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Abstract

This paper develops validated computational methods for studying infinite dimensional stable
manifolds at equilibrium solutions of parabolic PDEs, synthesizing disparate errors resulting
from numerical approximation. To construct our approximation, we decompose the sta-
ble manifold into three components: a finite dimensional slow component, a fast-but-finite
dimensional component, and a strongly contracting infinite dimensional “tail”. We employ
the parameterization method in a finite dimensional projection to approximate the slow-stable
manifold, as well as the attached finite dimensional invariant vector bundles. This approxima-
tion provides a change of coordinates which largely removes the nonlinear terms in the slow
stable directions. In this adapted coordinate system we apply the Lyapunov-Perron method,
resulting in mathematically rigorous bounds on the approximation errors. As a result, we
obtain significantly sharper bounds than would be obtained using only the linear approxima-
tion given by the eigendirections. As a concrete example we illustrate the technique for a 1D
Swift-Hohenberg equation.
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1 Introduction

In this paper we develop a novel method for representing the infinite dimensional stable
manifold of an equilibrium solution of a parabolic PDE. The method makes extensive use of
numerical calculations, results in an approximation valid in an explicitly prescribed neigh-
borhood of the equilibrium, and comes equipped with mathematically rigorous bounds on
all truncation and discretization errors. The work is motivated by our intention to use this
method as an ingredient in further mathematically rigorous computer assisted proofs (see
also Sect. 1.2). The method is able to provide validated bounds on the linear approximation
of the stable manifold by the stable eigenspace, but gives dramatically improved results when
combined with a nonlinear change of coordinates which “flattens out” a finite dimensional
slow stable manifold. The main tools used here are the Lyapunov-Perron method, a param-
eterization method for slow-stable manifolds and their invariant normal bundles (see [60]),
and an iterative strategy for bootstrapping Gronwall’s inequality in subspaces associated with
various linear growth rates.

We remark first on the need for the present work, noting that while the abstract theory for
invariant manifolds of compact semi-flows is well developed, there are obstacles preventing
its direct application in computer assisted proofs. One complication stems from the fact that
in a given example we generally do not have explicit formulas for either the equilibrium
or the eigendecomposition of the linearized operator: instead we have approximations. To
perform computer assisted proofs, these approximation errors must be incorporated into the
set-up from the start.

A second difficulty concerns localizing the estimates, which is necessary because the
nonlinearities are not globally Lipschitz. Moreover, in infinite dimensions we do not generally
have access to smooth cut-off functions. Finally, even in situations where it is possible to
apply the general theory, this typically leads to bounds that are valid in an inconveniently
small neighborhood of the equilibrium.

To overcome these difficulties, we project the Lyapunov-Perron operator into various
judiciously chosen subspaces, corresponding to collections of approximate eigendirections.
The assumption that the PDE is parabolic gives that the spectrum is comprised entirely
of isolated eigenvalues (of finite multiplicity) which “accumulate to minus infinity”. More
precisely, for any M € R there are only finitely many eigenvalues with real part greater than
M. We choose an approximation of the (finite dimensional) unstable subspace, and split the
approximate stable space into finite dimensional “slow” and infinite dimensional “fast” parts.
As a subtle refinement, we further decompose the finite dimensional stable eigenspace into
slow-finite dimensional stable and fast-finite dimensional stable subspaces.

We remark that the Lyapunov-Perron operator acts on candidate functions «, which map
(an approximation of) the linear stable eigenspace to the (approximate) unstable eigenspace.
The main technical difficulty is to choose the domain of the candidate functions so as to
maximize the portion of the manifold represented, while minimizing the final error bounds.
To manage this problem we take domains which are products of balls, having aspect ratios
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Fig. 1 A verified numerical approximation of an unstable equilibrium (black curve) for the Swift-Hohenberg
PDE (1) with 81 = 0.05 and B = —0.35 and several (numerical approximations of) “points”—that is
functions—along its verified slow stable manifold. Near this slow stable manifold we find a description of the
full, co-dimension 1, stable manifold, with validated computer assisted error bounds (Color figure online)

determined by the growth rates in the various subspaces. We perform an explicit change
of coordinates, which may be linear or nonlinear, and which provides more flexibility in
choosing a good domain for the stable manifold approximation.

To show that the Lyaponuv-Perron operator is a contraction we need explicit bounds
on the projections of the nonlinearities onto the specified subspaces. To obtain effective
bounds, i.e. bounds that guarantee contraction for functions defined on a reasonably large
neighborhood of the equilibrium, a naive Gronwall estimate does not suffice. Instead we take
a more refined approach, in which we bootstrap a system of Gronwall inequalities (roughly,
decomposed along eigendirections) exploiting the different decay rates in different directions.
The applications to computer assisted proofs of transverse connecting orbits we have in mind
(see again Sect. 1.2), introduce the additional technical complication that we would like a
¢! description of the stable manifold.

1.1 Example Results for Swift-Hohenberg

The utility of the method is best illustrated through application to an explicit example. To this
end we provide a complete numerical implementation of our method for the Swift-Hohenberg
PDE

U = —Brityxxy + Bolixx +u — u31 (D
posed on a one-dimensional spatial domain x € [0, 7] with Neumann boundary conditions
uy(0) = uy(mw) =0 and Uyxx(0) = ttyxx () = 0.

The parameters of the problem are 8; > 0 and B> € R. For comparison, we illustrate the use
of our method for both a linear, and a nonlinear change of variables near the equilibrium. As
a result, we obtain stable manifold theorems of varying accuracy, and in neighborhoods of
the equilibrium having various sizes and shapes.
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For example, in Theorem 6.4 we focus on a non-trivial equilibrium solution of Swift-
Hohenberg with Morse index 1. The equilibrium solution is illustrated in Fig. 1. To obtain
the results described in Theorem 6.4, we represent the local stable manifold as the graph
of a function over the stable eigenspace. We take a 31 dimensional Galerkin projection, so
that the stable eigenspace is decomposed into a 30 dimensional finite part, and an infinite
dimensional remainder. The domain of the graph is taken to be the product of a box of radius
2.2 x 1072 in 30 dimensional subspace, and a box of radius 1073 in the tail. The chart for the
local stable manifold has C° norm bound by 3.36 x 1073, That is, the true stable manifold
has distance no more than 3.36 x 1073 away from the stable eigenspace, over the box just
described.

Contrast this with the results described in Theorem 7.1. In this case we use the nonlinear
change of coordinates discussed in Sect. 2.4, and represent the local stable manifold as the
graph of a function over a one dimensional slow-stable manifold and its 29 dimensional
invariant stable vector bundles. This time the domain of the graph is the product of three
boxes: a box of radius 3.18 x 10~2 in the slow stable direction, a box of radius 107 in the
remaining 29 dimensions of the finite dimensional eigenspace, and a box of radius 107! in
the tail. The chart for the local stable manifold has C° norm bound by 7.34 x 10~!2. That
is, the true stable manifold is 7.34 x 10712 close to the slow stable manifold and its stable
vector bundles over the box just described.

Comparing the results of Theorem 6.4 with the results of Theorem 7.1 illustrate the power
of the techniques developed in the present work. The two representaitons of the infinite
dimensional stable manifold are valid in neighborhoods having size on the order of 102
away from the equilibrium (in some directions). Exploiting the nonlinear change of variables
improves the validated error bounds by nine order of magnitude in the unstable directions
(bounds on the graph) and by five orders of magnitude in the stable tail directions. These
are by far the most accurate mathematically rigorous computer assisted error bounds for
an infinite dimensional manifold appearing in the literature up until now. More details and
comparisons are found in Sects. 6.3 and 7.6.

1.2 Motivation: Saddle-to-Saddle Connects for Parabolic PDEs

When viewed as ODEs on Banach spaces, nonlinear parabolic PDEs fit well within the qual-
itative theory of dynamical systems. Theorems regarding the stability of equilibria, periodic
orbits, and their attached invariant manifolds follow in analogy with the finite dimensional
case. Connecting orbits between invariant sets serve as a kind of a road map to the global
dynamics, illuminating transitions between distinct regions of the phase space and signaling
global bifurcations. Such orbits are main ingredients in forcing theorems like those of Smale
and Shilnikov: theorems which guarantee the existence of rich dynamics. Connecting orbits
are essential for defining geometric chain groups and boundary operators in the homology
theories of Witten and Floer. In short, proving the existence of connection orbits provides
critical information about the global dynamics generated by the PDE.

Yet, precisely because of their global and nonlinear nature, connecting orbits are difficult to
work with analytically. These difficulties are compounded in infinite dimensional settings. In
specific applications researchers typically perform numerical calculations to gain insights into
the properties of important invariant objects. Recent progress in computer-assisted methods
of proof for infinite dimensional systems brings the mathematically rigorous quantitative
study of connecting orbits for PDEs within the realm of possibility.
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We refer for example to the work of [18,53] for some examples of computer assisted
proofs for connecting orbits in PDESs. In particular the authors study connections frome sad-
dle to attracting equilibrium solutions. The works just mentioned study the finite dimensional
unstable manifold attached to an equilibrium, and develop mathematically rigorous tools for
extending this manifold into a trapping neighborhood of a sink. Similarly, in a noncon-
servative nonlinear Schrodinger equation, the work [36] computes connecting orbits from
saddle equilibria to a center equilibrium. In each of the studies just mentioned the authors
obtain explicit and mathematically rigorous bounds on the basin of attraction of the limiting
equilibrium—which is an open set.

Controlling the asymptotic behavior of a connecting orbit requires an explicit description
of the local stable and unstable manifolds of the equilibrium solutions (or other limiting
invariant sets). The major obstacle to extending the methods of [18,36,53] to the general
case of a saddle-to-saddle connection is obtaining an explicit description of the local stable
manifold. It is worth mentioning that rigorous numerical integration of a PDE is a nontrivial
task, and invariably suffers from the so called wrapping effects resulting from the accumula-
tion of numerical error. Consequently, in computer assisted arguments involving connecting
orbits it is desirable to minimize integration time by absorbing as much of the connecting
orbit into the local stable and unstable manifolds as possible. This motivates out interest in
the nonlinear coordinate changes utilized in the present work.

We refer the interested reader also to the related work of [19], where saddle-to-saddle
connections are established using topological methods based on Conley Index theory and its
connection matrix. Being topological in nature these methods require much less in the way of
C! information, resulting in a softer description of the dynamics. The challenge in applying
these methods is the rigorous calculation of index information for macroscopic regions in
the infinite dimensional phase space.

The computational framework developed here is rather general, and will be useful for
describing invariant manifolds in a variety of other settings. We have in mind examples
such as (un)stable and center-(un)stable manifolds in delay differential equations and partial
differential equations on domains in R”, as well as stable and unstable manifolds in strongly
indefinite problems, where both the dimension and the co-dimension of the manifold are
infinite dimensional (e.g. [14]). In [56] a similar methodology is used to construct a local
representation for a co-dimension 0O center-stable manifold of the homogeneous equilibrium
in a complex-valued nonlinear heat equation.

Remark 1.1 (Inertial Manifolds) Itis a well known fact that many infinite dimensional dynam-
ical systems, for example those generated by parabolic PDEs including the one studied
below, admit inertial manifolds: finite dimensional flow invariant manifolds containing all
the invariant dynamics, including the connecting orbits discussed above [25,38,54]. An alter-
native strategy to the one above would be to construct computer assisted error bounds for the
inertial manifold, and to study the dynamics of the resulting lower dimensional system.

Moreover, such bounds could be constructed using arguments similar to those developed in
the present work. For example the usual existence proofs for inertial manifolds involve tools
like fixed point arguments and Gronwall inequalities. It is even possible that a non-linear
change of coordinates, similar to the one that developed in Sect. 7, could be constructed
based on existing powerful computational methods for approximating inertial manifolds
[17,24,39,57].

It is however important to remark that, even after an inertial manifold approximation
has been constructed and equipped with mathematically rigorous computer assisted error
bounds, one would have to prove that the finite dimensional subsystem had the desired
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dynamics (equilibrium solutions/periodic orbits/connecting orbits/etcetera). In some cases
this could probably be done by hand, yet in general one has to expect it to require further
computer assisted arguments. It is not obvious then that an inertial manifold approach would
lead to simpler calculations/proofs than the ones envisioned above. One hopes that in time
both research programs are implemented and their various strengths compared.

1.3 Related Work

The present work grows out of the thriving literature on methods of computer assisted proof
in dynamical systems theory going back to the first proofs of the Feigenbaum conjectures
[21,22,42,43], the first proofs of chaotic motions in the Lorenz equations [27,46—48] and for
Chua’s circuit [26], and the computer assisted resolution of Smale’s 14th problem [58,59].
In particular, we build on the substantial literature on computer assisted proofs for studying
the dynamics of parabolic PDEs. A thorough review of this literature beyond the scope of
the present work, and we refer the reader to the work of [1,2,4,28,49,51,52,62,65,72]. See
also the book of [50], and the review articles [29,42,63]

A number of techniques for computer assisted proofs involving finite dimensional invari-
ant manifolds have emerged from this literature. One family of methods for proving existence
of unstable manifolds involves checking a number of geometric covering and cone conditions
near the equilibrium in the same spirit as Fenichel theory [11,12,71]. Since time reversal is
well defined for ODEs, equivalent bounds for stable manifolds follow as a trivial corollary.
Applications of these methods to the study of stable manifolds for PDEs requires substantial
modification and have—to the best of our knowledge—not yet appeared in the literature.
We refer the interested reader to the recent work of [70] where, following [26,27,46—48],
the authors bypass consideration of stable/unstable manifolds and provide a direct com-
puter assisted proof of the existence of a geometric horseshoe in the Kuramoto-Sivashinsky
equation, by studying covering relations in a Poincaré section.

Another technique for obtaining validated bounds on invariant manifolds which has been
applied successfully in a number of finite dimensional settings is the parametrization method
[8-10], see also to the book [32] for detailed discussions of the method and its applications.
Briefly, the idea is to study a conjugacy equation between the dynamics on the manifold and
the linear dynamics in an eigenspace. The conjugacy equation is reduced to a set of linear
homological equations via recursive power matching, and one obtains a high order Taylor
expansions for the manifold, as well as remainder estimates on the truncation errors in the tail
of the series. This method recovers both the embedding of the manifold and the dynamics on
it, and is very effective for representing invariant manifolds far beyond a small neighborhood
of the equilibrium, periodic orbit, or invariant torus, where the linear approximation is valid.

There is a substantial literature devoted to validated numerics based on the parameteri-
zation method for invariant manifolds of ODEs. We refer the interested reader to the works
of [3,6,13,37,45,64] for more a complete discussion. Such methods have also been extended
for studying finite dimensional invariant manifolds of infinite dimensional systems. The case
of compact infinite dimensional maps is treated in [44], the case of PDE:s is studied in [53],
and DDE:s are considered in [30,33].

However, there is an obstruction to applying the parameterization method to infinite
dimensional manifolds in PDEs, which is that the existence of a conjugacy depends cer-
tain non-resonance conditions between the eigenvalues. There are techniques to deal with
the case of a finite number of resonant eigenvalues [8,61]. Nonetheless, to describe an infi-
nite dimensional manifold one will have an infinite number of resonance conditions to check,
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which seems to be a major obstruction. Indeed, there is no good reason to think that a parabolic
PDE can in practice satisfy infinitely many non-resonance conditions.

Instead, we consider the two widespread approaches for studying infinite dimensional
invariant manifolds in Banach spaces: these are the graph transform method (e.g. see [5]),
and the Lyapunov-Perron method (e.g. see [16]). We refer to [23, Section 1.4] for acomparison
of these methods, but the important point to mention here is that the graph transform method
is most natural for discrete time dynamical systems.

