 and 2. This provides examples of computations for one and two dimensional unstable
manifolds. The Fisher and Ricker Equations are nonlinear heat equations, and we use
piecewise linear finite elements to approximate the coefficients of the parameterization.
Kuramoto-Shivisinsky is a bi-harmonic Laplacian equation, so that higher order elements are
appropriate. Here we utilize the Argyris element. We implement a-posteriori error indicators
for each of the examples, giving evidence that the manifolds have been computed correctly.

Remark 1.1 (Invariantmanifolds for 1Ddomains)We remark that Fourier-Taylormethods for
computing invariant manifolds for parabolic problems in one spatial dimension are treated in
a number of places, for example in [2, 38, 54], and higher dimensional problemswith periodic
boundary conditions (includingDirchlet/Neumann boundary conditions on rectangles/boxes)
can also be studied using multivariate Fourier series. We refer to the works of [7, 8, 14, 23,
35] for more discussion of invariant manifolds in this context.

The remainder of the paper is organized as follows. In Sect. 2 we review the finite element
method for elliptic PDEs, and the parameterizationmethod for invariant manifolds on Hilbert
spaces. We also provide an elementary example of the formal series analysis for the unstable
manifold in a simple finite dimensional example. In Sect. 3 we extend the parameterization
method to a class of parabolic problems. Section 4 contains the main calculations of the
paper, as we derive the homological equations for the main examples. We also implement the
recursive solution of the homological equations for the main examples and report on some
numerical results. Some conclusions and reflections are found in Sect. 5.

2 Background

While the material in this section is standard in some circles, the methods of the present work
combine tools from different fields and it is worth reviewing some basic ideas. Our hope is
that some brief review will help to make the paper more self contained. The reader familiar
with these ideas may want to skip ahead to Sect. 3, and refer back to these sections only as
needed.

2.1 The parameterizationmethod

The parameterization method is a general functional analytic framework for studying invari-
ant manifolds, originally developed for fixed points for maps on Banach spaces [10–12], and
for whiskered tori of quasi-periodic maps [25–27]. Since then it has been extended to a num-
ber of settings for both discrete and continuous dynamical systems, in both finite and infinite
dimensions. A complete overview of the literature is beyond the scope of the present brief
introduction, and the interested reader will find a much more complete overview—including
a wealth of references to the literature—in the recent book on the topic [24]. Several papers
more closely related to the present work include works of [22, 28, 29] on delay differential
equations, KAM for PDEs [17], and unstable manifolds for PDEs defined on compact inter-
vals [38], and on the whole line [2]. More recently the parameterization method has been
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used to develop a mathematically rigorous approach to optimal mode selection in nonlinear
model reduction by projecting onto spectral submanifolds [6, 9, 33]. This research direction
has been further developed and combined with large finite element systems demonstrating
its potential for industrial applications [48, 56].

2.1.1 Parameterization method for vector fields on Hilbert spaces

We give a brief review the parameterization method, in the context of evolution problems
on Hilbert spaces. The main application we have in mind is the dynamics of a semi-flow
generated by parabolic PDE. In particular, we discuss the invariance equation for the local
unstable manifold attached to an equilibrium solution.

Let H be an L2 Hilbert space (Hk or Hk
0 for some k) and F : H → L2 be a Frechet

differentiable mapping. We adopt also the standard requirement that DF(x), when viewed
as an operator on L2, is densely defined and sectorial. Consider the evolution equation

∂

∂t
u(t) = F(u(t)), with u(0) ∈ H given. (2.1)

An orbit segment (or solution curve) for Eq. (2.1) is a smooth curve γ : (a, b) → H having

d

dt
γ (t) = F(γ (t)),

for each t ∈ (a, b). If b = ∞ then γ is a said to be a full forward orbit. Since F dose not
depend on time, we can always choose a = 0.

The simplest type of orbits are equilibria, that is, solutions which do not change in time.
For u0 ∈ H, the curve γ (t) = u0 is a constant solution of Eq. (2.1) if and only if

F(u0) = 0.

For a given equilibrium solution u0, we would like to understand first it’s linear stability, and
then it’s nonlinear stability. That is, wewould like to understand how orbits in a neighborhood
of u0 escape from that neighborhood.

Let A = DF(u0), and define theMorse index of u0 to be the number of unstable eigenval-
ues of A, counted with multiplicity. We assume that Eq. (2.1) is parabolic, so that A generates
a compact semi-group eAt . This insures that the Morse index of A is finite. Let λ1, . . . , λM

denote the unstable eigenvalues ordered so that

0 < real (λ1) ≤ · · · ≤ real (λM ) .

Suppose for the sake of simplicity that each unstable eigenvalue has multiplicity one, and
that they are all real (though both assumptions can be removed—see [10, 55]), and let
ξ1, . . . , ξM ∈ H denote associated eigenfunctions, so that

Aξ j = λ j ξ j , 1 ≤ j ≤ M .

Suppose that γ : (−∞, 0] → H is a solution curve for Eq. (2.1) and that u ∈ H. We say
that γ is an infinite pre-history for u, accumulating in backward time to the equilibrium u0,
if

γ (0) = u, and lim
t→−∞ γ (t) = u0.

The unstable manifold attached to u0, denoted Wu(u0), is the set of all u ∈ H which have
an infinite pre-history, accumulating at u0. The intersection of Wu(u0) with a neighborhood
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U of u0 is called a local unstable manifold for u0, and is denoted by

Wu(u0) ∩U = Wu
loc(u0,U ).

By the unstable manifold theorem, there exists a neighborhoodU of u0 so that Wu
loc(u0,U )

is a smooth manifold, diffeomorphic to an M-disk, and tangent to the unstable eigenspace
of A at u0. Moreover, if A is hyperbolic (that is, if A has no eigenvalues on the imaginary
axis), then Wu

loc(u0,U ) is the set of all u ∈ U which have well-defined backwards history
remaining in a neighborhood of u0 for all time t ≤ 0.

We are now ready to introduce the parameterization method. Let B = [−1, 1]M denote
the M-dimensional unit hypercube. We seek a

P : B → H having that

P(0) = u0, (2.2)

∂ j P(0) = ξ j , 1 ≤ j ≤ M, (2.3)

and that

P
(
[−1, 1]M

)
⊂ Wu

loc(u0,U ),

for some open set U containing u0. Any such P is a local unstable manifold attached to u0.
Since any reparameterization of P is again a parameterization of a local unstable manifold,
the problem has infinitely many freedoms and we need to impose an additional (infinite
dimensional) constraint to isolate a single parameterization.

Write

� =
⎛
⎜⎝

λ1 . . . 0
...

. . .
...

0 . . . λM

⎞
⎟⎠ . (2.4)

Themain idea of the parameterization method is to look for P which, in addition to satisfying
the constraint Eqs. (2.2) and (2.3), is a solution of the invariance equation

F(P(θ)) = DP(θ)�θ, for all θ ∈ B = [−1, 1]M . (2.5)

We remark that the choice of “unit” domain is a normalization which will become more clear
as we proceed.

Figure 1 illustrates the geometric meaning of Eq. (2.5). The equation requires that the
push forward of the linear vector field � by DP equals the vector field F restricted to the
image of P . Loosely speaking, since the two vector fields match on the image of P they must
generate the same dynamics—with the dynamics generated by � well understood. We then

Fig. 1 Schematic representation
of the invariance equation given
in Eq. (2.5). The idea is the DP
pushes forward the vector field �

modeling the dynamics on the
unstable manifold. This push
forward should be equal, on the
image of P , to the vector field F
generating the full dynamics
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Fig. 2 The orbit correspondence
induced by the invariance
Equation. The orbits generated by
the vector field � accumulate in
backwards time to the origin in B.
Then P lifts these orbits to orbits
inH which accumulate at the
equilibrium u0. From this it
follows that image of P is a local
unstable manifold. or (2.5)

expect that P maps orbits of � in B to orbits of F on the image of P . Since P maps orbits
to orbits, Eq. (2.5) is called an infinitesimal conjugacy equation. The geometric meaning of
Eq. (2.5) is illustrated in Fig. 2, and is made precise by the following lemma, whose proof
appears in Appendix C

Lemma 2.1 (Orbit correspondence) Assume that the unstable eigenvalues λ1, . . . , λM are
real and distinct. Suppose that P : [−1, 1]M → H satisfies the first order constraints of Eqs.
(2.2) and (2.3), and that P is a smooth solution of Eq. (2.5) on B = (−1, 1)M. Then P
parameterizes a local unstable manifold for u0.

We remark that if F generates a semi-flow� near u0, then Lemma 2.1 says that P satisfies
the flow conjugacy

P(e�tθ) = �(P(θ), t), (2.6)

for all t such that e�tθ ∈ (−1, 1)M . That is, P conjugates the flow generated by � to the
flow generated by F .

An example illustrating the formal series solution of Eq. 2.5 for a simple ODE is given
in Appendix A, with some numerical calculations given in Appendix B. These appendices
are included for the reader who would like to see how the method works in the simplest
possible setting before moving on to the more sophisticated applications to PDEs considered
in the next section, in hopes of making the present work self contained. Other similar worked
examples are found in the literature, and we refer the interested reader to [4, 13, 21, 53] for
more details.

Remark 2.2 (Complex conjugate unstable eigenvalues) Complex conjugate eigenvalues are
easily incorporated into this set-up by choosing associated complex conjugate eigenfunctions
and proceeding as above. This results in complex conjugate coefficients for the parameteriza-
tion P . The use of complex conjugate variables (in the appropriate components of θ ) results
in P having real image, i.e. recovers the parameterization of the real manifold. The only
difference is that one has to adjust the domain of the parameterization in the variables corre-
sponding to the complex conjugate eigenvalues, choosing unit disks instead of unit intervals.
In this sense the PDE case is no different from the ODE case described in detail in [36],
where the interested reader can find more a complete discussion.

