
Journal of Dynamics and Differential Equations

https://doi.org/10.1007/s10884-022-10146-1

Validated Numerical Approximation of Stable Manifolds for
Parabolic Partial Differential Equations

Jan Bouwe van den Berg1 · Jonathan Jaquette2,3 · J. D. Mireles James4

Received: 3 July 2021 / Revised: 10 January 2022 / Accepted: 4 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

This paper develops validated computational methods for studying infinite dimensional stable

manifolds at equilibrium solutions of parabolic PDEs, synthesizing disparate errors resulting

from numerical approximation. To construct our approximation, we decompose the sta-

ble manifold into three components: a finite dimensional slow component, a fast-but-finite

dimensional component, and a strongly contracting infinite dimensional “tail”. We employ

the parameterization method in a finite dimensional projection to approximate the slow-stable

manifold, as well as the attached finite dimensional invariant vector bundles. This approxima-

tion provides a change of coordinates which largely removes the nonlinear terms in the slow

stable directions. In this adapted coordinate system we apply the Lyapunov-Perron method,

resulting in mathematically rigorous bounds on the approximation errors. As a result, we

obtain significantly sharper bounds than would be obtained using only the linear approxima-

tion given by the eigendirections. As a concrete example we illustrate the technique for a 1D

Swift-Hohenberg equation.
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1 Introduction

In this paper we develop a novel method for representing the infinite dimensional stable

manifold of an equilibrium solution of a parabolic PDE. The method makes extensive use of

numerical calculations, results in an approximation valid in an explicitly prescribed neigh-

borhood of the equilibrium, and comes equipped with mathematically rigorous bounds on

all truncation and discretization errors. The work is motivated by our intention to use this

method as an ingredient in further mathematically rigorous computer assisted proofs (see

also Sect. 1.2). The method is able to provide validated bounds on the linear approximation

of the stable manifold by the stable eigenspace, but gives dramatically improved results when

combined with a nonlinear change of coordinates which “flattens out” a finite dimensional

slow stable manifold. The main tools used here are the Lyapunov-Perron method, a param-

eterization method for slow-stable manifolds and their invariant normal bundles (see [60]),

and an iterative strategy for bootstrapping Gronwall’s inequality in subspaces associated with

various linear growth rates.

We remark first on the need for the present work, noting that while the abstract theory for

invariant manifolds of compact semi-flows is well developed, there are obstacles preventing

its direct application in computer assisted proofs. One complication stems from the fact that

in a given example we generally do not have explicit formulas for either the equilibrium

or the eigendecomposition of the linearized operator: instead we have approximations. To

perform computer assisted proofs, these approximation errors must be incorporated into the

set-up from the start.

A second difficulty concerns localizing the estimates, which is necessary because the

nonlinearities are not globally Lipschitz. Moreover, in infinite dimensions we do not generally

have access to smooth cut-off functions. Finally, even in situations where it is possible to

apply the general theory, this typically leads to bounds that are valid in an inconveniently

small neighborhood of the equilibrium.

To overcome these difficulties, we project the Lyapunov-Perron operator into various

judiciously chosen subspaces, corresponding to collections of approximate eigendirections.

The assumption that the PDE is parabolic gives that the spectrum is comprised entirely

of isolated eigenvalues (of finite multiplicity) which “accumulate to minus infinity”. More

precisely, for any M ∈ R there are only finitely many eigenvalues with real part greater than

M . We choose an approximation of the (finite dimensional) unstable subspace, and split the

approximate stable space into finite dimensional “slow” and infinite dimensional “fast” parts.

As a subtle refinement, we further decompose the finite dimensional stable eigenspace into

slow-finite dimensional stable and fast-finite dimensional stable subspaces.

We remark that the Lyapunov-Perron operator acts on candidate functions α, which map

(an approximation of) the linear stable eigenspace to the (approximate) unstable eigenspace.

The main technical difficulty is to choose the domain of the candidate functions so as to

maximize the portion of the manifold represented, while minimizing the final error bounds.

To manage this problem we take domains which are products of balls, having aspect ratios

123



Journal of Dynamics and Differential Equations

0 /4 /2 3 /4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1 A verified numerical approximation of an unstable equilibrium (black curve) for the Swift-Hohenberg

PDE (1) with β1 = 0.05 and β2 = −0.35 and several (numerical approximations of) “points”—that is

functions—along its verified slow stable manifold. Near this slow stable manifold we find a description of the

full, co-dimension 1, stable manifold, with validated computer assisted error bounds (Color figure online)

determined by the growth rates in the various subspaces. We perform an explicit change

of coordinates, which may be linear or nonlinear, and which provides more flexibility in

choosing a good domain for the stable manifold approximation.

To show that the Lyaponuv-Perron operator is a contraction we need explicit bounds

on the projections of the nonlinearities onto the specified subspaces. To obtain effective

bounds, i.e. bounds that guarantee contraction for functions defined on a reasonably large

neighborhood of the equilibrium, a naive Gronwall estimate does not suffice. Instead we take

a more refined approach, in which we bootstrap a system of Gronwall inequalities (roughly,

decomposed along eigendirections) exploiting the different decay rates in different directions.

The applications to computer assisted proofs of transverse connecting orbits we have in mind

(see again Sect. 1.2), introduce the additional technical complication that we would like a

C1,1 description of the stable manifold.

1.1 Example Results for Swift-Hohenberg

The utility of the method is best illustrated through application to an explicit example. To this

end we provide a complete numerical implementation of our method for the Swift-Hohenberg

PDE

ut = −β1uxxxx + β2uxx + u − u3, (1)

posed on a one-dimensional spatial domain x ∈ [0, π ] with Neumann boundary conditions

ux (0) = ux (π) = 0 and uxxx (0) = uxxx (π) = 0.

The parameters of the problem are β1 > 0 and β2 ∈ R. For comparison, we illustrate the use

of our method for both a linear, and a nonlinear change of variables near the equilibrium. As

a result, we obtain stable manifold theorems of varying accuracy, and in neighborhoods of

the equilibrium having various sizes and shapes.
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For example, in Theorem 6.4 we focus on a non-trivial equilibrium solution of Swift-

Hohenberg with Morse index 1. The equilibrium solution is illustrated in Fig. 1. To obtain

the results described in Theorem 6.4, we represent the local stable manifold as the graph

of a function over the stable eigenspace. We take a 31 dimensional Galerkin projection, so

that the stable eigenspace is decomposed into a 30 dimensional finite part, and an infinite

dimensional remainder. The domain of the graph is taken to be the product of a box of radius

2.2×10−2 in 30 dimensional subspace, and a box of radius 10−5 in the tail. The chart for the

local stable manifold has C0 norm bound by 3.36 × 10−3. That is, the true stable manifold

has distance no more than 3.36 × 10−3 away from the stable eigenspace, over the box just

described.

Contrast this with the results described in Theorem 7.1. In this case we use the nonlinear

change of coordinates discussed in Sect. 2.4, and represent the local stable manifold as the

graph of a function over a one dimensional slow-stable manifold and its 29 dimensional

invariant stable vector bundles. This time the domain of the graph is the product of three

boxes: a box of radius 3.18 × 10−2 in the slow stable direction, a box of radius 10−6 in the

remaining 29 dimensions of the finite dimensional eigenspace, and a box of radius 10−10 in

the tail. The chart for the local stable manifold has C0 norm bound by 7.34 × 10−12. That

is, the true stable manifold is 7.34 × 10−12 close to the slow stable manifold and its stable

vector bundles over the box just described.

Comparing the results of Theorem 6.4 with the results of Theorem 7.1 illustrate the power

of the techniques developed in the present work. The two representaitons of the infinite

dimensional stable manifold are valid in neighborhoods having size on the order of 10−2

away from the equilibrium (in some directions). Exploiting the nonlinear change of variables

improves the validated error bounds by nine order of magnitude in the unstable directions

(bounds on the graph) and by five orders of magnitude in the stable tail directions. These

are by far the most accurate mathematically rigorous computer assisted error bounds for

an infinite dimensional manifold appearing in the literature up until now. More details and

comparisons are found in Sects. 6.3 and 7.6.

1.2 Motivation: Saddle-to-Saddle Connects for Parabolic PDEs

When viewed as ODEs on Banach spaces, nonlinear parabolic PDEs fit well within the qual-

itative theory of dynamical systems. Theorems regarding the stability of equilibria, periodic

orbits, and their attached invariant manifolds follow in analogy with the finite dimensional

case. Connecting orbits between invariant sets serve as a kind of a road map to the global

dynamics, illuminating transitions between distinct regions of the phase space and signaling

global bifurcations. Such orbits are main ingredients in forcing theorems like those of Smale

and Shilnikov: theorems which guarantee the existence of rich dynamics. Connecting orbits

are essential for defining geometric chain groups and boundary operators in the homology

theories of Witten and Floer. In short, proving the existence of connection orbits provides

critical information about the global dynamics generated by the PDE.

Yet, precisely because of their global and nonlinear nature, connecting orbits are difficult to

work with analytically. These difficulties are compounded in infinite dimensional settings. In

specific applications researchers typically perform numerical calculations to gain insights into

the properties of important invariant objects. Recent progress in computer-assisted methods

of proof for infinite dimensional systems brings the mathematically rigorous quantitative

study of connecting orbits for PDEs within the realm of possibility.
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We refer for example to the work of [18,53] for some examples of computer assisted

proofs for connecting orbits in PDEs. In particular the authors study connections frome sad-

dle to attracting equilibrium solutions. The works just mentioned study the finite dimensional

unstable manifold attached to an equilibrium, and develop mathematically rigorous tools for

extending this manifold into a trapping neighborhood of a sink. Similarly, in a noncon-

servative nonlinear Schrödinger equation, the work [36] computes connecting orbits from

saddle equilibria to a center equilibrium. In each of the studies just mentioned the authors

obtain explicit and mathematically rigorous bounds on the basin of attraction of the limiting

equilibrium—which is an open set.

Controlling the asymptotic behavior of a connecting orbit requires an explicit description

of the local stable and unstable manifolds of the equilibrium solutions (or other limiting

invariant sets). The major obstacle to extending the methods of [18,36,53] to the general

case of a saddle-to-saddle connection is obtaining an explicit description of the local stable

manifold. It is worth mentioning that rigorous numerical integration of a PDE is a nontrivial

task, and invariably suffers from the so called wrapping effects resulting from the accumula-

tion of numerical error. Consequently, in computer assisted arguments involving connecting

orbits it is desirable to minimize integration time by absorbing as much of the connecting

orbit into the local stable and unstable manifolds as possible. This motivates out interest in

the nonlinear coordinate changes utilized in the present work.

We refer the interested reader also to the related work of [19], where saddle-to-saddle

connections are established using topological methods based on Conley Index theory and its

connection matrix. Being topological in nature these methods require much less in the way of

C1 information, resulting in a softer description of the dynamics. The challenge in applying

these methods is the rigorous calculation of index information for macroscopic regions in

the infinite dimensional phase space.

The computational framework developed here is rather general, and will be useful for

describing invariant manifolds in a variety of other settings. We have in mind examples

such as (un)stable and center-(un)stable manifolds in delay differential equations and partial

differential equations on domains in R
n , as well as stable and unstable manifolds in strongly

indefinite problems, where both the dimension and the co-dimension of the manifold are

infinite dimensional (e.g. [14]). In [56] a similar methodology is used to construct a local

representation for a co-dimension 0 center-stable manifold of the homogeneous equilibrium

in a complex-valued nonlinear heat equation.

Remark 1.1 (Inertial Manifolds) It is a well known fact that many infinite dimensional dynam-

ical systems, for example those generated by parabolic PDEs including the one studied

below, admit inertial manifolds: finite dimensional flow invariant manifolds containing all

the invariant dynamics, including the connecting orbits discussed above [25,38,54]. An alter-

native strategy to the one above would be to construct computer assisted error bounds for the

inertial manifold, and to study the dynamics of the resulting lower dimensional system.

Moreover, such bounds could be constructed using arguments similar to those developed in

the present work. For example the usual existence proofs for inertial manifolds involve tools

like fixed point arguments and Gronwall inequalities. It is even possible that a non-linear

change of coordinates, similar to the one that developed in Sect. 7, could be constructed

based on existing powerful computational methods for approximating inertial manifolds

[17,24,39,57].

It is however important to remark that, even after an inertial manifold approximation

has been constructed and equipped with mathematically rigorous computer assisted error

bounds, one would have to prove that the finite dimensional subsystem had the desired
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dynamics (equilibrium solutions/periodic orbits/connecting orbits/etcetera). In some cases

this could probably be done by hand, yet in general one has to expect it to require further

computer assisted arguments. It is not obvious then that an inertial manifold approach would

lead to simpler calculations/proofs than the ones envisioned above. One hopes that in time

both research programs are implemented and their various strengths compared.

1.3 RelatedWork

The present work grows out of the thriving literature on methods of computer assisted proof

in dynamical systems theory going back to the first proofs of the Feigenbaum conjectures

[21,22,42,43], the first proofs of chaotic motions in the Lorenz equations [27,46–48] and for

Chua’s circuit [26], and the computer assisted resolution of Smale’s 14th problem [58,59].

In particular, we build on the substantial literature on computer assisted proofs for studying

the dynamics of parabolic PDEs. A thorough review of this literature beyond the scope of

the present work, and we refer the reader to the work of [1,2,4,28,49,51,52,62,65,72]. See

also the book of [50], and the review articles [29,42,63]

A number of techniques for computer assisted proofs involving finite dimensional invari-

ant manifolds have emerged from this literature. One family of methods for proving existence

of unstable manifolds involves checking a number of geometric covering and cone conditions

near the equilibrium in the same spirit as Fenichel theory [11,12,71]. Since time reversal is

well defined for ODEs, equivalent bounds for stable manifolds follow as a trivial corollary.

Applications of these methods to the study of stable manifolds for PDEs requires substantial

modification and have—to the best of our knowledge—not yet appeared in the literature.

We refer the interested reader to the recent work of [70] where, following [26,27,46–48],

the authors bypass consideration of stable/unstable manifolds and provide a direct com-

puter assisted proof of the existence of a geometric horseshoe in the Kuramoto-Sivashinsky

equation, by studying covering relations in a Poincaré section.

Another technique for obtaining validated bounds on invariant manifolds which has been

applied successfully in a number of finite dimensional settings is the parametrization method

[8–10], see also to the book [32] for detailed discussions of the method and its applications.

Briefly, the idea is to study a conjugacy equation between the dynamics on the manifold and

the linear dynamics in an eigenspace. The conjugacy equation is reduced to a set of linear

homological equations via recursive power matching, and one obtains a high order Taylor

expansions for the manifold, as well as remainder estimates on the truncation errors in the tail

of the series. This method recovers both the embedding of the manifold and the dynamics on

it, and is very effective for representing invariant manifolds far beyond a small neighborhood

of the equilibrium, periodic orbit, or invariant torus, where the linear approximation is valid.

There is a substantial literature devoted to validated numerics based on the parameteri-

zation method for invariant manifolds of ODEs. We refer the interested reader to the works

of [3,6,13,37,45,64] for more a complete discussion. Such methods have also been extended

for studying finite dimensional invariant manifolds of infinite dimensional systems. The case

of compact infinite dimensional maps is treated in [44], the case of PDEs is studied in [53],

and DDEs are considered in [30,33].

However, there is an obstruction to applying the parameterization method to infinite

dimensional manifolds in PDEs, which is that the existence of a conjugacy depends cer-

tain non-resonance conditions between the eigenvalues. There are techniques to deal with

the case of a finite number of resonant eigenvalues [8,61]. Nonetheless, to describe an infi-

nite dimensional manifold one will have an infinite number of resonance conditions to check,
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which seems to be a major obstruction. Indeed, there is no good reason to think that a parabolic

PDE can in practice satisfy infinitely many non-resonance conditions.

Instead, we consider the two widespread approaches for studying infinite dimensional

invariant manifolds in Banach spaces: these are the graph transform method (e.g. see [5]),

and the Lyapunov-Perron method (e.g. see [16]). We refer to [23, Section 1.4] for a comparison

of these methods, but the important point to mention here is that the graph transform method

is most natural for discrete time dynamical systems.

Indeed, in [20], a graph transform-type argument was used to obtain validated com-

puter assisted error bounds for the infinite dimensional stable manifold of a compact infinite

dimensional map generated by convolution against a smooth kernel. The result just cited

was a significant motivation for the present work. The graph transform method applies to

continuous time systems by considering the implicitly defined time-1 map generated by the

semi-flow. But this requires direct access to the time-1 maps, which are defined only implicitly

by the PDE. Because of this, we have opted to work with the Lyapunov-Perron method. The

present work extends the work of [20] to parabolic PDEs, exploiting geometric techniques

in the projection space which allow us to obtain validated results on much larger domains.

1.4 Organization of the PresentWork

The outline of the paper is as follows. In Sect. 2 we discuss the notation to be used in this

paper, and the level of generality to be considered. Abstractly, we assume that our approximate

(un)stable eigenspaces are decomposed into further subspaces, with (potentially) different

time scales. This corresponds to our plan to develop distinct methods of approximation along

the slow-stable, fast-but finite-stable, and infinite-stable eigenvalues. We intend to compute

C1,1 bounds on our manifold, and here we define a number of constants relating to our

nonlinearity N .

In Sect. 3 we discuss how we explicitly bootstrap Gronwall’s inequality to get component-

wise bounds on the exponential tracking problem. This iterative bootstrapping of Gronwall’s

inequality is described in Algorithm 3.11. The approach is quite versatile, and we apply the

same procedure several times in different scenarios. A general description for where this

approach can be taken is described in Algorithm A.5.

In Sect. 4 we discuss the Lyapunov-Perron Operator �, which is given in Definition 2.11.

We formulate conditions for when � maps a ball of C0,1 functions into itself in Theorem

4.2, and for when � maps a ball of C1,1 functions into itself in Theorem 4.11.

In Sect. 5 we obtain the necessary estimates to show that the Lyapunov-Perron Operator is

a contraction mapping. In Definition 5.2 we define a norm in which we wish to prove we have

a contraction mapping. We then give conditions for when we have a contraction in Theorem

5.9, and the results of Sects. 3–5 are summarized in Theorem 5.11.

In Sect. 6 we apply our results to the Swift-Hohenberg equation, obtaining the appropriate

estimates for a linear change of variables at a nonlinear equilibrium. Finally in Sect. 7

we discuss how to get the estimates to work using a nonlinear change of coordinates at a

nontrivial equilibrium. Computer assisted proofs of a stable manifold theorem using a linear

approximation and a nonlinear approximation are given in Theorem 6.4 and Theorem 7.1

respectively, and the source code is available online [68].
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2 Background and Notation

A useful first step in studying stable/unstable manifolds is to perform a change of coordinates

taking the equilibrium to zero and aligning the (possible generalized) eigendirections with

the coordinate axes. For ordinary differential equations (ODEs) such a transformation always

exists. Nevertheless, in a particular problem it may be impractical to compute this transfor-

mation exactly due to the lack of explicit formulas and the finite numerical precision. For

PDEs, the situation is even worse, as the desired change of coordinates is infinite dimensional.

In the present work we settle for coordinate transformations which move the origin approx-

imately to zero, and approximately align the coordinate axes with eigendirections. This is

achieved by computing good numerical approximations of the equilibrium and the eigendata

for a finite dimensional Galerkin projection, and approximating the eigendata in the infinite

dimensional complement via the linearization of the homogeneous equilibrium. To obtain

mathematically rigorous results it is necessary to quantify these errors, and formalizing this

discussion requires a good deal of notation.

2.1 Parabolic PDEs and Semigroup Operators

Let X be a Banach space with norm | · | = | · |X , and consider the differential equation

ẋ = �̃x + Ñ (x), (2)

where �̃ : Dom(�̃) ⊆ X → X is a densely defined linear operator with bounded inverse,

and Ñ ∈ C2
loc(X , X). We will need explicit bounds on DÑ (0) and a local (uniform) bound

on the second derivative(s). See Proposition 2.6 below. Assume that h̃ ∈ X is a hyperbolic

equilibrium solution of Eq. (2), where we think of h̃ as being small. Making the change of

variables x → x + h̃ leads to the differentail equation

ẋ = �x + Lx + N̂ (x). (3)

where

� := �̃, L := DÑ (h̃), N̂ (x) := Ñ (h̃ + x) − Ñ (h̃) − DÑ (h̃)x. (4)

Equation (3) has that the origin is an equilibrium solution and that N̂ (0) = 0 and DN̂ (0) = 0.

Definition 2.1 (Stable and unstable decomposition) Let X = Xs ×Xu denote the decompo-

sition of X into stable and unstable eigenspaces of the operator �. Fix integers ms, mu ∈ N,

and define two index sets I := {1, 2, . . . , ms} and I ′ := {1′, 2′, . . . , m′
u}. For i ∈ I and

i ′ ∈ I ′, assume that X i ⊆ Xs and X i ′ ⊆ Xu are closed subspaces of X with:

Xs :=
∏

1≤i≤ms

X i , Xu :=
∏

1′≤i ′≤m′
u

X i ′ .

Remark 2.2 (primed and un-primed indices) Throughout the paper we use a primed nota-

tion, such as i ′ or j ′, to index over the unstable eigenspace Xu and un-primed indices for

the stable. It is sometimes convenient to have an index ranging over all stable and unstable

indices, so we define I := I ∪ I ′ and write i ∈ I to signify that i may be a primed or un-primed

index.

For the projections onto the subspaces X i , X i ′ , Xs and Xu we use the notation πi , πi ′ ,

πs and πu , respectively. Since these subspaces are closed, the projection maps are bounded
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linear operators. That is, there exist constants ps , pu , pi < ∞ so that

‖πs‖ ≤ ps ‖πu‖ ≤ pu ‖πi‖ ≤ pi. (5)

We use the notation, xi = πix, xs = πsx, etc, hence x = xs + xu , xs =
∑

i∈I xi and

xu =
∑

i ′∈I ′ xi ′ , as well as x =
∑

i∈I xi.

Assume that � is invariant along the subspaces X i , X i ′ . That is to say, assume that there

exist �i : X i → X i and �i ′ : X i ′ → X i ′ such that

�x =
∑

i∈I

�i xi +
∑

i ′∈I ′

�i ′xi ′ .