Indeed, in [20], a graph transform-type argument was used to obtain validated com-
puter assisted error bounds for the infinite dimensional stable manifold of a compact infinite
dimensional map generated by convolution against a smooth kernel. The result just cited
was a significant motivation for the present work. The graph transform method applies to
continuous time systems by considering the implicitly defined time-1 map generated by the
semi-flow. But this requires direct access to the time-1 maps, which are defined only implicitly
by the PDE. Because of this, we have opted to work with the Lyapunov-Perron method. The
present work extends the work of [20] to parabolic PDEs, exploiting geometric techniques
in the projection space which allow us to obtain validated results on much larger domains.

1.4 Organization of the Present Work

The outline of the paper is as follows. In Sect. 2 we discuss the notation to be used in this
paper, and the level of generality to be considered. Abstractly, we assume that our approximate
(un)stable eigenspaces are decomposed into further subspaces, with (potentially) different
time scales. This corresponds to our plan to develop distinct methods of approximation along
the slow-stable, fast-but finite-stable, and infinite-stable eigenvalues. We intend to compute
C!! bounds on our manifold, and here we define a number of constants relating to our
nonlinearity A

In Sect. 3 we discuss how we explicitly bootstrap Gronwall’s inequality to get component-
wise bounds on the exponential tracking problem. This iterative bootstrapping of Gronwall’s
inequality is described in Algorithm 3.11. The approach is quite versatile, and we apply the
same procedure several times in different scenarios. A general description for where this
approach can be taken is described in Algorithm A.S5.

In Sect. 4 we discuss the Lyapunov-Perron Operator W, which is given in Definition 2.11.
We formulate conditions for when W maps a ball of C%! functions into itself in Theorem
4.2, and for when W maps a ball of C!'! functions into itself in Theorem 4.11.

In Sect. 5 we obtain the necessary estimates to show that the Lyapunov-Perron Operator is
a contraction mapping. In Definition 5.2 we define a norm in which we wish to prove we have
a contraction mapping. We then give conditions for when we have a contraction in Theorem
5.9, and the results of Sects. 3—5 are summarized in Theorem 5.11.

In Sect. 6 we apply our results to the Swift-Hohenberg equation, obtaining the appropriate
estimates for a linear change of variables at a nonlinear equilibrium. Finally in Sect. 7
we discuss how to get the estimates to work using a nonlinear change of coordinates at a
nontrivial equilibrium. Computer assisted proofs of a stable manifold theorem using a linear
approximation and a nonlinear approximation are given in Theorem 6.4 and Theorem 7.1
respectively, and the source code is available online [68].
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2 Background and Notation

A useful first step in studying stable/unstable manifolds is to perform a change of coordinates
taking the equilibrium to zero and aligning the (possible generalized) eigendirections with
the coordinate axes. For ordinary differential equations (ODEs) such a transformation always
exists. Nevertheless, in a particular problem it may be impractical to compute this transfor-
mation exactly due to the lack of explicit formulas and the finite numerical precision. For
PDEs, the situation is even worse, as the desired change of coordinates is infinite dimensional.
In the present work we settle for coordinate transformations which move the origin approx-
imately to zero, and approximately align the coordinate axes with eigendirections. This is
achieved by computing good numerical approximations of the equilibrium and the eigendata
for a finite dimensional Galerkin projection, and approximating the eigendata in the infinite
dimensional complement via the linearization of the homogeneous equilibrium. To obtain
mathematically rigorous results it is necessary to quantify these errors, and formalizing this
discussion requires a good deal of notation.

2.1 Parabolic PDEs and Semigroup Operators

Let X be a Banach space with norm | - | = | - | x, and consider the differential equation
X = Ax + N (x), )

where A : Dom(A) € X — X isa densely defined linear operator with bounded inverse,
and N € ClzOC (X, X). We will need explicit bounds on DN (0) and a local (uniform) bound
on the second derivative(s). See Proposition 2.6 below. Assume that heXisa hyperbolic
equilibrium solution of Eq. (2), where we think of / as being small. Making the change of
variables x — x + / leads to the differentail equation

% = Ax + Lx + N(x). 3)

where
A=A, L := DN(h), Nx) :=N(h+x) —N(h) — DN()x. (4
Equation (3) has that the origin is an equilibrium solution and that A/ (0) =0and DN ) =0.
Definition 2.1 (Stable and unstable decomposition) Let X = X x X, denote the decompo-
sition of X into stable and unstable eigenspaces of the operator A. Fix integers mg, m, € N,

and define two index sets I := {1,2,...,mg} and I’ := {1',2,...,m)}. Fori € I and
i’ € I, assume that X; € X and X;; C X,, are closed subspaces of X with:

X,= [] x. Xo= [] X

I<i<my V'<i'<m],

Remark 2.2 (primed and un-primed indices) Throughout the paper we use a primed nota-
tion, such as i’ or j/, to index over the unstable eigenspace X, and un-primed indices for
the stable. It is sometimes convenient to have an index ranging over all stable and unstable
indices, so we define I := T U’ and write i € I to signify that i may be a primed or un-primed
index.

For the projections onto the subspaces X;, X, Xy and X, we use the notation m;, 7;,
7y and 7, respectively. Since these subspaces are closed, the projection maps are bounded
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linear operators. That is, there exist constants ps, py, pi < 00 so that

sl < ps I7ull < pu il < pi. (&)

We use the notation, X; = miX, X; = 74X, etc, hence X = Xy + Xy, X, = » ., X; and
Xu = D jrep Xir, as well as X = D 4 1 ;.
Assume that A is invariant along the subspaces X;, X;-. That is to say, assume that there

exist A; : X; — X; and Ay : X;7 — X such that

AX = ZA,‘X,‘ + Z Ajirxgr.

iel iel’

iel

Furthermore, assume there are constants A; < O such that for 1 <i < m
lehifxi| < xil, t>0,x € X, (6)

and A;s > 0 such that for I’ <i’ < m),

le™ x| < e [xpr], 1 <0,x7 € X (7

In particular, this implies that the norm on X aligns well with flow of A on the subspaces X;
in the sense that the vector field A; points inwards on the boundary of the unit ball in X;.
The linear operator L is decomposed in the following manner: for all i, j € I, define the
bounded linear operators L‘; : Xj — X by
i
[Lxli =Y Lix;.
jel

Restricting A and L to X and X, gives operators

Agxg 0 Xy — X, Lixs : Xy — X Lix, : Xy — X,
Auxy X, — X, Lixs : Xs = Xy Lix, : Xy — Xy
defined by
AgXg = E AiX; Lix = E Lix; LYx, = E Lj/Xv
SAS = iA sAS — i sAu = i Ny
iel i,jel iel,j'el’
. :!
. s . J u . J
Ayxy = E Njrxgr L, xg := E Li,xj L xy := E Ll., Xjr.
i'el’ i'el,jel i'el’,j el

Assume that —(A, + L%) and (A + L?) are negative operators, in the sense that there exist
constants Cy, C, and A; < 0 and A,, > O so that
M FEDIX | < Gt Ixl, t>0,x € X,, ®)

(Au+Lit Mu

e Xul < Cye t|xu|a t <0,x4 € Xy. 9

Calculation of these constants is discussed in Sect. B, and an explicit example is given in
Sect. 6.

Remark 2.3 For both the prime and non-prime spatial indices we employ Einstein summation
notation, writing

. . ./ -/
J .=§ Iy Jx., = E I,
Ll. Xj = Ll.XA,, and Ll. Xj = Ll. Xjr.
jel jler

For other indices, for example sums over I = I U I’, we write the summation explicitly.
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We now project the nonlinear terms into the subspaces just defined, and write N o=
71 o N (x) for i € I. Then N (x) := g o N'(x) and N, (x) := 7, o N'(x). Fori € I let

Ni(Xs, Xu) 1= Lijxj +Lij/xj/+'/\7i(xs’x"‘)' (10)
We write
3 3
iel i'el’
Equation (3) becomes
X; = AiX; +M(X5, Xu), (1)
Xt = AirXy + Ny (Xs, Xu)- (12)

We study functions defined on certain a certain products of balls containing the origin in
the various subspaces.

Definition 2.4 Fix positive vectors rg € R™s and r, € R™«, and define the closed balls
Bs(ry) € X and By, (r,) € X, given by

Bg(rs) :=1{xs € X5 : |xj] <rjfori €I}

Bu(ry) == {xu € Xy : Ixy| <ryfori’ e I'}.

When the vectors ry, 1, are understood, we abbreviate to By = B(ry) and B, = B, (r,).
Below we define bounds on our nonlinearity A/ over balls of fixed radius.

Definition 2.5 Suppose ry € R™s and r;,, € R,
For xg € By(ry), X, € B, (ry) and |, j, k € I define

-/\/;(XSa Xy) i= 7-/\/3 (Xss Xu), ||Mil||(r,&»ru) ‘= sup sup ||le(x.r’ Xu)
axi Xy €By(ry) Xy €By (ry)
ik 9? " -
-NJ? (Xs, Xy) 1= 7-/\6()437 Xu), ”-N.’]l ”(r,y,ru) = Sup sup ”/\/:]l (Xs, Xu) I
8Xiaxk X5 € By (rs) Xy € By (ry)

Proposition 2.6 Fix r; € R™s, and r, € R™, and suppose that |l~zi| < €j. Assume that the
constants D} and C jk satisfy

D} > [IN} (0,0, CI* = 1IN s tesructen-

Fori, j,k € 1 U define constants é}, D}, Cji, and Cjik as below:

i._ pi ~il ~il ik .__ ~ik
D.] = ,] "F Cj €] + Cj €, Cj = j

I B 1) ~il’ i._ A i
Ci=Cin+Cyry Cj = Cj+ D;.

Then for L and N defined in (4) and N defined in (10) we have the bounds

Dj = |ILj] CE = IVl (13a)
€ = ]l €5 = M- (13b)

The proof follows directly from the definitions.
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2.2 Regularity of the Candidate Functions

Our goal is to find a chart « : By — X, such that the graph {(§,«(§)) : £ € Bs}isa
local stable manifold attached to the origin of the differential Eq. (3). The desired chart is
formulated as a fixed point of the Lyapunov-Perron operator in Sect. 2.3. In preparation for
that formulation we now specify the appropriate spaces of candidate functions.

Remark 2.7 In Sect. 2.1 there is notational symmetry between the stable and unstable
eigenspaces. For the stable manifold the main parameter is the stable radius rs, which deter-
mines the domain of the chart «. On the other hand, the unstable radius 7, in the codomain
of o follows from a Lipschitz assumption on the chart. To highlight this distinction, in the
contexts of the Lyapunov-Perron operators and the associated charts we denote the radius in
the stable subspace by the parameter p.

Let p € R and o € CO(B,(p), X,,). Define the Lipschitz constants of « relative to the
subspaces X; and X;/ by

Lip(@)i, = sup sup 2 &F8) Zer@l

£€B, 045 €X; Ie]
E+§i€Bs

Observe that if « is Fréchet differentiable, then SUPge g () ||o:f, @& = Lip(oc)f/. Here we
employ the notation of Definition 2.5, so that superscripts attached directly to « denote
partial derivatives. Let CcY1(B; (p), X,,) denote the set of all Lipschitz continuous functions
on By (p), taking values in X,,. Similarly, let C1*' (B, (p), X,,) ¢ C%!(By(p), X,.) denote the
set of all continuously differentiable functions whose derivative is Lipschitz continuous.

Definition 2.8 Fix positive tensors p € R”s, P € R @ R" and P € (R"s)®? ® R", and
define the function spaces

BY = {a € C¥'(By(p). X,) 1 a(0) = 0, Lip(@)}, < P}}.

B, ;=o€ C"(Bs(p), Xu) : @(0) = 0. Lip(@);, < P} Lip@ia)}, < P/).

Note that for all « € Bg’,lp and &, ¢ € By we have: |o;/(§) — a7 ()] < Pl.i,léi —¢il|. Fora
positive vector p and positive tensor P, the range of the o € Bg’lp lies in a ball B, (r,,) with

ry given by ryr = Pl.i, Di-

Definition 2.9 Let the vector p and tensor P be as in Definition 2.8. Define r,, by r;s := Pii, Di-

For constants C;'., (:‘; and Dj such that the bounds (13) hold with r; = p, define positive
tensors

i._ i i' pi i ._ i i’ pi yio._ i Ail i'\ pi
H] _C]+C] i H,/ —C//+CJ/ i H] —CJ+(C]+D])PZ/’
and the positive scalar:

o= sup  sup Iz Lia(x) + 7= N5 (x5, a(x)).

we Bg,‘lp Xs €Bs(p)

The tensor H provides the following bound: fix p, P and « € Bg’lp, &,¢ € Bg(p). Then
for each j € I we have

NG(E, a(®) = Nj(¢, a @) < Hi1& — &l (14)
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Prop05|t|on 2.10 Fix p and P as in Definition 2.9. If the norm on X has |x| = ) ; Ixil,
then H < max;c; Z]el

Proof. Fix o« € B, and x, € By(p). Then

9 yn i n' pi
ZTXI'Ljan/(XS) SZDJ Pl‘l/’

jel jel

-L{o(Xy)

0
X

N O e | = [ 20 Ak, e x0) + X7 ks, wx Dl (50) | = D€+ CL P

jel jel

It now follows from the hypothesis on the norm of X that ||7j|| = 1 for alli € 1. Then

e L)+ 7 s s, |

= sup 3 (G Lbatx) + A (ks a k) u
ueXy.lul=1|%c;

< sip Y (D’j?’P,’;,+éj.+C” ’)Iutl
ueXy,|lul= 1[ el

In the righthand side of the previous inequality we recognize H J’ Hence

Z [—Aljl|u,| = Z(ZH )|M | < Z(Tﬁf;ﬁﬁ'u’l = (IPSIXJZG;I:I;) lul. (15)

i,jel iel jel

Taking the sup over u € X, |u| = 1 gives

2.3 Overview of the Lyapunov-Perron Approach

o yu Y yi
i L) + K (ks axo) | < max Y0 A o
jel

Having established the necessary notation, we are prepared to formalize the discussion.
Namely, we transform the problem of studying the local stable manifold into the problem of
finding a fixed point of the Lyapunov-Perron operator. Excellent general references on the
Lyapunov-Perron approach include books [15,34 54]

This operator is an endomorphism on charts o € B p- Given such an «, define x(z, §, )
to be the solution of the projected differential equatlon

Xy = AgXs + Ny (xg, 2(Xy)), (16)

with initial condition & € Bg(p) at time t = 0. In Sect. 3 we show that if A sufficiently
dominates the nonlinearity N, then solutions of the projected system (16) do not blow up
forany o € B p- In fact, solutions of the projected system approach 0 as ¢ — oo.

Assuming for the moment this is true, consider the pair (x(¢, &, ), a(x(¢, €, @))). If Eq.
(12) is satisfied for all i" € I’, then by construction Eq. (11) is satisfied for all i € I. Hence
the pair (x (¢, &, o), a(x (¢, &, «))) is a solution to the full system (3), and moreover the map
& — (&, a(&)) is a chart for a local invariant manifold of the origin.

To find & solving Eq. (12) for all i’ € I’, we exploit the variation of constants formula
and defining the Lyapunov-Perron operator.
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Definition 2.11 Fix a positive vector p € R™s and a positive tensor P. The Lyapunov Perron
operator W : Bg:lp — Lip(Bs(p), X,) is given by

Wla]E) == — fooo eTMIN(x (1§ 0), ax(t. £, ))dr,  forallw e BY,. (17)

Remark 2.12 (Dynamics on the graph of o) A fixed point of W is a coordinate chart for a local
invariant manifold of the origin. Showing this is the stable manifold requires an additional
argument. This is part of the power of the approach, as by modifying the assumptions one
can study other attached invariant manifolds like center and center-stable manifolds. For an
example involving computer assisted proofs see [56].