2.2 Finite element methods for elliptic linear elliptic PDE

In this section we briefly review some basic finite element analysis for elliptic BVPs needed
for our numerical implementations. Excellent reference for this now classic material include
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[16, 19]. Let 	 ⊂ R
d denote an open set and letH be an L2 Sobolev space on 	 (and hence

a Hilbert space). Let H∨ denote the dual space consisting of all bounded linear functionals
on H.

Consider for example a uniformly elliptic linear PDE of the form

Lu = f ,

with Dirichlet boundary conditions u|∂	 = 0. We ask that L is densely defined on H ⊂ L2,
and that f ∈ L2.

A weak formulation of the problem is obtained after multiplying by a test-function v ∈ H,
applying Green’s formula (integration by parts), and imposing the boundary conditions. This
results in the variational problem

Find u ∈ H such that ∀v ∈ H, 〈u, v〉L = 〈 f , v〉, (2.7)

where

〈 f , v〉 =
∫

	

f v,

and 〈u, v〉L is a bilinear form. More generally, one can ask that L : H → H∨ and that
f ∈ H∨, where ∨ denotes the dual space.
The classicalLax-Milgram lemma insures that the problem has a unique solution u, assum-

ing that 〈·, ·〉L : H × H → R is a continuous H-elliptic bilinear form and 〈 f , ·〉 : H → R

is a bounded linear functional (i.e, 〈 f , ·〉 ∈ H∨). Neumann boundary conditions are handled
using the same technology, after restricting to a space H of test functions which vanish on
∂	. The treatment of more general boundary conditions using penalty methods, Lagrange
multipliers, or projection methods is also classical. We refer to [1, 3, 15, 20, 52] for more
general discussion of boundary conditions.

The finite elementmethod (FEM) is aGalerkin projection approach to numerically solving
Eq. (2.7), and consists of three main steps:

1. Triangulate 	 ⊂ R
d : obtain (often polygonal) mesh which discretizes the problem

domain.
2. Choose interpolants forH on the mesh: construct a basis for the interpolant space where

the basis functions have nearly disjoint support over mesh elements. This is the finite
element basis and its span is a finite element space.

3. Solve the sparse linear system obtained by projecting the the weak formulation of the
PDE (Eq. (2.7)) onto the finite element basis. This reduces the problem to numerical
linear algebra.

In the present work we focus on	 ⊂ R
2 a polygonal domain. However, we do not require

	 to be convex or even simply connected, and use the domains illustrated in Fig. 3. The next
three subsections discuss the three steps listed above in more detail.

2.2.1 Triangulation ofÄ ⊂ R
2

Let {Ti }nei=1 denote the elements of the triangulation so that

	 =
ne⋃
i=1

Ti .
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Fig. 3 Three example domains used in this paper. Note that they are non-convex, and non-simply connected.
Left: the L domain: it has a reemergent corner. Center: the Door domain: not simply connected. Right: the
Polygon with holes domain: toy model of a “natural” domain like a lake with islands

Here Ti is the i th triangle, and ne is the number of triangles. We require that if the boundary
of two triangles meet, then their intersection must be at a common edge.We remark that other
discretizations can be considered, for example as in the Bogner-Fox-Schmit elements [16]
(quadrilaterals), or even a combination of rectangles and triangles. Also, the discretization
does not need to be uniform but can be adapted to the model and domain, leading to more
efficient approximations.

2.2.2 Constructing the basis elements

The basis elements, which are required to have “small” compact support in H, are typically
chosen to be piecewise polynomial. In this paper we use linear polynomials for second order
problems (Laplacian operator), and fifth degree polynomials for some fourth order examples
(Bi-harmonic Laplacian). These Argyris elements are discussed in more detail in Sect. 4.4.
More general basis elements can be considered such as special rational functions (for example
Zienkiewicz triangles [16]).

A finite element is denoted by E = [z1, . . . , znn] ⊂ T , where T is an arbitrary triangle
and the zi are control points or nodes. Si := {Li j : 1 ≤ j ≤ si } denotes a corresponding
sets of control operators evaluated at zi (nn is the number of nodes in T and si denotes
the total number of operators assigned to the node zi ). Typically, the nodes consist of the
vertices along with a few other carefully chosen points. In general, they are not required to
be uniformly distributed in T .

Denote by lnb :=
nn∑
k=1

sk and define

S =
nn⋃
i=1

Si = {Li : 1 ≤ i ≤ lnb}.

the set of operators associated with the finite element E . The letters lnb appropriately stand
for “local number of basis” since the operators are used to determine the basis elements
associated with T . That is, for each k, the system L(φ) := (L1(φ), · · · , Llnb(φ)) = ek
is required to have a unique solution φE

k in some vector space B ⊂ H. Here ek is the kth

elementary basis vector in Rlnb.
It follows that if we would like to work with

B = Pk := {p : p is a polynomial of degree at most k},
then we must have lnb = (k+1)(k+2)

2 . Imposing regularity conditions (for example contin-
unity) on the solution u imposes further restrictions on the finite elements. For B = P1 the
elements are of the form E = [n1, n2, n3]where the ni ’s are the vertices of the triangles, and
Si = {id} for all i’s, with id(φ)(ni ) = φ(ni ).
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Finally, let Vh := span{φi }nbi=1 ⊂ H denote an interpolation space for H, where nb is the
total number of basis elements. Constructing this space involves collecting and indexing all
the local basis functions.

2.2.3 Computing the projection

Let u ∈ H denote the solution of Eq. (2.7). The projection of u into Vh is found by solving

a weak formulation of Eq. (2.7) on Vh . More precisely, write uh =
nb∑
i=1

ciφi and solve the

linear system
nb∑
j=1

c j 〈φ j , φi 〉L = 〈 f , φi 〉. (2.8)

It follows that the matrix
(
〈φ j , φi 〉L

)
is invertible under the assumption that 〈., .〉L is

H-elliptic and the φi are linearly independent.
In general, a Lagrange type interpolation of a function f over T with control set {Si } is

given by

�T ( f )(x, y) =
lnb∑
i=1

Li ( f )(zn(i))
det(Ai (x, y))

det(A)

where Li ∈ S =
nn⋃
i=1

Si , and the index n(i) = k for i such that s0 + · · · sk−1 + 1 ≤ i ≤ s0 +
· · · sk . Here we define Ai j =

(
Li (xm yn)(zn(i))

)
, and (Ak(x, y))i j = (1−δki )Ai j +δki xm yn ,

where j = (m+n)(m+n+1)
2 + (n + 1). The operators Li are acting on the monomials xm yn

where m, n range from 0 to the order of the polynomial interpolation, and the the coordinate
j depends on m, n as described above. Notice that the only term that survives the evaluation
of Li (�T ( f )) at a node gives the prescribed value. We let S0 := ∅ for convenience of
expressing n(i).

For low order polynomial bases the integrals appearing in (2.8) can be evaluated exactly.
For higher order bases it is often more practical to use quadrature rules of sufficiently high
degree to approximate the integrals. Such rules have the form

∫

	

f =
ne∑
i=1

∫

Ti
f ≈

ne∑
i=1

nq∑
j=1

w
Ti
j f (qTij ),

where nq is the degree of the quadrature rule, qTij are the quadratures points, and w
Ti
j are

some appropriately chosen weights. Then
(
〈φ j , φi 〉qL

)
cq =

(
〈 f , φi 〉q

)
,

where 〈·, ·〉qL and 〈 f , ·〉q denote the quadrature approximation of the bilinear form and linear
functional respectively. The solution to this approximated problem is denoted by cq .

Suppose that the quadrature formula converges to the exact integral as nq → ∞. If 〈·, ·〉L
isH-elliptic, it follows that 〈·, ·〉qL is Vh-elliptic (Vh ⊂ H) for nq large enough, which implies

that
(
〈φ j , φi 〉qL

)
is invertible. In general, theH-elliptic property of 〈·, ·〉L is established using

the Sobolev embedding theorems/Poincaré inequalities.
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For any polynomial basis and Gaussian quadratures there is nq large enough so that
〈φ j , φi 〉qL = 〈φ j , φi 〉L, in which case

‖cq − c‖ ≤
∥∥∥
(
〈 f , φi 〉q − 〈 f , φi 〉

)∥∥∥
∥∥∥∥
(
〈φ j , φi 〉qL

)−1
∥∥∥∥ ,

and approximating f = p + ε, with p polynomial, we have
∥∥∥
(
〈 f , φi 〉q − 〈 f , φi 〉

)∥∥∥ ≤ 2 sup(|ε|)
∥∥∥
(
〈1, |φi |〉

)∥∥∥ .

Bounding the projection error for a polynomial basis of order k requires assumptions about
the domain	. It follows, for example, by the the Bramble-Hilbert lemma that ‖u−uh‖1,	 =
O(hk), where uh denotes the projection of the solution u to the finite dimensional vector space
Vh . Of course, more sophisticated and practical ways of estimating these errors can be found
in the literature.

3 Formal power series and the homological equations for parabolic
PDEs

We now turn to the main problem of this paper, which is to extend the kinds of calculations
illustrated in Section A to the “vector fields” on Sobolev spaces generated by parabolic
PDEs. To this end we introduce a fairly simple class of nonlinear heat equations which
we find sufficient to highlight the main issues. Nevertheless, the discussion in this section
generalizes to parabolic equations involving more general elliptic operators, to problems
formulated on spatial domains of three or more dimensions with more general boundary
conditions, and even to systems of PDEs. Indeed, our goal in this section is not to describe
the most general possible setting but rather to illustrate the application parameterization
method, and especially the solution of Eq. (2.5), for an interesting class of PDEs. Some
extensions are given in Sect. 4.