Furthermore, assume there are constants λi < 0 such that for 1 ≤ i ≤ ms

|e�i t xi | ≤ eλi t |xi |, t ≥ 0, xi ∈ X i , (6)

and λi ′ > 0 such that for 1′ ≤ i ′ ≤ m′
u

|e�i ′ t xi ′ | ≤ eλi ′ t |xi ′ |, t ≤ 0, xi ′ ∈ X i ′ . (7)

In particular, this implies that the norm on X aligns well with flow of � on the subspaces X i

in the sense that the vector field �i points inwards on the boundary of the unit ball in X i .

The linear operator L is decomposed in the following manner: for all i, j ∈ I, define the

bounded linear operators L
j
i : Xj → X i by

[Lx]i =
∑

j∈I

L
j
ixj.

Restricting � and L to Xs and Xu gives operators

�sxs : Xs → Xs Ls
sxs : Xs → Xs Lu

s xu : Xu → Xs

�uxu : Xu → Xu Ls
uxs : Xs → Xu Lu

uxu : Xu → Xu

defined by

�sxs :=
∑

i∈I

�i xi Ls
sxs :=

∑

i, j∈I

L
j
i x j Lu

s xu :=
∑

i∈I , j ′∈I ′

L
j ′

i x j ′

�uxu :=
∑

i ′∈I ′

�i ′xi ′ Ls
uxs :=

∑

i ′∈I , j∈I

L
j

i ′
x j Lu

uxu :=
∑

i ′∈I ′, j ′∈I ′

L
j ′

i ′
x j ′ .

Assume that −(�u + Lu
u) and (�s + Ls

s) are negative operators, in the sense that there exist

constants Cs, Cu and λs < 0 and λu > 0 so that

|e(�s+Ls
s )t xs | ≤ Cseλs t |xs |, t ≥ 0, xs ∈ Xs, (8)

|e(�u+Lu
u )t xu | ≤ Cueλu t |xu |, t ≤ 0, xu ∈ Xu . (9)

Calculation of these constants is discussed in Sect. B, and an explicit example is given in

Sect. 6.

Remark 2.3 For both the prime and non-prime spatial indices we employ Einstein summation

notation, writing

L
j
i x j ≡

∑

j∈I

L
j
i x j , and L

j ′

i x j ′ ≡
∑

j ′∈I ′

L
j ′

i x j ′ .

For other indices, for example sums over I = I ∪ I ′, we write the summation explicitly.
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We now project the nonlinear terms into the subspaces just defined, and write N̂i :=

πi ◦ N̂ (x) for i ∈ I. Then N̂s(x) := πs ◦ N̂ (x) and N̂u(x) := πu ◦ N̂ (x). For i ∈ I let

Ni(xs, xu) := L
j

i x j + L
j ′

i x j ′ + N̂i(xs, xu). (10)

We write

Ns :=
∑

i∈I

Ni , Nu :=
∑

i ′∈I ′

Ni ′ , N := Ns + Nu .

Equation (3) becomes

ẋi = �i xi + Ni (xs, xu), (11)

ẋi ′ = �i ′xi ′ + Ni ′(xs, xu). (12)

We study functions defined on certain a certain products of balls containing the origin in

the various subspaces.

Definition 2.4 Fix positive vectors rs ∈ R
ms and ru ∈ R

mu , and define the closed balls

Bs(rs) ⊆ Xs and Bu(ru) ⊆ Xu given by

Bs(rs) := {xs ∈ Xs : |xi | ≤ ri for i ∈ I }

Bu(ru) :=
{
xu ∈ Xu : |xi ′ | ≤ ri ′ for i ′ ∈ I ′

}
.

When the vectors rs , ru are understood, we abbreviate to Bs ≡ Bs(rs) and Bu ≡ Bu(ru).

Below we define bounds on our nonlinearity N over balls of fixed radius.

Definition 2.5 Suppose rs ∈ R
ms and ru ∈ R

mu .

For xs ∈ Bs(rs), xu ∈ Bu(ru) and i, j, k ∈ I define

N i
j (xs, xu) :=

∂

∂xi

Nj(xs, xu), ‖N i
j ‖(rs ,ru) := sup

xs∈Bs (rs )

sup
xu∈Bu (ru)

‖N i
j (xs, xu)‖

N ik
j (xs, xu) :=

∂2

∂xi∂xk

Nj(xs, xu), ‖N ik
j ‖(rs ,ru) := sup

xs∈Bs (rs )

sup
xu∈Bu (ru)

‖N ik
j (xs, xu)‖.

Proposition 2.6 Fix rs ∈ R
ms , and ru ∈ R

mu , and suppose that |h̃i| < ǫi. Assume that the

constants D̃i
j and C̃ ik

j satisfy

D̃i
j ≥ ‖Ñ i

j (0, 0)‖, C̃ ik
j ≥ ‖Ñ ik

j ‖(rs+ǫs ,ru+ǫu ).

For i, j, k ∈ I ∪ I ′ define constants Ĉ i
j, Di

j, C i
j , and C ik

j as below:

Di
j := D̃i

j + C̃ il
j ǫl + C̃ il ′

j ǫl ′ , C ik
j := C̃ ik

j

Ĉ i
j := C̃ il

j rl + C̃ il ′

j rl ′ C i
j := Ĉ i

j + Di
j.

Then for L and N̂ defined in (4) and N defined in (10) we have the bounds

Di
j ≥ ‖L i

j‖ C ik
j ≥ ‖N ik

j ‖(rs ,ru) (13a)

Ĉ i
j ≥ ‖N̂ i

j ‖(rs ,ru) C i
j ≥ ‖N i

j ‖(rs ,ru). (13b)

The proof follows directly from the definitions.
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2.2 Regularity of the Candidate Functions

Our goal is to find a chart α : Bs → Xu such that the graph {(ξ, α(ξ)) : ξ ∈ Bs} is a

local stable manifold attached to the origin of the differential Eq. (3). The desired chart is

formulated as a fixed point of the Lyapunov-Perron operator in Sect. 2.3. In preparation for

that formulation we now specify the appropriate spaces of candidate functions.

Remark 2.7 In Sect. 2.1 there is notational symmetry between the stable and unstable

eigenspaces. For the stable manifold the main parameter is the stable radius rs , which deter-

mines the domain of the chart α. On the other hand, the unstable radius ru in the codomain

of α follows from a Lipschitz assumption on the chart. To highlight this distinction, in the

contexts of the Lyapunov-Perron operators and the associated charts we denote the radius in

the stable subspace by the parameter ρ.

Let ρ ∈ R
ms and α ∈ C0(Bs(ρ), Xu). Define the Lipschitz constants of α relative to the

subspaces X i and X i ′ by

Lip(α)i
i ′ := sup

ξ∈Bs

sup
0 
=ζi ∈X i
ξ+ζi ∈Bs

|αi ′(ξ + ζi ) − αi ′(ξ)|

|ζi |
.

Observe that if α is Fréchet differentiable, then supξ∈Bs (ρ) ‖αi
i ′
(ξ)‖ = Lip(α)i

i ′
. Here we

employ the notation of Definition 2.5, so that superscripts attached directly to α denote

partial derivatives. Let C0,1(Bs(ρ), Xu) denote the set of all Lipschitz continuous functions

on Bs(ρ), taking values in Xu . Similarly, let C1,1(Bs(ρ), Xu) ⊂ C0,1(Bs(ρ), Xu) denote the

set of all continuously differentiable functions whose derivative is Lipschitz continuous.

Definition 2.8 Fix positive tensors ρ ∈ R
ms , P ∈ R

ms ⊗ R
mu and P̄ ∈ (Rms )⊗2 ⊗ R

mu , and

define the function spaces

B
0,1
ρ,P := {α ∈ C0,1(Bs(ρ), Xu) : α(0) = 0, Lip(α)i

i ′ ≤ P i
i ′},

B
1,1

ρ,P,P̄
:= {α ∈ C1,1(Bs(ρ), Xu) : α(0) = 0, Lip(α)i

i ′ ≤ P i
i ′ , Lip(∂iα)

j

i ′
≤ P̄

i j

i ′
}.

Note that for all α ∈ B
0,1
ρ,P and ξ, ζ ∈ Bs we have: |αi ′(ξ) − αi ′(ζ )| ≤ P i

i ′
|ξi − ζi |. For a

positive vector ρ and positive tensor P , the range of the α ∈ B
0,1
ρ,P lies in a ball Bu(ru) with

ru given by ri ′ = P i
i ′
ρi .

Definition 2.9 Let the vector ρ and tensor P be as in Definition 2.8. Define ru by ri ′ := P i
i ′
ρi .

For constants C i
j , Ĉ i

j and Di
j such that the bounds (13) hold with rs = ρ, define positive

tensors

H i
j := C i

j + C i ′

j P i
i ′ , H i

j ′ := C i
j ′ + C i ′

j ′ P
i
i ′ , Ĥ i

j := Ĉ i
j + (Ĉ i ′

j + Di ′

j )P i
i ′ ,

and the positive scalar:

Ĥ := sup

α∈B
0,1
ρ,P

sup
xs∈Bs (ρ)

‖ ∂
∂xs

Lu
s α(xs) + ∂

∂xs
N̂s(xs, α(xs))‖.

The tensor H provides the following bound: fix ρ, P and α ∈ B
0,1
ρ,P , ξ, ζ ∈ Bs(ρ). Then

for each j ∈ I we have

|Nj(ξ, α(ξ)) − Nj(ζ, α(ζ ))| ≤ H i
j |ξi − ζi |. (14)
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Proposition 2.10 Fix ρ and P as in Definition 2.9. If the norm on X has |x| =
∑

i∈I |xi|,

then Ĥ ≤ maxi∈I

∑
j∈I Ĥ i

j .

Proof. Fix α ∈ B
0,1
ρ,P and xs ∈ Bs(ρ). Then

∥∥∥ ∂
∂xi

Lu
s α(xs)

∥∥∥ =

∥∥∥∥∥∥
∑

j∈I

∂
∂xi

Ln′

j αi
n′(xs)

∥∥∥∥∥∥
≤
∑

j∈I

Dn′

j P i
n′ ,

∥∥∥ ∂
∂xi

N̂s (xs, α(xs))

∥∥∥ ≤

∥∥∥∥∥∥
∑

j∈I

N̂ i
j (xs, α(xs)) + N̂ n′

j (xs, α(xs))α
i
n′(xs)

∥∥∥∥∥∥
≤
∑

j∈I

Ĉ i
j + Ĉn′

j P i
n′ .

It now follows from the hypothesis on the norm of X that ‖πi‖ = 1 for all i ∈ I. Then
∥∥∥ ∂

∂xs
Lu

s α(xs) + ∂
∂xs

N̂s (xs, α(xs))

∥∥∥

= sup
u∈Xs ,|u|=1

∣∣∣∣∣
∑

i∈I

(
∂

∂xi
Lu

s α(xs) + ∂
∂xi

N̂s (xs, α(xs))

)
ui

∣∣∣∣∣

≤ sup
u∈Xs ,|u|=1

∑

i, j∈I

(
Dn′

j P i
n′ + Ĉ i

j + Ĉn′

j P i
n′

)
|ui |.

In the righthand side of the previous inequality we recognize Ĥ i
j . Hence

∑

i, j∈I

Ĥ i
j |ui | =

∑

i∈I

(∑

j∈I

Ĥ i
j

)
|ui | ≤

∑

i∈I

(
max
n∈I

∑

j∈I

Ĥn
j

)
|ui | =

(
max
i∈I

∑

j∈I

Ĥ i
j

)
|u|. (15)

Taking the sup over u ∈ Xs, |u| = 1 gives
∥∥∥ ∂

∂xs
Lu

s α(xs) + ∂
∂xs

N̂s (xs, α(xs))

∥∥∥ ≤ max
i∈I

∑

j∈I

Ĥ i
j .

2.3 Overview of the Lyapunov-Perron Approach

Having established the necessary notation, we are prepared to formalize the discussion.

Namely, we transform the problem of studying the local stable manifold into the problem of

finding a fixed point of the Lyapunov-Perron operator. Excellent general references on the

Lyapunov-Perron approach include books [15,34,54].

This operator is an endomorphism on charts α ∈ B
0,1
ρ,P . Given such an α, define x(t, ξ, α)

to be the solution of the projected differential equation

ẋs = �sxs + Ns(xs, α(xs)), (16)

with initial condition ξ ∈ Bs(ρ) at time t = 0. In Sect. 3 we show that if �s sufficiently

dominates the nonlinearity Ns , then solutions of the projected system (16) do not blow up

for any α ∈ B
0,1
ρ,P . In fact, solutions of the projected system approach 0 as t → ∞.

Assuming for the moment this is true, consider the pair (x(t, ξ, α), α(x(t, ξ, α))). If Eq.

(12) is satisfied for all i ′ ∈ I ′, then by construction Eq. (11) is satisfied for all i ∈ I . Hence

the pair (x(t, ξ, α), α(x(t, ξ, α))) is a solution to the full system (3), and moreover the map

ξ �→ (ξ, α(ξ)) is a chart for a local invariant manifold of the origin.

To find α solving Eq. (12) for all i ′ ∈ I ′, we exploit the variation of constants formula

and defining the Lyapunov-Perron operator.
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Definition 2.11 Fix a positive vector ρ ∈ R
ms and a positive tensor P . The Lyapunov Perron

operator � : B
0,1
ρ,P → Lip(Bs(ρ), Xu) is given by

�[α](ξ) := −

∫ ∞

0

e−�u tNu(x(t, ξ, α), α(x(t, ξ, α)))dt, for all α ∈ B
0,1
ρ,P . (17)

Remark 2.12 (Dynamics on the graph of α) A fixed point of � is a coordinate chart for a local

invariant manifold of the origin. Showing this is the stable manifold requires an additional

argument. This is part of the power of the approach, as by modifying the assumptions one

can study other attached invariant manifolds like center and center-stable manifolds. For an

example involving computer assisted proofs see [56].

Let Es, Eu ⊆ X denote the stable and unstable eigenspaces of the operator � + L . If

either dim(Xs) = dim(Es) < ∞ or dim(Xu) = dim(Eu) < ∞, then α = �[α] is a chart

for a local stable manifold of the origin. In practice this is established by correctly counting

with multiplicity the finite number of stable/unstable eigenvalues of �+ L . We consider this

case in Sects. 6 and 7.

If, on the other hand, both dim(Es) = ∞ and dim(Eu) = ∞, then the desired result is

obtained by showing that the family of operators � + sL does not have any eigenvalues

crossing the imaginary axis for s ∈ [0, 1]. This is the approach taken in [67] and it could be

extended to studying strongly indefinite problems as typically appear in elliptic problems,

see e.g. [14].

In Sect. 4 we show that, for an appropriate choice of constants, � is simultaneously an

endomorphism on the balls B
0,1
ρ,P and B

1,1

ρ,P,P̄
. In Sect. 5 we show that � is a contraction in a

C0-like norm (see Definition 5.2) and use the Banach Fixed Point Theorem to establish the

existence of a unique fixed point.

2.4 Good Coordinates: Parameterization of Slow Stable Manifolds and Attached

Invariant Frame Bundles

In this section we describe a method for high order computation of slow stable manifolds, as

well as some attached invariant frame bundles describing the stable and unstable directions

normal to the slow stable manifold. Our approach is based on the parameterization method of

[8–10], and especially on the notion of slow spectral submanifolds discussed in the references

just cited. See also the works of [7,31,40,55,60], and the book [32].

The theorem below is extracted from the results of [8,10]. The version we state assumes

that the eigenvalues are real and have geometric multiplicity one. These assumptions are

not necessary, but simplify the presentation. In the applications considered in Sect. 7, these

assumptions have to be checked. In slight abuse of notation, to align with the existing liter-

ature we use P to denote the parametrizaton of a slow stable manifold; this should not be

confounded with the positive tensor denoted by the same symbol in previous subsection.

Theorem 2.13 (Slow-stable manifold parameterization) Let F : R
d → R

d be a real analytic

vector field, and p0 ∈ R
d be a hyperbolic equilibrium point whose differential DF(p0) is

diagonalizable. Let λ1, . . . , λd ∈ R denote the eigenvalues of DF(p0) and suppose that

λ1, . . . , λmslow
with mslow < d are the slow stable eigenvalues. Let ξ1, . . . , ξmslow

∈ R
d
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denote the associated slow stable eigenvectors. Write

�slow =

⎛
⎜⎝

λ1 . . . 0
...

. . .
...

0 . . . λmslow

⎞
⎟⎠ , and � =

⎛
⎜⎝

λ1 . . . 0
...

. . .
...

0 . . . λd

⎞
⎟⎠ ,

to denote respectively the mslow × mslow and d × d matrices of the slow stable eigenvalues

and all the eigenvalues of DF(p0). Suppose that P : [−1, 1]mslow → R
d is a smooth solution

of the invariance equation

F(P(θ)) = D P(θ)�slowθ, θ ∈ [−1, 1]mslow , (18)

subject to the first order constraints P(0) = p0 and ∂ j P(0) = ξ j , 1 ≤ j ≤ mslow. Then P

parameterizes the mslow dimensional smooth slow manifold attached to p0.

It follows from the results of [8] that Eq. (18) has analytic solution as long as for all

(m1, . . . , mslow) ∈ N
mslow with m1 + . . .+ mslow ≥ 2, the non-resonance conditions m1λ1 +

. . . + mslowλmslow 
= λ j for 1 ≤ j ≤ d , are satisfied. Observe that this reduces to a finite

number of conditions. Moreover, the solution is unique up to the choice of the scalings of

the eigenvectors ξ1, . . . , ξmslow .

To control the fast dynamics we exploit the “slow manifold Floquet theory” developed in

[60]. The idea is to study certain linearized invariance equations describing the stable/unstable

bundles attached to the slow stable manifold. These invariant bundles describe the linear

approximation of the full stable manifold near the slow stable manifold, and in addition they

provide control over the normal and tangent directions. Combining the stable, unstable, and

tangent bundles provides a frame bundle for the phase space in a tubular region surrounding

the slow manifold – the “good coordinates” exploited in Sect. 7. The idea is illustrated in

Fig. 2.

Computation of the invariant frame bundles is facilitated by the following theorem, the

main result of [60]. Note that we apply this theorem only in a finite dimensional Galerkin

projection of our PDE.

Theorem 2.14 (Slow-stable manifold Floquet normal form) Let F : R
d → R

d , p0 ∈ R
d ,

DF(p0), λ1, . . . , λd , ξ1, . . . , ξd , mslow < d, �slow, �, and P : [−1, 1]mslow → R
d be as in

Theorem 2.13. Assume that for 1 ≤ j ≤ d the functions q j : [−1, 1]mslow → R
d are smooth

solutions of the equations

DF(P(θ))q j (θ) = λ j q j (θ) + Dq j (θ)�slowθ, (19)

for θ ∈ [−1, 1]mslow , subject to the constraints q j (0) = ξ j . Let GL(Rd) denote the collection

of all non-singular d × d matrices with real entries. Define Q : [−1, 1]mslow → GL(Rd) by

Q(θ) = [q1(θ)| . . . |qd(θ)] .

Then

1. For all θ ∈ [−1, 1]mslow the collection of vectors q1(θ), . . ., qd(θ) span R
d . That is, Q

takes values in GL(Rd) and hence parameterizes a frame bundle.

2. For all t ≥ 0 and for all θ ∈ [−1, 1]mslow , the derivative of the flow along the slow stable

manifold factors as

M(t) = Q(e�slowtθ)e�t Q−1(θ), (20)

where M(t) is the solution of the equation of first variation for F along P(θ):

M ′(t) = DF(P(θ))M(t), for all t ≥ 0,
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Fig. 2 Slow stable manifold and

attached frame bundles: the

figure illustrates an equilibrium

solution p0 and its slow stable

manifold in green. The orange

surface illustrates the full stable

manifold, of which the slow

manifold is a submanifold. At

each point on the slow manifold

there are invariant stable/unstable

normal bundles. The stable

normal bundle describes the

stable manifold of p0 near

W slow. Taking the stable,

unstable, and tangent bundles

gives a frame for the entire space.

Theorem 2.14 provides an

explicit method for computing

these structures (Color figure

online)

p0

p1

W slow(p0)

Nu

p1

Ns

p1

W s(p0)

with M(0) the identity matrix.

Considering (20) one column at a time gives that the frame bundles q(θ) j , 1 ≤ j ≤ d

satisfy the invariance equation

M(t)q j (θ) = eλ j t q j

(
e�slowtθ

)
, for θ ∈ [−1, 1]mslow .

This says that the flow along P(θ) leaves the direction of q j invariant (maps the bun-

dle into itself) but expands vectors at an exponential rate of λ j . It follows that if

qmslow+1(θ), . . . , qms (θ) are the parameterized vector bundles associated with the stable

eigenvalues which have not been designated as slow (the so called fast stable directions),

then for each θ ∈ [−1, 1]mslow these invariant bundles are the fastest contracting directions

near P(θ), and hence they describe W s(p0) near P(θ).