Let Eg, E, € X denote the stable and unstable eigenspaces of the operator A + L. If
either dim(X;) = dim(E;) < oo or dim(X,) = dim(E,) < oo, then « = ¥[«] is a chart
for a local stable manifold of the origin. In practice this is established by correctly counting
with multiplicity the finite number of stable/unstable eigenvalues of A + L. We consider this
case in Sects. 6 and 7.

If, on the other hand, both dim(E;) = oo and dim(IE,) = oo, then the desired result is
obtained by showing that the family of operators A + sL does not have any eigenvalues
crossing the imaginary axis for s € [0, 1]. This is the approach taken in [67] and it could be
extended to studying strongly indefinite problems as typically appear in elliptic problems,
see e.g. [14].

In Sect. 4 we show that, for an appropriate choice of constants, W is simultaneously an
endomorphism on the balls Bg’lp and B ; '; P In Sect. 5 we show that W is a contraction in a

CY-like norm (see Definition 5.2) and use the Banach Fixed Point Theorem to establish the
existence of a unique fixed point.

2.4 Good Coordinates: Parameterization of Slow Stable Manifolds and Attached
Invariant Frame Bundles

In this section we describe a method for high order computation of slow stable manifolds, as
well as some attached invariant frame bundles describing the stable and unstable directions
normal to the slow stable manifold. Our approach is based on the parameterization method of
[8-10], and especially on the notion of slow spectral submanifolds discussed in the references
just cited. See also the works of [7,31,40,55,60], and the book [32].

The theorem below is extracted from the results of [8,10]. The version we state assumes
that the eigenvalues are real and have geometric multiplicity one. These assumptions are
not necessary, but simplify the presentation. In the applications considered in Sect. 7, these
assumptions have to be checked. In slight abuse of notation, to align with the existing liter-
ature we use P to denote the parametrizaton of a slow stable manifold; this should not be
confounded with the positive tensor denoted by the same symbol in previous subsection.

Theorem 2.13 (Slow-stable manifold parameterization) Let F : R? — R? be a real analytic
vector field, and pg € R? be a hyperbolic equilibrium point whose differential DF (po) is
diagonalizable. Let A1, ..., g € R denote the eigenvalues of DF (po) and suppose that
Myooas X with mgjew < d are the slow stable eigenvalues. Let &1, ..., &y, € R4

» PMslow
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denote the associated slow stable eigenvectors. Write

... O A ... 0
Aslow: s and A = s
0 ... 0 ...

Msiow

to denote respectively the Mgy, X Mgy and d x d matrices of the slow stable eigenvalues
and all the eigenvalues of DF (po). Suppose that P : [—1, 1]"slow — R is a smooth solution
of the invariance equation

F(P(©)) = DP(0)Agon, 0 € [—1, 1]"stow, (18)

subject to the first order constraints P(0) = po and 0;P(0) = &;, 1 < j < myoy. Then P
parameterizes the mg,,, dimensional smooth slow manifold attached to py.

It follows from the results of [8] that Eq. (18) has analytic solution as long as for all
(my, ..., mgow) € N™low with m| +...4+ mgow > 2, the non-resonance conditions m A +
oo MglowAmg,, 7= Aj for 1 < j < d, are satisfied. Observe that this reduces to a finite
number of conditions. Moreover, the solution is unique up to the choice of the scalings of
the eigenvectors &1, ..., &ny.., -

To control the fast dynamics we exploit the “slow manifold Floquet theory” developed in
[60]. The idea is to study certain linearized invariance equations describing the stable/unstable
bundles attached to the slow stable manifold. These invariant bundles describe the linear
approximation of the full stable manifold near the slow stable manifold, and in addition they
provide control over the normal and tangent directions. Combining the stable, unstable, and
tangent bundles provides a frame bundle for the phase space in a tubular region surrounding
the slow manifold — the “good coordinates” exploited in Sect. 7. The idea is illustrated in
Fig. 2.

Computation of the invariant frame bundles is facilitated by the following theorem, the
main result of [60]. Note that we apply this theorem only in a finite dimensional Galerkin
projection of our PDE.

Theorem 2.14 (Slow-stable manifold Floquet normal form) Let F: RY — RY, po € R4,
DF(po), As--vsAd, E1s vy &dy Mgiow < d, Ngiow, A, and P [—1, 1]Mslov — R9 be as in
Theorem 2.13. Assume that for 1 < j < d the functions q;: [—1, 1]"slow — R? are smooth
solutions of the equations

DF(P(0))q;(0) = 2;q;(0) + Dq;©)Asiond, 19)

for0 € [—1, 1]"slow, subject to the constraints q(0) = &;. Let G L(R?) denote the collection
of all non-singular d x d matrices with real entries. Define Q: [—1, 1]"sv — GL(R?) by

00) =[q1@)]...1940)].
Then

1. Forall 8 € [—1, 1]"slow the collection of vectors q1(0), ..., qa(0) span R4. That is, Q
takes values in GL(R?) and hence parameterizes a frame bundle.
2. Forallt = 0and forall 0 € [—1, 1]™slov, the derivative of the flow along the slow stable
manifold factors as
M) = Q(e™'0)e™ 071 (0), (20)

where M (t) is the solution of the equation of first variation for F along P(60):
M'(t) = DF(P@)M(t), forallt >0,
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Fig.2 Siow stable manifold and 17slow,

attached frame bundles: the W (po)

figure illustrates an equilibrium

solution pg and its slow stable

manifold in green. The orange Po
surface illustrates the full stable
manifold, of which the slow
manifold is a submanifold. At
each point on the slow manifold
there are invariant stable/unstable
normal bundles. The stable
normal bundle describes the
stable manifold of pg near
wslow Taking the stable,
unstable, and tangent bundles
gives a frame for the entire space.
Theorem 2.14 provides an
explicit method for computing
these structures (Color figure
online)

with M (0) the identity matrix.

Considering (20) one column at a time gives that the frame bundles ¢(0);, 1 < j < d
satisfy the invariance equation

M(t)qj(O) = e)»jl‘qj (e/\s]owte) , for@ e [_1’ 1]mS10W.

This says that the flow along P(6) leaves the direction of g; invariant (maps the bun-
dle into itself) but expands vectors at an exponential rate of A;. It follows that if
Amgow+1(0)s ..., qm, (@) are the parameterized vector bundles associated with the stable
eigenvalues which have not been designated as slow (the so called fast stable directions),
then for each 6 € [—1, 1]™slow these invariant bundles are the fastest contracting directions
near P(0), and hence they describe W*(pg) near P (6).

We now define a nonlinear change of coordinates which, to first order, diagonalizes the
vector field F near P(6). Let d = mgow + Miast + Munst. Define the coordinate change
K:[=1, 1]Ms0ow x [—€f, €]t X [—ey, €,]™mt — RY by

KO, ¢, ¢u) :=PO)+ Qr@)ps + Qu(®)Pu,

i.e. K is a diffeomorphism with K (0,0,0) = po and DK (0, 0,0) = Q(0), the matrix of
eigenvectors. Here 6 is the coordinate in the slow stable manifold, O r and ¢, denote the
fast stable directions, and Q, and ¢, denote the unstable directions. Recall that the defining
relations for P, Oy and Q, are

F(P(0)) = DP(0)Asiowt, 2
DF(P©0)Qf(0) = DQs(0)Asowt + Q (6) Afast (22)
DF(P(0))Qu®) = DQu(0)Asiowt + Qu(O) Aunst- (23)

We use K to pull back the vector field F: RY — R, resulting in

o’ Aslowt +N6(9»¢fa¢u)
¢y | = DK'0, 97, 6u) F(K©O, b5, ) = | Atasr + No, 0, 05, ¢0) |
by Aunstpu + Ny, (0. b, du)

where each of the N (0, ¢ ¢, ¢,) is quadratic in ¢y and ¢, fork =60, ¢, Py.
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To see this, and to obtain explicitly the form of N, expanding about P (0) results in

F(K©,97,00) = F(PO)+ Q)¢+ Qu®)pu)
= F(P©) + DF(P©)[QrO)pr + Qu@du] + RO, O5, du),
24

where the remainder term R is quadratic in ¢y and ¢,,. For the first two terms in (24) we use
the defining relations for P, Q r and Q, as well as the definition of K to rewrite

F(P(6)) 4+ DF(P©))[Qf(@)ds + Qu®)¢pu] = DP(6)Asiond
+ DQf(e)(Aslowev ¢f) + Qf(Q)Afast¢f
+ DQu (9)(Aslow9’ ¢u) + Qu (Q)Aunslfpu

Aslowe
= DK (0, ¢fy bu) Afast¢f
AunstPu
Then
Aslowe
DK™ '0,¢7.0) F(K©. 07, $) = | Arsids | + DK O, ¢7. ¢) RO, 7. du),
Aunst®u
hence

N, ¢5,¢) = DK O, b7, )" RO, ¢r, bu),

As R is quadratic in ¢y and ¢, so is N. Once again we refer to Fig. 2 for the geometric
interpretation of the coordinate change.

Note that the invariance Eq. (18) and the invariant bundle Eq. (19) do not have to be solved
exactly. Given any approximate solutions, defects are defined by considering the invariance
equations defining the objects. The numerical approximations exploit formal power series
methods which have been discussed in many places. In particular, we use the numerical
schemes discussed in [60] freely throughout Sect. 7.

3 Exponential Tracking

Remark 3.1 Throughout this section, p € R™s denotes a positive vector (the radius of the
domain of the local stable manifold chart candidates) and P € R™s @ R™* denotes a positive
tensor (bounding the subspace-Lipschitz constants of our charts).

To begin the analysis we first derive estimates on x (¢, €, ), the solution of the projected
system (16).

Proposition 3.2 Let&, ¢ € Bs(p). Ifx(t, &, o) and x(t, ¢, o) stay inside B forallt € [0, T],
then

(1, &, ) — x(1, &, @)| < Gyl — £le™ O forallt € [0, T].
Proof. Recall from (16) that

Xs = AsXs + Lixs + L?Ot(XS) +'/</S(XS7 Ol(Xs)).
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Define x(t) = x(¢, &, @) and z(¢) = x(¢, ¢, «). By variation of constants, we have that

t
x(t) = e(AerLﬁz)lé_- +/ e(AerLﬁz)(tft) (L?a(x(t)) +/\7s (x(‘r),(x(x(r)))) dr.
0

From (8), we have that [esHLD1g | < Cyle™'&]. Let U(t) = |x(¢) — z(r)], so that
t
e MU < ColE — ¢+ f Cse™7 | LY (a(x(1) — a(z(r))| dT
0

t
_|_ / Csef}\yf
0

Recall from Definition 2.9 the definition of . Applying the mean value theorem gives

Ny (x (), a(x(0)) — N (z(0), a(z(r)))] dr. (25

LA @) = a @] + [N @0, ar(@) = K @(0), @@ = /(@) = 201,

Plugging this bound into (25) gives
t
MU < ColE —¢| +/ CsHe ™™ TU (t)dr.
0

By Gronwall’s inequality, it follows that e M@ < Cyle—¢| exp{Cﬂ:lt}, which we rewrite
as .
U(t) < Cslg — gleMs a0, =

From the proof of Proposition 3.2, it is clear that Ay 4+ C H < 0 implies the solution
limits to zero. Taking ¢ = 0, this shows that points in Bs(CLY p) stay in Bg(p) for all time.
A sharper version of Proposition 3.2 follows by taking into account the rates in the different
subspaces of X;. Consider for example the decomposition Xy = Xjow X Xfast and the initial
condition & = (&glow, &fast) € Xslow X Xfast- Solving the linear system, and exploiting the
bound from (6), gives that |eASlowt§_slow| =< e)\SIOWqé:slowL and that |eAfaSIt§_fast| = e)\fmqsfasd-
If 0 > Aglow > Afast, We expect that solutions of Eq. (16) have a component xgg (2, &, o) that
initially decreases very quickly.

This intuition motivates the definition of the characteristic “control” rates, arising from
each subspace in the stable eigenspace, by which solutions to (16) grow/shrink. The effect
of coupling the various subspaces together is controlled by the constant yy = As + Cy'H, the
exponent derived in Proposition 3.2.

Definition 3.3 For integers 0 < k < my, define constants y; (control rates) as

As +CyH ifk=0

k = .
v Ak + H,f otherwise.

Assume the ordering yx > Yk+1-
In practice the ordering of y is always satisfied by suitably (re)arranging the subspaces
X. The strictness of the ordering indicates that on the balls chosen, the nonlinearities do not

spoil the subspace splitting. Using these exponential rates, we estimate the components of
|x(t, &, a)| using tensors G;? « defined as follows.
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Condition 3.4 A tensor G € (R")®2 @ R"st! satisfies Condition 3.4 on the interval [0, T
Wit g @) — sl < Y MG & — Gl, (26)
Oﬁr;{eﬁlms

forallt €[0T}, all&,¢ € By(p) and all o € B)'),.

Remark 3.5 Since |x;| < p;|x|, with p; defined in (5), by Proposition 3.2 the tensor

~n | pjCs fork =0,
K0 fork #0,

satisfies Condition 3.4.

Note that while this tensor G is non-negative, a generic tensor G satisfying Condition 3.4
can, and in practice will, have negative components.

Additionally, we remark that while this estimate is typically initially worse than the
bound given by Proposition 3.2, an explicit bootstrapping argument allows us to obtain
tighter component-wise bounds on solutions of Eq. (16). The bootstrapping argument applies
variation of constants to Eq. (16) in each subspace, focusing on improving the bound one
component at a time. To begin, we first prove the following proposition.

Proposition 3.6 Ler o € B and&‘ ¢ € Bs(p). Define ui(t) := |x;(t, &, o) — x; (¢, ¢, )|
fori e I. If x(t,&, a), x(t { a) € Bg(p) fort € [0,T], then for each j € I and all
t € [0, T] we have

“hituj(e) < 18 —¢,|+/ 473 Hiwg(nyd. @7)
iel

Proof. By variation of constants

t
xj(t. & a) =g +/ MUTING (x(1,E, @), alx (T, £, @) d.
0
Then
NG (x(t, &, 0), a(x(t, &, a) = N;(x(t, ¢, @), a(x(t, ¢, a)] < H}ui(t) forall > 0.
Together with the estimate |e2i7&;| < ei!|&;| for t > O this gives
fu,<z><|s,—c,|+/ e Hiug(nyde. o
iel

Given a tensor G satisfying Condition 3.4, we obtain sharper component-wise estimates
by the following theorem.

Theorem 3.7 Let« € B P and let &, ¢ € Bg(p). Suppose G satisfies Condition 3.4, and fix
jel lfG”’ —Oforalln €landi € I — {j}, then

e]/mt — eyjt

(L E ) —x;(t. L)l < & —¢ile + Y ————HIG!, & —Cal. (28)
niel,i#j Ym = Yj
0<m<mg,m#j
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That is, for j € I and T; : (R™)®2 @ R+l — R @ R™ T defined by

Y —y)T'HIGH ik #
i niel,i#j _
7@ = 51— ¥ Gm-yp'HIG, k=] 29
niel,i#j
0<m<mg,m#j
replacing G;?,k by [’T] (G)]Z results in a new tensor G satisfying Condition 3.4.
Two lemmas aid in the proof.