Let 	 ⊂ R
2 denote bounded, planar, polygonal domain and f : R× 	 → R be a smooth

function, satisfying mild growth conditions at infinity. Consider the class of scalar parabolic
PDEs given by

∂

∂t
u(t, x, y) = �u(t, x, y) + f (u(t, x, y), x, y), (3.1)

with the Neumann boundary conditions

∂

∂n
u(t, x, y) = 0 for (x, y) ∈ ∂	.

Fix H = H1. We are interested in the dynamics of the semi-flow generated by the vector
field F : H → H∨ given by

F(u) = �u + f (u, x, y).

These spaces are appropriate for defining a weak version of F(u).
We now consider an equilibrium solution. That is, suppose that u0 : 	 → R is in H and

is a solution of the weak form of the elliptic nonlinear boundary value problem

�u(x, y) + f (u(x, y), x, y) = 0,
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subject to the Neumann boundary conditions. More precisely, this means that u0 satisfies

−
∫

	

∇u(x, y) · ∇φ(x, y) +
∫

	

f (u, x, y)φ(x, y) = 0,

for all φ ∈ H.
Suppose also that u0 has Morse index M . That is, we assume that λ1, . . . , λM ∈ (0,∞)

are the unstable eigenvalues, each with multiplicity one. Let ξ1, . . . , ξM : 	 → R denote
associated unstable eigenfunctions, i.e. solutions in H of the weak form of the eigenvalue
problem

�ξ(x, y) + ∂1 f (u0, x, y)ξ = λξ(x, y),

again subject to the boundary conditions.
We look for P : [−1, 1]M → H solving Eq. (2.5), with P given by the formal power

series

P(θ1, . . . , θM , x, y) =
∞∑

n1=0

. . .

∞∑
nM=0

pn1,...,nM (x, y)θn11 . . . θ
nM
M .

Here each coefficient pn1,...,nM ∈ H is required to satisfy the boundary conditions.Moreover,
imposing the constraints of Eqs. (2.2) and (2.3) gives that the first order coefficients of P are

p0,...,0(x, y) = u0(x, y),

and

p1,...,0(x, y) = ξ1(x, y), . . . p0,...,1(x, y) = ξM (x, y).

To work out the higher order coefficients we follow the blueprint of Section A. Begin by
letting � denote the diagonal matrix of unstable eigenvalues as in Eq. (2.4). Calculating the
push forward of � by DP on the level of power series gives

DP(θ, x, y)�θ = [∂1P(θ, x, y), . . . , ∂M P(θ, x, y)]

⎛
⎜⎝

λ1θ1
...

λMθM

⎞
⎟⎠

= λ1θ1
∂

∂θ1
P(θ, x, y) + . . . + λMθM

∂

∂θM
P(θ, x, y)

=
∞∑

n1=0

. . .

∞∑
nM=0

(n1λ1 + . . . + nMλM )pn1,...,nM (x, y)θn11 . . . θ
nM
M .

Observe that the value of this series at θ = 0 is zero.
Next consider

F(P(θ, x, y)) = �P(θ, x, y) + f (P(θ, x, y), x, y).

Proceeding formally, we commute the Laplacian with the infinite sum, and have that

�P(θ, x, y) =
∞∑

n1=0

. . .

∞∑
nM=0

�pn1,...,nM (x, y)θn11 . . . θ
nM
M .
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If f is analytic then f (P(θ, x, y), x, y) admits a power series representation. (For f only
Ck regularity the argument below is modified accordingly). Let us write

f (P(θ, x, y), x, y) =
∞∑

n1=0

. . .

∞∑
nM=0

qn1,...,nM (x, y)θn11 . . . θ
nM
M ,

where the qn1,...,nM are the formal Taylor coefficients of the composition, and each depends
on the coefficients of P . Efficient computation of the qn1,...,nM best illustrated through exam-
ples in the next section and for the moment we remark that, for any given multi-index
(n1, . . . , nM ) ∈ N

M , the dependence of qn1,...,nM on pn1,...,nM has

qn1,...,nM = D1 f (u0, x, y)pn1,...,nM + Sn1,...,nM ,

where Sn1,...,nM depends only on coefficients of P of lower order. This follows from the Faá
di Bruno formula.

Matching like powers in Eq. (2.5) leads to

(n1λ1 + . . . + nMλM )pn1,...,nM
= �pn1,...,nM + qn1,...,nM
= �pn1,...,nM + D1 f (u0, x, y)pn1,...,nM + Sn1,...,nM ,

so that

�pn1,...,nM + D1 f (u0, x, y)pn1,...,nM − (n1λ1 + . . . + nMλM )pn1,...,nM
= −Sn1,...,nM .

That is, pn1,...,nM solves the linear equation

(DF(u0) − (n1λ1 + . . . + nMλM )IdH) pn1,...,nM = −Sn1,...,nM , (3.2)

where the right hand side depends only on lower order terms.
Equation (3.2) is the homological equation for the unstable manifold for F at u0. Observe

that Eq. (3.2) is a linear elliptic PDE with the same boundary conditions as the original
reaction/diffusion Eq. (3.1). Indeed, the linear operator on the left hand side is the resolvent
of DF(u0), evaluated at the complex numbers n1λ1 + . . . + nMλM . Then each Taylor
coefficient of P is the solution of a linear problem no more complicated than the linearized
equation at u0, so that these equations are themselves amiable to finite element analysis under
mild assumptions on the domain 	.

This is a general fact which makes the parameterization method so useful. The homo-
logical equations determining the jets of the invariant manifold parameterization are linear
equations, as complicated as the linearized problems at the steady state itself. For example
when considering a finite dimensional problem in Section A, the steady state equations were
systems of n nonlinear algebraic equations in n unknowns, and in this case the homologi-
cal equations turned out to be systems of n linear equations in n unknowns. Moreover, the
homological equations involved the characteristic matrix for the derivative of the vector field
at the equilibrium.

In the calculations just discussed, the steady state equation is a nonlinear elliptic BVPs, and
the homological equations turn out the be linear elliptic BVPs on the same domain with the
same boundary conditions. In fact the linear operator is just the resolvent of the differential,
in direct analogywith the finite dimensional case. In the remarks below, we expand on several
similarities between the results just derived and the simple example calculation considered
in Section A.
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Remark 3.1 (Non-resonance conditions and existence of a formal solution) Observe that Eq.
(3.2) has a unique solution if and only if the non-resonance condition

n1λ1 + . . . + nMλM /∈ spec(DF(u0)), (3.3)

is satisfied whenever n1 + . . .+nM ≥ 2. Since λ1, . . . , λM are the only unstable eigenvalues
of DF(u0), and since DF(u0) generates a compact semi-group, we have that the countably
many remaining eigenvalues are stable. (In practice we check that the remaining eigenvalues
of the numerically computed derivative have negative real part).

Since the n1, . . . , nM are all positive, there are only finitely many opportunities for n1λ1+
. . .+ nMλM to be an eigenvalue. If Eq. (3.3) is satisfied for all multi-indices (n1, . . . , nM ) ∈
N

M with n1 + . . .+ nM ≥ 2 then we say that the unstable eigenvalues are non-resonant, and
in this case we have that the parameterization P is formally well defined to all orders. That
is, Eq. (2.5) has a well defined formal series solution satisfying the first order constraints of
Eqs. (2.2) and (2.3).

Remark 3.2 (Uniqueness up to rescaling of the first order data) The unique solvability of the
homological equations, assuming non-resonance of the unstable eigenvalues, gives that the
solution P at u0 is unique up to the choice of the scalings of the eigenfunctions. The choice
of the scaling of the eigenfunctions directly effects the decay of the coefficients pn1,...,nM
as discussed in [4, 38]. For this reason we always fix the domain of the parameterization
to be B = [−1, 1]M , and choose the scaling of the eigenvectors so that the coefficients
decay rapidly. Of course while choosing smaller scalings for the eigenvectors provides faster
coefficient decay, it also means that the image of B is smaller inH. That is, smaller scalings
stabilize the numerics but reveal a smaller portion of the local unstable manifold. In practice
we must strike a balance between the polynomial order of the calculation (at what order
do we truncate the formal series?) the scaling of the eigenvectors and the size of the local
unstable manifold we compute.

3.1 Automatic differentiation of power series

This section deals with the problem of working out the power series coefficients of nonlinear
functions of known power series. Classic references for this material (which focus on the one
variable case) are [31, 32]. The discussion will focus on the multivariable case.

A critical step in any explicit example application of the parameterization method is to
work out the dependence of the coefficients qn1,...,nM of the nonlinear composition on the
unknown coefficients pn1,...,nM . This is essential for defining the right hand side Sn1,...,nM of
the Homological equation (3.2). This challenge reduces to repeated application of the Cauchy
product formula whenever f (·, x, y) has polynomial nonlinearity.

For example consider the case where f is a quadratic function of the form

f (u, x, y) = a(x, y)u2.

Then, the standard Cauchy product formula for two power series gives that

f (P(θ, x, y), x, y)

= a(x, y)

⎛
⎝

∞∑
n1=0

. . .

∞∑
nM=0

pn1,...,nM (x, y)θn11 . . . θ
nM
M

⎞
⎠
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×
⎛
⎝

∞∑
n1=0

. . .