We now define a nonlinear change of coordinates which, to first order, diagonalizes the

vector field F near P(θ). Let d = mslow + mfast + munst. Define the coordinate change

K : [−1, 1]mslow × [−ǫ f , ǫ f ]
mfast × [−ǫu, ǫu]munst → R

d by

K (θ, φ f , φu) := P(θ) + Q f (θ)φ f + Qu(θ)φu,

i.e. K is a diffeomorphism with K (0, 0, 0) = p0 and DK (0, 0, 0) = Q(0), the matrix of

eigenvectors. Here θ is the coordinate in the slow stable manifold, Q f and φ f denote the

fast stable directions, and Qu and φu denote the unstable directions. Recall that the defining

relations for P , Q f and Qu are

F(P(θ)) = D P(θ)�slowθ, (21)

DF(P(θ))Q f (θ) = DQ f (θ)�slowθ + Q f (θ)�fast, (22)

DF(P(θ))Qu(θ) = DQu(θ)�slowθ + Qu(θ)�unst. (23)

We use K to pull back the vector field F : R
d → R

d , resulting in

⎛
⎝

θ ′

φ′
f

φ′
u

⎞
⎠ = DK −1(θ, φ f , φu) F(K (θ, φ f , φu)) =

⎛
⎝

�slowθ + Nθ (θ, φ f , φu)

�fastφ f + Nφ f
(θ, φ f , φu)

�unstφu + Nφu (θ, φ f , φu)

⎞
⎠ ,

where each of the Nk(θ, φ f , φu) is quadratic in φ f and φu , for k = θ, φ f , φu .
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To see this, and to obtain explicitly the form of Nk , expanding about P(θ) results in

F(K (θ, φ f , φu)) = F(P(θ) + Q f (θ)φ f + Qu(θ)φu)

= F(P(θ)) + DF(P(θ))
[
Q f (θ)φ f + Qu(θ)φu

]
+ R(θ, φ f , φu),

(24)

where the remainder term R is quadratic in φ f and φu . For the first two terms in (24) we use

the defining relations for P , Q f and Qu as well as the definition of K to rewrite

F(P(θ)) + DF(P(θ))
[
Q f (θ)φ f + Qu(θ)φu

]
= D P(θ)�slowθ

+ DQ f (θ)(�slowθ, φ f ) + Q f (θ)�fastφ f

+ DQu(θ)(�slowθ, φu) + Qu(θ)�unstφu

= DK (θ, φ f , φu)

⎛
⎝

�slowθ

�fastφ f

�unstφu

⎞
⎠ .

Then

DK −1(θ, φ f , φu) F(K (θ, φ f , φu)) =

⎛
⎝

�slowθ

�fastφ f

�unstφu

⎞
⎠+ DK −1(θ, φ f , φu) R(θ, φ f , φu),

hence

N (θ, φ f , φu) = DK (θ, φ f , φu)−1 R(θ, φ f , φu),

As R is quadratic in φ f and φu , so is N . Once again we refer to Fig. 2 for the geometric

interpretation of the coordinate change.

Note that the invariance Eq. (18) and the invariant bundle Eq. (19) do not have to be solved

exactly. Given any approximate solutions, defects are defined by considering the invariance

equations defining the objects. The numerical approximations exploit formal power series

methods which have been discussed in many places. In particular, we use the numerical

schemes discussed in [60] freely throughout Sect. 7.

3 Exponential Tracking

Remark 3.1 Throughout this section, ρ ∈ R
ms denotes a positive vector (the radius of the

domain of the local stable manifold chart candidates) and P ∈ R
ms ⊗R

mu denotes a positive

tensor (bounding the subspace-Lipschitz constants of our charts).

To begin the analysis we first derive estimates on x(t, ξ, α), the solution of the projected

system (16).

Proposition 3.2 Let ξ, ζ ∈ Bs(ρ). If x(t, ξ, α) and x(t, ζ, α) stay inside Bs for all t ∈ [0, T ],

then

|x(t, ξ, α) − x(t, ζ, α)| ≤ Cs |ξ − ζ |e(λs+CsĤ)t for all t ∈ [0, T ].

Proof. Recall from (16) that

ẋs = �sxs + Ls
sxs + Lu

s α(xs) + N̂s(xs, α(xs)).
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Define x(t) = x(t, ξ, α) and z(t) = x(t, ζ, α). By variation of constants, we have that

x(t) = e(�s+Ls
s )tξ +

∫ t

0

e(�s+Ls
s )(t−τ)

(
Lu

s α(x(τ )) + N̂s (x(τ ), α(x(τ )))

)
dτ.

From (8), we have that |e(�s+Ls
s )tξs | ≤ Cs |e

λs tξs |. Let U (t) = |x(t) − z(t)|, so that

e−λs tU (t) ≤ Cs |ξ − ζ | +

∫ t

0

Cse−λsτ
∣∣Lu

s (α(x(τ )) − α(z(τ )))
∣∣ dτ

+

∫ t

0

Cse−λsτ
∣∣∣N̂s (x(τ ), α(x(τ ))) − N̂s (z(τ ), α(z(τ )))

∣∣∣ dτ. (25)

Recall from Definition 2.9 the definition of Ĥ. Applying the mean value theorem gives

∣∣Lu
s (α(x(τ )) − α(z(τ )))

∣∣+
∣∣∣N̂s (x(τ ), α(x(τ ))) − N̂s (z(τ ), α(z(τ )))

∣∣∣ ≤ Ĥ|x(τ ) − z(τ )|.

Plugging this bound into (25) gives

e−λs tU (t) ≤ Cs |ξ − ζ | +

∫ t

0

CsĤe−λsτ U (τ )dτ.

By Gronwall’s inequality, it follows that e−λs tU (t) ≤ Cs |ξ−ζ | exp{CsĤt}, which we rewrite

as

U (t) ≤ Cs |ξ − ζ |e(λs+CsĤ)t .

From the proof of Proposition 3.2, it is clear that λs + CsĤ < 0 implies the solution

limits to zero. Taking ζ = 0, this shows that points in Bs(
1

Cs
ρ) stay in Bs(ρ) for all time.

A sharper version of Proposition 3.2 follows by taking into account the rates in the different

subspaces of Xs . Consider for example the decomposition Xs = Xslow × Xfast and the initial

condition ξ = (ξslow, ξfast) ∈ Xslow × Xfast. Solving the linear system, and exploiting the

bound from (6), gives that |e�slowtξslow| ≤ eλslowt |ξslow|, and that |e�fasttξfast| ≤ eλfastt |ξfast|.

If 0 > λslow ≫ λfast, we expect that solutions of Eq. (16) have a component xfast(t, ξ, α) that

initially decreases very quickly.

This intuition motivates the definition of the characteristic “control” rates, arising from

each subspace in the stable eigenspace, by which solutions to (16) grow/shrink. The effect

of coupling the various subspaces together is controlled by the constant γ0 = λs + CsĤ, the

exponent derived in Proposition 3.2.

Definition 3.3 For integers 0 ≤ k ≤ ms , define constants γk (control rates) as

γk :=

{
λs + CsĤ if k = 0

λk + H k
k otherwise.

Assume the ordering γk > γk+1.

In practice the ordering of γk is always satisfied by suitably (re)arranging the subspaces

X . The strictness of the ordering indicates that on the balls chosen, the nonlinearities do not

spoil the subspace splitting. Using these exponential rates, we estimate the components of

|x(t, ξ, α)| using tensors Gn
j,k defined as follows.
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Condition 3.4 A tensor G ∈ (Rms )⊗2 ⊗ R
ms+1 satisfies Condition 3.4 on the interval [0, T ]

if:

|x j (t, ξ, α) − x j (t, ζ, α)| ≤
∑

n∈I
0≤k≤ms

eγk t Gn
j,k |ξn − ζn |, (26)

for all t ∈ [0, T ], all ξ, ζ ∈ Bs(ρ) and all α ∈ B
0,1
ρ,P .

Remark 3.5 Since |x j | ≤ p j |x |, with p j defined in (5), by Proposition 3.2 the tensor

Ĝn
j,k :=

{
p j Cs for k = 0,

0 for k 
= 0,

satisfies Condition 3.4.

Note that while this tensor Ĝ is non-negative, a generic tensor G satisfying Condition 3.4

can, and in practice will, have negative components.

Additionally, we remark that while this estimate is typically initially worse than the

bound given by Proposition 3.2, an explicit bootstrapping argument allows us to obtain

tighter component-wise bounds on solutions of Eq. (16). The bootstrapping argument applies

variation of constants to Eq. (16) in each subspace, focusing on improving the bound one

component at a time. To begin, we first prove the following proposition.

Proposition 3.6 Let α ∈ B
0,1
ρ,P and ξ, ζ ∈ Bs(ρ). Define ui (t) := |xi (t, ξ, α) − xi (t, ζ, α)|

for i ∈ I . If x(t, ξ, α), x(t, ζ, α) ∈ Bs(ρ) for t ∈ [0, T ], then for each j ∈ I and all

t ∈ [0, T ] we have

e−λ j t u j (t) ≤ |ξ j − ζ j | +

∫ t

0

e−λ j τ
∑

i∈I

H i
j ui (τ )dτ. (27)

Proof. By variation of constants

x j (t, ξ, α) = e� j tξ j +

∫ t

0

e� j (t−τ)N j (x(τ, ξ, α), α(x(τ, ξ, α))) dτ.

Then

|N j (x(t, ξ, α), α(x(t, ξ, α))) − N j (x(t, ζ, α), α(x(t, ζ, α)))| ≤ H i
j ui (t) for all t ≥ 0.

Together with the estimate |e� j tξ j | ≤ eλ j t |ξ j | for t ≥ 0 this gives

e−λ j t u j (t) ≤ |ξ j − ζ j | +

∫ t

0

e−λ j τ
∑

i∈I

H i
j ui (τ )dτ.

Given a tensor G satisfying Condition 3.4, we obtain sharper component-wise estimates

by the following theorem.

Theorem 3.7 Let α ∈ B
0,1
ρ,P and let ξ, ζ ∈ Bs(ρ). Suppose G satisfies Condition 3.4, and fix

j ∈ I . If Gn
i, j = 0 for all n ∈ I and i ∈ I − { j}, then

|x j (t, ξ, α)− x j (t, ζ, α)| ≤ |ξ j −ζ j |e
γ j t +

∑

n,i∈I ,i 
= j
0≤m≤ms ,m 
= j

eγm t − eγ j t

γm − γ j

H i
j G

n
i,m |ξn −ζn |. (28)
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That is, for j ∈ I and T j : (Rms )⊗2 ⊗ R
ms+1 → R

ms ⊗ R
ms+1 defined by

[
T j (G)

]n
k

:=

⎧
⎪⎪⎨
⎪⎪⎩

∑
n,i∈I ,i 
= j

(γk − γ j )
−1 H i

j G
n
i,k if k 
= j,

δn
k −

∑
n,i∈I ,i 
= j

0≤m≤ms ,m 
= j

(γm − γ j )
−1 H i

j G
n
i,m if k = j, (29)

replacing Gn
j,k by

[
T j (G)

]n
k

results in a new tensor G satisfying Condition 3.4.

Two lemmas aid in the proof.

Lemma 3.8 (see [41, p.4]) Let u, V , h ∈ C0
(
[0,∞), [0,∞)

)
and suppose that

u(t) ≤ V (t) +

∫ t

0

h(s)u(s)ds.

If V is differentiable, then

u(t) ≤ V (0) exp

{∫ t

0

h(s)ds

}
+

∫ t

0

V ′(s) exp

{∫ t

s

h(τ )dτ

}
ds.

Lemma 3.9 Fix constants c0, c1, c2 ∈ R with c1, c2 ≥ 0 and define μ0 = c0 + c2. For

constants μk, ak with μk 
= μ0 for k = 1, . . . , K , we set

v(s) =

K∑

k=1

eμk sak .

Suppose that v(t) ≥ 0 for t ≥ 0, and assume

e−c0t u0(t) ≤

(
c1 +

∫ t

0

e−c0sv(s)ds

)
+

∫ t

0

c2e−c0su0(s)ds.

Then

u0(t) ≤ c1eμ0t +

K∑

k=1

ak

μk − μ0

(
eμk t − eμ0t

)
. (30)

Furthermore, the sum in the righthand side is non-negative for all t ≥ 0.

Proof Lemma 3.8 gives

e−c0t u0(t) ≤ c1ec2t +

∫ t

0

e−c0sv(s)ec2(t−s)ds.

= c1ec2t + ec2t

∫ t

0

n∑

k=1

ake(μk−c0−c2)sds

= c1ec2t + ec2t

n∑

k=1

ak

μk − μ0

(
e(μk−μ0)t − 1

)
. (31)

Multiplying each side by ec0t gives the desired inequality (30).

Since v(t) is nonnegative, so is the integrand. Hence the sum in the righthand side of (31)

is non-negative for all t ≥ 0.
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Proof of Theorem 3.7 Fix j ∈ J and rewrite (27) as

e−λ j t u j (t) ≤ |ξ j − ζ j | +
∑

i∈I ,i 
= j

∫ t

0

e−λ j s H i
j ui (s)ds +

∫ t

0

e−λ j s H
j
j u j (s)ds. (32)

Since G satisfies Condition 3.4 we have
∑

i∈I ,i 
= j

H i
j ui (t) ≤

∑

i∈I ,i 
= j

H i
j

∑

n∈I
0≤m≤ms

eγm t Gn
i,m |ξn − ζn |

=
∑

0≤m≤ms

eγm t
∑

n,i∈I ,i 
= j

H i
j G

n
i,m |ξn − ζn |

=
∑

0≤m≤ms ,m 
= j

eγm t
∑

n,i∈I ,i 
= j

H i
j G

n
i,m |ξn − ζn | , (33)

where the final equality follows from the assumption that Gn
i, j = 0 whenever i 
= j . Defining

v(s) =
∑

0≤m≤ms ,m 
= j

eγm sam, with am :=
∑

n,i∈I ,i 
= j

H i
j G

n
i,m |ξn − ζn | ,

and combining (32) with (33) leads to

e−λ j t u j (t) ≤ |ξ j − ζ j | +

∫ t

0

e−λ j s
∑

0≤m≤ms ,m 
= j

eγm samds +

∫ t

0

e−λ j s H
j
j u j (s)ds.

= |ξ j − ζ j | +

∫ t

0

e−λ j sv(s)ds +

∫ t

0

H
j
j e−λ j su j (s)ds.

Now apply Lemma 3.9 with u0 = u j , c0 = λ j , c1 = |ξ j − ζ j |, c2 = H
j
j . Re-indexing

{μk}1≤k≤K = {γm}0≤m≤ms ,m 
= j , we see that γm 
= λ j + H
j
j = γ j for m 
= j follows

from the strict ordering assumption of Definition 3.3. Then the assumption in Lemma 3.9 is

satisfied. Applying Lemma 3.9 is justified, and leads to the result (28).

Theorem 3.7 lets us pick a j ∈ I , and replace a bound of the form (26) with the same

bound, where Gn
j,k is replaced by

[
T j (G)

]n
k
, possibly producing a sharper bound. Note that in

Theorem 3.7, we impose that for a fixed j ∈ I we have Gn
i, j = 0 for all n ∈ I and i ∈ I − j .

Without this assumption, we would end up with terms of the form teγ j t in (28). We choose

to avoid this, as we prefer to work with a finite set of exponentially decaying functions as the

basis of our estimates.

However, we also need to deal with the case Gn
i, j 
= 0 for some i 
= j and some n ∈ I .

This problem is solved by modifying such an “ill-conditioned” G before replacing it with

T j (G). Namely, if Gn
i, j 
= 0 then, depending on the sign of Gn

i, j we estimate (Gn
i, j )e

γ j t from

above by either Gn
i, j e

γ j−1t or Gn
i, j e

γ j+1t for t ≥ 0. Here we use the ordering γ0 > · · · > γms

asserted in Definition 3.3. To be precise, for any fixed j ∈ I , define the modified tensor

[Q j (G)]n
i,k :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if k = j

Gn
i,k + Gn

i, j if k = j − 1, and Gn
i, j > 0

Gn
i,k + Gn

i, j if k = j + 1, and Gn
i, j < 0

Gn
i,k otherwise.

(34)
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Note that if j = ms and Gn
i, j < 0, then we are effectively employing the estimate Gn

i, j e
γms t <

0.

The following lemma summarizes the preceding discussion.

Lemma 3.10 Fix j ∈ I . If G satisfies Condition 3.4, then Q j (G) satisfies Condition 3.4.

Thus, starting from an initial bound of the form (26) with tensor Ĝ given in Remark 3.5,

we iteratively improve the bound using the following algorithm.

Algorithm 3.11 Let Nbootstrap ∈ N be a computational parameter.

G ← Ĝ

for 1 ≤ i ≤ Nbootstrap do

for 1 ≤ j ≤ ms do

Gn
j,k ←

[
T j ◦ Q j (G)

]n
k

end for

end for

return G

In practice Algorithm 3.11 quickly converges to a fixed tensor G. For example Nbootstrap ≤

5 is sufficient for the applications to folllow.

Theorem 3.12 Let α ∈ B
0,1
ρ,P , and suppose that the coefficients Gn

j,k are output by Algorithm

3.11. Fix initial conditions ξ, ζ ∈ Bs(ρ). If x(τ, ξ, α) and x(τ, ζ, α) stay inside Bs(ρ) for

all t ∈ [0, T ], then

|x j (t, ξ, α) − x j (t, ζ, α)| ≤
∑

n∈I
0≤k≤ms

eγk t · Gn
j,k |ξn − ζn | for all t ∈ [0, T ]. (35)

Furthermore, if α is differentiable then

∥∥∥ ∂
∂ξn

x j (t, ξ, α)

∥∥∥ ≤
∑

0≤k≤ms
eγk t Gn

j,k for all t ∈

[0, T ].

The proof of Theorem 3.12 is by induction on Nbootstrap, with Proposition 3.2 taking care

of the base case (Nbootstrap = 0), and Theorem 3.7 taking care of the inductive step. We omit

the details.

Now, in Proposition 3.2 the assumption that γ0 < 0 gives only that points ξ ∈ Bs(C
−1
s ρ)

have solutions to (16) staying in Bs(ρ) for all t ≥ 0. The following proposition gives

conditions which extend the result to all points ξ ∈ Bs(ρ).

Proposition 3.13 Suppose that γ0 < 0 and that Gn
j,k is the output of Algorithm 3.11. If

ρ j ≥
∑

n∈I
0≤k≤ms

eγk t Gn
j,kρn, (36)

for all t ≥ 0, then for all ξ ∈ Bs(ρ) and t ≥ 0 we have x(t, ξ, α) ∈ Bs(ρ) for all α ∈ B
0,1
ρ,P .

Proof Fix α ∈ B
0,1
ρ,P , 0 < ǫ < 1, and ξ ∈ Bs(ǫρ). Define T = sup{t ≥ 0 : x(t, ξ, α) ∈

Bs(ρ)}. Assume that T < +∞. We show by contradiction that T = +∞.

Since x(0, ξ, α) ∈ Bs(ǫρ) and x(t, ξ, α) is continuous in t , it follows that T > 0. By

Proposition 3.12 we have for all t ∈ [0, T ) that

|x j (t, ξ, α)| ≤
∑

0≤k≤ms

eγk t Gn
j,k |ξn | ≤ ǫ

∑

0≤k≤ms

eγk t Gn
j,kρn ≤ ǫ ρ j .
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Hence x(t, ξ, α) ∈ Bs(ǫρ) for all t ∈ [0, T ), and so by continuity x(T , ξ, α) ∈ Bs(ǫρ).

Since x(T , ξ, α) is in the interior of Bs(ρ), the solution of (16) starting at x(T , ξ, α) stays

inside the ball Bs(ρ) for some positive amount of time. But this contradicts the definition of

T as the supremum of {t ≥ 0 : x(t, ξ, α) ∈ Bs(ρ)}. Hence, if 0 < ǫ < 1 and ξ ∈ Bs(ǫρ),

then x(t, ξ, α) ∈ Bs(ρ) for all t ≥ 0.

By continuity of solutions, this result extends to initial conditions on the boundary of

Bs(ρ).

Remark 3.14 In practice we verify the hypothesis of Proposition 3.13 in three steps:

1. For some T2 > 0, we check that ρ j >
∑

n∈I ,0≤k≤ms
eγk T2 |Gn

j,k |ρn , and hence (36) is

satisfied for all t ≥ T2.

2. For some 0 < T1 < T2, we use interval arithmetic to verify the inequality (36) for

T1 ≤ t ≤ T2.

3. To prove inequality (36) for t ∈ [0, T1], we both prove that the inequality holds at t = 0

(explained below), and show using interval arithmetic that the derivative of the right-hand

side of (36) is negative:

∑

n∈I
0≤k≤ms

γkeγk t Gn
j,kρn < 0 for t ∈ [0, T1].

To prove that inequality (36) holds at t = 0, we fix j ∈ I . If G is the final output

of Algorithm 3.11, then there is a tensor G̃ ∈ (Rms )⊗2 ⊗ R
ms+1 for which Gn

j,k ←[
T j ◦ Q j (G̃)

]n
k
. It is assigned at step j of the inner for-loop of the algorithm, and at step

Nbootstrap of the outer for-loop. Letting Ḡ := Q j (G̃), it follows from the definition of T j

in (29) that

∑

n∈I
0≤k≤ms

eγk t Gn
j,k |ξn | = |ξ j |e

γ j t +
∑

n,i∈I ,i 
= j
0≤k≤ms ,k 
= j

eγk t − eγ j t

γk − γ j

H i
j Ḡ

n
i,k |ξn |.

Evaluating at t = 0, we have

|x j (0, ξ, α)| = |ξ j | =
∑

0≤k≤ms

Gn
j,k |ξn |.

Taking |ξn | = ρn for all n ∈ I , it follows that ρ j =
∑

0≤k≤ms
Gn

j,kρn . Hence (36) is

satisfied at t = 0 for all j ∈ I .

Remark 3.15 When inequality (36) fails to be true, we cannot be sure that all solutions of

Equation (16) stay inside the ball Bs(ρ) for all time. There are two common reasons for

why this happens: first, the nonlinearity may be too large and solutions leave the ball never

to return; second, solutions to Eq. (16) may temporarily leave the ball, reenter, and then

converge to zero.

If inequality (36) fails to be true because of the first reason, then ρ should be made smaller.

If inequality (36) fails to be true because of the second reason, it is often because Bs(ρ)

is too wide in one direction and too thin in another. If we suspect this to be true, then to

better align the box with the flow, we iteratively select a new value of ρ using the map

ρ j �→ sup0≤t≤T

∑
k eγk t Gn

j,kρn . In practice, this heuristic is effective for finding a value of

ρ for which (36) is satisfied.
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Algorithm 3.11 can be applied in more general situations. The two conditions necessary to

construct such an algorithm are Condition 3.4 and Proposition 3.6. These are all generalized

in Appendix A leading to an algorithm used in Sect. 4.2 to obtain bounds on ∂
∂ξi

x(t, ξ, α),

and in Sect. 5 to construct bounds on |x(t, ξ, α) − x(t, ξ, β)| for charts α, β ∈ B
0,1
ρ,P .

4 Lyapunov-Perron Operator

In this section we show that the Lyapunov-Perron operator � is an endomorphism on balls

B
0,1
ρ,P and B

1,1

ρ,P,P̄
for appropriately chosen constants.