Lemma3.8 (see [41, p.4]) Letu, V,h € C°([0, 00), [0, 00)) and suppose that

t
M@EV®+/hmmmw
0

If V is differentiable, then

u(t) < V(0)exp {/th(s)ds} + /t V'(s) exp {/th(r)dr} ds.
0 0 s

Lemma 3.9 Fix constants cq, c1,cy € R with c¢1,cy > 0 and define nwy = co + c3. For

constants (L, ax with ux # po fork =1, ..., K, we set

K
v(s) = Z M ay.
k=1

Suppose that v(t) > 0 fort > 0, and assume
t !
e O yn(t) < <c1 +/ efcosv(s)ds) +/ cre “ug(s)ds.
0 0
Then

K
up(t) < creto’ + Z a% (eM*! — etor) . (30)
=1 Mk — KO

Furthermore, the sum in the righthand side is non-negative for all t > 0.

Proof Lemma 3.8 gives

t
e yo(1) < e +/ e~ 0y (5)e2 9 g
0

t n
=cre? + ew/ Zake(“"_co_CZ)sds
0 k=1
n

= c1e! 4 ¢! Z _ Gk (e(lik—uo)f _ 1) ) 31
=1 Mk — KO

Multiplying each side by e’ gives the desired inequality (30).

Since v(¢) is nonnegative, so is the integrand. Hence the sum in the righthand side of (31)
is non-negative for all r > 0. ]
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Proof of Theorem 3.7 Fix j € J and rewrite (27) as

e Mui(t) < |& — ¢l + Z/ *M*H’u (s)ds—l—/ *MYHfu,(s)ds (32)

iel,i#j

Since G satisfies Condition 3.4 we have

Z H;Mi([)f Z H/l Z eVMtG?,m 1&n — &al

ieli#j ieli#j O<}Zn€<lm
—= =ity
t in
- e Y Hal, k-l
0<m<my njiel,i#j
t n
= Z eVm Z H Gl m n —&n |, (33)
0<m<mg,m#j n,iel,i#j

where the final equality follows from the assumption that G = O wheneveri # j.Defining

v(s) = Z e"a,,  with  ay = Z H]’:G?,m [&n — Cul,

0<m<mg,m#j niel,i#j

and combining (32) with (33) leads to

t t .
(1) < 185 = g1+ / e ) mands+ / e Huj(5)ds.
0 0

0<m<mgs,m#j

t t .
=g — &1+ f e u(s)ds + / He % u;(s)ds.
0 0

Now apply Lemma 3.9 with ug = uj, co = Aj, c1 = [§; — ¢jl, ca = H/J Re-indexing
{idhi<k<k = (YmYo<m=ms.m=j, We see that y,, # A; + Hf = yj form # j follows
from the strict ordering assumption of Definition 3.3. Then the assumption in Lemma 3.9 is
satisfied. Applying Lemma 3.9 is justified, and leads to the result (28). |

Theorem 3.7 lets us pick a j € I, and replace a bound of the form (26) with the same
bound, where G” p is replaced by [T (G)] , possibly producing a sharper bound. Note that in
Theorem 3.7, we impose that for a fixed j € I we have G} ; = Oforalln € Iandi € I — j.
Without this assumption, we would end up with terms of the form te?i' in (28). We choose
to avoid this, as we prefer to work with a finite set of exponentially decaying functions as the
basis of our estimates.

However, we also need to deal with the case G} ; # 0 for some i # j and some n € /.
This problem is solved by modifying such an “ill- conditioned” G before replacing it with
7;(G). Namely, if G” # 0 then, depending on the sign of G” we estimate (G} )eVJt from
above by either G}/ eVJ 1" or G} -eVi+1! for t > 0. Here we use the ordering yo > © > Y,
asserted in Deﬁmtlon 33.To be precise, for any fixed j € I, define the modified tensor

0 iftk=j

G"k—i-G ifk=j—1,andG§’,j>0
G?,k"'Gz,J ifk=j+1,andG;“,j<0
G?, k otherwise.

Qi (D] = (34)
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Note thatif j = m, and G ; < 0, then we are effectively employing the estimate G! je}’"h"
0.

The following lemma summarizes the preceding discussion.
Lemma3.10 Fix j € 1. If G satisfies Condition 3.4, then Q ;(G) satisfies Condition 3.4.

Thus, starting from an initial bound of the form (26) with tensor G given in Remark 3.5,
we iteratively improve the bound using the following algorithm.

Algorithm 3.11 Let Npoossirap € N be a computational parameter.
G« G
Jorl1<ic< Nbpootstrap do
for1 < j <mgdo
n
« < [T09/@]
end for
end for
return G

In practice Algorithm 3.11 quickly converges to a fixed tensor G. For example Npgotstrap <
5 is sufficient for the applications to folllow.

Theorem3.12 Let«x € Bp p» and suppose that the coefficients G"; i are output by Algorithm
3.11. Fix initial conditions £€,¢ € Bg(p). If x(t, &, @) and x(t, ¢, a) stay inside Bg(p) for
allt € [0, T), then

(L Ee) —xj Ll < Y e G le —tul  forallt €[0.T]. (35
nel
0<k<my
Furthermore, if « is differentiable then H %xj (t, &, a)” < ZOﬁkSmx eWG?,k forallt e
[0, T].

The proof of Theorem 3.12 is by induction on Npootstrap, With Proposition 3.2 taking care
of the base case (Npootstrap = 0), and Theorem 3.7 taking care of the inductive step. We omit
the details.

Now, in Proposition 3.2 the assumption that 3y < 0 gives only that points £ € B,(C; ! p)
have solutions to (16) staying in Bg(p) for all + > 0. The following proposition gives
conditions which extend the result to all points & € Bs(p).

Proposition 3.13 Suppose that yo < 0 and that G’;,k is the output of Algorithm 3.11. If

pi= Y &Gl i, (36)

nel
0<k<my

forallt > 0, then for all ¢ € Bs(p) andt > 0 we have x(t,&, o) € Bs(p) forall a € Bg:lp.
Proof Fix a € Bp P,O <€ < l,and & € Bs(ep). Define T = sup{t > 0 : x(t,&, ) €
Bs(p)}. Assume that T < +o00. We show by contradiction that T = +o00.

Since x(0, &, @) € Bg(ep) and x(t, &, o) is continuous in ¢, it follows that T > 0. By
Proposition 3.12 we have for all ¢t € [0, T) that

g o)< Y MG lEl<e Y MG o <ep).

0<k<my 0<k<my
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Hence x(z, &, ) € Bg(ep) for all + € [0, T), and so by continuity x(7', &, «) € Bs(ep).
Since x(T, &, @) is in the interior of B(p), the solution of (16) starting at x(7', &, ) stays
inside the ball B, (p) for some positive amount of time. But this contradicts the definition of
T as the supremum of {r > 0 : x(¢, &, @) € Bs(p)}. Hence, if 0 < € < 1 and & € By(ep),
then x (¢, &, @) € Bs(p) forall r > 0.

By continuity of solutions, this result extends to initial conditions on the boundary of
B (p). ]

Remark 3.14 In practice we verify the hypothesis of Proposition 3.13 in three steps:

1. For some T> > 0, we check that p; > 3" ;o j<, eV"TZIG?kIpn, and hence (36) is
satisfied for all t > T5.

2. For some 0 < T1 < T,, we use interval arithmetic to verify the inequality (36) for
T <t<T,.

3. To prove inequality (36) for ¢ € [0, T1], we both prove that the inequality holds at = 0
(explained below), and show using interval arithmetic that the derivative of the right-hand
side of (36) is negative:

Z ykey"’G’;yk,on <0 fort € [0, T1].

nel
0<k<my

To prove that inequality (36) holds at + = 0, we fix j € I. If G is the final output
of Algorithm 3.11, then there is a tensor G € (R")®2 @ R"s*! for which Gy <
[T 0 Qj (G)] - Itis assigned at step j of the inner for-loop of the algorithm, and at step

Npootstrap Of the outer for-loop. Letting G:=0 i (5), it follows from the definition of 7;
in (29) that

t ~n it ent — evit n
D MG al =gl Y —HG 6.
nel niel,i#j Ve =Y
O0<k<mjs 0<k<mg.k#j

Evaluating at t = 0, we have

lj 0.8l =151= Y G l&l

0<k=<mjy

Taking |&,| = p, for all n € I, it follows that p; = Zngﬁm; G;f‘k,on. Hence (36) is
satisfied at t = O forall j € I.

Remark 3.15 When inequality (36) fails to be true, we cannot be sure that all solutions of
Equation (16) stay inside the ball Bg(p) for all time. There are two common reasons for
why this happens: first, the nonlinearity may be too large and solutions leave the ball never
to return; second, solutions to Eq. (16) may temporarily leave the ball, reenter, and then
converge to zero.

If inequality (36) fails to be true because of the first reason, then p should be made smaller.

If inequality (36) fails to be true because of the second reason, it is often because B (p)
is too wide in one direction and too thin in another. If we suspect this to be true, then to
better align the box with the flow, we iteratively select a new value of p using the map
pj > supg<, <7 > €' G'; ; pn. In practice, this heuristic is effective for finding a value of
p for which (36) is satisfied.
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Algorithm 3.11 can be applied in more general situations. The two conditions necessary to
construct such an algorithm are Condition 3.4 and Proposition 3.6. These are all generalized
in Appendix A leading to an algorithm used in Sect. 4.2 to obtain bounds on %x(r, & a),

and in Sect. 5 to construct bounds on |x(¢, &, o) — x(¢, &, B)| for charts o, B € Bg"lp.

4 Lyapunov-Perron Operator

In this section we show that the Lyapunov-Perron operator W is an endomorphism on balls
Bg’lp and BL’IP 5 for appropriately chosen constants.

Remark 4.1 Throughout this section, we fix a positive vector p € R™s and a positive tensor
P e R"™ @R™s and fix G € (R")®? @ R™s! as the output of Algorithm 3.11 taken with
Npootstrap = 1. Furthermore, we assume that the hypotheses of Proposition 3.13 are satisfied,
and in particular that inequality (36) holds for all # > 0. Hence G satisfies Condition 3.4 on
the interval [0, 00).

Throughout this section we adopt Einstein summation convention for indices of / and I'.

. 0,1
4.1 Endomorphism on Bp,P

The next theorem provides a straightforward bound on Lip(W[«]) for o € Bg’llp.

Theorem 4.2 Define P € R @ R™s component-wise by:

Pli= > Ow—y) 'H,G,.

0<k<my

Ifa e B%,]P’ then Lip(¥[a])}, < f’i’}. Ifﬁjj, < P,j/ then U : Bg’,]P — Bg”lp is well defined.

Proof Fix o € Bg’; and &, ¢ € Bg(p). Define x(t) := x(t, &, @) and z(¢) := x(t, {, @). Our

goal is to prove that |W[a]y (&) — V[l (0)] < ﬁi'/’ |, — ¢, |. From the definition of W we
have

Wlal(€) — Wla)(C) = — /0 M NG (e (1), 2k (0)) — Ny (2(0), (O] dt.

Using the bound (14), and the fact that G satisfies Condition 3.4 on [0, c0), we obtain
o0
[Wali(§) — Valr (O] < / e M H xi () — zi (1)|dt
0

o0
< [Cen 3 emHiGH 16 - gl
0

0<k<my

= > Ow =) H,G! & — Gl

0<k<my

For i’l.'f as defined above, it follows that

Wl (&) — Wl ()] < Pl Ew — al.
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Hence Lip(¥[a])] < f’i’,'. Since N(0) = 0, direct evaluation shows that ¥[«](0) = 0.
Hence V[«] € Bg"lp. O

Remark 4.3 Ideally, we would like to choose a tensor P as small as possible while still
satisfying the inequality Pl’ P’ In practice, we find a nearly optimal P by iteratively

mapping Pi{ > 151.{ . This has the effect that if Pij, < P/, , then the new value of P will be
smaller. Since the bounds for H and G improve with smaller P, the inequality P < P} will

likely be satisfied for the new P. On the other hand, if P is too small and P < P} is not
satisfied, then the new value of P will be larger, and the inequality will hopefully be satisfied
at the next iterate of the algorithm.

Note that the definitions of H and G depend on P, and so these constants need to be
recomputed every time. Nevertheless, this iterative process provides an effective, algorithmic

method for selecting appropriate Pi{.
Using second derivative bounds on A, sharpens Theorem 4.2 as below.
Proposition 4.4 Define P € R™« @ R™s component-wise by:

Pl = (D’,+Df ) > =T Gy
0<k<my
+ (éff + C’f/ jP}/) Z it = Vi — Vi) ™! 7 Gl kP

0<ky ko <my

Ifa e Bg’}, then Lip(W[a])}, < }N’I.’,‘. Ifﬁj < PJ then ¥ : BO N Bp p is well defined.

Proof By the mean value theorem we have (recall that N I = e ./\/ )

Vi (x, a(x)) — Ny (z, (2))] < sup NG s O | i — 2l
YEBs(p), jel
[yjl<max{|x;l,|z;]}

We estimate max{|x;(t)|, |z;(t)|} using the tensor G (which satisfies Condition 3.4), and
since max{|&y|, |{m|} < om, we have

sup ING (v, a) < Dy + D Pl + (G + €7 Plymax{|x; ()], 1z ()1}
yeBs(p
gl (31125 )
. j/ . "ij Aj/]. .
<DL+ D} P+ (C/+C Py Y &G pm

0<k<my

Using Condition 3.4 gives

Wi, a(0) = Moz, a@)l = (DL + DI PL) 32 &Gl 16—l

0<k<my

i A 3! .
(G +ETR) 3T G, Gl o6
0<ky,kp<my
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We obtain the desired result by integration:

o0
(Wl (§) — Wl (D] < /0 e M N (x, (1)) = Nz, a(2) | dt

= (Di+D)PL) 3 i =07 Gl = Gl
0<k<m;
+ (C:/] + Ctj/ ]le'/> Z ()‘i/ — Yk — ykz)_l
0<ki,kp<m
G’;{kl G?’kzpm 1€n — Snl .

. 1,1
4.2 Endomorphism on Bp,P,i’

We now bound the Lipschitz constant of the derivative of the local stable manifold. To
do this, we show that W maps B" a ball of functions with Lipschitz derivative, into

P P’
itself. Hence, if there are any ﬁxed points V[o] =« € B P P then by Definition 2.8 they
satisfy Lip(9; ot)J < P” To show that ¥ : B" P 5 Bll] IP 5 we first derive bounds on

the difference 35_ xj(t,n, a) — 35_ xj(t, ¢, a) for i, j € I.In particular, we are interested in
finding a tensor K as follows.

Condition 4.5 Define {j11},, “1 = {m o Uik + e }kmlszzo. Atensor K € (R")®3 @ RN«
is said to satisfy Condition 4.5 if

d
—xj(t, ¢, @)

=Xt @) — oF,

Ny
il
=< Ze’” Kj,k|7ll = al,
k=1

%
foralla € B;’IP pandn, ¢ € By(p)andi, j € 1.