∞∑
nM=0

pn1,...,nM (x, y)θn11 . . . θ
nM
M

⎞
⎠

=
n1∑

k1=0

. . .

nM∑
kM=0

qn1,...,nM (x, y)θn11 . . . θ
nM
M ,

where

qn1,...,nM (x, y) =
n1∑

k1=0

. . .

nM∑
kM=0

a(x, y)pn1−k1,...,nM−kM (x, y)pk1,...,kM (x, y)

= 2a(x, y)p0,...,0(x, y)pn1,...,nM (x, y) + “lower order terms”

= 2
∂

∂u
f (u0, x, y)pn1,...,nM (x, y) + “lower order terms”,

as promised in the previous section. We see that the “lower order terms” have the explicit
form

Sn1,...,nM =
n1∑

k1=0

. . .

nM∑
kM=0

δ̂k1,...,kMn1,...,nM a(x, y)pn1−k1,...,nM−kM (x, y)pk1,...,kM (x, y)

where the coefficient

δ̂k1,...,kMn1,...,nM =

⎧
⎪⎨
⎪⎩

0 if k1 = . . . = kM = 0

0 if k1 = n1, . . . , kM = nM
1 otherwise

,

appears in the sum to indicate that both of the terms with pn1,...,nM (x, y) have been removed.
When f contains non-polynomial terms, calculating the qn1,...,nM is more delicate. We

employ a semi-numerical technique based on the idea thatmany typical nonlinearities appear-
ing in applications are themselves solutions of polynomial differential equations. This is
exploited in fast recursion schemes.

Consider for example the case of

f (u, x, y) = a(x, y)e−u .

Let

P(θ, x, y) =
∞∑

n1=0

. . .

∞∑
nM=0

pn1,...,nM (x, y)θn11 . . . θ
nM
M ,

and write

Q(θ, x, y) =
∞∑

n1=0

. . .

∞∑
nM=0

qn1,...,nM (x, y)θn11 . . . θ
nM
M = f (P(θ, x, y)). (3.4)

The following idea is described in detail in Chapter 2 of [24]. We apply the radial gradient—
the first order partial differential operator given by

∇θ = θ1
∂

∂θ1
+ . . . + θM

∂

∂θM
,

to both sides of Eq. (3.4) and obtain

∇θ f (P(θ, x, y), x, y) = ∇θ Q(θ, x, y).
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That is

∇θ f (P(θ, x, y), x, y)

= θ1
∂

∂u
f (u, x, y)

∣∣u=P(θ,x,y)
∂

∂θ1
P(θ, x, y) + . . .

+ θM
∂

∂u
f (u, x, y)

∣∣u=P(θ,x,y)
∂

∂θM
P(θ, x, y)

= −a(x, y)e−P(θ,x,y)
(

θ1
∂

∂θ1
P(θ, x, y) + . . . + θM

∂

∂θM
P(θ, x, y)

)

= −Q(θ, x, y)∇θ P(θ, x, y)

= −
⎛
⎝

∞∑
n1=0

. . .

∞∑
nM=0

qn1,...,nM (x, y)θn11 . . . θ
nM
M

⎞
⎠

⎛
⎝

∞∑
n1=0

. . .

∞∑
nM=0

(n1 + . . . + nM )pn1,...,nM (x, y)θn11 . . . θ
nM
M

⎞
⎠

= −
∞∑

n1=0

. . .

∞∑
nM=0

⎛
⎝

n1∑
k1=0

. . .

nM∑
kM=0

(k1 + . . . + kM )qn1−k1,...,nM−kM pk1,...,kM

⎞
⎠ θ

n1
1 . . . θ

nM
M ,

on the left, and

∇θ Q(θ, x, y) =
∞∑

n1=0

. . .

∞∑
nM=0

(n1 + . . . + nM )qn1,...,nM (x, y)θn11 . . . θ
nM
M

on the right. Matching like powers and isolating qn1,...,nM leads to

qn1,...,nM = −1

n1 + . . . + nM

n1∑
k1=0

. . .

nM∑
kM=0

(k1 + . . . + kM )qn1−k1,...,nM−kM pk1,...,kM .

Then the complexity of computing the power series coefficients of a(x, y)e−P(θ,x,y) is the
complexity of a single Cauchy product. The additional cost is that the coefficients of Q have
to be stored in addition to those of P .

Suchmethods for formal seriesmanipulations are referred to bymany authors as automatic
differentiation for power series, and they facilitate rapid computation of the formal series
coefficients of compositions with all the elementary functions. A classic reference, which
includes an in depth historical discussion, is found in Chapter 4, Section 6 of [32]. See also
the discussion of software implementations found in [31].

4 Applications

4.1 A first worked example: Fisher’s Equation

Consider the parabolic PDE

∂

∂t
u = �u + αu(1 − u),
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on the L domain 	 illustrated in the left-most frame of Fig. 3, subject to the Neumann
boundary conditions

∇u · n|∂	 = 0.

Here n is a unit vector normal to ∂	. This reaction-diffusion equation was introduced by
Ronald Fisher in the context of population dynamics, as a toy model for the propagation
of advantageous genes. It is essentially a nonlinear heat equation with logistic nonlinearity.
Letting

F(u) = �u + αu(1 − u),

we see that the problem describes an evolution equation as in Eq. (2.1). For this example we
let H = H1(	).

The example provides an interesting first study both because it has the simplest possible
nonlinearity, and also because the well understood bifurcation structure of the problem gives
us easy access to non-trivial equilibrium solutions with any desired Morse index as we now
discuss.

Recall that an equilibrium solution has F(u) = 0, so that the constant function 0 is
always an equilibrium solution of Fisher’s Equation. This is referred to as the homogeneous
background solution. Note that when α = 0, the homogeneous background solution is
stable, as the problem reduces to the heat equation. For α �= 0 the problem has two constant
equilibrium solutions, u ≡ 0 and u ≡ 1.

Increasingα causes an eigenvalue to crosses the imaginary axis (in fact it pass through zero
as all eigenvalues are real) so that the homogeneous background solution looses stability. This
is a symmetry breaking, or pitch-fork bifurcation and it gives rise to a pair of non-constant
equilibrium solutions. The new branches of equilibrium solutions carry the pre-bifurcation
Morse index of background state, so that after the first bifurcation they are stable. The
eigenvalue-eigenvector problem is specified below.

Asα increasesmore andmore eigenvalues pass through zero, increasing themorse index of
the homogeneous solution. Eachof these bifurcations gives rise to a newbranchof equilibrium
solutions, and we can follow any of these branches using numerical continuation methods.
The first pair of non-trivial equilibria to appear are initially stable, however they also undergo
symmetry breaking bifurcations of their own, and loose stability as α is increased further.
For example, at α = 2.7 the first non-trivial branch of equilibrium solutions have Morse
index 1, and Morse index 2 when α = 9. These equilibrium solutions then have one and
two dimensional attached unstable manifolds respectively. In the remainder of this section
we discuss in detail the parameterization of the two dimensional unstable manifold for this
otherwise simple example.

To find equilibria, we study the nonlinear elliptic BVP

F(u) = �u + αu(1 − u) = 0,

subject to the same natural boundary conditions on 	. The weak formulation is

F(u)φ = −
∫

	

∇u · ∇φ +
∫

	

αu(1 − u)φ = 0,

and, using the notation of Sect. 2.2, triangulate 	 and solve for the coefficients of the finite
element representation uh = ∑nb

j=1 c jφ j of u. In order to construct this projection, define
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Fig. 4 Fisher’s equation with α = 9, ne = 515. Left: Equilibrium solution, with Morse index 2. Center:
Eigenfunction for λ1 = 9.04. Right: Eigenfunction for λ2 = 7.16

the linear basis functions φ j as

φ j (ni ) =
{
1 j = i

0 j �= i
,

where ni denotes the i−th vertex in the triangulation. Note that in this case, nb = nn. Letting
φ = φi for 1 ≤ i ≤ nb leads to the nonlinear system of nb equations in nb unknowns, given
by

Fh
i (c) = −

∫

	

⎛
⎝

nb∑
j=1

c j∇φ j

⎞
⎠ · ∇φi +

∫

	

α

⎛
⎝

nb∑
j=1

c jφ j

⎞
⎠

⎛
⎝1 −

nb∑
j=1

c jφ j

⎞
⎠φi = 0,

which we solve using the Newton’s Method (for c = (c1, c2, ..., cnb)). More precisely, let
Fh(c) = (Fh

1 (c), ...,Fh
nn(c)) = (F(uh)φ1, ...,F(uh)φnn). The k’th Newton’s step is given

by

c(k) = c(k−1) − DFh
(
c(k−1)

)−1
Fh

(
c(k−1)

)
,

where u(k)
h = ∑nb

j=1 c
(k)
j φ j and DFh(c) = − (∫

	
∇φ j · ∇φi

) +
(∫

	
∂N (c)
∂c j

φi

)
.

Once the approximate solution u0 is computed we proceed to solve the eigenvalue-
eigenvector problem

�ξ + α(1 − 2u0)ξ − λξ = 0, ∇ξ · n|∂	 = 0.

That is, we compute the projection ξh =
nb∑
j=1

c jφ j in the weak formulation, which leads to

−
∫

	

⎛
⎝

nb∑
j=1

c j∇φ j

⎞
⎠ · ∇φi +

∫

	

α(1 − 2u0)

⎛
⎝

nb∑
j=1

c jφ j

⎞
⎠ φi =

∫

	

λ

⎛
⎝

nb∑
j=1

c jφ j

⎞
⎠φi

or
(

−
∫

	

∇φ j · ∇φi + α(1 − 2u0)φ jφi

)
c = λ

( ∫

	

φ jφi

)
c.