Remark 4.1 Throughout this section, we fix a positive vector ρ ∈ R
ms and a positive tensor

P ∈ R
mu ⊗ R

ms , and fix G ∈ (Rms )⊗2 ⊗ R
ms+1 as the output of Algorithm 3.11 taken with

Nbootstrap ≥ 1. Furthermore, we assume that the hypotheses of Proposition 3.13 are satisfied,

and in particular that inequality (36) holds for all t ≥ 0. Hence G satisfies Condition 3.4 on

the interval [0,∞).

Throughout this section we adopt Einstein summation convention for indices of I and I ′.

4.1 Endomorphism onB
0,1
�,P

The next theorem provides a straightforward bound on Lip(�[α]) for α ∈ B
0,1
ρ,P .

Theorem 4.2 Define P̃ ∈ R
mu ⊗ R

ms component-wise by:

P̃n
i ′ :=

∑

0≤k≤ms

(λi ′ − γk)
−1 H i

i ′ G
n
i,k .

If α ∈ B
0,1
ρ,P , then Lip(�[α])n

i ′
≤ P̃n

i ′
. If P̃

j

j ′
≤ P

j

j ′
then � : B

0,1
ρ,P → B

0,1
ρ,P is well defined.

Proof Fix α ∈ B
0,1
ρ,P and ξ, ζ ∈ Bs(ρ). Define x(t) := x(t, ξ, α) and z(t) := x(t, ζ, α). Our

goal is to prove that |�[α]i ′(ξ) − �[α]i ′(ζ )| ≤ P̃n
i ′

|ξn − ζn |. From the definition of � we

have

�[α](ξ) − �[α](ζ ) = −

∫ ∞

0

e−�u t [Nu(x(t), α(x(t))) − Nu(z(t), α(z(t)))] dt .

Using the bound (14), and the fact that G satisfies Condition 3.4 on [0,∞), we obtain

|�[α]i ′(ξ) − �[α]i ′(ζ )| ≤

∫ ∞

0

e−λi ′ t H i
i ′ |xi (t) − zi (t)|dt

≤

∫ ∞

0

e−λi ′ t
∑

0≤k≤ms

eγk t H i
i ′ G

n
i,k |ξn − ζn | dt

=
∑

0≤k≤ms

(λi ′ − γk)
−1 H i

i ′ G
n
i,k |ξn − ζn | .

For P̃n
i ′

as defined above, it follows that

|�[α]i ′(ξ) − �[α]i ′(ζ )| ≤ P̃n
i ′ |ξn − ζn | .
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Hence Lip(�[α])n
i ′

≤ P̃n
i ′

. Since N (0) = 0, direct evaluation shows that �[α](0) = 0.

Hence �[α] ∈ B
0,1
ρ,P .

Remark 4.3 Ideally, we would like to choose a tensor P as small as possible while still

satisfying the inequality P̃
j

i ′
≤ P

j

i ′
. In practice, we find a nearly optimal P by iteratively

mapping P
j

i ′
�→ P̃

j

i ′
. This has the effect that if P̃

j

i ′
≤ P

j

i ′
, then the new value of P will be

smaller. Since the bounds for H and G improve with smaller P , the inequality P̃
j

i ′
≤ P

j

i ′
will

likely be satisfied for the new P . On the other hand, if P is too small and P̃
j

i ′
≤ P

j

i ′
is not

satisfied, then the new value of P will be larger, and the inequality will hopefully be satisfied

at the next iterate of the algorithm.

Note that the definitions of H and G depend on P , and so these constants need to be

recomputed every time. Nevertheless, this iterative process provides an effective, algorithmic

method for selecting appropriate P
j

i ′
.

Using second derivative bounds on Nu sharpens Theorem 4.2 as below.

Proposition 4.4 Define P̃ ∈ R
mu ⊗ R

ms component-wise by:

P̃n
i ′ :=

(
Di

i ′ + D
j ′

i ′
P i

j ′

) ∑

0≤k≤ms

(λi ′ − γk)
−1Gn

i,k

+
(

Ĉ
i j

i ′
+ Ĉ

j ′ j

i ′
P i

j ′

) ∑

0≤k1,k2≤ms

(λi ′ − γk1 − γk2)
−1Gm

j,k1
Gn

i,k2
ρm .

If α ∈ B
0,1
ρ,P , then Lip(�[α])n

i ′
≤ P̃n

i ′
. If P̃

j

j ′
≤ P

j

j ′
then � : B

0,1
ρ,P → B

0,1
ρ,P is well defined.

Proof By the mean value theorem we have (recall that N i
i ′

= ∂
∂xi

Ni ′ )

|Ni ′(x, α(x)) − Ni ′(z, α(z))| ≤

⎡
⎢⎣ sup

y∈Bs (ρ), j∈I
|y j |≤max{|x j |,|z j |}

‖N i
i ′(y, α(y))‖

⎤
⎥⎦ |xi − zi |.

We estimate max{|x j (t)|, |z j (t)|} using the tensor G (which satisfies Condition 3.4), and

since max{|ξm |, |ζm |} ≤ ρm , we have

sup
y∈Bs (ρ), j∈I

|y j |≤max{|x j (t)|,|z j (t)|}

‖N i
i ′(y, α(y))‖ ≤ Di

i ′ + D
j ′

i ′
P i

j ′ + (Ĉ
i j

i ′
+ Ĉ

j ′ j

i ′
P i

j ′) max{|x j (t)|, |z j (t)|}

≤ Di
i ′ + D

j ′

i ′
P i

j ′ + (Ĉ
i j

i ′
+ Ĉ

j ′ j

i ′
P i

j ′)
∑

0≤k≤ms

eγk t Gm
j,kρm .

Using Condition 3.4 gives

|Ni ′ (x, α(x)) − Ni ′ (z, α(z))| ≤
(

Di
i ′

+ D
j ′

i ′
P i

j ′

) ∑

0≤k≤ms

eγk t Gn
i,k |ξn − ζn |

+
(

Ĉ
i j

i ′
+ Ĉ

j ′ j

i ′
P i

j ′

) ∑

0≤k1,k2≤ms

e
(γk1

+γk2
)t

Gm
j,k1

Gn
i,k2

ρm |ξn − ζn | .
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We obtain the desired result by integration:

|�[α]i ′(ξ) − �[α]i ′(ζ )| ≤

∫ ∞

0
e−λi ′ t |Ni ′(x, α(x)) − Ni ′(z, α(z))| dt

≤
(

Di
i ′

+ D
j ′

i ′
P i

j ′

) ∑

0≤k≤ms

(λi ′ − γk)−1Gn
i,k |ξn − ζn |

+
(

Ĉ
i j

i ′
+ Ĉ

j ′ j

i ′
P i

j ′

) ∑

0≤k1,k2≤ms

(λi ′ − γk1
− γk2

)−1

Gm
j,k1

Gn
i,k2

ρm |ξn − ζn | .

4.2 Endomorphism onB
1,1

�,P,P̄

We now bound the Lipschitz constant of the derivative of the local stable manifold. To

do this, we show that � maps B
1,1

ρ,P,P̄
, a ball of functions with Lipschitz derivative, into

itself. Hence, if there are any fixed points �[α] = α ∈ B
1,1

ρ,P,P̄
, then by Definition 2.8 they

satisfy Lip(∂iα)
j

i ′
≤ P̄

i j

i ′
. To show that � : B

1,1

ρ,P,P̄
→ B

1,1

ρ,P,P̄
we first derive bounds on

the difference ∂
∂ξi

x j (t, η, α) − ∂
∂ξi

x j (t, ζ, α) for i, j ∈ I . In particular, we are interested in

finding a tensor K as follows.

Condition 4.5 Define {μk}
Nμ

k=1 = {γk}
ms

k=0 ∪{γk1 +γk2}
ms

k1,k2=0. A tensor K ∈ (Rms )⊗3 ⊗R
Nμ

is said to satisfy Condition 4.5 if

∥∥∥∥
∂

∂ξi

x j (t, η, α) −
∂

∂ξi

x j (t, ζ, α)

∥∥∥∥ ≤

Nμ∑

k=1

eμk t K il
j,k |ηl − ζl |,

for all α ∈ B
1,1

ρ,P,P̄
and η, ζ ∈ Bs(ρ) and i, j ∈ I .

The bound is obtained using an approach analogous to the one discussed in Sect. 3. Since

we use this approach in Sects. 3, 4, and 5, we present in Appendix A a generalization which

encompasses all cases. In Proposition 4.6 we define a tensor S analogous to H given in

Definition 2.9. In Proposition 4.7 we derive an a priori bound, constructing an initial tensor

K satisfying Condition 4.5 (cf. Proposition 3.2). In Proposition 4.9 we derive a system of

integral inequalities (cf. Proposition 3.6 and Condition A.2). Then, as described in Theorem

4.10, we apply Algorithm A.5 (cf. Algorithm 3.11) to bootstrap Gronwall’s inequality, and

obtain successively sharper tensors K satisfying Condition 4.5. Finally, in Proposition 4.11,

we give conditions guaranteeing that � : B
1,1

ρ,P,P̄
→ B

1,1

ρ,P,P̄
is a well defined map.

Proposition 4.6 Let α ∈ B
1,1

ρ,P,P̄
and η, ζ ∈ Bs(ρ). Define x = x(t, η, α), z = x(t, ζ, α),

x i
j = ∂

∂ξi
x j (t, η, α), and likewise for zi

j . Fix j ∈ I, and define

Snm
j := (Cnm

j + Cnm′

j Pm
m′) + Cn′

j Pnm
n′ + (Cn′m

j + Cn′m′

j Pm
m′)Pn

n′ .

Then
∥∥∥∥

∂

∂ξi

(
Nj(x, α(x)) − Nj(z, α(z))

)∥∥∥∥ ≤ Snm
j |xm − zm | ‖zi

n‖ + Hn
j ‖x i

n − zi
n‖.
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Proof We have

∂

∂ξi

Nj(x, α(x)) =
(
N n

j (x, α(x)) + N n′

j (x, α(x))αn
n′(x)

)
· x i

n, (37)

and split the estimate into four parts:

∂

∂ξi

(
Nj(x, α(x)) − Nj(z, α(z))

)
=
(
N n

j (x, α(x)) − N n
j (z, α(z))

)
· zi

n

+ N n′

j (x, α(x))
(
αn

n′(x) − αn
n′(z)

)
zi

n

+
(
N n′

j (x, α(x)) − N n′

j (z, α(z))
)

αn
n′(z)z

i
n

+
(
N n

j (x, α(x)) + N n′

j (x, α(x))αn
n′(x)

)
· (x i

n − zi
n).

Each term is bound separately, as
(
N n

j (x, α(x)) − N n
j (z, α(z))

)
· zi

n ≤ (Cnm
j + Cnm′

j Pm
m′)|xm − zm | ‖zi

n‖,

N n′

j (x, α(x))
(
αn

n′(x) − αn
n′(z)

)
zi

n ≤ Cn′

j Pnm
n′ |xm − zm | ‖zi

n‖,
(
N n′

j (x, α(x)) − N n′

j (z, α(z))
)

αn
n′(z)z

i
n ≤ (Cn′m

j + Cn′m′

j Pm
m′)Pn

n′ |xm − zm | ‖zi
n‖,

(
N n

j (x, α(x)) + N n′

j (x, α(x))αn
n′(x)

)
(x i

n − zi
n) ≤ (Cn

j + Cn′

j Pn
n′) ‖x i

n − zi
n‖.

The result follows by collecting all terms.

Proposition 4.7 Define a tensor K̃ ∈ (Rms )⊗3 ⊗ (Rms+1)⊗2 as

K̃ il
j,k1k2

=
(
γk1 + γk2 − γ0

)−1
Cs p j Snm

j Gl
m,k1

Gi
n,k2

.

Then we have∥∥∥ ∂
∂ξi

x(t, η, α) − ∂
∂ξi

x(t, ζ, α)

∥∥∥ ≤
∑

0≤k1,k2≤ms
j∈I

(
e(γk1

+γk2
)t − eγ0t

)
K̃ il

j,k1k2
|ηl − ζl |,

for all α ∈ B
1,1

ρ,P,P̄
and η, ζ ∈ Bs(ρ) and i ∈ I .

The indices in tensor notation K̃ il
j,k1k2

are interpreted as follows. The superscripts cor-

respond to derivatives, the subscript to the left of the comma corresponds to subspace

projections, and the subscript to the right of the comma correspond to exponentials.

Proof. Define x = x(t, η, α) and z = x(t, ζ, α). Let x i = ∂
∂ξi

x(t, η, α) and likewise for zi .

By variation of constants, we have that

x i (t) − zi (t) =

∫ t

0

e(�s+Ls
s )(t−τ) ∂

∂ξi

Lu
s

(
α(x(τ )) − α(z(τ ))

)
dτ.

+

∫ t

0

e(�s+Ls
s )(t−τ) ∂

∂ξi

(
N̂s(x(τ ), α(x(τ ))) − N̂s(z(τ ), α(z(τ )))

)
dτ.

(38)

Expanding the partial derivatives appearing in (38), and dropping the τ dependence in the

notation in the right hand side, gives

123



Journal of Dynamics and Differential Equations

∂

∂ξi

Lu
s α(x(τ )) =

∑

j∈I

Ln′

j αn
n′(x)x i

n

∂

∂ξi

N̂s

(
x(τ ), α(x(τ ))

)
=
∑

j∈I

(
N̂ n

j (x, α(x)) + N̂ n′

j (x, α(x))αn
n′(x)

)
· x i

n .

In Proposition 4.6 we demonstrated how the tensor S offers a C1,1 bound on Nj = Ls
j +

Lu
j + N̂j, for j ∈ I. By using (8) we obtain, in analogy with the proof of Proposition 4.6,

e−λs t‖x i − zi‖ ≤

∫ t

0

Cse−λsτ
∑

j∈I

p j Snm
j |xm − zm | ‖zi

n‖dτ +

∫ t

0

e−λsτ CsĤ‖x i − zi‖dτ.

It then follows from Proposition 3.12 that

e−λs t‖x i − zi‖ ≤

∫ t

0

Cse−λsτ
∑

0≤k1,k2≤ms
j∈I

e(γk1
+γk2

)τ p j Snm
j Gl

m,k1
Gi

n,k2
|ηl − ζl |dτ

+

∫ t

0

e−λsτ CsĤ‖x i − zi‖dτ.

By Lemma 3.9 we infer that

‖x i − zi‖ ≤
∑

0≤k1,k2≤ms
j∈I

e(γk1
+γk2

)t − eγ0t

γk1 + γk2 − γ0
Cs p j Snm

j Gl
m,k1

Gi
n,k2

|ηl − ζl |.

Remark 4.8 Define {μk}
Nμ

k=1 = {γk1}
ms

k1=0∪{γk1 +γk2}
ms

k1,k2=0, with Nμ = (ms +1)(ms +4)/2.

Let K̃ be defined as in Proposition 4.7, and define a tensor K̂ ∈ (Rms )⊗3 ⊗ R
Nμ by

K̂ il
j,k :=

⎧
⎪⎨
⎪⎩

p j

∑
m∈I K̃ il

m,k1k2
+ K̃ il

m,k2k1
if μk = γk1 + γk2 for 0 ≤ k1, k2 ≤ ms ,

−p j

∑
m∈I

∑
0≤k1,k2≤ms

K̃ il
m,k1k2

+ K̃ il
m,k2k1

if μk = γ0,

0 if μk = γk1 , for 1 ≤ k1 ≤ ms .

It follows from Proposition 4.7 that K̂ satisfies Condition 4.5.

We now establish componentwise Lipschitz bounds on the derivatives.

Proposition 4.9 Let α ∈ B
1,1

ρ,P,P̄
and define x(t) = x(t, η, α) and z(t) = z(t, ζ, α) for some

η, ζ ∈ Bs(ρ). Let x i
j (t) = ∂

∂ξi
x j (t, η, α) and likewise for zi

j (t). Then

e−λ j t‖x i
j − zi

j‖ ≤

∫ t

0

e−λ j τ
∑

0≤k1,k2≤ms

e(γk1
+γk2

)τ Snm
j Gl

m,k1
Gi

n,k2
|ηl − ζl |dτ

+

∫ t

0

e−λ j τ Hn
j ‖x i

n − zi
n‖dτ.

Proof By variation of constants, we have that

x i
j (t) = e� j tδi

j +

∫ t

0

e� j (t−τ)

(
∂

∂ξi

N j (x(τ ), α(x(τ )))

)
dτ,
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where δi
j is the Kronecker delta. Taking the difference x i

j − zi
j we obtain

x i (t) − zi (t) =

∫ t

0

e�s (t−τ) ∂

∂ξi

(
N j (x(τ ), α(x(τ ))) − N j (z(τ ), α(z(τ )))

)
dτ.

From Proposition 4.6 we have

e−λ j t‖x i
j − zi

j‖ ≤

∫ t

0

e−λ j τ Snm
j |xm − zm | ‖zi

n‖dτ +

∫ t

0

e−λ j τ Hn
j ‖x i

n − zi
n‖dτ.

Plugging in the bounds on |xm − zm | and ‖zi
n‖ from Proposition 3.12, we obtain the desired

result.

Theorem 4.10 Let {μk}
Nμ

k=1 and let the tensor K̂ ∈ (Rms )⊗3 ⊗ R
Nμ be as defined in Remark

4.8. When K is the output of Algorithm A.5 taken with input K̂ and some Nbootstrap ≥ 1,

then K satisfies Condition 4.5.

The proof of Theorem 4.10 follows from the argument outlined in Appendix A, where

Conditions A.1 and A.2 correspond to Proposition 4.9 and Condition 4.5 respectively.

Theorem 4.11 Let P̄ ∈ R
mu ⊗(Rms )⊗2 and assume K ∈ (Rms )⊗3 ⊗R

Nμ satisfies Condition

4.5. Define the tensor P̃ ∈ R
mu ⊗ (Rms )⊗2 as

P̃ il
j ′ :=

∑

0≤k1,k2≤ms

(λ j ′ − γk1 − γk2)
−1Snm

j ′ Gl
m,k1

Gi
n,k2

+
∑

1≤k≤Nμ

(λ j ′ − μk)
−1 Hn

j ′ K
il
n,k .

(39)

Then for all α ∈ B
1,1

ρ,P,P̄
we have Lip(∂i�[α])l

j ′
≤ P̃ il

j ′
. If P̃ il

j ′
≤ P̄ il

j ′
then � : B

1,1

ρ,P,P̄
→

B
1,1

ρ,P,P̄
is well defined.

Proof Let η, ζ ∈ Bs(ρ) and define x(t) = x(t, η, α) and z(t) = x(t, ζ, α). Define x i
j (t) =

∂
∂ξi

x j (t, η, α) and likewise for zi
j (t). From Definition 2.11 we have

�[α](η) − �[α](ζ ) = −

∫ ∞

0

e−�u t
(
Nu(x(t), α(x(t))) − Nu(z(t), α(z(t)))

)
dt .

Using Proposition 4.6 gives

∥∥∥�[α]i
j ′(η) − �[α]i

j ′(ζ )

∥∥∥ ≤

∫ ∞

0

e
−λ j ′ t

(
Snm

j ′ |xm − zm | ‖zi
n‖ + Hn

j ′‖x i
n − zi

n‖
)

dt .

Plugging in the bounds on |xm − zm | and ‖zi
n‖ from Proposition 3.12, as well as the bounds

on |x i
n − zi

n | from Proposition 4.9, gives

∥∥∥�[α]i
j ′(η) − �[α]i

j ′(ζ )

∥∥∥ ≤

∫ ∞

0

e
−λ j ′ t

∑

0≤k1,k2≤ms

e(γk1
+γk2

)t Snm
j ′ Gl

m,k1
Gi

n,k2
|ξl − ζl |dt

+

∫ ∞

0

e
−λ j ′ t

∑

1≤k≤Nμ

eμk t Hn
j ′ K

il
n,k |ηl − ζl |dt

= P̃ il
j ′ |ηl − ζl |.

Hence, we have obtained the desired bound Lip(∂i�[α])l
j ′

≤ P̃ il
j ′

.
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5 ContractionMapping

Remark 5.1 Throughout this section, suppose all the assumptions on the positive vector ρ ∈

R
ms , the positive tensor P ∈ R

mu ⊗ R
ms , and the tensor G ∈ (Rms )⊗2 ⊗ R

ms+1 made in

Remark 4.1 are in force. Additionally, fix a tensor K ∈ (Rms )⊗3 ⊗ R
mu ⊗ R

Nμ satisfying

Condition 4.5, and a positive tensor P̄ ∈ R
mu ⊗(Rms )⊗2. Assume the hypotheses of Theorems

4.4 and 4.11 are satisfied, so that both � : B
0,1
ρ,P → B

0,1
ρ,P and � : B

1,1

ρ,P,P̄
→ B

1,1

ρ,P,P̄
are

well defined maps.

5.1 Bounding the Difference Between Two Projected Systems

We show that the Lyapunov-Perron operator is a contraction mapping in an appropriate norm.

Note that the norm is weaker than the one used to define B
0,1
ρ,P in Definition 2.8.

Definition 5.2 For α ∈ E := {α ∈ Lip(Bs(ρ), Xu) : α(0) = 0} define the semi-norms

‖α‖i
i ′E := sup

ξ∈Bs (r);ξi 
=0

|αi ′(ξ) − αi ′(ξ − ξi )|

|ξi |
,

where i ∈ I and i ′ ∈ I ′. The semi-norms define a norm by

‖α‖E :=
∑

i∈I ,i ′∈I ′

‖α‖i
i ′E .

Note that ‖α‖i
i ′E

≤ Lip(α)i
i ′

and |α(ξ)| ≤
∑

i ′∈I ′ ‖α‖i
i ′E

|ξi | ≤ ‖α‖E |ξ |
(

maxi∈I pi

)
.

With this norm both B
0,1
ρ,P and B

1,1

ρ,P,P̄
are complete metric spaces (cf. [15, Chapter 4]).