The bound is obtained using an approach analogous to the one discussed in Sect. 3. Since
we use this approach in Sects. 3, 4, and 5, we present in Appendix A a generalization which
encompasses all cases. In Proposition 4.6 we define a tensor S analogous to H given in
Definition 2.9. In Proposition 4.7 we derive an a priori bound, constructing an initial tensor
K satisfying Condition 4.5 (cf. Proposition 3.2). In Proposition 4.9 we derive a system of
integral inequalities (cf. Proposition 3.6 and Condition A.2). Then, as described in Theorem
4.10, we apply Algorithm A.5 (cf. Algorithm 3.11) to bootstrap Gronwall’s inequality, and
obtain successively sharper tensors K satlsfymg Condition 4.5. Finally, in Proposition 4.11,
we give conditions guaranteeing that W : B P 5 B;’lp E is a well defined map.
Proposition46 Leta € B]’] - and n,¢ € Bg(p). Define x = x(t,n,a), z = x(t, ¢, ),
xi = 08 xj(t,n, a), and llkewmeforz Fix j € 1, and define

nm ,__ nm nm m }’l nm )’l m I’l m n
ST =G+ G P+ G P+ (G 4G PP,
Then

(Njx, a(x) = Nj(z. (@) | < SP™ xm — zm| 1251+ H llxh — 241

s
&
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Proof We have
3 , ,
a?/\fj(x, a(x) = (/\/J” (x, a(x) + N (x, oe(x)aryy (x)) “ Xy, (37

and split the estimate into four parts:
O (N e — Az ) = (A . 0 — A . @) - 2

+ N (o) (et () — @l (2) 2

+ (A ) = A (@) ) e ()2

+ (A @) + A G, el () - (o = 2.

d&;

Each term is bound separately, as
(A @) = AJ' @ a@)) -2 < (€ 4 ™ Pl — 2l 12,
NI (e, o () (o (6) — @ (2)) 2 < CF PR 1 — 2l 11251,
(A7 @) = Af @ @) @ )zl = (" 4+ ' By P = 2l 124,
(A7 e, o) + A7 (e, @)l (0)) (e = 2) = (CF 4+ € Py 1 = 2l
The result follows by collecting all terms. |
Proposition 4.7 Define a tensor K e (R™M5)®3 @ (RMsH1)®2 ¢

~il —1
K}’k1k2 = (ykl + Vi — )’0) Csp/Sj Gm ki1 kz
Then we have
A x(t n, Q) — ix(t o) < Z oWk TVt _ pvot |
ag o b g\ oo = Kj, k1k2 =

0<ky,kp<my
jel

forall o € B;’IP 5 andn,¢ € Bg(p)andi € I.

The indices in tensor notation K il kik, are interpreted as follows. The superscripts cor-
respond to derivatives, the subscrlpt to the left of the comma corresponds to subspace
projections, and the subscript to the right of the comma correspond to exponentials.

Proof Define x = x(t,n, &) and z = x(, ¢, «). Let x' = a%x(t, 1, a) and likewise for 7.
By variation of constants, we have that

t
xi(t) _ zi(t) — f e(AH—L§)(t—r)%L? (a(x(‘L')) _ oz(z(‘c)))d‘c
0 .

+ / A0 0 ({1 x(0). atx(0)) — M (@), ac(r)) ) d.
0 d&i
(38)

Expanding the partial derivatives appearing in (38), and dropping the T dependence in the
notation in the right hand side, gives
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9 pug(e(ry) = 3L ol (ol

85 jel
0 - ~ ~
36 (@, ee@) = 3 (A7 @) + A7 (o aepegs()) -
! jel

In Proposition 4.6 we demonstrated how the tensor S offers a C!-! bound on N = L; +

L"; + /\7}, for j € I. By using (8) we obtain, in analogy with the proof of Proposition 4.6,

t
e M’ =2 < f Coe™T Y pjSi" 1xm = zml Iz dT + / eTHTCHIX — 2
0

jel
It then follows from Proposition 3.12 that
t
e M Ixt =27 < f Cie™™T Y eWtm)tp Gl | Gl = ldt
0 0<ky ky <
jel

t
+/ e MTCH|X = 2 d.
0

By Lemma 3.9 we infer that

I =z

0<ki ko <m;
jel

ek TVt _ pyot

Tt OV Ona Ot =il

N/, s s 3
Remark 4.8 Define {1}, 2 = {vx, };{"l‘zou{ykl +Vky }Z,k2=0’W1th Ny = (ms+1)(mg+4)/2.
Let K be defined as in Proposition 4.7, and define a tensor K € (R")®3 @ RVr by

Pi Yomer KiI kiky T K ok if we =y, + vk, for 0 < ki, ko < my,
zil .
K},k =P ZmEI 20<k1 ko <mg Km Jk1ko + Km Jkoky if Mk = Y0,

0 if e = yx,, for 1 < ki < m;.

It follows from Proposition 4.7 that K satisfies Condition 4.5.
We now establish componentwise Lipschitz bounds on the derivatives.
Proposition 4.9 Leto € B:)’IP 5 and define x(t) = x(t, n, «) and z(t) = z(t, ¢, a) for some

n, ¢ € Bs(p). Let x;. (1) = a%xj (t, n, o) and likewise for z; (t). Then

t
e MNIxh — 2 < / eHT Y MIITEING) | Gy — GildT
0

0<ky,kp<myg
t
Y . .
—I—/ e JTH]'.1||x,’1 -z, lld.
0
Proof By variation of constants, we have that

t
xi@) =eN's! +/0 M (%M(X(r),a(x(r)))> dt
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where 8; is the Kronecker delta. Taking the difference x; — zi,. we obtain

xi(t)_zi(l)=/ Ag(t—1)

From Proposition 4.6 we have

7 O (M@ (@) — N (). a@) )d-.

t

t
e Ml xt =2l < | e TMTS x — zwl 2 ldT + | e MTHT |IxL — 25
J J 0 J n 0 J n n

Plugging in the bounds on |x,, — z;,| and ||z£, || from Proposition 3.12, we obtain the desired
result. =

Theorem 4.10 Let {Mk}/]jﬁl and let the tensor K € (R™s)®3 @ RVu be as defined in Remark
4.8. When K is the output of Algorithm A.5 taken with input K and some Npoorstrap > 1,
then K satisfies Condition 4.5.

The proof of Theorem 4.10 follows from the argument outlined in Appendix A, where
Conditions A.1 and A.2 correspond to Proposition 4.9 and Condition 4.5 respectively.

Theorem 4.11 Let P ejR’"“ ® (R™)®2 and assume K € (R"s)®3 QRN satisfies Condition
4.5. Define the tensor P € R™ @ (R")®2 g5

Pili=" Y Gj=v =) ' SPGhL 1 Ghy+ Y Gy — ) HEKY,
0<ky,kp<mg 1<k<N,
(39)
Then for all o € B pwe have Lip(0; \IJ[a])l IN’J’,Z Iflsj’l P’l then W : B" lp i
1.1
Bp 'y is well deﬁned
Proof Let n, ¢ € Bs(p) and define x(t) = x(¢, n, @) and z(t) = x(¢, ¢, ). Define x; (1) =

a%xj (t, n, @) and likewise for z? (t). From Definition 2.11 we have

Wlel(n) — Wlal(©) = — /0 M (NG (), @ (0))) = Nuz(0). er(2(0)))) dt
Using Proposition 4.6 gives
|wiat), ) — wiat @] < / e (SHM e = 2l NZh 4 H ) — 241 ) .

Pluggmg in the bounds on |x,, — z,,| and ||zn || from Proposition 3.12, as well as the bounds
on |x}, — z},| from Proposition 4.9, gives

H\y[a];,(n)—w[a];,(g)u5/0 S gmGl G gl

0=<ky,ka=<m

o0
—A it . il
—l—/ e M E el H}’/K,’,,klm — {ldt
0 1<k=<N,,

= Pifim — al.

Hence, we have obtained the desired bound Lip(9; \IJ[a])Ij, < I’N’]’f . m|
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5 Contraction Mapping

Remark 5.1 Throughout this section, suppose all the assumptions on the positive vector p €
R”s, the positive tensor P € R @ R™s, and the tensor G € (R")®2 @ R"s+! made in
Remark 4.1 are in force. Additionally, fix a tensor K € (R™)®3 @ R"™ @ RV satisfying
Condition 4.5, and a positive tensor P € R @ (R"s)®2, Assume the hypotheses of Theorems
4.4 and 4.11 are satisfied, so that both W : Bg,lp — ngP and W : Bp PP B are

0.P.P
well defined maps.

5.1 Bounding the Difference Between Two Projected Systems

We show that the Lyapunov-Perron operator is a contraction mapping in an appropriate norm.
Note that the norm is weaker than the one used to define Bg’lP in Definition 2.8.

Definition 5.2 For o € £ := {a € Lip(B;(p), X,) : «(0) = 0} define the semi-norms

et (§) — ajr (& — &)l
£€B, (r);5#0 |&i1

el =

)

where i € I and i’ € I'. The semi-norms define a norm by

lele == > el

ieli’el’

Note that [l < Lip(a)" and ()] = Yyer lalliyg €] < lleellel€](maxies pi).-
With this norm both Bg: and B j are complete metric spaces (cf. [15, Chapter 4]).

Before showing that W is a contractlon we need to derive estimates on x(f, &, o) —
x(t, &, B), the dlfference between two solutions of the projected system of Eq. (16) for two
different maps o, f € B p- Classically, this results in an estimate of the form |x(z, §, o) —

x(t, & B)| < keV’|§|||a - ﬂllg, for some constants k and y. This estimate can be notably
tightened, as at time zero |x(0, &, o) — x(0,&, )| =€ —&| =0. Abound on |x (¢, §, @) —
x(t, &, B)| is obtained below, using a tensor F as now described.

Condition 5.3 Fixsome y_1 > ygand define {ka}Z1 {Vk}k__] Atensor F € (]R’"f)®3®
R™ @ R™s%2 s said to satisfy Condition 5.3 if

(1. & ) —xm (L E B < Y e ER o= Bllglal.

—1<k<my
foralla, B € Bg”lp and & € By(p) andm € 1.

We obtain the tensor F by applying the bootstrapping method as in Sects. 3 and 4, which
is presented in a general setting in Appendix A. However, in this section we encounter a
resonance problem involving yp, and augment {yk}Z":"O, defining

Y—1:=0/2.

In this manner we obtain an indexed set { }k 1= }k__] The exact choice of y_j is

somewhat arbitrary; it should satisfy A;y > y_1 > yp, and (y—1 — yo)_1 should not be too
large. We augment the tensor G fixed in Remark 4.1 by defining G} _; =0 foralli,n € I.
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To overcome the resonance problem we use the map Qg (following the notation convention
from Appendix A) defined as

G}, ifk=-1
(G} =10 ifk=0 fori,neI. (40)
Gip ifl <k =<ms

In Proposition 5.4 and Remark 5.5 below, we identify an initial tensor F satisfiying Condi-
tion 5.3.

Proposition 5.4 Fix «, B € Bg’ylp and some y_1 > yy. Define Qq as in (40), and the tensor
F e ®™)® @ R™ @ R"™*2 as

Colvi =)' piCYQu(G)! ifk #0,
0 ifk=0.

.
ni’ .__
Fji =

Then
X&) —x(t.E QI Y (" =) Fi e — Blllelénl.

—1<k<my,jel
foralla. B € B), and & & By(p).

Proof. Fix aninitial condition&é € By(p) anddefine x(¢) := x (¢, &, a) and y(¢) := x(t, &, B).
Variation of constants gives

t
x(1) = y(1) = f M) (Lo (x(m) + K (x(2), a(x(0))
0

—L{BO@) = N (0). BO(D))) d.

By the usual splitting o(x) — B(y) = [e(x) — a(y)] + [e(y) — B(y)] and the definition of
‘H we obtain

Lia(@) + N (v, a () = LEBO) = N (0, B))|
<Hlx -yl

+ | Lha() + K5, @) = LEB) = i, B

Set Ej, = [l = Bllj g Since [ari (y) — Bir(¥)] < Ej|yi| we have
Lia(y) + Ny (y, a(y) — LEB(y) — N (. ﬂ(y))] <> pi (€% + DEL |yil.
jel
Combining these estimates gives
e x() = y(0)] < /O "o Y piCYELIyi(n)ldT + /0 G IR (0) — Y0l
jel

We would like to use the bound [y; (T)| < D o<y, €7 G} (|€x] from Theorem 3.12, and
apply Lemma 3.9. However, this integral inequality has a resonance when yp. The problem
is overcome by replacing G with Qo (G), so that
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t
e () — y()] < f Coe™T 3" piClELe™T QG lEnldT
0

—1<k<my;jel
t

+f Cye ™ H|x (1) — y()|dT.
0

By Lemma 3.9, we infer that

eVkl _ oWl
() =y <Co Y EWPJC 'Q(G)] L Ellénl. =

—1<k<my;jel
Remark 5.5 For some fixed y—1 > yo, define the tensor F e (R™)®3 @ R @ R™s+2 a5 in
Proposition 5.4. Define the tensor F € (R”)®? @ R @ R™s+2 by

U VD F,z k itk #0,
Pk = ~ .
" —Pm Zje] Z—lgklgms F;lil,k] ifk =0.

It follows that F satisfies Condition 5.3.

We refine the initial norm estimate from Proposition 5.4 using the following auxiliary
proposition.

Proposition 5.6 Fix o, 8 € Bg’,lp and an initial condition & € By. Define
ui(t) = |x; (1,8, a) —xi(t,§, B
El = o — Bl

V(1) ;=/ —hjT Z erfElcij;{k|gn|dr.

0<k<my
Then .
e Mluj(t) < v,-(z)+/ e T Hjui(t)dr . (41)
0

Proof Let x(t) := x(t,&, @) and y(¢) := x(¢, &, B). By variation of constants we have
t
xj(1) = yj(0) = /O M NG (x(2), a(x (1)) = N (3(D), By(2)))dT

and the triangle inequality gives
lair (x) — Bir (W) < leeir (y) — Bir (W] + lewir (x) — air ()]
< llor = Bllivelyil + Plxi = yil.
hence
NG (e, ) = NG (v, BOD)| < CEEDyil + Hilxi — yil. (42)
Applying the bound from Theorem 3.12 gives

1
e Ml — yjl 5/0 e Mt (C; Ejlyil + Hjlx; — yil) dt

t t
=/ e MEC] E;,|y,~|dr+/ e T Hiu;ldt
0 0
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t t
5/0 et Y C Ef/ey”Gl’-’,k|$,,|ds+/0 e " Hiui (t)dr.

0<k<my
Recalling the definition of V;(¢), the above inequality is of the form stated in (41). O
Theorem 5.7 Define Ny, = my and {jui )", = {n )™ _,. Let F € (R™)®3 @ R @ Rms+2

denote the tensor defined in Remark 5.5. When F is the output of Algorithm A.5 taken with
input F' and some Npoorsirap > 1, then F satisfies Condition 5.3.

Proof By Proposition 5.4 the initial tensor F satisfies Condition 5.3. We note that Proposition
5.6 is a special case of Condition A.1 and Condition 5.3 is a special case of Condition A.2.
Hence Proposition A.6 applies, yielding the result. |

5.2 Contraction Mapping

The tensor J below, which takes mg x m, matrices to ms x m, matrices, provides a bound
on [[W[a] — VB e

Definition 5.8 Define the tensor J € (R ® R™u)%? by

Tr= Y Gy —w (LGl PR, 43)

—1<k<my

Theorem 5.9 Ifthe tensor F € (R™)®? @R"™ @R™s+2 satisfies Condition 5.3, then | ¥ [o] —
\ll[,3]||’}r5 < JJ’-,;’ la — Bl forall a, B € Bg”lp,

Proof Fix charts a, 8 € Bg’} and choose & € B;(p). Define x := x(t,&,«), and y :=
x(t, &, B). By the definition of the Lyapunov-Perron operator, we have

o0
Vie](§) — V[BIEG) = —/ e M NG (x, a(x) = N (v, B(y)]dt.
0
Using (42) with the estimates provided in Conditions 3.4 and 5.3, we obtain
S A . . .
WLy @) = VIR @)1 < [ e (CUENI+ Hybx — wl)

0

0 . . .
< / TN e EL (CLGH 4 HEFL) 1aldr.
0 —1<k<my

Integrating gives
(Wl (&) — WL (E)] < ELJL &,

where the coefficients Jj’;:’ are defined as in (43). It follows that || W [a] — W [B] ||3?/5 < Ef, J]’;l”
O

Remark 5.10 The tensor J is a linear operator which maps m; x m, matrices to mg x m,
matrices. If we represent an mgy x m, matrix E as an mg - m, dimensional vector E with
components £ 1y, +; = E},, then the action of J can be represented as a mgmy, x mgmy

matrix J with components JU T hmsti J’/:’

(Jj'=Dms+n
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We are principally interested in whether the Lyapunov-Perron operator W has a unique
fixed point. By Theorem 5.9, this will be true if an iterative application of J to any m, x m,,
matrix E limits to zero, that is

lIim Jo---0oJ-E =0.
k— 00 S——~—
k
This limits to zero if and only if the spectral radius of J, denoted by p(J), is less than 1.
Since J is finite dimensional, p(J) is equal to the absolute value of the eigenvalue with
largest magnitude. This is bounded as p(J) < ||J¥||'/* for any positive integer k > 1, and
any matrix norm || - ||.