After computing the unstable eigenvalues λ1 and λ2 and the associated eigenfunctions ξ1
and ξ2, we proceed to solve the invariance Eq. (2.5) specialized to the present situation. That
is, we consider the weak form of the equation

F(P(θ)) = λ1θ1
∂

∂θ1
P(θ) + λ2θ2

∂

∂θ2
P(θ),
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where

P(θ) =
∞∑

m=0

∞∑
n=0

pm,n(x, y)θ
m
1 θn2 ,

with p0,0 = u0, p1,0 = ξ1 and p0,1 = ξ2. Taking the projection pm,n =
nb∑
j=1

c(m,n)
j φ j , leads

to
(

−
∫

	

∇φ j · ∇φi + α(1 − 2u0 − mλ1 − nλ2)φ jφi

)(
c(m,n)
i

)
=

( ∫

	

s(m,n)φi

)
,

for m + n ≥ 2, which is

(
DFh(c(0)) − (λ1m + λ2n)

∫

	

φ jφi

)
c(m,n) =

( ∫

	

s(m,n)φi

)
,

with

s(m,n) = α

m∑
i=0

n∑
j=0

δ(i, j)pi, j pm−i,n− j ,

and

δ(i, j) =
{
0 (i, j) = (0, 0) or (i, j) = (m, n)

1 otherwise
.

Asanticipated inSect. 3.1, the homological equations are linear elliptic PDEs, andwe solve
them recursively to any desired order using the Finite Element Method. Figure 6 shows a few
functions in the fast manifold (1d manifold associated to the largest positive eigenvalue) and
slow manifold (1d manifold associated to the smallest positive eigenfunction) approximated
up to order N = 30.

The effect of the scaling of the eigenvectors on the decay of the coefficients is illustrated
in Fig. 5 .

Fig. 5 Coefficient growth: three plots of the magnitude of the parameterization coefficients as a function
of the order of the coefficients. (Horizontal axis is the order of the coefficient and vertical axis is the base
ten logarithm L2 norm of the coefficient function). Left: The scaling of the eigenvector is too small, and the
coefficients decay too fast. Coefficients after order then are below machine precision in L2 norm (smaller than
10−16) and hence do not contribute significantly to the accuracy of the polynomial approximation. Center:
The eigenvector scaling is choosen too large, and now the pm,n ’s grow exponentially fast. This introduces
numerical instabilities into the approximation. Right: The scaling is chosen just right: they decay exponentially
fast at a rate chosen so that the N -th order coefficients reach machine precision
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Fig. 6 Left: 10 functions on the fast manifold approximated to order N = 30 with Invariance equation error
of 1.34e−8 with respect to the L2 norm, and 5.98*e−8 with respect to the H1 norm. Right: 10 functions on
the slow manifold approximated to order N = 30 with Invariance equation error of 4.56e−07 with respect to
the L2 norm, and 2.19e−06 with respect to the H1 norm

4.2 A reaction diffusion equation with non-polynomial nonlinearity: one unstable
eigenvalues

In this section we derive the homological equations for a non-polynomial problem. We
consider the reaction diffusion equation with Ricker type exponential nonlinearity given by

ut = �u + αu
(
0.5 − e−u) , (4.1)

over the L domain with Neumann boundary conditions and H = H1(	).
We refer to this problem as the Fisher-Ricker (FR) equation, and take parameterα = −4.7.

Letting

F(u) = �u + αu
(
0.5 − e−u) ,

we obtain an evolution equation of the kind given in Eq. (2.1).
To find the equilibrium solution consider the weak form of the equation F(u) = 0, project

into a finite element space of piecewise linear functions, and solve

Fh
i (c) = −

∫

	

⎛
⎝

nb∑
j=1

c j∇φ j

⎞
⎠ · ∇φi +

∫

	

α

⎛
⎝

nb∑
j=1

φ j

⎞
⎠

⎛
⎝0.5 − exp{−

nb∑
j=1

c jφ j }
⎞
⎠ φi = 0.

The corresponding eigenvalue-eigenfunction problem is

DFh(c(0))c = λ
( ∫

	

φ jφi

)
c.

Suppose now that u0 is an equilibrium solution with Morse index 1, let λ denote the
unstable eigenvalue, and ξ be a corresponding eigenfunction. We seek a parameterization of

the form P(θ) =
∞∑
n=0

pnθn solving the 1D Invariance Equation

F(P(θ)) = θλ
d

dθ
P(θ),

which, after expanding P(θ) as a power series becomes

∞∑
n=0

�pnθ
n + α

( ∞∑
n=0

pnθ
n

) (
0.5 − exp

(
−

∞∑
n=0

pnθ
n

))
= λ

∞∑
n=0

npnθ
n .
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Here, the pn = pn(x, y) are functions defined on 	 satisfying the boundary conditions.
We compute the power series coefficients of the exponential nonlinearity as in Sect. 3.1.

That is, we introduce the new variable

Q(θ) := e−P(θ) =
∞∑
n=0

qnθ
n,

and note that Q′ = −QP ′. Then

qn = −pnq0 − 1

n

n−2∑
j=0

( j + 1)p j+1qn−1− j . (4.2)

Note that Eq. (4.2) involves only sums and products of the functions pi (x, y), q j (x, y), for
0 ≤ i, j ≤ n, and that these operations are well defined for pn, qn in any finite element space.
Equation (4.2) then allows us to compute qn to any desired order, assuming that pn, . . . , p0,
and qn−1, . . . , q0 are known.

Returning to the Invariance Equation and using the recursive formula for qn we obtain
that for n ≥ 2, the pn solve

�pn + α(0.5 − q0 − λn)pn − α p0qn = α

n−1∑
j=1

p jqn− j ,

or

�pn + α(0.5 − q0 + p0q0 − λn)pn = sn,

where

sn = α

n−1∑
j=1

p jqn− j − α p0
n

n−2∑
j=0

( j + 1)p j+1qn−1− j .

Passing to the weak form, we find that the coefficients pn =
nb∑
j=1

c(n)
j φ j solve the homological

equations (
DFh(c(0)) − λn

∫

	

φ jφi

)
c(n) =

( ∫

	

snφi

)
, (4.3)

for n ≥ 2. Notice that sn only depends on pk’s and qk’s with 0 < k < n. Then if p0, . . . , pn−1

and q0, . . . , qn−1 are known, pn is computed by solving Eq. (4.3). Once pn is known, we
update Eq. (4.2) to obtain qn .

4.3 A reaction diffusion equation with non-polynomial nonlinearity:two unstable
eigenvalues

A modification of the method just discussed allows us to compute higher dimensional man-
ifolds in problems with non-polynomial nonlinearities. Consider again Eq. (4.1),

this time with α = −4.41. At this parameter value there is a non-trivial equilibrium u0
with Morse index 2. Let λ1 and λ2 denote the unstable eigenvalues and ξ1, ξ2 denote an
associated pair of unstable eigenfunctions.
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Fig. 7 Fisher-Ricker equation with α = −4.7, ne = 515. Left: Equilibrium solution. Center: Eigenfunction
ξ1 with λ1 = 2.41. Right: Eigenfunction ξ2 with λ2 = 0.05

Recall that for an equilibrium with Morse index 2, the invariance equation becomes

F(P(θ)) = λ1θ1
∂

∂θ1
P(θ) + λ2θ2

∂

∂θ2
P(θ),

and we seek a power series solution of the form

P(θ) =
∞∑

m=0

∞∑
n=0

pm,n(x, y)θ
m
1 θn2 ,

with

p00 = u0, p10 = ξ1, and p01 = ξ2,

and where pm,n for m + n ≥ 2 are to be determined.
Once again, we exploit the technique developed in Sect. 3.1 to work out the exponential

nonlinearity, and define the auxiliary equation

Q := exp (−P(θ)) =
∞∑

m=0

∞∑
n=0

qm,n(x, y)θ
m
1 θn2 ,

and take the radial gradient to obtain that

qm,n = − 1

(m + n)

m∑
i=1

n∑
j=1

(i + j)pi, j qm−i,n− j .

Note that this requires only additions and multiplications, all well defined operations for
finite element basis functions.

Returning to the Invariance Equation and using the recursive formula for qm,n we have

�pm,n + α(0.5 − q0,0 − λ1m − λ2n)pm,n − α p0,0qm,n = α

m∑
i=0

n∑
j=0

qi, j pm−i,n− jδ(i, j),

so that the strong form of the homological equation is

�pm,n + α(0.5 − q0,0 + p0,0q0,0 − λ1m − λ2n)pm,n = sm,n,

with

sm,n = α

m∑
i=0

n∑
j=0

qi, j pm−i,n− jδ(i, j) − α p0,0
(m + n)

m−1∑
i=1

n−1∑
j=1

(i + j)pi, j qm−i,n− j ,
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Fig. 8 Left: 10 functions on the fast manifold approximated to order N = 30 with Invariance equation error
of 9.21e−8 with respect to the L2 norm, 3.69e−07 with respect to the H1 norm. Right: 10 functions on the
slow manifold approximated to order N = 30 with Invariance equation error of 6.12e−06 with respect to the
L2 norm, 2.50e−05 with respect to the H1 norm

a linear, elliptic BVP for each m + n ≥ 2 as desired. Passing to the weak form leads to

(
DFh(c(0)) − (λ1m + λ2n)

∫

	

φ jφi

)
c(m,n) =

( ∫

	

snφi

)
,

which we solve recursively via the finite element method, obtaining the parameterization
coefficients to any desired order (updating the equation for qmn as we go). Results are illus-
trated in Fig. 8.

4.4 Higher order PDEs: a Kuramoto-Sivashinsky small term

Wenow consider a higher order problem,with leading diffusion term given by the biharmonic
Laplacian. The biharmonic operator often appears in models of thin structures that react
elastically to external forces. The Kuramoto-Sivashinsky equation (or KS equation) is given
by

F(u) = −�2u − �u − 0.5|∇u|2,
u|∂	 = 0 ∇u · n|∂	 = 0.

for u ∈ H2
0 (	). It models flame front propogation, and is known to exhibit chaotic dynamics.