Before showing that � is a contraction, we need to derive estimates on x(t, ξ, α) −

x(t, ξ, β), the difference between two solutions of the projected system of Eq. (16) for two

different maps α, β ∈ B
0,1
ρ,P . Classically, this results in an estimate of the form |x(t, ξ, α) −

x(t, ξ, β)| ≤ keγ t |ξ |‖α − β‖E , for some constants k and γ . This estimate can be notably

tightened, as at time zero |x(0, ξ, α) − x(0, ξ, β)| = |ξ − ξ | = 0. A bound on |x(t, ξ, α) −

x(t, ξ, β)| is obtained below, using a tensor F as now described.

Condition 5.3 Fix someγ−1 > γ0 and define {μk}
ms+2
k=1 = {γk}

ms

k=−1. A tensor F ∈ (Rms )⊗3⊗

R
mu ⊗ R

ms+2 is said to satisfy Condition 5.3 if

|xm(t, ξ, α) − xm(t, ξ, β)| ≤
∑

−1≤k≤ms

eγk t Fni ′

mi,k‖α − β‖i
i ′E |ξn |,

for all α, β ∈ B
0,1
ρ,P and ξ ∈ Bs(ρ) and m ∈ I .

We obtain the tensor F by applying the bootstrapping method as in Sects. 3 and 4, which

is presented in a general setting in Appendix A. However, in this section we encounter a

resonance problem involving γ0, and augment {γk}
ms

k=0, defining

γ−1 := γ0/2.

In this manner we obtain an indexed set {μk}
Nμ

k=1 = {γk}
ms

k=−1. The exact choice of γ−1 is

somewhat arbitrary; it should satisfy λ1′ > γ−1 > γ0, and (γ−1 − γ0)
−1 should not be too

large. We augment the tensor G fixed in Remark 4.1 by defining Gn
i,−1 = 0 for all i, n ∈ I .
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To overcome the resonance problem we use the map Q0 (following the notation convention

from Appendix A) defined as

Q0(G)n
i,k =

⎧
⎪⎨
⎪⎩

Gn
i,0 if k = −1

0 if k = 0

Gn
i,k if 1 ≤ k ≤ ms

for i, n ∈ I . (40)

In Proposition 5.4 and Remark 5.5 below, we identify an initial tensor F̂ satisfiying Condi-

tion 5.3.

Proposition 5.4 Fix α, β ∈ B
0,1
ρ,P and some γ−1 > γ0. Define Q0 as in (40), and the tensor

F̃ ∈ (Rms )⊗3 ⊗ R
mu ⊗ R

ms+2 as

F̃ni ′

j i,k :=

{
Cs(γk − γ0)

−1 p j C
i ′

j Q0(G)n
i,k if k 
= 0,

0 if k = 0.

Then

|x(t, ξ, α) − x(t, ξ, β)| ≤
∑

−1≤k≤ms , j∈I

(
eγk t − eγ0t

)
F̃ni ′

j i,k‖α − β‖i
i ′E |ξn |,

for all α, β ∈ B
0,1
ρ,P , and ξ ∈ Bs(ρ).

Proof. Fix an initial condition ξ ∈ Bs(ρ) and define x(t) := x(t, ξ, α) and y(t) := x(t, ξ, β).

Variation of constants gives

x(t) − y(t) =

∫ t

0

e(�s+Ls
s )(t−τ)

(
Lu

s α(x(τ )) + N̂s(x(τ ), α(x(τ )))

−Lu
s β(y(τ )) − N̂s(y(τ ), β(y(τ )))

)
dτ.

By the usual splitting α(x) − β(y) = [α(x) − α(y)] + [α(y) − β(y)] and the definition of

Ĥ we obtain
∣∣∣Lu

s α(x) + N̂s(x, α(x)) − Lu
s β(y) − N̂s(y, β(y))

∣∣∣

≤ Ĥ|x − y|

+
∣∣∣Lu

s α(y) + N̂s(y, α(y)) − Lu
s β(y) − N̂s(y, β(y))

∣∣∣ .

Set E i
i ′

:= ‖α − β‖i
i ′E

. Since |αi ′(y) − βi ′(y)| ≤ E i
i ′
|yi | we have

∣∣∣Lu
s α(y) + N̂s(y, α(y)) − Lu

s β(y) − N̂s(y, β(y))

∣∣∣ ≤
∑

j∈I

p j (Ĉ
i ′

j + Di ′

j )E i
i ′ |yi |.

Combining these estimates gives

e−λs t |x(t) − y(t)| ≤

∫ t

0

Cse−λsτ
∑

j∈I

p j C
i ′

j E i
i ′ |yi (τ )|dτ +

∫ t

0

Cse−λsτ Ĥ|x(τ ) − y(τ )|dτ.

We would like to use the bound |yi (τ )| ≤
∑

0≤k≤ms
eγkτ Gn

i,k |ξn | from Theorem 3.12, and

apply Lemma 3.9. However, this integral inequality has a resonance when γ0. The problem

is overcome by replacing G with Q0(G), so that
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e−λs t |x(t) − y(t)| ≤

∫ t

0

Cse−λsτ
∑

−1≤k≤ms ; j∈I

p j C
i ′

j E i
i ′e

γkτ Q0(G)n
i,k |ξn |dτ

+

∫ t

0

Cse−λsτ Ĥ|x(τ ) − y(τ )|dτ.

By Lemma 3.9, we infer that

|x(t) − y(t)| ≤ Cs

∑

−1≤k≤ms ; j∈I

eγk t − eγ0t

γk − γ0
p j C

i ′

j Q0(G)n
i,k E i

i ′ |ξn |.

Remark 5.5 For some fixed γ−1 > γ0, define the tensor F̃ ∈ (Rms )⊗3 ⊗ R
mu ⊗ R

ms+2 as in

Proposition 5.4. Define the tensor F̂ ∈ (Rms )⊗3 ⊗ R
mu ⊗ R

ms+2 by

F̂ni ′

mi,k :=

{
pm

∑
j∈I F̃ni ′

j i,k if k 
= 0,

−pm

∑
j∈I

∑
−1≤k1≤ms

F̃ni ′

j i,k1
if k = 0.

It follows that F̂ satisfies Condition 5.3.

We refine the initial norm estimate from Proposition 5.4 using the following auxiliary

proposition.

Proposition 5.6 Fix α, β ∈ B
0,1
ρ,P and an initial condition ξ ∈ Bs . Define

ui (t) := |xi (t, ξ, α) − xi (t, ξ, β)|

E i
i ′ := ‖α − β‖i

i ′E

V j (t) :=

∫ t

0

e−λ j τ
∑

0≤k≤ms

eγkτ E i
i ′C

i ′

j Gn
i,k |ξn | dτ.

Then

e−λ j t u j (t) ≤ V j (t) +

∫ t

0

e−λ j τ H i
j ui (τ )dτ . (41)

Proof Let x(t) := x(t, ξ, α) and y(t) := x(t, ξ, β). By variation of constants we have

x j (t) − y j (t) =

∫ t

0

e� j (t−τ)
(
N j (x(τ ), α(x(τ ))) − N j (y(τ ), β(y(τ )))

)
dτ,

and the triangle inequality gives

|αi ′(x) − βi ′(y)| ≤ |αi ′(y) − βi ′(y)| + |αi ′(x) − αi ′(y)|

≤ ‖α − β‖i
i ′E |yi | + P i

i ′ |xi − yi |,

hence
∣∣N j (x, α(x)) − N j (y, β(y))

∣∣ ≤ C i ′

j E i
i ′ |yi | + H i

j |xi − yi |. (42)

Applying the bound from Theorem 3.12 gives

e−λ j t |x j − y j | ≤

∫ t

0

e−λ j τ
(

C i ′

j E i
i ′ |yi | + H i

j |xi − yi |
)

dτ

=

∫ t

0

e−λ j τ C i ′

j E i
i ′ |yi |dτ +

∫ t

0

e−λ j τ H i
j |ui |dτ
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≤

∫ t

0

e−λ j τ
∑

0≤k≤ms

C i ′

j E i
i ′e

γkτ Gn
i,k |ξn |ds +

∫ t

0

e−λ j τ H i
j ui (τ )dτ.

Recalling the definition of V j (t), the above inequality is of the form stated in (41).

Theorem 5.7 Define Nλ = ms and {μk}
Nμ

k=1 = {γk}
ms

k=−1. Let F̂ ∈ (Rms )⊗3 ⊗ R
mu ⊗ R

ms+2

denote the tensor defined in Remark 5.5. When F is the output of Algorithm A.5 taken with

input F̂ and some Nbootstrap ≥ 1, then F satisfies Condition 5.3.

Proof By Proposition 5.4 the initial tensor F satisfies Condition 5.3. We note that Proposition

5.6 is a special case of Condition A.1 and Condition 5.3 is a special case of Condition A.2.

Hence Proposition A.6 applies, yielding the result.

5.2 ContractionMapping

The tensor J below, which takes ms × mu matrices to ms × mu matrices, provides a bound

on ‖�[α] − �[β]‖i
i ′E

.

Definition 5.8 Define the tensor J ∈ (Rms ⊗ R
mu )⊗2 by

J i ′n
j ′i :=

∑

−1≤k≤ms

(λ j ′ − γk)
−1
(

C i ′

j ′ G
n
i,k + Hm

j ′ Fni ′

mi,k

)
. (43)

Theorem 5.9 If the tensor F ∈ (Rms )⊗3⊗R
mu ⊗R

ms+2 satisfies Condition 5.3, then ‖�[α]−

�[β]‖n
j ′E

≤ J i ′n
j ′i

‖α − β‖i
i ′E

for all α, β ∈ B
0,1
ρ,P .

Proof Fix charts α, β ∈ B
0,1
ρ,P and choose ξ ∈ Bs(ρ). Define x := x(t, ξ, α), and y :=

x(t, ξ, β). By the definition of the Lyapunov-Perron operator, we have

�[α](ξ) − �[β](ξ) = −

∫ ∞

0

e−�u t [Nu(x, α(x)) − Nu(y, β(y))] dt .

Using (42) with the estimates provided in Conditions 3.4 and 5.3, we obtain

|�[α] j ′(ξ) − �[β] j ′(ξ)| ≤

∫ ∞

0

e
−λ j ′ t

(
C i ′

j ′ E
i
i ′ |yi | + H i

j ′ |xi − yi |
)

dt

≤

∫ ∞

0

e
−λ j ′ t

∑

−1≤k≤ms

eγk t E i
i ′

(
C i ′

j ′ G
n
i,k + Hm

j ′ Fni ′

mi,k

)
|ξn |dt .

Integrating gives

|�[α] j ′(ξ) − �[β] j ′(ξ)| ≤ E i
i ′ J

i ′n
j ′i |ξn |,

where the coefficients J i ′n
j ′i

are defined as in (43). It follows that ‖�[α]−�[β]‖n
j ′E

≤ E i
i ′

J i ′n
j ′i

.

Remark 5.10 The tensor J is a linear operator which maps ms × mu matrices to ms × mu

matrices. If we represent an ms × mu matrix E as an ms · mu dimensional vector Ẽ with

components Ẽ(i ′−1)ms+i = E i
i ′

, then the action of J can be represented as a msmu × msmu

matrix J̃ with components J̃
(i ′−1)ms+i

( j ′−1)ms+n
≡ J i ′n

j ′i
.
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We are principally interested in whether the Lyapunov-Perron operator � has a unique

fixed point. By Theorem 5.9, this will be true if an iterative application of J to any ms × mu

matrix E limits to zero, that is

lim
k→∞

J ◦ · · · ◦ J︸ ︷︷ ︸
k

·E = 0.

This limits to zero if and only if the spectral radius of J , denoted by ρ(J ), is less than 1.

Since J is finite dimensional, ρ(J ) is equal to the absolute value of the eigenvalue with

largest magnitude. This is bounded as ρ(J ) ≤ ‖J k‖1/k for any positive integer k ≥ 1, and

any matrix norm ‖ · ‖.

The theorem below collects the major results thus far.

Theorem 5.11 Take the assumptions made in Remarks 4.1 and 5.1. Suppose the tensor F ∈

(Rms )⊗3 ⊗ R
mu ⊗ R

ms+2 satisfies Condition 5.3 and define J ∈ (Rms ⊗ R
mu )⊗2 as in

Definition 5.8. If the spectral radius of J is less than 1, then there exists a unique fixed point

α ∈ B
1,1

ρ,P,P̄
for which �[α] = α. Furthermore, the graph

Mloc := {(xs, α(xs)) ∈ Xs × Xu : xs ∈ Bs(ρ)}

is an invariant manifold under the flow (3), and points in Mloc converge asymptotically to 0.

In addition, suppose that h̃ is an equilibrium solution to (2) satisfying |h̃i| < ǫi for i ∈ I,

and that ǫi < ρi for i ∈ I . Define α̃(xs) := α(xs − h̃s) + h̃u . The graph

M̃loc := {(xs, α̃(xs)) ∈ Xs × Xu : xs ∈ Bs(ρ − ǫs)}

is an invariant manifold under the flow (2), and points in M̃loc converge asymptotically to h̃.

Moreover, we have the estimates

|α̃i ′(xs)| ≤ P i
i ′(|xi | + ǫi ) + ǫi ′ ‖α̃i

i ′(xs)‖ ≤ P i
i ′ Lip(∂i α̃)

j

i ′
≤ P̄

i j

i ′
,

for all xs ∈ Bs(ρ − ǫs) and i, j ∈ I and i ′ ∈ I ′.

Proof We infer from the assumptions made in Remarks 4.1 and 5.1, all of which can be

verified a posteriori, that the map � : B
1,1

ρ,P,P̄
→ B

1,1

ρ,P,P̄
is a well defined endomorphism.

Since the spectral radius of J is less than 1, there exists a unique fixed point α ∈ B
1,1

ρ,P,P̄

for which �[α] = α, see Remark 5.10. As discussed in Sect. 2.3, the fixed point of the

Lyapunov-Perron operator provides us with a chart for a local invariant manifold for the

differential equation defined in (3). By construction α(0) = 0, hence the origin is contained

in the manifold. It follows from the proof of Proposition 3.13 that points in Mloc converge

asymptotically to the origin.

As (3) is conjugate to (2) via the change of variables x → x + h̃, it follows that α̃(xs) is

a graph for a local invariant manifold (having a slightly smaller domain) for the differential

equation defined in (2). Furthermore this manifold contains the equilibrium h̃, a point to

which trajectories in M̃loc are asymptotically attracted. The error estimates follow by virtue

of α ∈ B
1,1

ρ,P,P̄
.

As discussed at the end of in Sect. 2.3, the fixed point of the Lyapunov-Perron operator

provides us with a chart for the local stable manifold provided we have captured all stable

eigenvalues.
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6 Application I: Linear Change of Variables

6.1 The Swift-Hohenberg Equation

Consider the Swift-Hohenberg Eq. (1) of Sect. 1.1. Since the boundary conditions are Neu-

mann, we will expand the spatial variable using Fourier cosine series. Proceeding formally

(we do not yet specify the norms) define the space of one-sided sequence of real numbers,

denoted Y = R
N. Given a one parameter curve a ∈ C(R, Y ), define a path of Fourier cosine

series by

u(t, x) = a0(t) + 2

∞∑

k=1

ak(t) cos(kx).

Taking the expansion above as an ansatz, and plugging it into Eq. (1) leads to the system of

infinitely many coupled scalar ordinary differential equations

ȧk = (−β1k4 − β2k2 + 1)ak − (a ∗ a ∗ a)k . (44)

Here, the discrete convolution ∗ for a, b ∈ Y is defined by

(a ∗ b)k =
∑

k1+k2=k
k1,k2∈Z

a|k1|b|k2|.

We endow Y with the “analytic” norm corresponding to cosine series with geometrically

decaying coefficients. So, for a ∈ Y let

|a|ℓ1
ν

:=

∞∑

k=0

|ak |ωk(ν),

where

ωk(ν) = ωk :=

{
1 k = 0

2νk k ≥ 1.

With ν > 1 define

ℓ1
ν =

{
a ∈ Y : |a|ℓ1

ν
< ∞

}
,

and note that ℓ1
ν is a commutative Banach algebra, in the sense that

‖a ∗ b‖1
ν ≤ ‖a‖1

ν ‖b‖1
ν, for all a, b ∈ ℓ1

ν .

We rewrite (44) as a (densely defined) vector field F : ℓ1
ν → ℓ1

ν given by

F(a) := La − a ∗ a ∗ a, (45)

where L is the diagonal linear operator

L(a)k := (−β1k4 − β2k2 + 1)ak, for all k ≥ 0. (46)

Fix some N ∈ N and define a Galerkin projection πN : ℓ1
ν → R

N+1 ⊆ ℓ1
ν by

πN (a) := (a0, a1 . . . aN−1, aN , 0, 0, 0, . . . ). (47)

We define the Galerkin projection of F by FN := πN ◦ F ◦ πN .
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Remark 6.1 (Normal form) To enter into the notational framework established in Sect. 2 we

define a change of variables conjugating the differential Eq. (44) to one of the type given in

Eq. (2). Note that (45) has the desired form at the homogeneous equilibrium solution 0 ∈ ℓ1
ν ,

but that a change of variables is required when a is non-trivial. After performing the change

of variables, we will bound the constants needed to satisfy the hypotheses of Theorem 5.11.

Remark 6.2 (First order data) We exploit the extensive literature on computer assisted proofs

for equilibrium solutions to partial differential equations, and provide computer assisted

proofs for the existence, local uniqueness, and bounds on the accuracy of the numerical

approximation. Such techniques rely on solving the finite dimensional problem FN (ā) = 0,

and use an implicit function type argument to show that there is a point ã ∈ ℓ1
ν close to ā for

which F(ã) = 0. We use the techniques described in [35,66]. Similar ideas are used to solve

the linearized equations at ã, providing enclosures of the necessary eigendata. The Morse

index of the stationary point ã, denoted nu , is established rigorously using a straightforward

implementation based on the ideas and techniques from [67,69].

In a more theoretical setting we would use the sectorial nature of L to decompose ℓ1
ν

as a Cartesian product of eigenspaces of DF(ã). In the more constructive setting of the

present work we do not have direct access to this data. Instead, we numerically compute

approximate eigenspaces associated with the Galerkin projection. Suppose then that A
†
N ∈

Mat(RN+1, R
N+1) is a matrix of real numbers having that A

†
N ≈ DFN (ā).

Assume for the moment (this assumption will have to be checked in practice) that A
†
N

has nu unstable eigenvalues (i.e. it captures the correct Morse index, see Remark 6.2).

Let {μk′}
n′

u

k′=1′ denote positive numbers approximating the unstable eigenvalues of A
†
N , and

{μk}
n f

k=1 with n f = N + 1 − nu denote negative numbers approximating the stable eigenval-

ues. Without loss of generality, suppose that these numbers are ordered as

μn′
u

≥ · · · ≥ μ1′ > 0 > μ1 ≥ · · · ≥ μn f
.

Remark 6.3 (Gradient structure) The Swift-Hohenberg PDE is a gradient system, hence

A
†
N has real eigenvalues with N + 1 linearly independent eigenvectors. Indeed, this is most

easily established by working with the slightly adapted F̃ rather than F directly, where

F̃(a)k =

{
F(a)0/2 for k = 0,

F(a)k for k ≥ 1,

so that DF̃N (ā) is symmetric with respect to the standard inner product on R
N+1. However,

this is a minor technical point.

Consider now the Swift-Hohenberg equation at parameter values such that mu = 1, and

choose a decomposition of the stable eigenspace having ms = 2. We decompose X into

subspaces

X1′ := R
n′

u X1 := R
n f X2 := {a ∈ ℓ1

ν : ak = 0 for k ≤ N },

and have that Xu := X1′ and Xs := X1 × X2 and X = Xu × Xs . We sometimes employ the

notational shorthand X f := X1 and X∞ := X2.

Note that the map πN defined in (47), is the projection πN : X → X N ⊆ X where

X N := X1′ × X1
∼= R

N+1. Define π∞ : X → X∞ by π∞x := x − πN x . A Schauder basis

{ên}n∈N for X is given by

X1′ := span{ê0, . . . , ênu−1} X1 := span{ênu , . . . , êN } X2 := span{êN+1, êN+2, . . . },
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so that every φ ∈ X has a unique representation φ =
∑∞

n=0 φn ên .

We are now ready to construct a linear change of variables from X to ℓ1
ν . Fix Qu ∈

Mat(Rnu , R
N+1) and Q f ∈ Mat(Rn f , R

N+1) as matrices whose columns are numerical

approximations of unstable/stable eigenvectors of A
†
N . For φ = (φu, φ f , φ∞) ∈ Xu × X f ×

X∞, define the linear map Q : X → ℓ1
ν by

Q(φ) = Quφu + Q f φ f + φ∞. (48)

We endow X with a Banach space structure as follows. Let φN = πN φ and let QN be the

(N + 1) × (N + 1) invertible matrix given by QN = [Qu, Q f ]. Define the transformation

Q : X → ℓ1
ν by

[Qφ]n =

{
[QN φN ]n 0 ≤ n ≤ N ,

φn n > N + 1,

for φ ∈ X . Denote the columns of Q by qn , n ∈ N. Note that qn = en when n ≥ N + 1 and

that qn = QN
n , the n-the column of QN , for 0 ≤ n ≤ N . Define the norm on X by

|φ|X :=

N∑

n=0

∣∣φn Qên

∣∣
ℓ1
ν

=

N∑

n=0

|φn ||qn |ℓ1
ν
+

∞∑

n=N+1

|φn |ωn

=

N∑

n=0

|φn ||qn |ℓ1
ν
+ |φ∞|ℓ1

ν
. (49)

Note that |φ|X =
∑

i∈I |φi| for φ ∈ X , so that with this norm, X satisfies the hypotheses of

Proposition 2.10.

We also require explicit formulas for the induced norms on several collections of operators

in L(X , X), L(X , ℓ1
ν) and L(ℓ1

ν, X). Suppose that M N is a (N + 1) × (N + 1) matrix and

define the linear operator M : X → X by

[Mφ]n =

{
[M N φN ]n 0 ≤ n ≤ N ,

0 n ≥ N + 1.

A standard calculation shows that

‖M‖L(X ,X) = sup
|φ|X =1

|Mφ|X ≤ max
0≤k≤N

|M N
k |X

|qk |ℓ1
ν

, (50)

where M N
k denotes the k-th column of M N . Similarly, for �N an (N + 1) × (N + 1) matrix

define the linear operator � : X → ℓ1
ν by

[�φ]n =

{
[�N φN ]n 0 ≤ n ≤ N ,

φn n ≥ N + 1.