The theorem below collects the major results thus far.

Theorem 5.11 Take the assumptions made in Remarks 4.1 and 5.1. Suppose the tensor F €
(R”’X)(X’3 ® R"™ @ R™s*2 satisfies Condition 5.3 and define J € (R™s ®Rm")®2 as in
Definition 5.8. If the spectral radius of J is less than 1, then there exists a unique fixed point
o€ B:)’IP Pfor which W[a] = «. Furthermore, the graph

Mipe = {(Xs, a(Xy)) € Xy X Xy : X5 € By(p)}

is an invariant manifold under the flow (3), and points in Mo converge asymptotically to 0.
In addition, suppose that h is an equilibrium solution to (2) satisfying |hil < & foriel,
and that €; < p; fori € I. Define a(xy) := a (x5 — h )+ hu The graph

Mloc = {(Xs, a(x5)) € X5 x Xy 1 Xg € By(p — €)}

is an invariant manifold under the flow (2), and points in Mj,. converge asymptotically to h.
Moreover, we have the estimates

@ (xo)| < Pl(Ixi| +€) + € &, (xs)Il < P, Lip(3:@)}, < P/,
forallxg € Bg(p —€5) and i, j € landi’ €I

Proof We infer from the assumptions made in Remarks 4.1 and 5.1, all of which can be

verified a posteriori, that the map W : B" P B; IP E is a well defined endomorphlsm

Since the spectral radius of J is less than 1, there exists a unique fixed point « € B" P 5
for which W[a] = «, see Remark 5.10. As discussed in Sect. 2.3, the fixed point of the
Lyapunov-Perron operator provides us with a chart for a local invariant manifold for the
differential equation defined in (3). By construction «(0) = 0, hence the origin is contained
in the manifold. It follows from the proof of Proposition 3.13 that points in M), converge
asymptotically to the origin.

As (3) is conjugate to (2) via the change of variables x — x + I, it follows that a(Xg) is
a graph for a local invariant manifold (having a slightly smaller domain) for the differential
equation defined in (2). Furthermore this manifold contains the equilibrium h,a point to
which traljectorles in Mioc are asymptotically attracted. The error estimates follow by virtue
ofx € B O

As discussed at the end of in Sect. 2.3, the fixed point of the Lyapunov-Perron operator

provides us with a chart for the local stable manifold provided we have captured all stable
eigenvalues.
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6 Application I: Linear Change of Variables
6.1 The Swift-Hohenberg Equation

Consider the Swift-Hohenberg Eq. (1) of Sect. 1.1. Since the boundary conditions are Neu-
mann, we will expand the spatial variable using Fourier cosine series. Proceeding formally
(we do not yet specify the norms) define the space of one-sided sequence of real numbers,
denoted Y = RY. Given a one parameter curve a € C(R, Y), define a path of Fourier cosine
series by

u(t,x) = ap(t) +2 Z a (1) cos(kx).

k=1

Taking the expansion above as an ansatz, and plugging it into Eq. (1) leads to the system of
infinitely many coupled scalar ordinary differential equations

ar = (—Bik* — ok + Dag — (a * a * a);. (44)

Here, the discrete convolution * for a, b € Y is defined by

@by =Y auybpy-
k1+ko=k
k],szZ

We endow Y with the “analytic” norm corresponding to cosine series with geometrically
decaying coefficients. So, fora € Y let

o0
lalg =Y laklax (v),
k=0
where

1 k=0

V) = =
O(v) = o :M k> 1.
With v > 1 define

Ei:[aeY S lalg <oo],
and note that lej is a commutative Banach algebra, in the sense that
laxbl) < llallpll, foralla,beel.
We rewrite (44) as a (densely defined) vector field F : E,lj — Ei given by
F(a) :=La—a*ax*a, (45)
where £ is the diagonal linear operator
L) = (=Bik* — Bok> + Dag,  forall k > 0. (46)
Fix some N € N and define a Galerkin projection my : 61 — RN+l ¢ K}, by
ny(a) = (ag,ay...an—1,an,0,0,0,...). 47

We define the Galerkin projection of F by Fy :=my o F o mty.
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Remark 6.1 (Normal form) To enter into the notational framework established in Sect. 2 we
define a change of variables conjugating the differential Eq. (44) to one of the type given in
Eq. (2). Note that (45) has the desired form at the homogeneous equilibrium solution 0 € E,lj,
but that a change of variables is required when a is non-trivial. After performing the change
of variables, we will bound the constants needed to satisfy the hypotheses of Theorem 5.11.

Remark 6.2 (Firstorder data) We exploit the extensive literature on computer assisted proofs
for equilibrium solutions to partial differential equations, and provide computer assisted
proofs for the existence, local uniqueness, and bounds on the accuracy of the numerical
approximation. Such techniques rely on solving the finite dimensional problem Fy(a) = 0,
and use an implicit function type argument to show that there is a point @ € £} close to a for
which F(a) = 0. We use the techniques described in [35,66]. Similar ideas are used to solve
the linearized equations at a, providing enclosures of the necessary eigendata. The Morse
index of the stationary point a, denoted n,, is established rigorously using a straightforward
implementation based on the ideas and techniques from [67,69].

In a more theoretical setting we would use the sectorial nature of £ to decompose £}
as a Cartesian product of eigenspaces of DF(a). In the more constructive setting of the
present work we do not have direct access to this data. Instead, we numerically compute
approximate eigenspaces associated with the Galerkin projection. Suppose then that Ay, €
Mat(RN+1 RV*1Y is a matrix of real numbers having that A;rv ~ DFy(a).

Assume for the moment (this assumption will have to be checked in practice) that A;rv

has n, unstable eigenvalues (i.e. it captures the correct Morse index, see Remark 6.2).
’

Let { uk/}Zf‘z |+ denote positive numbers approximating the unstable eigenvalues of Al and

{,uk}Zi | Withn s = N +1 —n, denote negative numbers approximating the stable eigenval-
ues. Without loss of generality, suppose that these numbers are ordered as

Mpp, = w00 2 1y > 0> py Z 2 Mg
Remark 6.3 (Gradient structure) The Swift-Hohenberg PDE is a gradient system, hence

A;, has real eigenvalues with N + 1 linearly independent eigenvectors. Indeed, this is most
easily established by working with the slightly adapted F rather than F directly, where

F o {F(a)o/Z fork =0,
F(a)g fork > 1,

so that D Fy (a) is symmetric with respect to the standard inner product on RV *!, However,
this is a minor technical point.

Consider now the Swift-Hohenberg equation at parameter values such that m, = 1, and
choose a decomposition of the stable eigenspace having m; = 2. We decompose X into
subspaces

Xy = R X :=RY Xy:={aetl :aq =0fork <N},

and have that X, := X and X := X| x X2 and X = X,, x X;. We sometimes employ the
notational shorthand X r := X and X := Xo.

Note that the map wn defined in (47), is the projection my : X — Xy < X where
Xy =Xy x X1 2RV Define 7oo : X — Xoo by meox := x — wnx. A Schauder basis
{én}nen for X is given by

Xy = spanfep, ..., éy,—1} X1 :=span{én,,...,én} X2 :=span{énti,ent2,-..}
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so that every ¢ € X has a unique representation ¢ = fo:o Pnen.
We are now ready to construct a linear change of variables from X to £!. Fix Q, €
Mat (R, RN 1y and Qr € Mat(R"7, RN*1) as matrices whose columns are numerical

approximations of unstable/stable eigenvectors of A;rv. For ¢ = (¢u, ¢f, doo) € Xy x Xy X
X oo, define the linear map Q : X — ¢! by

Q@) = Qupu + Qrds + dpoo- (43)

We endow X with a Banach space structure as follows. Let ¢ = my¢ and let QV be the
(N 4+ 1) x (N + 1) invertible matrix given by OV = [Q,, O r1. Define the transformation
Q: X — () by

[QV¢N], 0<n <N,

[Q¢]n = on n>N-+1,

for ¢ € X. Denote the columns of Q by g,, n € N. Note that g, = ¢, whenn > N + 1 and
that g, = QnN, the n-the column of QN, for 0 < n < N. Define the norm on X by

N
Blx = |¢n Q|

n=0
N
|Bnllgnle + Z |Gnlon
=0 n=N+1
N
=" 16ullgnler + ool (49)
n=0

Note that |¢p|x = Y ;.1 |¢il for ¢ € X, so that with this norm, X satisfies the hypotheses of
Proposition 2.10.

We also require explicit formulas for the induced norms on several collections of operators
in £(X, X), £(X, €l) and £(¢}, X). Suppose that MY isa (N + 1) x (N + 1) matrix and
define the linear operator M : X — X by

[MNoN], 0<n <N,

(M1, = 0 n>N+1.

A standard calculation shows that
IMY | x

s 50
0% Taeln 0

Mllcx.x)= sup M|y <

[plx=1

where M,ﬁv denotes the k-th column of MN. Similarly, for QN an (N 4+ 1) x (N + 1) matrix
define the linear operator Q2: X — E]]) by

o= {1 120
Again, a standard calculation shows that
120 2x,epy) = sup 192011 < maX( 2y ,1), (G
lplx=1 0Zien |Gkl ¢)
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where Q,’(V denotes the k-th column of V. From this it follows that || Q||c(x,4) =1.

To compute the norm of o !: E‘lj — X, let BN denote the matrix inverse of QV. The
action of Q! is expressed as

N _ N
[Q_la] _ [B a ]n 0<mn<N,
n ay >N+1
Then
1o~ sup |0 'aly < max [ max 1B Ix | (52)
1 = X = N .
L(L},X) lal, =1 0<k<N wy

Now, for any i € I, we define projection maps 7; : X — X;. Again, 7 coincides with
its usual definition. By our choice of norm on X, we have |||l c(x,x;) = 1. Recalling the
definitions of p,, ps, pi in Eq. (5), we have that p, = p; = pi = 1. Lastly, we define A by

Ay = diag{un,, ..., L1}, Ay = diag{ul,...,unf}, Ar = Lo mo-

We show that the norm on X, as defined above, is well aligned with the semigroup e!. Fix

apoint ¢ = (¢y, dr, o) € X and write ¢, = (¢o, ..., Pn,—1) and ¢y = (Pn,, ..., dN)
and oo = (dN+1, PN+2, . ..). Then for t € R we have

Algy= Y e 18k,

1<k<n,

AMop= 3" e Gin, 18kin, 1,
l§k§nf

> 4 2

el\ztd)oo — Z e(—ﬂlk —pBak +1)l¢kék-

k=N+1
Define A/, A1, and A, as
Ari=Repy, Ar=Rep, r=—fN+D' —BHWN+D>+1.  (53)

It follows that A;r < Re g for I’ < k' < n), and 1 > Re py for 1 < k < ny, and
Ay > (—ﬂlk4—ﬂgk2+1) fork > N+1.Choose N sufficiently large so that —ﬂ1k4—ﬂzk2+1
is negative and decreasing for k > N + 1. Then

M pulx < > VOl fort <0,
0<k<n,—1

eMpslx < Y Q¢ fort > 0,

ny,<k<N

A

o0

Aot Aot
e poolx < D [ Ogxle for ¢ > 0.

k=N+1
From Eq. (49), we have that (6) and (7) are satisfied.

A

6.2 Bounds for the Linear Change of Coordinates

The estimates necessary for completing the argument are obtained following the instructions
outlined below, which summarizes the discussion of the previous sections.
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1. For U C X, define a change of variables K : U — li‘lj such that K (0) = a.
For the equilibrium 7 = K ~1(@), obtain bounds |mji| < € fori € L.
2. Pull back the vector field from K}, to U, creating the conjugate differential equation

x = DK(x)"'F(K(x)).

Define N € C? (U, X) as N(x) := DK (x) "' F(K (x)) — Ax.

3. Obtain constants CJ¥(ry, r,,) which bound [|NF¥[|¢,-+e, e, fori, j k € 1.
4. Obtain constants DJ! which bound ||J\~/3'(0)|| fori,jel
5. Obtain constants Cy, Ay which satisfy Eq. (8) to bound N TLYT,

In the remainder of this section we explain how to follow the outline above, arriving at a
linear change of coordinates K. The results of the a calculation are presented in Sect. 6.3.

6.2.1 Estimate 1: Defining a Change of Variables

Define the affine change of coordinates K : X — E}J by
K@) :=a+ 0¢. (54)

Let |a — aly =< € be a bound on the distance between the approximate solution and true

equilibrium solutions, and define €; := €||; o £E8,x7) fori € I as needed in Proposition
2.6.

6.2.2 Estimate 2: Defining the Conjugate Differential Equation

Applying the change of coordinates defined in (54) to the Swift-Hohenberg equation leads
to

¢=Ap+N(@p) with N(p):=DK(p) 'F(K(@)— A¢. (55)

We note that the form of A as given is not easy to work with, and expand N into an affine
part and a purely nonlinear part. Define functions E, R : X — £} as

E(¢) := F@) + DF(@Q¢ — QA¢p,  R($) :=—3ax(Qh)* - (0$)*.

T~hen E+R = FoK — DK - A, where DK(¢) = Q for all ¢ € X. It follows that
N(@) = 07 (E@) + R($)).
6.2.3 Estimate 3: Bounding ./\7"1j
All second derivatives of E are zero. Hence 0;0; mN = J(f]? =0} R)E fori, j, k € I. For
¢ € X, define

Q:= Q¢:Qf¢f+Qu¢u+¢oo, (56)
and note that each term in R itself contains a term of the form Q * Q. Set

Q>:=Q%xQ and Q’:=QxQxQ.

Then R(¢) = —3a * Q% — Q3.
The derivatives of Q are

anhf=thf7 0uQ - hy = Quhy, 000Q - Moo = hoo,
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wherehy € X7, hy, € X, and hoo € Xoo. Since ||Q||L(X,[L) = 1, we have ”aiQ”L(X,Q) =1
fori € I. As 0;Q is a linear operator, the second derivatives 0;;Q vanish for all i, j € L.
The derivatives of Q% and Q are given by

%Q> =23Q+9Q and  3;Q° = 6Q * %Q * 3;Q,
so that
0ijR = —6(a + Q) * 3;Q * 9; Q.

Recall that ||8iQ||£(X%) = 1 foralli € L. Fixing ¢ = (¢, ¢s) € B,(r,) X Bs(ry) with
rs = (rf, roo) gives |Q¢| < ry +rf + roo. Define

¢y = 6llm 0! Iz x (1l +ru+7f 4o + €+ €5 +€c0) - (57)

Then |8 14,46y < Cp fori.j k € L

6.2.4 Estimate 4: Bounding ./\7].i (0)

Since & R(0) = 0 and 3, DK (¢) 'E(¢) = Q"' DF(a)Q — A, we have
N (0) =7 (Q'DF(@Q — A) .
Approximate D F(a) by the operator AT Ell) — /L \1) defined by

(AT e (Ao k<N
' Lv)yr k>N,

for v € £). We bound /\7;(0) by adding and subtracting Q' AT Q to obtain

[0, < lme (DF@ = A) 0mi] sy gy + 173 (271470 = A) ] iy, -

(58)

L(X,X)

To bound the right summand in (58), note that 7;j (Q’lAT 0 - A) mj vanishes when either
i = oo or j = oo, hence the right-summand in (58) is computed directly using (50). The left
summand in (58) is bounded by considering four cases, depending on whether i or j equals
o0. Each of these terms involves

—3(@* @ * Tooh)i + (DFy (@) — Ay 0 <k <N

o (59)
—3(@=xaxh) k>N+1.