We refer to [30, 34, 35, 47, 60] for more complete discussion of the physics and dynamics
of the KS equation.

Since the differential operator is fourth order, higher regularity Finite Elements are
required. The purpose of this section is to illustrate the use of the parameterization method
in a higher order problem. To simplify the discussion, we start with a known solution of
Fisher, and introduce the biharmonic term and nonlinearity as a perturbation with Neumann
boundary conditions.

Specifically, we consider u ∈ H2(	) and take

F0(u) = �u + αu(1 − u) ∇u · n|∂	 = 0,

with weak formulation

F0(u)φ = −
∫

	

∇u · ∇φ +
∫

	

αu(1 − u)φ = 0,
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and let Fε(u) ∈ H2(	)
∨
for the perturbation problem given by

Fε(u)φ = F0(u)φ +
∫

	

ε1�u�φ +
∫

	

ε2N (u)φ = 0.

Notice that regular enough solutions of the weak equation above correspond to strong
solutions (with β = 1) of the problem

Fε(u) = ε1�
2u + β�u + αu(1 − u) + ε2N (u) = 0,

with Neumann boundary conditions.
Indeed, starting with

∫

	

ε1
(
�2u

)
φ +

∫

	

β(�u)φ +
∫

	

(αu(1 − u) + ε2N (u))φ = 0,

and applying Green’s formula we have:
∫

	

−ε1∇(�u) · ∇φ +
∮

∂	

ε1(∇(�u) · n)φ

−
∫

	

β∇u · ∇φ +
∮

∂	

β(∇u · n)φ +
∫

	

(αu(1 − u) + ε2N (u))φ = 0.

Assuming that the boundary integrals vanish, we apply Green’s formula once more and now
have:∫

	

ε1�u�φ −
∮

∂	

ε1(∇φ · n)�u −
∫

	

β∇u · ∇φ +
∫

	

(αu(1 − u) + ε2N (u))φ = 0.

Noting that the boundary integral vanish , we obtain the weak equations
∫

	

ε1�u�φ −
∫

	

β∇u · ∇φ +
∫

	

(αu(1 − u) + ε2N (u))φ = 0,

i.e ∫

	

ε1�u�φ −
∫

	

β∇u · ∇φ +
∫

	

αuφ =
∫

	

(αu2 − ε2N (u))φ.

In this last form, one easily identify the perturbation problem from Fisher’s equation,
ut = Fε(u), where

Fε(u) = ε1�
2u + β�u + αu(1 − u) + ε2N (u) = F0(u) + ε1�

2u + ε2N (u).

We will choose N (u) = −0.5|∇u|2 for our computations (and β = 1), and ε1 will be a
small negative parameter. In this way, for β = 0 and α = 0 (and with Dirichlet boundary
conditions instead) we recover the Kuramoto-Sivashinsky model. On the other hand, with
ε1 = 0 and ε2 = 0 we obtain again Fisher’s equation.

Remark 4.1 The computations in theMatlab scripts are formulated as ut = −α�2u−β�u+
μu(1 − u) − δ0.5|∇u|2, with α small and positive, β negative of absolute value close to 1,
μ close to the parameters used for Fisher’s equation, and δ small and positive.

Because the weak form of the equation contains the Laplacian (instead of just the gradient)
we use C1 Argyris elements which offer high convergence rate. We refer to [16] for the
mathematical theory of the Argyris elements and to [18] for a useful discussion of numerical
the implementation.
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We recall that the Argyris elements are fifth order polynomials in two space variable
constructed as follows. Define the operators L1 = id, L2 = ∂10, L3 = ∂01, L4 = ∂20,
L5 = ∂11 and L6 = ∂02. For an element [n1, n2, n3,m1,m2,m3] with nodes n1, n2 and n3
and midpoints of the edges m1, m2 and m3, the nodal basis φ

ni
k are defined by

L�(φ
ni
k (n j )) = δi jδ�k,

∂

∂n
φ
ni
k (m j ) = 0,

and the basis associated to the edge midpoints by

∂

∂n
φmi (m j ) = δi j ,

L�φ
mi (n j ) = 0,

where 1 ≤ i, j ≤ 3 and 1 ≤ k, � ≤ 6.
These are 21 constraints for each φ which uniquely defines a fifth order polynomials of

the form

φ(x, y) =
∑

0≤i+ j≤5

ci j x
i y j .

We solve a 21 × 21 linear system Ac = b for the coefficients ci j for each of the 21 basis
associated with an element. In practice, we only do this for a reference triangle and transfer
these basis to an arbitrary element using the method of Dominguez and Sayas [18].

In the notation presented earlier, Si = {Lk : 1 ≤ k ≤ 6} for i = 1, 2, 3 and Si = { ∂
∂n } for

i = 4, 5, 6. After some indexing and renaming we let S = ⋃
i
Si = {Lk} and

φi = det(Ai )

det(A)

for 1 ≤ i ≤ 21. Recall that the coordinates of A, Ai j =
(
Li (xm yn)(zn(i))

)
, and the

coordinates of Ak , (Ak(x, y))i j = (1−δki )Ai j+δki xm yn , where j = (m+n)(m+n+1)
2 +(n+1).

The global representation of u becomes:

u =
6∑

k=1

∑

all ni

cnik φ
ni
k +

∑

all mi

cmi φmi .

This interpolation is indexed in some convenient way: u = ∑nb
j=1 c jφ j with nb = 6nv +

ned where nv is the number of vertices and ned is the number of edges in the triangulation.
After computing an equilibriumsolution and eigendataλ and ξ as in the previous examples,

we proceed to solve Eq. (2.5) in the case of Morse index one, interpreted in H2(	)
∨
as

F(P(θ)) = λθ
∂P

∂θ
.

First comparing powers and then solving for

pn =
nb∑
j=1

c(n)
j φ j ,

123



Partial Differential Equations and Applications             (2022) 3:75 Page 25 of 38    75 

Fig. 9 FKS equation with ε1 = −10−2, β = 1, α = 2.61, and ε2 = 10−3 Left: Equilibrium solution, ne=705.
Right: Eigenfunction ξ with λ = 3.48

Fig. 10 Unstable manifolds for the FKS equation posed on non-convex domains with holes. Left: ne = 522,
ε1 = −10−3, β = 1, α = 3, and ε2 = 10−4, 10 points on the 1dmanifold, N = 30. L2 error on the invariance
equation 1.48e−07, H1 error on the invariance equation 1.17e−06. Right: ne = 391, ε1 = −10−2, β = 1,
α = 3, and ε2 = 10−3, 10 points on the 1d manifold, N = 30. L2 error on the invariance equation 1.13e−06,
H1 error on the invariance equation 1.57e−05

leads to

〈ε1�2 pn + β�pn + α(1 − 2p0)pn − ε2

(
∂ p0
∂x

∂ pn
∂x

+ ∂ p0
∂ y

∂ pn
∂ y

)
− λpn, φ〉 = 〈sn, φ〉

where

sn = ε2

2

(
n−1∑
k=1

∂ pk
∂x

∂ pn−k

∂x
+ ∂ pk

∂ y

∂ pn−k

∂ y

)
− α

n−1∑
k=1

pk pn−k,

and so the projected weak formulation of the homological equation is of the form

(
DFh(c(0)) − λn

∫

	

φ jφi

)
c(n) =

(∫

	

snφi

)
.

In the Fig. 10, we show the manifolds computed over two additional irregular domains.
In Fig. 11 the manifold is approximated to order 10 and 120, using the same scaling of the
eigenvector. The error improves significantly by increasing the order of the approximation.
Equivalently, if we set a tolerance level for the error in our computations, the local manifold
obtained for order 10 is significantly smaller.
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Fig. 11 Unstablemanifold for the FKS equation on theL domainwith eigenvector scaled by 0.8 and parameters
ε1 = −10−2, β = 1, α = 2.61, and ε2 = 10−3 Left: 10 points on the 1d manifold, N = 10, Invariance
equation error L2 norm 0.012, H1 norm 0.075. Right: 10 points on the 1d manifold, N = 120, Invariance
equation error L2 norm 1.55e−05, H1 norm 1.49e−04

4.5 A-posteriori error estimation

In this section we define a-posteriori error indicators for the parameterization method and
illustrate their use in the examples from above. For the first indicator, consider the L2 norm of
the defect associatedwith the invariance equation. That is, for the N -th order parameterization

PN (θ, x, y) =
N∑

n=0

pn(x, y)θ
n,

of a 1D unstable manifold, define the defect function

E1,N (θ, x, y) := F(PN (θ, x, y)) − λθ
∂

∂θ
PN (θ, x, y),

for θ ∈ (−1, 1) and (x, y) ∈ 	, and the L2 indicator

εN ,1 =
∫

|θ |≤1

∥∥E1,N (θ)
∥∥
L2(	)

.

Note that εN ,1 = 0 for an exact solution.
Similarly we define, for the parameterization

PN (θ1, θ2, x, y) =
N∑

m+n=0

pmn(x, y)θ
m
1 θn2 ,

of a two dimensional unstable manifold, the defect function

EN ,2(θ1, θ2, x, y) = F(PN (θ1, θ2, x, y)) − λ1θ1
∂

∂θ1
PN (θ1, θ2, x, y)

−λ2θ2
∂

∂θ2
PN (θ1, θ2, x, y),

and the indicator

εN ,2 =
∫

|θ1|,|θ2|≤1

∥∥E2,N (θ1, θ2)
∥∥H .