Again, a standard calculation shows that

‖�‖L(X ,ℓ1
ν ) = sup

|φ|X =1

|�φ|ℓ1
ν

≤ max

(
max

0≤k≤N

|�N
k |ℓ1

ν

|qk |ℓ1
ν

, 1

)
, (51)
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where �N
k denotes the k-th column of �N . From this it follows that ‖Q‖L(X ,ℓ1

ν ) = 1.

To compute the norm of Q−1 : ℓ1
ν → X , let B N denote the matrix inverse of QN . The

action of Q−1 is expressed as

[
Q−1a

]
n

=

{[
B N aN

]
n

0 ≤ n ≤ N ,

an n ≥ N + 1.

Then

‖Q−1‖L(ℓ1
ν ,X) = sup

|a|
ℓ1
ν
=1

|Q−1a|X ≤ max

(
max

0≤k≤N

|B N
k |X

ωk

, 1

)
. (52)

Now, for any i ∈ I, we define projection maps πi : X → X i. Again, π∞ coincides with

its usual definition. By our choice of norm on X , we have ‖πi‖L(X ,X i) = 1. Recalling the

definitions of pu, ps, pi in Eq. (5), we have that pu = ps = pi = 1. Lastly, we define � by

�1′ := diag{μnu , . . . , μ1′}, �1 := diag{μ1, . . . , μn f
}, �2 := L ◦ π∞.

We show that the norm on X , as defined above, is well aligned with the semigroup e�t . Fix

a point φ = (φu, φ f , φ∞) ∈ X and write φu = (φ0, . . . , φnu−1) and φ f = (φnu , . . . , φN )

and φ∞ = (φN+1, φN+2, . . . ). Then for t ∈ R we have

e�1′ tφu =
∑

1≤k≤nu

eμk′ tφk−1êk−1,

e�1tφ f =
∑

1≤k≤n f

eμk tφk+nu−1êk+nu−1,

e�2tφ∞ =

∞∑

k=N+1

e(−β1k4−β2k2+1)tφk êk .

Define λ1′ , λ1, and λ2 as

λ1′ := Re μ1′ , λ1 := Re μ1, λ2 := −β1(N + 1)4 − β2(N + 1)2 + 1. (53)

It follows that λ1′ ≤ Re μk′ for 1′ ≤ k′ ≤ n′
u , and λ1 ≥ Re μk for 1 ≤ k ≤ n f , and

λ2 ≥ (−β1k4−β2k2+1) for k ≥ N +1. Choose N sufficiently large so that −β1k4−β2k2+1

is negative and decreasing for k ≥ N + 1. Then

|e�1′ tφu |X ≤
∑

0≤k≤nu−1

eλ1′ t |Qφk |ℓ1
ν
, for t ≤ 0,

|e�1tφ f |X ≤
∑

nu≤k≤N

eλ1t |Qφk |ℓ1
ν
, for t ≥ 0,

|e�2tφ∞|X ≤

∞∑

k=N+1

eλ2t |Qφk |ℓ1
ν

for t ≥ 0.

From Eq. (49), we have that (6) and (7) are satisfied.

6.2 Bounds for the Linear Change of Coordinates

The estimates necessary for completing the argument are obtained following the instructions

outlined below, which summarizes the discussion of the previous sections.
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1. For U ⊂ X , define a change of variables K : U → ℓ1
ν such that K (0) = ā.

For the equilibrium h̃ = K −1(ã), obtain bounds |πih̃| ≤ ǫi for i ∈ I.

2. Pull back the vector field from ℓ1
ν to U , creating the conjugate differential equation

ẋ = DK (x)−1 F(K (x)).

Define Ñ ∈ C2
loc(U , X) as Ñ (x) := DK (x)−1 F(K (x)) − �x.

3. Obtain constants C̃ ik
j (rs, ru) which bound ‖Ñ ik

j ‖(rs+ǫs ,ru+ǫu ) for i, j, k ∈ I.

4. Obtain constants D̃i
j which bound ‖Ñ i

j (0)‖ for i, j ∈ I.

5. Obtain constants Cs, λs which satisfy Eq. (8) to bound e(�s+Ls
s )t .

In the remainder of this section we explain how to follow the outline above, arriving at a

linear change of coordinates K . The results of the a calculation are presented in Sect. 6.3.

6.2.1 Estimate 1: Defining a Change of Variables

Define the affine change of coordinates K : X → ℓ1
ν by

K (φ) := ā + Qφ. (54)

Let |ā − ã|ℓ1
ν

≤ ǫ be a bound on the distance between the approximate solution and true

equilibrium solutions, and define ǫi := ǫ‖πi Q
−1‖L(ℓ1

ν ,X i)
for i ∈ I as needed in Proposition

2.6.

6.2.2 Estimate 2: Defining the Conjugate Differential Equation

Applying the change of coordinates defined in (54) to the Swift-Hohenberg equation leads

to

φ̇ = �φ + Ñ (φ) with Ñ (φ) := DK (φ)−1 F(K (φ)) − �φ. (55)

We note that the form of Ñ as given is not easy to work with, and expand Ñ into an affine

part and a purely nonlinear part. Define functions E, R : X → ℓ1
ν as

E(φ) := F(ā) + DF(ā)Qφ − Q�φ, R(φ) := −3ā ∗ (Qφ)∗2 − (Qφ)∗3.

Then E + R = F ◦ K − DK · �, where DK (φ) = Q for all φ ∈ X . It follows that

Ñ (φ) = Q−1 (E(φ) + R(φ)).

6.2.3 Estimate 3: Bounding Ñ
ij
k

All second derivatives of E are zero. Hence ∂i∂jπkÑ = Ñ
ij
k = (Q−1 R)

ij
k for i, j, k ∈ I. For

φ ∈ X , define

Q := Qφ = Q f φ f + Quφu + φ∞, (56)

and note that each term in R itself contains a term of the form Q ∗ Q. Set

Q2 := Q ∗ Q and Q3 := Q ∗ Q ∗ Q.

Then R(φ) = −3ā ∗ Q2 − Q3.

The derivatives of Q are

∂ f Q · h f = Q f h f , ∂uQ · hu = Quhu, ∂∞Q · h∞ = h∞,
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where h f ∈ X f , hu ∈ Xu and h∞ ∈ X∞. Since ‖Q‖L(X ,ℓ1
ν ) = 1, we have ‖∂iQ‖L(X ,ℓ1

ν ) = 1

for i ∈ I. As ∂iQ is a linear operator, the second derivatives ∂ijQ vanish for all i, j ∈ I.

The derivatives of Q2 and Q3 are given by

∂ijQ
2 = 2∂iQ ∗ ∂jQ and ∂ijQ

3 = 6Q ∗ ∂iQ ∗ ∂jQ,

so that

∂ij R = −6(ā + Q) ∗ ∂i Q ∗ ∂ j Q.

Recall that ‖∂iQ‖L(X ,ℓ1
ν ) = 1 for all i ∈ I. Fixing φ = (φu, φs) ∈ Bu(ru) × Bs(rs) with

rs = (r f , r∞) gives |Qφ| ≤ ru + r f + r∞. Define

C
ij
k := 6‖πk Q−1‖L(ℓ1

ν ,X)

(
|ā| + ru + r f + r∞ + ǫu + ǫ f + ǫ∞

)
. (57)

Then ‖Ñ
ij
k ‖(rs+ǫs ,ru+ǫu ) ≤ C

ij
k for i, j, k ∈ I.

6.2.4 Estimate 4: Bounding Ñ i
j (0)

Since ∂i R(0) = 0 and ∂φ DK (φ)−1 E(φ) = Q−1 DF(ā)Q − �, we have

Ñ i
j (0) = πj

(
Q−1 DF(ā)Q − �

)
πi.

Approximate DF(ā) by the operator A† : ℓ1
ν → ℓ1

ν defined by

(A†v)k :=

{
(A

†
N v)k k ≤ N

(Lv)k k > N ,

for v ∈ ℓ1
ν . We bound Ñ i

j (0) by adding and subtracting Q−1 A† Q to obtain

∥∥∥Ñ i
j (0)

∥∥∥
L(X ,X)

≤
∥∥πj Q−1

(
DF(ā) − A†

)
Qπi

∥∥
L(X ,X)

+
∥∥πj

(
Q−1 A† Q − �

)
πi

∥∥
L(X ,X)

.

(58)

To bound the right summand in (58), note that πj

(
Q−1 A† Q − �

)
πi vanishes when either

i = ∞ or j = ∞, hence the right-summand in (58) is computed directly using (50). The left

summand in (58) is bounded by considering four cases, depending on whether i or j equals

∞. Each of these terms involves

(
DF(ā)h − A†h

)
k

=

{
−3(ā ∗ ā ∗ π∞h)k + ((DFN (ā) − A

†
N )πN h)k 0 ≤ k ≤ N

−3(ā ∗ ā ∗ h)k k ≥ N + 1.
(59)

For the case i = ∞ and j = ∞, since ℓ1
ν is a Banach algebra and π∞ projects onto the

modes k ≥ N + 1, we use (59) and obtain

∣∣π∞

(
DF(ā) − A†

)
h
∣∣ ≤ 3|ā ∗ ā|ℓ1

ν
|h|ℓ1

ν
.

Hence
∥∥π∞

(
DF(ā) − A†

)∥∥
L(ℓ1

ν ,ℓ1
ν )

≤ 3|ā ∗ ā|ℓ1
ν
. Define

D̃i
∞ := 3|ā ∗ ā|ℓ1

ν
, (60)

so that ‖Ñ i
∞(0)‖L(X ,X) ≤ D̃i

∞ for all i ∈ I.
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For the case i 
= ∞ and j 
= ∞, we note that the operator πj

(
Q−1 DF(ā)Q − �

)
πi is

represented by an (N + 1) × (N + 1) matrix and explicitly bound the norm. Define

D̃i
j :=

∥∥πj

(
Q−1 DF(ā)Q − �

)
πi

∥∥
L(X ,X)

. (61)

It follows that ‖Ñ i
j (0)‖ ≤ D̃i

j for all i, j ∈ I − {∞}.

For the case i = ∞ and j 
= ∞, it follows from (59) that

πj[DF(ā) − A†]k = 0 for k > 3N ,

where we recall that the subscript k denotes the k-th column. Since Qπ∞ = π∞, using the

appropriate analogue of (50) for a matrix of a larger size, we set

D̃∞
j := max

N+1≤k≤3N

|πj Q−1[DF(ā) − A†]k |X

ωk

. (62)

It follows that ‖Ñ∞
j (0)‖ ≤ D̃∞

j for all j ∈ I − {∞}.

For the case i 
= ∞ and j = ∞, we note that since π∞Q−1 = π∞ and π∞ A†πN = 0, we

have

πj Q−1
(
DF(ā) − A†

)
Qπi = π∞ DF(ā)Qπi.

Recalling the formula in (50), we set

D̃i
∞ := max

0≤k≤N

|[π∞ DF(ā)Qπi]k |X

|qk |ℓ1
ν

. (63)

It follows that ‖Ñ∞
j (0)‖ ≤ D̃∞

j for all j ∈ I − {∞}. With D̃i
j as in Eqs. (60), (61), (62) and

(63), we have bounds on ‖Ñ i
j (0)‖L(X ,X) for all i, j ∈ I.

6.2.5 Estimate 5: Semigroup Bounds

To find Cs and λs as needed in (8), we use Proposition B.1 and Remark B.3. Define Di
j :=

D̃i
j + C̃ il

j ǫl + C̃ il ′

j ǫl ′ for i, j ∈ I as in Proposition 2.6, and let

μ1 := λ1 δa := D
f
f δb := D∞

f

μ∞ := λ2 = λ∞ δc := D
f
∞ δd := D∞

∞ ε :=
∑

μ̃k∈σ(�1)

|μ∞|−1

1 − |μ∞|−1(δd + |μ̃k |)
.

Note that ‖�−1
∞ ‖ = |μ∞|−1. Assume that the spectral gap conditions

1 > |μ∞|−1
(
δd + sup

μ̃k∈σ(�1)

|μ̃k |
)
, μ1 > μ∞ + δd + εδbδc(1 + ε2δbδc), (64)

are satisfied. (These must be checked in explicit examples). It then follows from Proposition

B.1 and Remark B.3 that

‖e(�s+Ls
s )t‖ ≤ Cseλs t ,

where

Cs := (1 + εδb)
2(1 + εδc)

2

λs := μ1 + δaCs + �

� := εδbδc max
{
1 + εδc(1 + εδb), εδb(2 + ε2δbδc)

}
.
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6.3 Numerical Results

Following the steps given in Sect. 6.2 allows us to prove a variety of stable manifold theorems.

In Theorem 6.4 below we present one such result, for the equilibrium displayed in Fig. 1.

Here we choose ρ f , the radius of the domain Bs(ρ) ⊆ X f × X∞ projected into the finite

dimensional subspace X f , as large as possible. A number of additional results are presented

in Sect. 7.6.

Theorem 6.4 Consider the Swift-Hohenberg Eq. (1) with parameters β1 = 0.05, and β2 =

−0.35. Let ν = 1.001 and suppose that ā ∈ ℓ1
ν is an approximate equilibrium solution,

ǫ = 1.61 × 10−14 close in the ℓ1
ν norm to a true equilibrium solution. Fixing the Galerkin

projection dimension at N = 30, and following the instructions described in Sect. 6.2.1, we

bound ǫs ≤ 10−14 · (4.97, 1.61). Let ρ =
(
2.2 × 10−2, 10−5

)
, and define Bs(ρ − ǫs) as in

Definition 2.4, and I ,I ′, and I = I ∪ I ′ as in Remark 2.2. Let

P =
(
0.153, 1.38 × 10−5

)
and P̄ =

(
16.9 × 10−0 1.37 × 10−3

1.37 × 10−3 2.14 × 10−4

)
,

be tensors as in Definition 2.8.

Then, there exists a unique α̃ ∈ C1,1(Bs(ρ − ǫs), Xu), such that the local stable manifold

of ã ∈ ℓ1
ν is given by

xs �→ K (xs, α̃(xs)) ,

for K as given in (54). Moreover, α̃ has

|α̃i ′(ξ)| ≤ 3.36 × 10−3 ‖α̃i
i ′(ξ)‖ ≤ P i

i ′ Lip(∂i α̃)
j

i ′
≤ P̄

i j

i ′
,

for all ξ ∈ Bs(ρ − ǫs), i, j ∈ I , i ′ ∈ I ′ and i ∈ I.

Proof In script main.m we calculate all of the constants and verify all of the hypotheses

in Theorem 5.11. In particular we have a contraction constant ‖J‖ < 0.356. The entire

computation took about 4 seconds and was run on MATLAB 2019a with INTLAB on a

i7-8750H processor.

Remark 6.5 (Performance: timing and conditioning) One valuable indicator of perfor-

mance for the computations just discussed is to compare the runtime of the non-rigorous

portions of the computation. This gives an impression of the cost of passing from “good

numerics” to a computer assisted proof. For example, of the roughly 4 second runtime for

the proof of Theorem 6.4, roughly one second is spent on the numerical approximation of the

equilibrium solution (Newton’s method) and the numerical approximation of the eigenval-

ues and eigenvectors (computational linear algebra). Then the validation stage takes roughly

three times longer than the non-rigorous linear approximation of the equilibrium and stable

manifold. While this is only the result of a single computation, it gives a rough sense of the

cost (in time) of the validation stage.

Another valuable performance indicator is the conditioning of the algorithm. Since The-

orem 6.4 involves the linear approximation of the stable manifold by the eigenspace, we

expect that the approximation is quadratically good. Then an excellent condition number

for the algorithm is the constant of proportionality. For example, in the calculation above

the approximation is valid on a subset of a ball of size 2.2 × 10−2 about the equilibrium,

and the bound on the linear approximation is roughly 3.36 × 10−3. This suggests that the

condition number for this calculation is about 15. Note that this is roughly the size of the
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largest entry of P̄ . Recalling the definitions in Sect. 6.2, we see that the entries of P̄—and

hence the conditioning of the algorithm—are determined by the size of the derivative of F

in a neighborhood of the equilibrium, and the size of the spectral gap. This is a heuristic

observation which, while difficult to fully justify thanks to iterative procedure of defining P̄ ,

is still useful.

7 Application II: Nonlinear Change of Variables

In this section we improve the approximation of the stable manifolds in certain directions,

by making the nonlinear change of coordinates discussed in Sect. 2.4. Again, we consider

the example of the Swift-Hohenberg Eq. (1). We employ the notation established in Sect.

6.1, with some minor adjustments. In particular, we use mu = 1 and ms = 3. Recalling the

notation of Sect. 2.4, set nu = munst, nθ := mslow, n f = mfast +mslow, and N = nu +n f −1,

and define

X1′ := R
nu X1 := R

nθ X2 := R
n f −nθ X3 := {a ∈ ℓ1

ν : ak = 0 for k ≤ N }.

We write Xu := X1′ and Xs := X1 × X2 × X3 and X = Xu × Xs , and use the notational

shorthand Xθ := X1 (slow stable), X f := X2 (fast but finite stable) and X∞ := X3 (stable

tail). The map πN , as defined in (47), is a projection operator πN : X → X N ⊆ X , where

we define X N := X1′ × X1 × X2
∼= R

N+1. Define π∞ : X → X∞ by π∞x := x − πN x ,

and � as

�1′ := diag{μn′
u
, . . . , μ1′ }, �1 := diag{μ1, . . . , μnθ

}, �2 := diag{μnθ +1, . . . , μn f
}, �3 := L ◦ π∞,

with μ defined in Sect. 6.1, and L defined in (46). Define λi for i ∈ I by

λ1′ := μ1′ λ1 := μ1, λ2 := μnθ+1,

λ3 := −β1(N + 1)4 − β2(N + 1)2 + 1. (65)

Repeating the argument given at the end of Sect. 6.1 in this context gives that the inequalities

of Eqs. (6) and (7) are satisfied. We now follow the scheme for stable manifold validation

outlined in Sect. 6.2.

7.1 Estimate 1: Defining a Change of Variables

Using the parameterization method, and the good coordinates discussed in Sect. 2.4, we

approximate a slow stable manifold and finite dimensional invariant normal bundles

P : [−1, 1]nθ → X N ,

Q f (θ) : [−1, 1]nθ → Mat(Rn f −nθ , X N )

Qu(θ) : [−1, 1]nθ → Mat(Rnu , X N ).

These are chosen to approximately solve (21)–(22). The error terms

Eθ : [−1, 1]nθ → ℓ1
ν E f : [−1, 1]nθ → L(X f , ℓ

1
ν) (66a)

Eu : [−1, 1]nθ → L(Xu, ℓ1
ν) E∞ : [−1, 1]nθ → L(X∞, ℓ1

ν), (66b)

are defined by

Eθ (θ) := F(P(θ)) − D P(θ)�θθ (67a)
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E f (θ) := DF(P(θ))Q f (θ) − DQ f (θ)�θθ − Q f (θ)� f (67b)

Eu(θ) := DF(P(θ))Qu(θ) − DQu(θ)�θθ − Qu(θ)�u (67c)

E∞(θ) := DF(P(θ))π∞ − �∞. (67d)

Define U := B(rs + ǫs, ru + ǫu) ⊆ Xu × [−1, 1]nθ × X f × X∞, a normal frame bundle

Q : [−1, 1]nθ → L(X/X1, ℓ
1
ν), and a local diffeomorphism K : U ⊆ X → ℓ1

ν by

Q(θ)φ := Q f (θ)φ f + Qu(θ)φu + φ∞ (68)

K (θ, φ) := P(θ) + Q(θ)φ. (69)

We define the norm | · |X as in (49) relative to the linear map Q0 : X → ℓ1
ν defined by

Q0 · (hθ , hφ) := DK (0, 0) · (hθ , hφ) = ∂θ P(0)hθ + Q(0)hφ, (70)

where hθ ∈ Xθ and hφ ∈ Xu × X f × X∞.

While we do not have an explicit expression for the inverse function K −1, we can bound

the norm of h̃ = K −1(ã) as follows. Note that K −1(a) = Q−1
0 (a − ā) + O(|a − ā|2). If

|ā − ã|ℓ1
ν

≤ ǫ bounds the distance between the approximate and true solutions, we apply

standard techniques from rigorous numerics (cf Remark 6.2) to bound |πih̃| ≤ ǫi for i ∈ I

as needed in Proposition 2.6, in terms of ǫ, ‖πi Q
−1
0 ‖, and the polynomial coefficients of

K (θ, φ).

7.2 Estimate 2: Defining the Conjugate Differential Equation

Applying the coordinate change of Eq. (69) to the Swift-Hohenberg equation leads to

ẋ = �x + Ñ (x), Ñ (x) := DK (x)−1 F(K (x)) − �x, (71)

for x ∈ U . We now perform a Taylor expansion of F(K (x)) in x ∈ U . To simplify the

notation, for x = (θ, φ) where θ ∈ [−1, 1]nθ and φ ∈ Xu × X f × X∞, define

P := P(θ) Q := Q(θ)φ. (72)

Starting from (45), expand F(K (θ, φ)) as

F(K (θ, φ)) = L[P + Q] − (P + Q)3

=
(
LP − P3

)
+
(
LQ − 3P2 ∗ Q

)
− 3P ∗ Q2 − Q3,

where the powers denote products of convolutions. Note that for a, h ∈ ℓ1
ν , the derivative of

F is given by

DF(a) · h = Lh − 3(a ∗ a ∗ h),

so that

F(P) = LP − P3, DF(P) · Q = LQ − 3(P2 ∗ Q).