(DF@h— A'h), = :

For the case i = oo and j = oo, since E}, is a Banach algebra and 7, projects onto the
modes k > N + 1, we use (59) and obtain

oo (DF (@) — AT k| < 3Ja xalglhlg.
Hence ”7100 (DF(Ez) - AT) ”ﬁ(l},,zg) < 3la * Ezm. Define
DL, :=3laxaly, (60)

so that [|N1(0)||zx.x) < DL, forallie L
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For the case i # oo and j # 0o, we note that the operator 7; (Q’lDF(Ez)Q — A) i is
represented by an (N + 1) x (N + 1) matrix and explicitly bound the norm. Define

Dj:= |7 (@' DF@Q — A) il oy y, - v

It follows that ||/(q'(0)|| < 13} foralli, j e I — {co}.
For the case i = oo and j # oo, it follows from (59) that
mlDF (@) — ATy =0  fork > 3N,

where we recall that the subscript k denotes the k-th column. Since Qmy, = 7, using the
appropriate analogue of (50) for a matrix of a larger size, we set
. m Q' [DF @) — A'Ix

D® := max
J N+1<k<3N o

(62)

It follows that ||J\~/3°°(0)|| < l~)j°° forall j € I — {oo}.
For the case i # oo and j = oo, we note that since 774 0~ ' = 7 and TooATmy =0, we
have
70~ (DF (@) — A") Omi = mso DF (a) Qi
Recalling the formula in (50), we set

=5 |[oo DF (@) Qilk| x
Dy, := max .
Osk=N gkl e)

(63)

It follows that ||/\7j°°(0)|| < DJPO forall j € I — {oo}. With D} as in Eqgs. (60), (61), (62) and
(63), we have bounds on ||/\~/ji(0)||5(x,x) foralli,jeL

6.2.5 Estimate 5: Semigroup Bounds

To find C; and Ay as needed in (8), we use Proposition B.1 and Remark B.3. Define D} =
b} + C’}le; + C‘Jil/e[/ fori, j € I as in Proposition 2.6, and let

M1 = A 8q:=D} 8 :=DF
Moo := A2 = A s. .= D. 8= DX ¢:= Z |1oo| ™!
o0 o) c o0 o] ) 1_|Moo|_1(8d+|llk|)
A€o (Ar)
Note that | A3 | = |iool ™" Assume that the spectral gap conditions

1> oo™ <5d + sup |llk|)7 1 > Hhoo + 84 + &8p8c(1 + £28,8,), (64)
jfigeo (M)

are satisfied. (These must be checked in explicit examples). It then follows from Proposition
B.1 and Remark B.3 that

”e(AS‘FL;)I ” < Cse}“t,
where

Cs = (1+£8)(1 +£80)
As =1 +6,Cs + A
A = 88y max {1+ &8 (1 + £8p), €85 (2 + £2848.) } -
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6.3 Numerical Results

Following the steps given in Sect. 6.2 allows us to prove a variety of stable manifold theorems.
In Theorem 6.4 below we present one such result, for the equilibrium displayed in Fig. 1.
Here we choose py, the radius of the domain Bs(p) € Xy x X projected into the finite
dimensional subspace X  , as large as possible. A number of additional results are presented
in Sect. 7.6.

Theorem 6.4 Consider the Swift-Hohenberg Eq. (1) with parameters B = 0.05, and B, =
—0.35. Let v = 1.001 and suppose that a € lej is an approximate equilibrium solution,
€ = 1.61 x 1071 close in the £} norm to a true equilibrium solution. Fixing the Galerkin
projection dimension at N = 30, and following the instructions described in Sect. 6.2.1, we
bound e; < 1071* - (4.97, 1.61). Let p = (2.2 x 1072, 107°), and define B;(p — €) as in
Definition 2.4, and 1,1’, and 1 = I U I’ as in Remark 2.2. Let

5 (169x107°1.37 x 1073
— =5 —
P =(0.153, 138 x 107°) and P = <1.37 103 214 « 10_4>,

be tensors as in Definition 2.8.
Then, there exists a unique & € CUY(Bs(p —€), Xu), such that the local stable manifold
ofa € £} is given by

Xs > K (Xg, @(Xg))
for K as given in (54). Moreover, & has
G ()] <336 x 1073 & @)l < P Lip(3,&);, < P,
forall€ € By(p —€;),i,jel, i’ el'andicl

Proof In script main.m we calculate all of the constants and verify all of the hypotheses
in Theorem 5.11. In particular we have a contraction constant ||J| < 0.356. The entire
computation took about 4 seconds and was run on MATLAB 2019a with INTLAB on a
17-8750H processor. |

Remark 6.5 (Performance: timing and conditioning) One valuable indicator of perfor-
mance for the computations just discussed is to compare the runtime of the non-rigorous
portions of the computation. This gives an impression of the cost of passing from “good
numerics” to a computer assisted proof. For example, of the roughly 4 second runtime for
the proof of Theorem 6.4, roughly one second is spent on the numerical approximation of the
equilibrium solution (Newton’s method) and the numerical approximation of the eigenval-
ues and eigenvectors (computational linear algebra). Then the validation stage takes roughly
three times longer than the non-rigorous linear approximation of the equilibrium and stable
manifold. While this is only the result of a single computation, it gives a rough sense of the
cost (in time) of the validation stage.

Another valuable performance indicator is the conditioning of the algorithm. Since The-
orem 6.4 involves the linear approximation of the stable manifold by the eigenspace, we
expect that the approximation is quadratically good. Then an excellent condition number
for the algorithm is the constant of proportionality. For example, in the calculation above
the approximation is valid on a subset of a ball of size 2.2 x 10~2 about the equilibrium,
and the bound on the linear approximation is roughly 3.36 x 1073. This suggests that the
condition number for this calculation is about 15. Note that this is roughly the size of the
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largest entry of P. Recalling the definitions in Sect. 6.2, we see that the entries of P—and
hence the conditioning of the algorithm—are determined by the size of the derivative of F
in a neighborhood of the equilibrium, and the size of the spectral gap. This is a heuristic
observation which, while difficult to fully justify thanks to iterative procedure of defining P,
is still useful.

7 Application Il: Nonlinear Change of Variables

In this section we improve the approximation of the stable manifolds in certain directions,
by making the nonlinear change of coordinates discussed in Sect. 2.4. Again, we consider
the example of the Swift-Hohenberg Eq. (1). We employ the notation established in Sect.
6.1, with some minor adjustments. In particular, we use m, = 1 and ms; = 3. Recalling the
notation of Sect. 2.4, set n, = Munst, Mg := Mglow, N f = Miase +Mglow, ad N = n,+nyp—1,
and define

Xp:=R" X :=R" X;:=RY ™™ X3:={aet :aq=0fork<N).

We write X, := Xs and X := X| X X3 x X3 and X = X,, X X, and use the notational
shorthand Xy := X (slow stable), X s := X (fast but finite stable) and X, := X3 (stable
tail). The map my, as defined in (47), is a projection operator 7y : X — Xy € X, where
we define Xy := X x X1 x Xo & R+ Define 70 : X — Xoo by TooX 1= X — TNX,
and A as

Ay = diag{pny,, ..., nrt,  Apc=diag{u, .., Mng}, Az = diag{pny41, ..., Hasts  Azi= Lo,

with u defined in Sect. 6.1, and £ defined in (46). Define A; fori € I by
Ay i= oy A= L, A2 TS fngt,
A3 = —BI(N + D — Bo(N + 1)2 + 1. (65)

Repeating the argument given at the end of Sect. 6.1 in this context gives that the inequalities
of Egs. (6) and (7) are satisfied. We now follow the scheme for stable manifold validation
outlined in Sect. 6.2.

7.1 Estimate 1: Defining a Change of Variables
Using the parameterization method, and the good coordinates discussed in Sect. 2.4, we
approximate a slow stable manifold and finite dimensional invariant normal bundles
P:[—1,11" — Xy,
0r©O): [-1,11" — Mat(R"/ ™", Xy)
0,0): [—1, 11" — Mat(R™, Xy).

These are chosen to approximately solve (21)—(22). The error terms

Eg:[—1,11" — ¢} Ef:[—1,11" — L(Xy,€)) (66a)
Ey: [—1,11" — L(X,, L)) Eoo : [-1, 11" — L(Xo0, £)), (66b)

are defined by
Eg(0) := F(P(8)) — DP(0)Asf (672)
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Ef(0) :=DF(P©)Qf(0) —DQs(0)Ae0 — Qr(O)Af (67b)
E () := DF(P(0))Qu(0) — DQu(©)As0 — Qu(0) Ay (67¢)
Ex(@):=DF(P(#))00 — Ao (67d)

Define U := B(rs + €5, 1y +€,) € Xy x [—1, 1]" x X X X, a normal frame bundle
Q:[-1,11" - L(X/X}, E},), and a local diffeomorphism K : U C X — E,l, by

0©0)p = Qr0)pr + Qu(O)pu + oo (68)
K(©,¢):=P(O)+ Q0)¢. (69)

We define the norm | - |x as in (49) relative to the linear map Qo : X — eL defined by
Qo - (hg, hy) := DK(0,0) - (hg, hg) = 99 P(0)hg + Q(0)hy, (70)

where hg € Xg and hy € Xy X Xf X Xo.

While we do not have an explicit expression for the inverse function K ~!, we can bound
the norm of # = K~1(a) as follows. Note that K~ (a) = le(a —a)+ O(la —al?). If
la —aly < € bounds the distance between the approximate and true solutions, we apply

standard techniques from rigorous numerics (cf Remark 6.2) to bound Imfll <¢gforiel
as needed in Proposition 2.6, in terms of €, ||7;Q ! I, and the polynomial coefficients of

K(©. ).

7.2 Estimate 2: Defining the Conjugate Differential Equation

Applying the coordinate change of Eq. (69) to the Swift-Hohenberg equation leads to
% = Ax + N(x), N(x) := DKX)'F(K(x)) — Ax, (71)

for x € U. We now perform a Taylor expansion of F(K(x)) in x € U. To simplify the
notation, for x = (6, ¢) where 6 € [—1, 1]" and ¢ € X, X Xy X X, define

P:= P(9) Q:= Q(0)¢. (72)
Starting from (45), expand F (K (6, ¢)) as
F(K@®,¢) = £P+Q] — (P +Q)*
= (€P - P*) + (£Q - 3P? % Q) — 3P x Q* — Q°,

1

»» the derivative of

where the powers denote products of convolutions. Note that fora, h € £
F is given by

DF(a)-h=£h—3(ax*axh),
so that
F(P) = £P — P3, DF(P)-Q = £Q —3(P?>xQ).
Defining a remainderterm R : U € X — 611, by
R =R(0,¢) :==3P0) * (Q0)p) * (Q(0)p) — (Q(0)p) * (Q(0)¢) * (Q(0)9)

=-3PxQ* - Q’, (73)

simplifies F (K (6, ¢)) as
F(K@©,¢))=F®)+DF®)-Q+R. (714
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The (approximate) conjugacy relations in (67) (approximately) linearize the non-remainder
components in (74). More precisely, we have that

F(P(©)+ DF(P0)[Qf@)¢s + Qu(O)u + poo]
= Eg(@) + DP(O)Ay0O
+Ef@)pr +DQr(0)( N0, 05)+ Qr(O@)Asdy
+ Eu(@)du + DQu(0)(Ag0, ) + Qu(®) Ay
4+ Exo(0)Poo + AcoPoo
N0

Aror

Ay |’

AOO¢OO

= E®,¢)+ DK, b7, ¢u, boo)

where E : U — £} is defined by
E@®,¢):=Eg(0) + Ef(0)pr + Eu(0)Pu + Eco(0)Poo. (75)
It follows that for x € U, we have
DK(X)'F(K(x)) = DK(x) " (E(x) + DK (x) Ax + R(X))
=Ax+ DK®X) ' (EX) + R(x)).

Thus, the differential equation is decomposed into a diagonalized part and nonlinear error
terms. It follows that

N@©,¢)=DK®,¢)"' (EO, )+ RO, 9)). (76)

7.3 Estimate 3: Bounding ./\7"?

Throughout this section, consider points in the ball (0, ¢) € U = B(rs + €5, 1y, + €,), and
assume that |¢,| < ry, + €, [@f] <rf+€f, and [poo| < roo + €xo. Additionally, choosing
89 € (0, 1]suchthatif |0|x < rg-+e€p, wehave that (0); < &g forall components 1 < k < ng,
whereby U = B(ry + €5, 1, +€,) C Xy x [=89, 801" X X X Xeo.

7.3.1 Bounding the Derivatives of DK and its Inverse

Fix h = (ho, hy, hy, hoo) € Xo X X X X, X Xoo. We have that
DK(©.¢)-h= (3P ©O)+ dQr@)ds+ 99 QuO)pu)hg + Qs+ Qu(O)hy + heo.
77
Define the maps
Ao0) -h =09 P(O)hg + Qr(O)hy + QuO)hy + hoo,
A1, ¢) - h:=09Qr0)prho + 39 QuO)Puhg.

Then DK = Ag + A;.

The norm of Aj is controlled by taking |¢| small. Assume Ag(0) is invertible for all
0 € [—8y, 891" with inverse B(0) := Ay(9)~!. Indeed, the action of the operator Ap () :
XN X Xoo = lej = Xn X Xoo leaves both subspaces Xy and X, invariant. The action of
the operator Ag(0) in the finite dimensional component is represented by a polynomial in 6
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with (N + 1) x (N + 1) matrix coefficients. Its action in the infinite dimensional component
is precisely the identity map. Hence the operator B(8) = A¢(6)~! is an infinite power series
in 0, with Taylor coefficients defined recursively by power matching. We compute finitely
many of these coefficients by solving the recursion relations.

The inverse DK ! : ¢! — X now has

DK(®.4)~" = BO)(I + A6, $)B®)) .

Bounds on the derivatives of DK (8, ¢)~! are obtained by the product rule. We first compute
finitely many terms in the power series expansion of B(6), and bound the Taylor remainder
and its derivatives using a Neumann series argument similar to the one given below to bound
(I + A1(0,9)B (6)) B 1. Indeed, for ¢ sufficiently small the Neumann series provides the
bound

1

[A1(0, D) BO) £ (e ety

—1
= [1 = 1851+ 18uD13 0O | ccxyx.ep | BO) iy | -

(I +A10.9)B@®) || < =

Derivatives of (I + A(0, (j))B(Q))71 are bound using the fact that for any smooth path
of invertible matrices, it holds that

Y-t y-12Y i
ar ot ’

Applying the product rule gives

82Y1_Y_1<8Yy_18Y 3%y ayy_lay>y_l

atds s o oios Do ds

Hence, to bound the derivatives of (I + A0, ¢)B(0))71, it suffices to bound the inverse
and the derivatives of I + A1 (6, ¢)B(0).