In practice these indicators are approximated by computing the L2(	) norms and average
for a finite number of parameter points.
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Table 1 L2, H1 norms of the error in the Invariance Equation for 1d and 2d unstable manifolds in the Fisher
model over the L domain: α = 2.7, α = 9 respectively

ne Fisher 1d manifold L Fisher 2d manifold L

515 4.922499e−07, 2.550765e−06 5.960955e−07, 2.8448771e−06

984 1.448931e−07, 7.490640e−07 1.560992e−07, 7.498196e−07

1963 3.294838e−08, 2.066328e−07 4.020046e−08, 2.373396e−07

Another class of indicators is obtained by considering the dynamical conjugacy error
discussed in Equation (2.6). That is, with fixed T > 0 define the dynamical defect

conjError(T )N ,1(θ, x, y) = PN (eλT θ, x, y) − �(PN (θ, x, y), T ),

θ ∈ (−1, 1) and (x, y) ∈ 	, for the 1D manifold and

conjError(T )N ,2(θ1, θ2, x, y) = PN (eλ1T θ1, e
λ2T θ2, x, y) − �(PN (θ1, θ2, x, y), T ),

θ1, θ2 ∈ [−1, 1]× [−1, 1] and (x, y) ∈ 	 for the 2D manifold. Then we have the indicators

εN ,1 = sup
|θ |∈[−1,1]

∥∥conjError(T )N ,1(θ)
∥∥H ,

and

εN ,2 = sup
|θ1|,|θ2|≤1

∥∥conjError(T )N ,2(θ1, θ2)
∥∥H

Note that the calculation of these indicators depends on the (fairly arbitrary) choice of T ,
and more over requires numerical approximation of the flow map �(P(θ, x, y), t), which in
turn requires implementation of a numerical integration scheme for the parabolic PDE. Then
the computation of the ε-indicators is in general much simpler than the ε-indicators. For this
reason, we much prefer the former in the present work. Nevertheless, the latter can be very
valuable for debugging purposes, and we always check the conjugacy errors before claiming
with confidence that we have working codes.

Tables 1 - 6 below report the results of a number of defect calculations for the manifold
computations of the previous section. We observe that in general the defect decreases as the
number of elements increases (and hence the mesh size decreases) and tends to improve
as the order N of the approximation increases. It should also be stressed that using finite
elements of higher order in a given problem seems to have a dramatic effect on the error. This
is illustrated in Table 6, which compares the defect for the 1Dmanifold in the Fisher equation
using piecewise linear versus Argyris elements. While the piecewise linear elements proved
approximately 6 figures of accuracy on the L-shaped domain, using the higher order elements

Table 2 L2, H1 norms of the error in the Invariance Equation for 1d and 2d manifolds in the Fisher model
with exponential nonlinearity over the L domain: α = −4.7, α = −4.41 respectively

ne FR 1d manifold L FR 2d manifold L

515 1.804745e−07, 9.509509e−07 1.994842e−05, 7.579900e−05

984 4.655299e−08, 2.420175e−07 5.777222e−06, 2.367189e−05

1963 1.189424e−08, 7.080166e−08 2.417198e−06, 1.211279e−05
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Table 3 L2, H1 norms of the
error in the Invariance Equation
for the 1d unstable manifold over
the L domain: ε1 = −10−2,
β = 1, α = 2.61, and ε2 = 10−3

ne FKS 1d manifold L

100 5.917243e−06, 3.220924e−05

200 3.034783e−06, 1.762897e−05

415 1.608347e−06, 1.365313e−05

Table 4 L2, H1 norms of the
error in the Invariance Equation
for the 1d unstable manifold over
the door domain: ε1 = −10−3,
β = 1, α = 3, and ε2 = 10−4

ne FKS 1d manifold Door

123 5.205366e−07, 3.332087e−06

260 2.756197e−07, 2.031136e−06

522 1.475957e−07, 1.165217e−06

Table 5 L2, H1 norms of the
error in the Invariance Equation
for the 1d unstable manifold over
the polygon with holes:
ε1 = −10−2, β = 1, α = 3, and
ε2 = 10−3

ne FKS 1d manifold Polygon

89 4.189854e−06, 2.861762e−05

195 2.060725e−06, 2.150568e−05

391 1.126009e−06, 1.572476e−05

Table 6 L2 norms of the error in the Invariance Equation for 1 dimensional manifolds in the Fisher model
over the L domain with piecewise linear and Argyris basis: α = 2.7

ne Fisher 1d manifold piecewise linear Fisher 1d manifold Argyris

423 6.208993e−07 5.777960e−16

we obtain defects on the order of machine precision. The later are considerably more difficult
to implement, but offers significant advantages, and are especially encouraging for potential
future applications in computer assisted proofs.

5 Conclusions

We have combined the parameterization method with finite element analysis to obtain a
new approximation method for unstable manifolds of equilibrium solutions for parabolic
PDEs. The method is applied to several PDEs defined on planar polygonal domains and is
implemented for number of example problems with both polynomial and non-polynomial
nonlinearities, for unstable manifolds of dimension one and two, for a number of non-convex
and non-simply connected domains, and for problems involving both Laplacian and bi-
harmonic Laplacian diffusion operators. The method is easy to implement for computing the
approximation to arbitrary order: the same code that computes the second order approxima-
tion will compute the approximation to order 50—this is just a matter of changing a loop
variable. The method is amenable to a-posteriori analysis of errors and we employ these
indicators to show that our calculations are accurate far from the equilibrium solution.

Interesting future projects would be to apply the method to problems with other boundary
conditions such as Dirichlet or Robin, to apply it to problems formulated on spatial domains
of dimension 3 or more, to extend the method for the computation of unstable manifolds
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attached to periodic solutions of parabolic PDEs, or to extend the method to study invariant
manifolds attached to equilibrium or periodic solutions of systems of parabolic PDEs.

Finally we mention that there is a thriving literature on mathematically rigorous computer
assisted proof for elliptic PDEs based on finite element analysis. See for example the works of
[5, 37, 39–46, 49–51, 57–59] for validated numerical methods for solving nonlinear elliptic
PDE (equilibrium solutions of parabolic PDEs) and their associated eigenvalue/eigenfunction
problems. We refer also the references just cited for more complete review of this literature.
From the point of view of the present discussion the important point is this: that the present
work reduces the problem of computing jets of unstable manifolds to the problem of solving
elliptic boundary value problems—and moreover that a number of authors have developed
powerful methods of computer assisted proof for solving such problems. A very interesting
line of future researchwould be to combine the results of the presentwork validated numerical
methods for elliptic BVPs.
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Appendix A: Formal solution of Eq. (2.5): an ODE example

In this section we illustrate the use of the parameterizationmethod as a computational tool for
a simple example. The idea is to develop a formal series solution of Eq. (2.5). Such formal
calculations play a critical role in the remainder of the present work, and are much more
involved for PDEs than for ODEs. To separate those complications which are inherent to the
method from those which are due to PDEs, we explain the procedure for the planar vector
field F : R2 → R

2 (Hilbert space is the plane) given by

F(x, y) =
(

x + y
1 − x2

)
. (A.1)

We are interested in the orbit structure of R2 generated by the ODE

dγ

dt
= F(γ ),

where

γ (t) =
(
x(t)
y(t)

)
.

Note for future use that

DF(x, y) =
(

1 1
−2x 0

)
. (A.2)

Suppose that p0 ∈ R
2 has F(p0) = 0, so that p0 is an equilibrium solution of the ODE.

Suppose further that DF(p0) has one unstable eigenvalue λ > 0 and that the remaining
eigenvalue is stable. Let ξ ∈ R

2 denote an eigenvector associated with λ.
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We look for a function P : [−1, 1] → R
2 with

P(0) = p0 and P ′(0) = ξ,

parameterizing the one dimensional unstable manifold attached to p0. In the one dimensional
case the invariance equation of Equation (2.5) reduces to

λθ
d

dθ
P(θ) = F(P(θ)), (A.3)

for θ ∈ (−1, 1). We look for a formal power series solution of Equation (A.3) of the form

P(θ) =
(
P1(θ)

P2(θ)

)
=

∞∑
n=0

(
an
bn

)
θn,

and impose first order constraints
(
a0
b0

)
= p0, and

(
a1
b1

)
= ξ.

To work out the higher order coefficients we note that, on the level of formal power series,
the left hand side of Eq. (A.3) is

λθ
d

dθ
P(θ) =

∞∑
n=0

λn

(
an
bn

)
θn, (A.4)

and that the right hand side of Eq. (A.3) is

F(P(θ)) =
(
P1(θ) + P2(θ)

1 − P1(θ)2

)

=
∞∑
n=0

(
an + bn

δn − ∑n
k=0 an−kak

)
θn . (A.5)

Here we have used the Cauchy product formula for the coefficients of P1(θ)2, and defined

δn =
{
1 n = 0

0 n ≥ 1
.

Returning to the invariance Eq. (A.3), we set the right hand side of Eq. (A.4) equal to Eq.
(A.5), match like powers of θ , and recall the definition of δn to obtain

λn

(
an
bn

)
=

(
an + bn

−∑n
k=0 an−kak

)
, (A.6)

for n ≥ 1. We seek to isolate terms of order n, and derive a equation for pn in terms of lower
order coefficients. Since there are still some terms order n locked in the sum, we note that
for n ≥ 2

n∑
k=0

an−kak = 2a0an +
n−1∑
k=1

an−kak,

where the new sum on the right contains no terms of order n. Exploiting this identity, Eq.
(A.6) becomes

nλ

(
an
bn

)
=

(
an + bn

−2a0an − ∑n−1
k=1 an−kak

)
,
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or (
an + bn − nλan
−2a0an − nλbn

)
=

(
0∑n−1

k=1 an−kak

)
.