Defining a remainder term R : U ⊆ X → ℓ1
ν by

R = R(θ, φ) := −3P(θ) ∗ (Q(θ)φ) ∗ (Q(θ)φ) − (Q(θ)φ) ∗ (Q(θ)φ) ∗ (Q(θ)φ)

= −3P ∗ Q2 − Q3, (73)

simplifies F(K (θ, φ)) as

F(K (θ, φ)) = F(P) + DF(P) · Q + R. (74)
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The (approximate) conjugacy relations in (67) (approximately) linearize the non-remainder

components in (74). More precisely, we have that

F(P(θ)) + DF(P(θ))
[
Q f (θ)φ f + Qu(θ)φu + φ∞

]

= Eθ (θ) + D P(θ)�θθ

+ E f (θ)φ f + DQ f (θ)(�θθ, φ f ) + Q f (θ)� f φ f

+ Eu(θ)φu + DQu(θ)(�θθ, φu) + Qu(θ)�uφu

+ E∞(θ)φ∞ + �∞φ∞

= E(θ, φ) + DK (θ, φ f , φu, φ∞)

⎛
⎜⎜⎝

�θθ

� f φ f

�uφu

�∞φ∞

⎞
⎟⎟⎠ ,

where E : U → ℓ1
ν is defined by

E(θ, φ) := Eθ (θ) + E f (θ)φ f + Eu(θ)φu + E∞(θ)φ∞. (75)

It follows that for x ∈ U , we have

DK (x)−1 F(K (x)) = DK (x)−1
(
E(x) + DK (x)�x + R(x)

)

= �x + DK (x)−1 (E(x) + R(x)) .

Thus, the differential equation is decomposed into a diagonalized part and nonlinear error

terms. It follows that

Ñ (θ, φ) = DK (θ, φ)−1 (E(θ, φ) + R(θ, φ)) . (76)

7.3 Estimate 3: Bounding Ñ
ij

k

Throughout this section, consider points in the ball (θ, φ) ∈ U = B(rs + ǫs, ru + ǫu), and

assume that |φu | ≤ ru + ǫu , |φ f | ≤ r f + ǫ f , and |φ∞| ≤ r∞ + ǫ∞. Additionally, choosing

δθ ∈ (0, 1] such that if |θ |X ≤ rθ +ǫθ , we have that (θ)k ≤ δθ for all components 1 ≤ k ≤ nθ ,

whereby U = B(rs + ǫs, ru + ǫu) ⊆ Xu × [−δθ , δθ ]
nθ × X f × X∞.

7.3.1 Bounding the Derivatives of DK and its Inverse

Fix h = (hθ , h f , hu, h∞) ∈ Xθ × X f × Xu × X∞. We have that

DK (θ, φ) · h =
(
∂θ P(θ) + ∂θ Q f (θ)φ f + ∂θ Qu(θ)φu

)
hθ + Q f (θ)h f + Qu(θ)hu + h∞.

(77)

Define the maps

A0(θ) · h := ∂θ P(θ)hθ + Q f (θ)h f + Qu(θ)hu + h∞,

A1(θ, φ) · h := ∂θ Q f (θ)φ f hθ + ∂θ Qu(θ)φuhθ .

Then DK = A0 + A1.

The norm of A1 is controlled by taking |φ| small. Assume A0(θ) is invertible for all

θ ∈ [−δθ , δθ ]
nθ with inverse B(θ) := A0(θ)−1. Indeed, the action of the operator A0(θ) :

X N × X∞ → ℓ1
ν

∼= X N × X∞ leaves both subspaces X N and X∞ invariant. The action of

the operator A0(θ) in the finite dimensional component is represented by a polynomial in θ
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with (N + 1)× (N + 1) matrix coefficients. Its action in the infinite dimensional component

is precisely the identity map. Hence the operator B(θ) = A0(θ)−1 is an infinite power series

in θ , with Taylor coefficients defined recursively by power matching. We compute finitely

many of these coefficients by solving the recursion relations.

The inverse DK −1 : ℓ1
ν → X now has

DK (θ, φ)−1 = B(θ)
(
I + A1(θ, φ)B(θ)

)−1
.

Bounds on the derivatives of DK (θ, φ)−1 are obtained by the product rule. We first compute

finitely many terms in the power series expansion of B(θ), and bound the Taylor remainder

and its derivatives using a Neumann series argument similar to the one given below to bound(
I + A1(θ, φ)B(θ)

)−1
. Indeed, for φ sufficiently small the Neumann series provides the

bound

‖
(
I + A1(θ, φ)B(θ)

)−1
‖ ≤

1

1 − ‖A1(θ, φ)B(θ)‖L(ℓ1
ν ,ℓ1

ν )

≤
[
1 − (|φ f | + |φu |)‖∂θ Q(θ)‖L(Xθ ⊗X ,ℓ1

ν )‖B(θ)‖L(ℓ1
ν ,X)

]−1
.

Derivatives of
(
I + A1(θ, φ)B(θ)

)−1
are bound using the fact that for any smooth path

of invertible matrices, it holds that

∂Y −1

∂t
= −Y −1 ∂Y

∂t
Y −1.

Applying the product rule gives

∂2Y −1

∂t∂s
= Y −1

(
∂Y

∂s
Y −1 ∂Y

∂t
−

∂2Y

∂t∂s
+

∂Y

∂t
Y −1 ∂Y

∂s

)
Y −1.

Hence, to bound the derivatives of
(
I + A1(θ, φ)B(θ)

)−1
, it suffices to bound the inverse

and the derivatives of I + A1(θ, φ)B(θ).

For fixed (θ, φ) ∈ U and i ∈ I, we see that the nontrivial first derivatives ∂i A1(θ, φ) :

X ⊗ X i → ℓ1
ν are given by

∂θ A1(θ, φ) = ∂θθ Q f (θ)φ f + ∂θθ Qu(θ)φu, ∂⋆ A1(θ, φ) = ∂θ Q⋆(θ) for ⋆ ∈ { f , u}.

For fixed (θ, φ) ∈ U , and i, j ∈ I, compute the nontrivial second derivatives ∂i∂j A1(θ, φ) :

X ⊗ X i ⊗ Xj → ℓ1
ν , by

∂θθ A1(θ, φ) = ∂θθθ Q f (θ)φ f + ∂θθθ Qu(θ)φu, ∂θ⋆ A1(θ, φ) = ∂θθ Q⋆(θ) for ⋆ ∈ { f , u}.

Note that ∂∞ DK −1 = 0. Furthermore, π∞ DK −1 = π∞, so that π∞∂i(DK −1) = 0 for all

i ∈ I. Then bounds on DK −1 and its derivatives follow from bounds on

‖π◦ B(θ)‖L(ℓ1
ν ,X)

∥∥∥π◦
∂k

∂θk B(θ)

∥∥∥
L

(
X⊗k

θ ⊗ℓ1
ν ,X

)
∥∥∥π◦

∂k

∂θk Q(θ)

∥∥∥
L

(
X⊗X⊗k

θ ,ℓ1
ν

) , (78)

where π◦ ∈ {πN , π∞} and k = 1, 2, 3. Since we have either explicit expressions (we may

take a supremum over θ ∈ [−δθ , δθ ]
nθ using interval arithmetic) or explicit bounds for

each of these, we obtain the necessary explicit bounds on DK −1 and its derivatives. Note

that bounds on πk DK (θ, φ)−1 = πk B(θ)
(
I + A1(θ, φ)B(θ)

)−1
are improved by bounding

‖πk B(θ)‖L(ℓ1
ν ,X) for k ∈ I, and likewise for the derivatives.
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7.3.2 Bounding E

To bound E : U → ℓ1
ν defined in (75), see also (66) and (67), we note first that these

bounds are calculated in the | · |ℓ1
ν

norm, whereas bound on E f , Eu, E∞ are calculated in the

‖ · ‖L(X ,ℓ1
ν ) norm. We have that

∂θ E(θ, φ) · h =
(
∂θ Eθ (θ) + ∂θ E f (θ)φ f + ∂θ Eu(θ)φu + ∂θ E∞(θ)φ∞

)
· hθ .

The other first derivatives of E are

∂⋆E(θ, φ) · h = E⋆(θ) · h f , for ⋆ ∈ { f , u,∞}.

The nontrivial second derivatives of E are

∂θθ E(θ, φ) · (h1, h2) =
(
∂θθ Eθ + ∂θθ E f φ f + ∂θθ Euφu + ∂θθ E∞φ∞

)
· (h1

θ , h2
θ ),

∂θ⋆E(θ, φ) · (h1, h2) = ∂θ E⋆(θ) · (h1
θ , h2

⋆), for ⋆ ∈ { f , u,∞}.

Recall that we have an explicit finite dimensional polynomial representation for the functions

Eθ , E f and Eu . For E∞ and its derivatives we have

E∞(θ) · φ∞ = −3P(θ) ∗ P(θ) ∗ φ∞

∂θ E∞(θ) · (φ∞, hθ ) = −6 (∂θ P(θ)hθ ) ∗ P(θ) ∗ φ∞

∂θθ E∞(θ) · (φ∞, h1
θ , h2

θ ) = −6(∂θθ P(θ) · (h1
θ , h2

θ )) ∗ P(θ) ∗ φ∞ − 6(∂θ P(θ)h1
θ ) ∗ (∂θ P(θ)h2

θ ) ∗ φ∞.

Using the bounds on |φ|, the explicit expressions for the polynomials P , Q, and the

expressions above, we obtain bounds on E over all of U ⊆ X . In summary, we have bounds

on E and its derivatives, and bound
∥∥∥π◦

∂k

∂θk Eθ (θ)

∥∥∥
L

(
X⊗k

θ ,ℓ1
ν

)
∥∥∥π◦

∂k

∂θk E⋆(θ)

∥∥∥
L

(
X⊗X⊗k

θ ,ℓ1
ν

) , (79)

where π◦ ∈ {πN , π∞}, ⋆ ∈ {u, f ,∞}, and the supremum is taken over θ ∈ [−δθ , δθ ]
nθ .

Here for k = 0, 1, 2, X⊗k is the k-fold tensor product of X , and X⊗0 is the trivial vector

space.

7.3.3 Bounding R

Recalling (72) and (73), we have

P := P(θ), Q := Q f (θ)φ f + Qu(θ)φu + φ∞, R := −3P ∗ Q2 − Q3.

To calculate bounds on R(θ, φ) = R and its derivatives, we start by calculating the derivatives

of Q. These are

∂θ Q · h =
(
∂θ Q f φ f + ∂θ Quφu

)
· hθ , ∂⋆Q · h = Q⋆ · h⋆ for ⋆ ∈ { f , u}, ∂∞Q · h = h∞.

The nonvanishing second derivatives of Q are given by

∂θθ Q · (h1, h2) =
(
∂θθ Q f φ f + ∂θθ Quφu

)
· (h1

θ , h2
θ ), ∂⋆θ Q · (h1, h2) = ∂θ Q⋆ · (h1

θ , h2
⋆) for ⋆ ∈ { f , u}.

The only nonvanishing derivatives of P are with respect to θ . Then, bounds on Q2, Q3,P∗Q2,

and their partial derivatives are obtained using the product rule.
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Using that R = −3P ∗ Q2 − Q ∗ Q2, we have expressions for all of the first and second

derivatives of R. Hence, to bound R and its derivatives, it suffices to bound
∥∥∥π◦

∂k

∂θk P(θ)

∥∥∥
L

(
X⊗k

θ ,ℓ1
ν

)
∥∥∥π◦

∂k

∂θk Q⋆(θ)

∥∥∥
L

(
X⊗X⊗k

θ ,ℓ1
ν

) , (80)

where we take π◦ ∈ {πN , π∞}, ⋆ ∈ {u, f }, k = 0, 1, 2, and the supremum over θ ∈

[−δθ , δθ ]
nθ . The rest of the bounds follow by applying the product rule (as detailed above),

the Banach algebra property of ℓ1
ν , and the bounds on |φ| which result from restricting to the

ball B(rs + ǫs, ru + ǫu).

7.3.4 Bounding Ñ

The derivatives of Ñ = DK −1(E + R) are calculated using the product rule. Exploiting

the formulas derived in Sect. 7.3 facilitates implementation of the constants C̃ ik
j bounding

‖Ñ ik
j ‖(rs+ǫs ,ru+ǫu ), for i, j, k ∈ I needed to apply Proposition 2.6.

7.4 Estimate 4: Bounding Ñ i
j (0)

We now compute a tensor D̃ bounding ‖Ñ (0)‖, as needed in Proposition 2.6. We infer from

the computations in Sect. 7.3 that Q2(θ, 0) = 0, DQ2(θ, 0) = 0, D(Q ∗ Q2) = 0, and

D(P ∗ Q2) = 0 when φ = 0. Hence DR(θ, 0) = 0. Since R(θ, 0) = 0 as well, we infer that

∂iÑ (0) = DK (0)−1∂i E(0, 0) + (∂i DK (0)−1)E(0, 0) for i ∈ I. (81)

The first summand in (81) is similar to the term studied in Sect. 6.2.4. To see this, starting

from (75), compute the first derivatives of E at (θ, φ) = (0, 0) to obtain

∂θ E(0, 0) · h = ∂θ Eθ (0) · hθ , ∂⋆E(0, 0) · h = E⋆(0) · h⋆ for ⋆ ∈ { f , u,∞}.

We deduce from the definition of E in (67) and the substitution P(0) = ā, that

∂θ Eθ (0)πθ = (DF(ā)∂θ P(0) − ∂θ P(0)�θ ) πθ ,

E⋆(0)π⋆ = (DF(ā)Q⋆(0) − Q⋆�⋆) π⋆ for ⋆ ∈ { f , u,∞}.

Using Q0 as defined in (70), we obtain the simplification

∂i E(0, 0)h = (DF(ā)Q0 − Q0�)πi for i ∈ I.

Finally, the first summand in (81) simplifies to

DK (0, 0)−1∂i E(0, 0) =
(

Q−1
0 DF(ā)Q0 − �

)
πi for i ∈ I.

We then bound‖πj

(
Q−1

0 DF(ā)Q0 − �
)

πi‖L(X ,X) as in Sect. 6.2.4, with the trivial addition

that the projection map πθ must also be considered.

To bound the second summand in (81), note that E(0, 0) = Eθ (0), for which we have an

explicit expression. From a calculation in the same vein as in Sect. 7.3.1, we obtain
(
∂i DK (0)−1

)
E(0, 0) = −Q−1

0 (∂i DK (0)) Q−1
0 Eθ (0).

Then

∂θ DK (0) = ∂θ A0(0), ∂⋆ DK (0) = ∂θ Q⋆(0) for ⋆ ∈ { f , u,∞}.
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The norm |Eθ (0)|ℓ1
ν

is quite small in practice, and it suffices to obtain a rough bound on the

norm of ∂i DK (0)−1. Thus, for i, j ∈ I we bound the components of (81) as

D̃i
j := ‖πj

(
Q−1

0 DF(ā)Q0 − �
)

πi‖L(X ,X)

+
∥∥∥πj Q−1

0

∥∥∥
L(ℓ1

ν ,X)
‖∂i DK (0)‖L(X i⊗X ,ℓ1

ν )

∣∣∣πN Q−1
0 Eθ (0)

∣∣∣
X

.

There are some additional cancellations, as πj Q−1
0 (∂i DK (0)) = 0 when i = ∞ or j = ∞.

7.5 Estimate 5: Semigroup Bounds

The constants Cs and λs are obtained by applying Theorem B.1 as in Sect. 6.2.5. The only

difference is that Xs is decomposed into 3 subspaces in Sect. 7 (as opposed to 2 subspaces

in the linear case). We argue as follows. Define Di
j := D̃i

j + C̃ il
j ǫl + C̃ il ′

j ǫl ′ as in Proposition

2.6, and

μ1 := λ1 δa := max
1≤i≤ms−1

∑

1≤ j≤ms−1

Di
j δb :=

∑

1≤ j≤ms−1

D
ms

j ,

μ∞ := λ3 = λ∞ δc := max
1≤i≤ms−1

Di
ms

δd := Dms
ms

.

The rest of the computation for Cs and λs are exactly as described in Sect. 6.2.5.

7.6 Conclusion and Numerical Results

We recall that the parameter ρ = (ρθ , ρ f , ρ∞) determines the size of the domain

Bs(ρ) =
{
(xθ , x f , x∞) ∈ Xs : |xθ | ≤ ρθ , |x f | ≤ ρ f , |x∞| ≤ ρ∞

}
,

for the candidate charts α ∈ Bρ,P,P̄ , where Xs is decomposed in terms of the eigenspaces

Xθ , X f , and X∞ of �s corresponding to the slow stable eigenvalues, the fast-but-finite stable

eigenvalues, and the remaining infinite stable eigenvalues respectively. This parameter ρ has

a significant impact on nearly every aspect of our analysis.

For a given application it may be advantageous to choose certain components of ρ =

(ρθ , ρ f , ρ∞) large and others small. For example, we generically expect connecting orbits

to have a larger projection into the slow-stable subspace Xθ and a smaller projection into

the other stable subspaces. In Theorem 7.1, we present one such result, taking ρθ as large

as possible. The parameters are the same as the ones used to produce Fig. 1. This nonlinear

approximation of the stable manifold produces significantly better error estimates than a

linear approximation: the C0 error bounds in Theorem 7.1 are of size 7.43 × 10−12, whereas

the approximate manifold in Theorem 6.4 has C0 error bounds of 3.36 × 10−3.

Theorem 7.1 Consider the Swift-Hohenberg Eq. (1) with parameters β1 = 0.05, and β2 =

−0.35. Let ν = 1.001 and suppose that ā ∈ ℓ1
ν is an approximate equilibrium solution,

ǫ = 1.61 × 10−14 close in the ℓ1
ν norm to a true equilibrium solution. Using the techniques

discussed in Sect. 2.4, we compute a slow stable manifold and finite dimensional (un)stable

bundles, represented by Taylor polynomials of degree 20. Fixing the Galerkin projection

dimension at N = 30, and following the instructions described in Sect. 6.2.1, we bound

ǫs ≤ 10−14 · (1.85, 4.51, 1.61). Let

ρ =
(
3.18 × 10−2 10−6 10−10

)
,
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and

P =

⎛
⎝

9.43 × 10−11

4.41 × 10−6

3.31 × 10−6

⎞
⎠ P̄ =

⎛
⎝

1.30 × 10−9 5.60 × 10−5 1.04 × 10−4

5.60 × 10−5 2.72 × 10−0 8.20 × 10−4

1.04 × 10−4 8.20 × 10−4 1.41 × 10−4

⎞
⎠ ,

be tensors as in Definition 2.8. Define Bs(ρ − ǫs) as in Definition 2.4, I ,I ′, and I = I ∪ I ′

as in Remark 2.2.

Then, there exists a unique α̃ ∈ C1,1(Bs(ρ − ǫs), Xu) so that the local stable manifold of

ã ∈ ℓ1
ν is given by

xs �→ K (xs, α̃(xs)) ,

for K as in (69). Moreover, α̃ has

|α̃i ′(ξ)| ≤ 7.43 × 10−12 ‖α̃i
i ′(ξ)‖ ≤ P i

i ′ Lip(∂i α̃)
j

i ′
≤ P̄

i j

i ′
,

for all ξ ∈ Bs(ρ − ǫs) and i, j ∈ I , i ′ ∈ I ′ and i ∈ I.

Proof In script main_NL.mwe calculate all of the constants and verify all of the hypotheses

in Theorem 5.11. In particular we have a contraction constant ‖J‖ < 5.86 × 10−6. It takes

approximately 11 s to construct the slow-stable manifold and normal bundles, 23 s to compute

the bounds detailed in Sect. 7, and 12 s to compute all the bounds in Sects. 3–5 needed to

validate the stable manifold. These we run on MATLAB 2019a with INTLAB on a i7-8750H

processor.

Remark 7.2 (Performance: timing and conditioning) As in Remark 6.5 after Theorem 6.4,

we consider briefly the timing and conditioning of the calculations required for the proof of

Theorem 7.1. Note that, while the proof of Theorem 7.1 takes roughly ten times longer than

the proof of Theorem 6.4, the cost in time of the validation, when compared to the cost in time

of the non-rigorous calculations is very similar. That is, the numerical computation of the

parameterized bundles takes about 11 s, which is roughly one quarter of the full computation

time. On the other hand, since Theorem 7.1 involves complex higher order approximation

schemes, it is less clear how to define a useful condition number for the argument. However,

we give a more nuanced discussion of the final error relative to the algorithm inputs below.

The nonlinear approximation in Theorem 7.1 is optimized to produce a larger validated

part of the manifold in the direction of the slow stable eigenvector, as this is where we would

generically expect to find connecting orbits. Note that in Theorem 7.1 the gap between

eigenvalues of �1′ , �1 and �2 is not very large:

λ1′ = 1.01, λ1 = −1.41, λ2 = −1.99, λ3 = −4.58 × 104.

We took the slow-stable eigenspace to be one dimensional. If a particular application required

a stable manifold which was wider along the second slowest stable eigendirection, we could

increase ρ f at a cost of also increasing P , P̄ , etc. These error estimates could be improved

somewhat by splitting X f into two subspaces. Moreover, we could significantly increase the

radius of our approximation along the second slowest stable eigendirection by using a higher

dimensional slow stable manifold.

From the classical theory [15], we expect our derivative bound P ≥ ‖Dα‖ to be at least

as large as the ratio between the derivative of the nonlinearity and the spectral gap, roughly

|P| �
‖DN‖

λu − λs

�
‖L‖ + ‖D2N‖ρ

λu − λs

.
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Fig. 3 (Left) Using the estimates from Sect. 6, the bounds produced by a computer assisted proof for a range of

radii ρ f ∈ [10−10, 0.022], with ρ∞ chosen to be as small as possible. (Right) Using the estimates from Sect.

7, the bounds produced for a range of radii ρθ ∈ [10−10, 0.0318], with ρ f and ρ∞ chosen to be as small as

possible. Note that the nonlinear approximation yields smaller C0 error bounds (red dash-dotted lines) (Color

figure online)

We expect that this bound should increase linearly with ρ, and be bounded below by ‖L‖,

the error from not perfectly splitting Xu × Xs into eigenspaces. This scaling is observed

in Fig. 3, where we display the error bounds in Theorems 6.4 and 7.1 as functions of ρ.

The nonlinear approximation maintains small error bounds, despite taking ρθ large. This is

because the change of variables prepares the nonlinearity so that ‖∂θ DN‖ is small. Note that

one should be mindful in comparing the two graphs in Fig. 3, as in Theorem 6.4 we split

Xs = X f × X∞ with dim(X f ) = N , and in Theorem 7.1 we split Xs = Xθ × X f × X∞

with dim(Xθ ) = 1 and dim(X f ) = N − 1.