This is [
1 − nλ 1
−2a0 −nλ

](
an
bn

)
=

(
0∑n−1

k=1 an−kak

)
,

which, after referring back to Eq. (A.2), we rewrite as

(DF(a0, b0) − nλId) pn = sn, n ≥ 2, (A.7)

where

pn =
(
an
bn

)
, and sn =

(
0∑n−1

k=1 an−kak

)
.

Again, note that sn depends only on terms of order less than n.
We refer to Eq. (A.7) as the homological equations for P , and note that they are linear

algebraic equations for the power series coefficients of the parameterization.We now ask, are
the homological equations solvable?To answer this we note that since P(0) = p0 = (a0, b0)
is an equilibrium solution, the left hand side of Eq. (A.7) is the characteristic matrix for the
derivative DF(p0). The characteristicmatrix is invertible if and only if nλ is not an eigenvalue
of DF(p0). Since λ > 0, and since the remaining eigenvalue of DF(p0) is negative, we
see that for n ≥ 2, nλ is never an eigenvalue. Then the homological equations are uniquely
solvable to all orders, and the power series solution of Eq. (A.3), when F is given by Eq.
(A.1), is well defined. Convergence of this series is another issue, not treated here.

Nevertheless, we see that the coefficients of P are uniquely determined by the first order
data (equilibrium and eigenvector). Then the only freedom in determining the solution is the
choice of the scaling of the eigenvector ξ . This non-uniqness is used to control the growth
rate of the coefficients of P , providing numerical stability.

Remark A.1 (Non-resonance and the parameterization method) The condition

nλ /∈ specDF(p0) n ≥ 2, (A.8)

is called a non-resonance condition. In fact it is an inner non-resonance condition as we are
computing the unstable manifold, and Eq. (A.8) involves linear combinations of the (in this
case unique) unstable eigenvalues. We will see in Sect. 3 that the non-resonance conditions
are similar, but somewhat more subtle for higher dimensional unstable manifolds.

Remark A.2 (Stable manifolds for ODEs) Note that replacing λ with a stable eigenvalue in
the above discussion changes nothing. This reflects the general fact that in finite dimensions,
the parameterization method applies equally well to both stable and unstable manifolds.
However, an equilibrium solution of a parabolic PDE typically has infinitely many stable
eigenvalues which make it impossible to overcome the non-resonance conditions. This is
why the present work focuses on unstable manifolds for parabolic PDEs.

Appendix B: A numerical example

The vector field of Eq. (A.1) has equilibrium solutions f (x1,2, y1,2) = (0, 0) at
(
x1
y1

)
=

(−1
1

)
, and

(
x2
y2

)
=

(
1

−1

)
,
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and one can check that

DF(−1, 1) =
(
1 1
2 0

)
, (B.1)

has eigenvalues 2,−1. Hence the equilibrium (−1, 1) is a hyperbolic saddle. Let λ = 2
denote the unstable eigenvalue. One can check that

ξ =
(
1
1

)
,

is an associated unstable eigenvector.
The zero-th and first order terms of the parameterization are

(
a0
b0

)
=

(−1
1

)
and

(
a1
b1

)
=

(
1
1

)
,

and the second order term is determined by solving the homological equation of Eq. (A.7)
with n = 2 as follows. Recalling the definition of sn , and noting that a1 = 1, when n = 2
we have that

n−1∑
k=1

an−kak

∣∣∣∣∣
n=2

= a21 = 1,

and that

s2 =
(
0
1

)
.

Moreover, since λ = 2 and a0 = −1 we recall Eq. (B.1), and have that

DF(−1, 1) − 2λId =
[
1 − 2λ 1

2 −2λ

]
=

[−3 1
2 −4

]
.

Solving

[DF(−1, 1) − 2λId] p2 = s2,

gives

p2 =
(−0.1

−0.3

)
.

From this we conclude that the second order local unstable manifold approximation is

PN (θ) =
(−1

1

)
+

(
1
1

)
θ +

(−0.1
−0.3

)
θ2, (B.2)

for N = 2. Third and higher order terms are computed recursively following the same recipe.
Roughly speaking, how accurate is the approximation above? Since the remainder term

in the approximation given by P2 in Eq. (B.2) is cubic in θ , we expect that the size of the
truncation error has

E2(θ) = ‖P(θ) − P2(θ)‖ ≤ C |θ |3,
for some constant C . Suppose that we restrict the domain of our parameterization to

θ ∈ [−10−5, 10−5].
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Then E2 is of order (10−5)3 = 10−15, so that the size of the truncation error is roughly 5
multiples machine precision. In practice, we prefer to rescale the length of the eigenvector,
and take the domain of PN normalized to a unit cube. See the following remark.

Remark B.1 (Rescaling the eigenvector to optimizing the coefficient decay) Suppose now that
we compute the coefficients of PN to order N = 20, using the same eigenvector ξ = [1, 1].
Rather than listing the resulting coefficients order by order, we remark that the coefficients
decay like

‖pn‖ ≈ 65 × 10−1.18n,

(found by taking an exponential best fit algorithm) and that

‖p20‖ ≈ 1.56 × 10−22,

a quantity far smaller than machine precision. Note that coefficients belowmachine precision
do not contribute (numerically) to the approximation, and this is wasted effort.

To obtain a more significant result, we increase the scaling of the unstable eigenvector,
taking P ′(0) = sξ with some s > 1. For example, rescaling the eigenvector by s = 2.5 and
recomputing the coefficients leads to a 20-th order polynomial whose final coefficient vector
has magnitude 1.4 × 10−14. Since the final coefficient is close to, but still above machine

Fig. 12 Stable/unstable manifold visualization: dynamics generated by the vector field given in Eq. (A.1).
Several reference orbits are illustrated by black curves. These are obtained by numerical integration of sev-
eral arbitrarily chosen initial conditions. The main features of the phase space are the saddle equilibrium at
(−1, 1) and the repelling equilibrium at (1, −1). We compute the local unstable and local stable manifold
parameterizations PN and QN for the saddle stable equilibrium (−1, 1) to order N = 100. The unstable
and stable eigenvectors to lengths of 13 and 10.5 respectively, The images PN ([−1, 1]) and QN ([−1, 1])
are plotted as blue (unstable) and red (stable) curves. In both cases the plots of the manifolds are generated
only by plotting the approximating polynomials: the manifolds are not extended using numerical integration.
This illustrates that it is often possible to approximate a substantial portion of the unstable manifold using
the parameterization method. (Of course numerical integration could be used to extend the manifolds even
further). We observe that the unstable manifold parameterization (blue curve) follows a “fold”, that is, the
curve is not the graph over the unstable eigenspace of any function. The stable manifold on the other hand
seems have been approximated up to very near it’s maximal radius of convergence, as computing additional
terms has very little effect on the picture, and we are not able to reach a fold

123



   75 Page 34 of 38 Partial Differential Equations and Applications             (2022) 3:75 

precision—and hence numerically significant—this choice of scaling is nearly optimal for
the order N = 20 calculation.

Experimenting a little more in this way, we find that taking s = 13, and computing
the parameterization to order N = 100, gives coefficients which decay exponentially fast
and in such at way that the last coefficient had magnitude roughly machine epsilon. A plot
illustrating the results of the order N = 100 calculation is given in Fig. 12. Note that the
unstable manifold, which is shown as the blue curve, is not the graph of a function over
the tangent space (span of the eigenvector). This illustrates the well known fact that the
parameterization method can “follow folds” in the manifold. The reader interested in more
refined approaches to choosing the computational parameters in the parameterizationmethod
might consult [4], where methods for optimizing the calculations under certain constraints
are discussed in detail.

Remark B.2 (Visualization in a Function space) The parameterization method is extremely
valuable for visualizing invariant manifolds when the dimension of the phase space is low.
However the remainder of the paper concerns infinite dimensional problems, andvisualization
is much more problematic. For the parabolic PDEs studied below, the phase space is a
Sobolev space, and each point on the manifold is actually a function represented as a linear
combination of finite elements. In this setting it is more natural to plot the points on the
manifolds as functions over the given domain. That is, we visualize the manifold as a curve
or surface of functions. Nevertheless, it is valuable to keep in mind the picture in Fig. 12
when trying to interpret the results.

Appendix C: Proof of Lemma 2.1

Observe that the constraint given in Eq. (2.3) implies that P is tangent to the unstable
eigenspace of DF(u0) at u0. Since the eigenvalues are real and distinct, the eigenvectors are
linearly independent, and P maps a small enough neighborhood of the origin diffeomorphi-
cally into H.

Fix θ ∈ (−1, 1)M , and define the curve γθ : (−∞, 0] → H by

γθ (t) = P
(
e�tθ

)
.

We observe that γθ is a solution curve for F . To see this, we first note that γθ is well defined
for all backward time, as for all t ∈ (−∞, 0] we have that

θ̂ := e�tθ ∈ B.

This is because the entries of � are unstable, real, and distinct. To see that γθ (t) solves the
differential equation, note that

d

dt
γθ (t) = d

dt
P

(
e�tθ

)

= DP
(
e�tθ

)
�e�tθ

= DP(θ̂)�θ̂

= F(P(θ̂))

= F(P(e�tθ))

= F(γθ (t)),
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as desired.
In addition to being a solution curve, we have that γθ accumulates at u0 in backward time.

To see this, we simply compute the limit

lim
t→−∞ γθ (t) = lim

t→−∞ P
(
e�tθ

)

= P

(
lim

t→−∞ e�tθ

)

= P (0)

= u0,

where we have used the assumption that P is smooth, and hence continuous on [−1, 1]M .
Since θ was arbitrary, we see that every point P(θ) on the image of P has a backward orbit
which accumulates at u0. That is

image(P) ⊂ Wu(u0).

Since image(P) is locally an M-dimensional disk containing u0 and contained in the
unstable manifold, we have that image(P) is a local unstable manifold as desired.
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