When using the linear approximation we see that for a large range of ρ f , the contraction

constant, the tensor P , and the minimal choice of ρ∞, all scale linearly with ρ f . The C0 error

of the manifold, given by |α̃i ′ | ≤ P i
i ′
(ρi + ǫi ) + ǫi ′ in Theorem 5.11, is dominated by the

error in validating the equilibrium until ρ f ≈ 10−7, where it begins to scale quadratically

with ρ f . The C1,1 error bounds on the norm of the components of P̄ do not improve much

for ρ < 10−3, and increase quite rapidly for ρ f > 10−2.
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For the nonlinear approximation, the error in validating the equilibrium dominates the

C0 bound until ρθ ≈ 10−2, the point after which Pθ
u increases marginally. The contraction

constant scales similarly, begining to increase around ρθ ≈ 10−3. The C1 bounds in the X f

and X∞ subspaces are bounded below by the accuracy of the decomposition into eigenspaces

of DF(ā), and increase linearly with ρθ . For the whole range of admissible ρθ , both ρ f and

ρ∞ can be taken exceedingly small, without contributing significantly to the overall error.

We do not expect to validate a global stable manifold with the Lyapunov-Perron approach;

if ρ is too large, the various hypotheses of Theorem 5.11 may no longer be satisfied. For

example, we may be unable to prove the image of � is contained within B
0,1
ρ,P or B

1,1

ρ,P,P̄
, as

detailed in Theorems 4.2 or 4.4. Other causes for failure would be if ‖J‖ > 1 whereby � is not

a contraction mapping, or if we are unable to prove solutions x(t, ξ, α) are contained within

Bs(ρ) for all t ≥ 0 as required by Proposition 3.13. When using a linear approximation, many

of these hypotheses all simultaneously fail for larger values of ρ. In contrast, for the nonlinear

approximation in Sect. 7, the dominant limiting factor is the condition γ0 = λs + CsĤ < 0

as required in Proposition 3.13. Overall, the framework developed in Sects. 2 – 5 allow us to

leverage our estimates on our approximate stable manifold made in Sects. 6–7.
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A General Strategy for Bootstrapping Gronwall’s Inequality

We generalize the bootstrapping argument used in Sect. 3 so that it can be applied in Sects. 4

and 5. To unify the class of functions we wish to bound, and the set of assumptions we make

on these functions, we define Condition A.1 below. In a slight abuse of notation, here we

define B to be a tensor, distinct from its previous usage as a ball of functions in Definition 2.8.

Condition A.1 Fix λ1, . . . , λNλ
∈ R, fix H ∈ R

Nλ ⊗ R
Nλ and define γk := λk + H k

k for

1 ≤ k ≤ Nλ. For Nμ ∈ N, fix some μk ∈ R for 1 ≤ k ≤ Nμ. Assume that {γ j }
Nλ

j=1 ⊆ {μk}
Nμ

k=1,

and suppose that both γk > γk+1 and μk > μk+1. Assume further that μ1 > γ1.

For M ∈ N, and Ni ∈ N for 1 ≤ i ≤ M and basis elements eni
∈ R

Ni where 1 ≤ ni ≤ Ni ,

we fix tensors

A ∈
( M⊗

i=1

R
Ni
)
⊗ R

Nλ ⊗ R
Nμ , B ∈

( M⊗

i=1

R
Ni
)
⊗ R

Nλ

component-wise by

A j,k := A
n1...nM

j,k · en1 ⊗ · · · ⊗ enM
, B j := B

n1...nM

j · en1 ⊗ · · · ⊗ enM
.

For this arrangement of constants, we say that a pair (u, ω) satisfies Condition A.1 on

a time interval [0, T ] if the functions u = (u j )
Nλ

j=1 and the positive tensor ω ∈
⊗M

i=1 R
Ni

satisfy the inequalities

123



Journal of Dynamics and Differential Equations

e−λ j t u j (t) ≤ B j ω +

∫ t

0

e−λ j τ
∑

0≤k≤Nμ

eμkτ
A j,kω dτ +

∫ t

0

e−λ j τ H i
j ui (τ ) dτ for all t ∈ [0, T ].

(82)

In all cases where we consider constants satisfying Condition A.1, we take Nλ = ms , and

λ1, . . . , λNλ
as in (6), and H i

j as in Definition 2.9. Hence, the definition of γk here coincides

with that given in Definition 3.3. For the other variables, we take them in the various sections

according to the following table.

We note that for A j,k in Sect. 4 we use a double index (k1, k2) to index over the elements of

{μk}. For a system given as in Condition A.1 we are interested in finding a tensor G satisfying

Condition A.2 below.

Condition A.2 Given μ as in Assumption A.1 and a pair (u, ω) of functions u = (u j )
Nλ

j=1

on [0, T ] and a positive tensor ω ∈
⊗M

i=1 R
Ni , we say that the tensor G ∈

(⊗M
i=1 R

Ni
)
⊗

R
Nλ ⊗ R

Nμ with components

G j,k := G
n1...nM

j,k en1 ⊗ · · · ⊗ enM
,

satisfies Condition A.2 if u j (t) ≤
∑Nμ

k=1 eμk tG j,kω for all t ∈ [0, T ].

From these two conditions, we can bootstrap our bounds on a tensor G.

Proposition A.3 Assume the pair (u, ω) satisfies Condition A.1 on [0, T ] and assume G

satisfies Condition A.2. Fix 1 ≤ j ≤ Nλ. If A j,k = 0 and Gi,k = 0 whenever μk = γ j , then

we have:

u j (t) ≤ eγ j tB jω +
∑

1≤k≤Nμ

μk 
=γ j

eμk t − eγ j t

μk − γ j

(
A j,k +

∑

1≤i≤Nλ
i 
= j

H i
j Gi,k

)
ω for all t ∈ [0, T ].

(83)

In other words, define a map T j,k :
(⊗M

i=1 R
Ni
)
⊗ R

Nλ ⊗ R
Nμ →

⊗M
i=1 R

Ni by:

T j,k(A, B, G) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(μk − γ j )
−1
(
A j,k +

∑
1≤i≤Nλ

i 
= j

H i
j Gi,k

)
if μk 
= γ j

B j −
∑

0≤m≤Nμ

μm 
=γ j

(μm − γ j )
−1
(
A j,m +

∑
1≤i≤Nλ

i 
= j

H i
j Gi,m

)
if μk = γ j .

(84)

Then G also satisfies Condition A.2 if we replace G j,k by T j,k(A, B, G) for all k.

Proof of Proposition A.3 Splitting H i
j ui =

∑
i 
= j H i

j ui + H
j
j u j , we write (82) as

e−λ j t u j (t) ≤ B jω +

∫ t

0

e−λ j τv(τ, ω)dτ +

∫ t

0

e−λ j τ H
j
j u j (τ )dτ.

where

v(τ, ω) =
∑

1≤k≤Nμ

μk 
=γ j

eμkτ A j,kω +
∑

1≤i≤Nλ
i 
= j

H i
j ui (τ ).
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By plugging in the bound assumed in Condition A.2, we obtain

v(τ, ω) ≤
∑

1≤k≤Nμ

μk 
=γ j

eμkτ
(
A j,kω +

∑

1≤i≤Nλ
i 
= j

H i
j Gi,kω

)
.

By applying Lemma 3.9 we obtain (83).

In order to obtain tensors satisfying the requirement thatA j,k, Gi,k = 0 wheneverμk = γ j ,

we define an operator Q j as below.

Proposition A.4 Fix 1 ≤ j ≤ Nλ and define a map Q j :
(⊗M

i=1 R
Ni
+

)
⊗ R

Nλ ⊗ R
Nμ →(⊗M

i=1 R
Ni
+

)
⊗ R

Nλ ⊗ R
Nμ by

Q j (G)
n1...nM

i,k :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if μk = γ j

G
n1...nM

i,k + G
n1...nM

i,(k+1)
if μk+1 = γ j , and G

n1...nM

i,(k+1)
> 0

G
n1...nM

i,k + G
n1...nM

i,(k−1)
if μk−1 = γ j , and G

n1...nM

i,(k−1)
< 0

G
n1...nM

i,k otherwise.

Then Q j (G)i,k = 0 whenever μk = γ j . Furthermore, if G satisfies Condition A.2 then Q j (G)

satisfies Condition A.2.

We are able to generalize Algorithm 3.11 as follows.

Algorithm A.5 Take as input all the constants in Condition A.1, an input tensor Ĝ satisfying

Condition A.2, and a computational parameter Nbootstrap. The algorithm outputs a tensor

G.

G ← Ĝ

for 1 ≤ i ≤ Nbootstrap do

for 1 ≤ j ≤ ms do

G j,k ← T j,k(Q j (A), B, Q j (G))

end for

end for

return G

Proposition A.6 If the input tensor Ĝ to Algorithm A.5 satisfies Condition A.2, then the output

tensor G satisfies Condition A.2.

The proof of Proposition A.4 follows from the assumption that μk > μk+1. The proof

of Proposition A.6 follows from an induction argument which uses Proposition A.3 for the

inductive step. Both proofs are left to the reader.

B Semigroup Estimates for Fast-Slow Systems

In Eq. (8) we require constants Cs, λs satisfying

|e(�s+Ls
s )t xs | ≤ Cseλs t |xs |, t ≥ 0, xs ∈ Xs . (85)

Our assumption that λs < 0, and moreover that γ0 = λs + CsĤ < 0, is essential. In

Proposition 3.13 this is used to prove that solutions x(t, ξ, α) stay inside the ball Bs(ρ) for
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all t ≥ 0. While our method of bootstrapping Gronwall’s inequality greatly mitigates the

effect of these constants Cs, λs on our final estimates, for the Lyapunov-Perron operator to

be well defined it is essential that we prove γ0 < 0.

There are two types of estimates which we will apply to obtain pairs (Cs, λs) satisfy-

ing (85). First, for linear operators A, B ∈ L(X , X) with |eAt x| ≤ keλt |x| for all x ∈ X and

t ≥ 0, and ‖B‖ < ∞, we have (the proof is analogous to the one of Proposition 3.2)

|e(A+B)t x| ≤ ke(λ+k‖B‖)t |x|, for all t ≥ 0, x ∈ X . (86)

This estimate by itself is not enough, as the largest eigenvalue of �s is often small in compar-

ison with ‖Ls
s‖. For example, in Sect. 6 we showed that |e�i t xi | ≤ eλi t |xi | and ‖L i

j‖ ≤ Di
j

with values

λ1 = −1.41, λ2 = −4.58 × 104, Ds
s =

(
4 × 10−10 1.6

1.6 5.7

)
.

Since λ1 +‖Ls
s‖ > 0, just an estimate of the type in (86) with A the diagonal part of Ds

s and B

the off-diagonal part will not suffice. We further note that our estimates for Ds
s do not improve

with a larger Galerkin projection dimension. Hence we want to change basis to diagonalize

�s + Ls
s , at least approximately, and then take advantage of the identity eP J P−1t = PeJ t P−1

in our estimates. To motivate our construction, we first consider a 2 × 2 matrix

M =

(
λ1 δb

δc λ∞

)
.

If λ∞ is much larger in absolute value than the other matrix entries, then the eigenvalues of

M are approximately given by λ1 and λ∞. In particular, if |δbδc| < |λ1λ∞| and λ1, λ∞ < 0,

then all of the eigenvalues of M have negative real part. Below in Theorem B.1 we prove

an analogous theorem where we replace λ1 by a finite dimensional matrix, and λ∞ by an

infinite dimensional linear operator. This is the second type of estimate that we use to find

pairs (Cs, λs) satisfying (85).

Theorem B.1 Consider Banach spaces C
N and X∞ with arbitrary norms, and their product

C
N × X∞ with norm |(xN , x∞)| = (|xN |p + |x∞|p)1/p for any 1 ≤ p ≤ ∞.

Consider the linear operators M,�, L : C
N × X∞ → C

N × X∞ given by

M = � + L, � =

(
�1 0

0 �∞

)
, L =

(
L1

1 L∞
1

L1
∞ L∞

∞

)
. (87)

We require � to be densely defined and L to be bounded. Suppose that �1 is diagonal and

that �∞ has a bounded inverse.

Fix constants μ1, μ∞, C1, C∞ ∈ R such that for all t ≥ 0 we have

‖e�1t‖ ≤ C1eμ1t , ‖e�∞t‖ ≤ C∞eμ∞t .

Fix constants δ1, δb, δc, δd , ε > 0 such that

‖L1
1‖ ≤ δa, ‖L∞

1 ‖ ≤ δb, ‖L1
∞‖ ≤ δc, ‖L∞

∞‖ ≤ δd ,

and set

ε :=
∑

λ∈σ(�1)

‖�−1
∞ ‖

1 − ‖�−1
∞ ‖(δd + |λ|)

.
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Assume that the inequalities

‖�−1
∞ ‖

(
δd + sup

λk∈σ(�1)

|λk |

)
< 1, μ∞ + C∞

(
δd + εδbδc(1 + ε2δbδc)

)
< μ1, (88)

are satisfied. Then we have

‖eMt‖ ≤ Cseλs t ,

where

Cs := (1 + εδb)
2(1 + εδc)

2 max{C1, C∞}

λs := μ1 + Csδa + � max{C1, C∞}

� := εδbδc

(
1 + ε(2δb + δc) + ε2δbδc(1 + εδb)

)
.

First we prove a lemma for general Banach spaces which allows us to approximately

diagonalize our matrix. When | · | denotes the norm on a Banach space, then by | · |∗ we

denote the norm on its dual.

Lemma B.2 For a Banach space X∞ consider the linear operator M1 : C
N × X∞ →

C
N × X∞ defined as

M1 =

(
A B

C D

)
.

Suppose that σ(A) ∩ σ(D) = ∅ and that A has distinct eigenvalues λ1, . . . , λN with eigen-

vectors v1, . . . , vN , and dual eigenvectors u1, . . . , uN (the corresponding eigenvectors of

A∗). Normalize the vectors so that u∗
i v j = δi j , the Kronecker delta.

We define Wb : X∞ → C
N and Wc : C

N → X∞ as a sum of products between vectors

in their codomains, and dual vectors acting on their domains:

Wb :=

N∑

k=1

vk

[
(D∗ − λ∗

k I∞)−1 B∗u∗
k

]
, Wc :=

N∑

k=1

−
[
(D − λk I∞)−1Cvk

]
u∗

k ,

where D∗ : X∗
∞ → X∗

∞ and B∗ : (CN )∗ → X∗
∞ are the dual transformations. Define

invertible operators Pb, Pc : C
N × X∞ → C

N × X∞ by

Pb =

(
IN Wb

0 I∞

)
Pc =

(
IN 0

Wc I∞

)
.

Then

(Pc Pb)
−1 M1(Pc Pb) =

(
A 0

0 D

)
+ E,

where

E =

(
(IN + WbWc)BWc BWcWb + WbWc B(I + WcWb)

−Wc BWc −Wc B(I∞ + WcWb)

)
.

Proof. First we show that

P−1
b

(
A B

0 D

)
Pb =

(
A 0

0 D

)
, P−1

c

(
A 0

C D

)
Pc =

(
A 0

0 D

)
. (89)
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We begin with the second equality in (89), and calculate

P−1
c

(
A 0

C D

)
Pc =

(
A 0

−Wc A + C + DWc D

)
.

We compute the action of −Wc A + C + DWc on an eigenvector vk of A as follows:

(−Wc A + C + DWc)vk = Cvk + (D − λk I∞)Wcvk .

To see that the right hand side is equal to zero, we calculate, using u∗
i v j = δi j ,

Wcvk = − (D − λk I∞)−1 Cvk .

Since the eigenvectors v1 . . . vN span C
N , then −Wc A +C + DWc = 0, yielding the desired

equality.

The argument is analogous for the first identity in (89). Again we begin by calculating

P−1
b

(
A B

0 D

)
Pb =

(
A AWb + B − Wb D

0 D

)
.

Hence, we would like to show the map (AWb + B − Wb D) : X∞ → C
N is the zero map,

which we do by arguing that u∗
k(AWb + B − Wb D) = 0 for all k. The latter follows from a

calculation similar to the one performed above.

Finally, we calculate (Pc Pb)
−1 M1 Pc Pb as follows:

(Pc Pb)
−1 M1(Pc Pb) = P−1

b

((
A 0

0 D

)
+ P−1

c

(
0 B

0 0

)
Pc

)
Pb

= P−1
b

((
A B

0 D

)
+

(
BWc 0

−Wc BWc −Wc B

))
Pb

=

(
A 0

0 D

)
+

(
(IN + WbWc)BWc BWcWb + WbWc B(I + WcWb)

−Wc BWc −Wc B(I∞ + WcWb)

)
.

Proof of Theorem B.1. Let M = M1 + M2, where

M1 :=

(
A B

C D

)
:=

(
�1 L∞

1

L1
∞ �∞ + L∞

∞

)
, M2 :=

(
L1

1 0

0 0

)
.

We will apply Lemma B.2 to the matrix M1. Since we have assumed that �1 is diagonal we

may take uk = vk = ek , the standard basis vectors in C
N . We begin by proving ‖Wb‖ ≤ εδb

and ‖Wc‖ ≤ εδc. We first calculate

(D − λk I∞)−1 = (�∞ + L∞
∞ − λk I∞)−1 = (I∞ + �−1

∞ (L∞
∞ − λk I∞))−1�−1

∞ .

By our hypothesis, we are allowed to apply the Neumann series and we obtain

‖(D − λk I∞)−1‖ ≤
‖�−1

∞ ‖

1 − ‖�−1
∞ ‖(δd + |λk |)

. (90)

We note that the same estimate holds for the dual operator (D∗ − λ∗
k I∞)−1.

We now show that ‖Wb‖ ≤ εδb. Namely, by using that ‖u∗
k‖(CN )∗ = ‖vk‖CN = 1 we find

that

‖Wb‖ = sup
x∈X∞,‖x‖=1

∥∥∥
∑

λk∈σ(�1)

vk

[
(D∗ − λ∗

k I∞)−1 B∗uT
k

]
x

∥∥∥
CN
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≤ sup
x∈X∞,‖x‖=1

∑

λk∈σ(�1)

∣∣∣
[
(D∗ − λ∗

k I∞)−1 B∗uT
k

]
x

∣∣∣

≤
∑

λk∈σ(�1)

∥∥∥(D∗ − λ∗
k I∞)−1 B∗

∥∥∥
L((CN )∗,X∗

∞)

≤ ‖B∗‖
∑

λk∈σ(�1)

‖�−1
∞ ‖

1 − ‖�−1
∞ ‖(δd + |λk |)

.

Hence, by plugging in ‖B∗‖ = ‖L∞
1 ‖ we obtain ‖Wb‖ ≤ εδb. The proof of the estimate

‖Wc‖ ≤ εδc is analogous. Next, we note that

‖Pb‖, ‖P−1
b ‖ ≤ 1 + εδb ‖Pc‖, ‖P−1

c ‖ ≤ 1 + εδc.

By Lemma B.2 we have

(Pc Pb)
−1(M1 + M2)(Pc Pb) = M3 + M4 + (Pb Pb)

−1 M2(Pc Pb), (91)

where

M3 :=

(
�1 0

0 �∞ + L∞
∞ − Wc L∞

1 (I∞ + WcWb)

)
,

M4 :=

(
(IN + WbWc)L∞

1 Wc L∞
1 WcWb + WbWc L∞

1 (I d + WcWb)

−Wc L∞
1 Wc 0

)
.

For (xN , x∞) ∈ C
N × X∞ we see that

eM3t (xN , x∞) =
(

e�1t xN , e(�∞+L∞
∞−Wc L∞

1 (I∞+WcWb))t x∞

)
.

We also have ‖L∞
∞−Wc L∞

1 (I∞+WcWb)‖ ≤ δd +εδbδc(1+εbεc). By applying the estimate

(86) we obtain, for all t ≥ 0,

‖e�1t xN ‖ ≤ C1eμ1t‖xN ‖,

‖e(�∞+L∞
∞−Wc L∞

1 (I∞+WcWb))t x∞‖ ≤ C∞e(μ∞+C∞[δd+εδbδc(1+εbεc)])t‖x∞‖.

From our assumption in (88) that μ1 > μ∞ + C∞[δd + εδbδc(1 + ε2δbδc)], we obtain, for

any p-norm, 1 ≤ p ≤ ∞, on the product C
N × X∞,

‖eM3t (xN , x∞)‖ ≤ max{C1, C∞}eμ1t‖(xN , x∞)‖.

We may estimate the norm of the components of M4 as

‖(IN + WbWc)L∞
1 Wc‖ ≤ εδbδc(1 + ε2δbδc),

‖ − Wc L∞
1 Wc‖ ≤ ε2δbδ

2
c ,

‖L∞
1 WcWb + WbWc L∞

1 (I d + WcWb)‖ ≤ ε2δ2
bδc(2 + ε2δbδc).

We then obtain the bound

‖M4‖ ≤ � := εδbδc

(
1 + ε(2δb + δc) + ε2δbδc(1 + εδb)

)

by summing the component bounds.

We now perform the final estimate. By using (91) we obtain

eMt = (Pc Pb) exp
{[

M3 + M4 + (Pc Pb)
−1 M2(Pc Pb)

]
t
}
(Pc Pb)

−1.
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By then applying (86) to the sum of M3 and the bounded operator M4 + (Pc Pb)
−1 M2(Pc Pb)

we obtain, with C1,∞ := max{C1, C∞},

‖eMt‖ ≤ ‖Pc Pb‖ · ‖(Pc Pb)
−1‖C1,∞ exp

{
μ1 + C1,∞

∥∥M4 + (Pc Pb)
−1 M2(Pc Pb)

∥∥ t
}
.

Defining Cs = max{C1, C∞}(1 + εδb)
2(1 + εδc)

2 and plugging in our bounds, we finally

infer

‖eMt‖ ≤ Cse(μ1+Csδa+� max{C1,C∞})t .

Remark B.3 If we use the p = 1 norm for the product space C
N × X∞ then our bound for

� can be sharpened to

‖M4‖ ≤ εδbδc max
{
1 + εδc(1 + εδb), εδb(2 + ε2δbδc)

}
.
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