For fixed (6, ¢) € U and i € I, we see that the nontrivial first derivatives d;A1(0, ¢) :
X ® Xi — ¢! are given by

9 AL(O, ) =009 Qs (O)Pr + 096 Qu(O)Pu,  0:A1(0, P) = 99 Q4 (0) forx € {f, u}.

For fixed (9, ¢) € U, and i, j € I, compute the nontrivial second derivatives d;djA1 (6, ¢) :
X®Xi®Xj — £}, by

099 A1(0, @) = 3900 Q r(O)Pf + 0900 Qu(0)Pu, JguA1(0, ) = g9 Qx(0) forx € {f, u}.

Note that 9. DK ~! = 0. Furthermore, 7oo DK ~! = 7, 50 that 7. d(DK 1) = 0 for all
i € I. Then bounds on DK ~! and its derivatives follow from bounds on

I7BOlcern | w00 (78)

ok
oo

X§t@e).X) l xexgh.el)’

where 7, € {7y, Too} and k = 1, 2, 3. Since we have either explicit expressions (we may
take a supremum over 6 € [—8p, Sg]™ using interval arithmetic) or explicit bounds for
each of these, we obtain the necessary explicit bounds on DK ~! and its derivatives. Note
that bounds on Tk DK (6, ¢) ™' = m B(0) (I + A, (6, (j))B(Q))71 are improved by bounding
|k B(O) ||£:(@L,X) for k € I, and likewise for the derivatives.
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7.3.2 Bounding E

To bound E : U — Z}, defined in (75), see also (66) and (67), we note first that these
bounds are calculated in the | - |, 1 norm, whereas bound on Ef, E,,, E are calculated in the
I - ||£(X,e},) norm. We have that

WE®,9) - h = (94Ea©) + 0 EO)ds + 0o Eu(0)du + 0 Exc(0)bc ) - ho.
The other first derivatives of E are
WE®,¢)-h=E.0) -hp, forxe(f, u,oo}.
The nontrivial second derivatives of E are
o E©,¢) - (h',h*) = (999 Eg + 900 E s b 5 + 990 Eubu + 300 Eccpos) - (hy, h),
B EO, ) - (h', h?) = g E,(0) - (h}y, h?),  forx € {f,u, oo}.

Recall that we have an explicit finite dimensional polynomial representation for the functions
Eg, Ey and E,,. For Eo and its derivatives we have

Eoo(8) - poo = =3P (0) % P(0) * dpoo
09 Ecc(0) - (9oo, ho) = —6 (09 P(0)hg) * P(0) * ¢poo
360 Eso(0) - (oo hy, hg) = —6(39 P(0) - (. h)) % P(0) % oo — 6(3 P(O)hg) % (39 P(0)h3) * oo
Using the bounds on |¢|, the explicit expressions for the polynomials P, Q, and the

expressions above, we obtain bounds on E over all of U C X. In summary, we have bounds
on E and its derivatives, and bound

where 7, € {ny, 7T}, * € {u, f, 0o}, and the supremum is taken over 8 € [—8p, 5p]"°.
Here for k = 0, 1,2, X®* is the k-fold tensor product of X, and X ®0 i the trivial vector
space.

ak ak
no;?Ee(e)HL( noﬁa(e)”ﬁ( (79)

k l k ’
xX§h.e)) xexgk.el)

7.3.3 Bounding R

Recalling (72) and (73), we have

P:=P@©H), Q:=07;0)s+ Qu@ ¢+ b, R:=-3PxQ>—-Q’.

To calculate bounds on R (6, ¢) = R and its derivatives, we start by calculating the derivatives
of Q. These are

BQQ'h:(89Qf¢f+39Qu¢u)'h95 0xQ-h =04 hy forxe{f,ul, 00Q h=he.
The nonvanishing second derivatives of Q are given by

300Q - (', h%) = (360 Q rd s + 300 Qutpu) - (h}, h3),  8,0Q - (h', k) = 39 Q. - (h}, h?) forx € {f, u).

The only nonvanishing derivatives of P are with respect to 6. Then, bounds on Q?, Q3P Q?,
and their partial derivatives are obtained using the product rule.
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Using that R = —3P % Q% — Q % Q2, we have expressions for all of the first and second
derivatives of R. Hence, to bound R and its derivatives, it suffices to bound

| m%g,(mHﬁ(

where we take m, € {7nn, oo}, * € {u, f}, kK = 0,1, 2, and the supremum over 6 €
[—60, 891" . The rest of the bounds follow by applying the product rule (as detailed above),
the Banach algebra property of El, and the bounds on |¢| which result from restricting to the
ball B(rg + €, 1y + €4).

7o PO)| ( (80)

X§h.el) Xex§*.el)

7.3.4 Bounding N

The derivatives of N' = DK ~!(E + R) are calculated using the product rule. Exploiting
the formulas derived in Sect. 7.3 facilitates implementation of the constants C jk bounding

||-A~/:iik||(rs+es,ru+eu), fori, j, k € I needed to apply Proposition 2.6.

7.4 Estimate 4: Bounding ./\7}i 0)

We now compute a tensor D bounding [N (0) ], as needed in Proposition 2.6. We infer from
the computations in Sect. 7.3 that Q2(6,0) = 0, DQ?(9,0) = 0, D(Q % Q) = 0, and
D(P % Q?) = 0 when ¢ = 0. Hence DR(#, 0) = 0. Since R(6, 0) = 0 as well, we infer that

HN(0) = DK(0)"'%E(0,0) 4+ (DK (0)")E©0,0) foriel (81)

The first summand in (81) is similar to the term studied in Sect. 6.2.4. To see this, starting
from (75), compute the first derivatives of E at (6, ¢) = (0, 0) to obtain

09E(0,0) - h = 09Eg(0) - hg, 0+E(0,0)-h = E.(0) - h, forxe {f,u,oo}.
We deduce from the definition of E in (67) and the substitution P (0) = a, that

09 Eg(0)rg = (DF(a)dg P(0) — 99 P(0)Ag) 7g,
E(0)mre = (DF(a)Q+(0) — QuAy) s forx € {f, u, co}.

Using Qo as defined in (70), we obtain the simplification
GE,00h = (DF(a)Qo — QoA)m foriel.
Finally, the first summand in (81) simplifies to

DK (0,0 %E(0,0) = (Qg‘DF(a)QO — A) i  foriel

We then bound |z (Q(;IDF(&)QO - A) 7ill £x.x) asin Sect. 6.2.4, with the trivial addition

that the projection map mp must also be considered.
To bound the second summand in (81), note that E (0, 0) = Eg(0), for which we have an
explicit expression. From a calculation in the same vein as in Sect. 7.3.1, we obtain

(DK (0)') E(0,0) = -0y (DK (0)) Oy ' Eo(0).
Then
dg DK (0) = 09 Ag(0), 0«DK(0) = 99 0,(0) for* e {f,u, oo}
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The norm |Eg(0)],; is quite small in practice, and it suffices to obtain a rough bound on the
norm of 3; DK (0)~!. Thus, for i, j € I we bound the components of (81) as

B} = Il (5 ' DF @ Qo — A) millcox,x)

+ 703", o I6PK Ol e e [7v 05 EalO)] .

L}, X)

There are some additional cancellations, as 7 Q,, ! (DK (0)) = 0 wheni = ooorj=oo.

7.5 Estimate 5: Semigroup Bounds

The constants Cy and g are obtained by applying Theorem B.1 as in Sect. 6.2.5. The only
difference is that X is decomposed into 3 subspaces in Sect. 7 (as opposed to 2 subspaces
in the linear case). We argue as follows. Define DJ! = Dj + CJ?[ €+ CJFZ €y as in Proposition
2.6, and

W1 = A 8, '= max E D' 8p = E D',
1<i<ms—1 J J
- lf./fms_] lf.ifms_]
=A3=A §.:= max D! 84 := D",
Moo 3 o) c I<i<m,—1 my d mg

The rest of the computation for C and A, are exactly as described in Sect. 6.2.5.

7.6 Conclusion and Numerical Results

We recall that the parameter p = (g, pf, Poo) determines the size of the domain

Bs(p) = {(x6, X1, Xo0) € Xyt |X0] < po. |Xp| < pr. [Xool < oo} -

for the candidate charts & € B, p 5, where X is decomposed in terms of the eigenspaces
Xo, Xy, and X of Ay corresponding to the slow stable eigenvalues, the fast-but-finite stable
eigenvalues, and the remaining infinite stable eigenvalues respectively. This parameter p has
a significant impact on nearly every aspect of our analysis.

For a given application it may be advantageous to choose certain components of p =
(0o, pf, Po) large and others small. For example, we generically expect connecting orbits
to have a larger projection into the slow-stable subspace Xy and a smaller projection into
the other stable subspaces. In Theorem 7.1, we present one such result, taking py as large
as possible. The parameters are the same as the ones used to produce Fig. 1. This nonlinear
approximation of the stable manifold produces significantly better error estimates than a
linear approximation: the C° error bounds in Theorem 7.1 are of size 7.43 x 10~!2, whereas
the approximate manifold in Theorem 6.4 has C° error bounds of 3.36 x 1073,

Theorem 7.1 Consider the Swift-Hohenberg Eq. (1) with parameters B1 = 0.05, and B, =
—0.35. Let v = 1.001 and suppose that a € Kll, is an approximate equilibrium solution,
€ = 1.61 x 107 close in the Kll, norm to a true equilibrium solution. Using the techniques
discussed in Sect. 2.4, we compute a slow stable manifold and finite dimensional (un)stable
bundles, represented by Taylor polynomials of degree 20. Fixing the Galerkin projection
dimension at N = 30, and following the instructions described in Sect. 6.2.1, we bound
€ < 10714.(1.85,4.51, 1.61). Let

p=(3.18x 10721076 10710},
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and
9.43 x 1071 ~ (130x 107 5.60 x 107 1.04 x 107*
P=1441x10"° P=|560x10"5272x10"°820x 107,
3.31 x 107 1.04 x 1074 8.20 x 1074 1.41 x 1074

be tensors as in Definition 2.8. Define Bs(p — €;) as in Definition 2.4, I,I', and 1 = 1 U I’
as in Remark 2.2.

Then, there exists a unique & € CY'(Bs(p — €4), X.,) so that the local stable manifold of
a e ! is given by

Xs > K (Xg, (X)),
for K as in (69). Moreover, & has
| (§)] < 7.43 x 10712 & @)1l < P} Lip(3:@)), < P!/,
forallé € Bs(p —¢;)andi, jel, i’ €l andie€ L

Proof Inscript main_NL.m we calculate all of the constants and verify all of the hypotheses
in Theorem 5.11. In particular we have a contraction constant || J|| < 5.86 x 107°. It takes
approximately 11 s to construct the slow-stable manifold and normal bundles, 23 s to compute
the bounds detailed in Sect. 7, and 12 s to compute all the bounds in Sects. 3-5 needed to
validate the stable manifold. These we run on MATLAB 2019a with INTLAB on ai7-8750H
processor. O

Remark 7.2 (Performance: timing and conditioning) As in Remark 6.5 after Theorem 6.4,
we consider briefly the timing and conditioning of the calculations required for the proof of
Theorem 7.1. Note that, while the proof of Theorem 7.1 takes roughly ten times longer than
the proof of Theorem 6.4, the cost in time of the validation, when compared to the cost in time
of the non-rigorous calculations is very similar. That is, the numerical computation of the
parameterized bundles takes about 11 s, which is roughly one quarter of the full computation
time. On the other hand, since Theorem 7.1 involves complex higher order approximation
schemes, it is less clear how to define a useful condition number for the argument. However,
we give a more nuanced discussion of the final error relative to the algorithm inputs below.

The nonlinear approximation in Theorem 7.1 is optimized to produce a larger validated
part of the manifold in the direction of the slow stable eigenvector, as this is where we would
generically expect to find connecting orbits. Note that in Theorem 7.1 the gap between
eigenvalues of A/, A1 and A is not very large:

A = 1.01, A= —1.41, Ao = —1.99, A3 = —4.58 x 10%.

We took the slow-stable eigenspace to be one dimensional. If a particular application required
a stable manifold which was wider along the second slowest stable eigendirection, we could
increase py at a cost of also increasing P, P, etc. These error estimates could be improved
somewhat by splitting X ; into two subspaces. Moreover, we could significantly increase the
radius of our approximation along the second slowest stable eigendirection by using a higher
dimensional slow stable manifold.

From the classical theory [15], we expect our derivative bound P > | D«|| to be at least

as large as the ratio between the derivative of the nonlinearity and the spectral gap, roughly

DN LI + ID*Nlp
)Lu - )\s ~ )Lu - )\s '

Pl Z
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Fig.3 (Left) Using the estimates from Sect. 6, the bounds produced by a computer assisted proof for a range of
radii p € [10719,0.022], with poo chosen to be as small as possible. (Right) Using the estimates from Sect.
7, the bounds produced for a range of radii py € [10_10, 0.0318], with py and poo chosen to be as small as

possible. Note that the nonlinear approximation yields smaller €9 error bounds (red dash-dotted lines) (Color
figure online)

We expect that this bound should increase linearly with p, and be bounded below by || L],
the error from not perfectly splitting X,, x X, into eigenspaces. This scaling is observed
in Fig. 3, where we display the error bounds in Theorems 6.4 and 7.1 as functions of p.
The nonlinear approximation maintains small error bounds, despite taking pg large. This is
because the change of variables prepares the nonlinearity so that ||dg DN|| is small. Note that
one should be mindful in comparing the two graphs in Fig. 3, as in Theorem 6.4 we split
Xy = Xy X Xoo with dim(Xs) = N, and in Theorem 7.1 we split X; = Xy x Xy X X
with dim(Xy) = 1 and dim(Xs) = N — 1.

When using the linear approximation we see that for a large range of p s, the contraction
constant, the tensor P, and the minimal choice of o, all scale linearly with p ¢. The C 0 error
of the manifold, given by |&;/| < Pi’} (pi + €i) + €7 in Theorem 5.11, is dominated by the
error in validating the equilibrium until p; ~ 107, where it begins to scale quadratically
with py. The ¢! error bounds on the norm of the components of P do not improve much
for p < 1073, and increase quite rapidly for p > 1072
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For the nonlinear approximation, the error in validating the equilibrium dominates the
€ bound until py ~ 1072, the point after which PY increases marginally. The contraction
constant scales similarly, begining to increase around pg ~ 10~3. The C! bounds in the X f
and X, subspaces are bounded below by the accuracy of the decomposition into eigenspaces
of DF(a), and increase linearly with py. For the whole range of admissible pg, both p s and
Poo can be taken exceedingly small, without contributing significantly to the overall error.

We do not expect to validate a global stable manifold with the Lyapunov-Perron approach;
if p is too large, the various hypotheses of Theorem 5.11 may no longer be satisfied. For
example, we may be unable to prove the image of W is contained within Bg”lp or B:)’]P 5> a8
detailed in Theorems 4.2 or 4.4. Other causes for failure would be if || J || > 1 whereby Wis not
a contraction mapping, or if we are unable to prove solutions x (¢, £, «) are contained within
B, (p) forallt > 0 asrequired by Proposition 3.13. When using a linear approximation, many
of these hypotheses all simultaneously fail for larger values of p. In contrast, for the nonlinear
approximation in Sect. 7, the dominant limiting factor is the condition yp = A; + C H <0
as required in Proposition 3.13. Overall, the framework developed in Sects. 2 — 5 allow us to
leverage our estimates on our approximate stable manifold made in Sects. 6-7.
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A General Strategy for Bootstrapping Gronwall’s Inequality

We generalize the bootstrapping argument used in Sect. 3 so that it can be applied in Sects. 4
and 5. To unify the class of functions we wish to bound, and the set of assumptions we make
on these functions, we define Condition A.1 below. In a slight abuse of notation, here we
define B to be a tensor, distinct from its previous usage as a ball of functions in Definition 2.8.

Condition A.1 Fix A1,..., Ay, € R fix H € RV ® RV and define yx := A + Hf for
I <k <Ny, ForN, €N, fixsome u; € Rforl <k < NM.Assumethat{yj}yil C {uk}ivz"l,
and suppose that both vy > yi4+1 and g > [Lg+1. Assume further that (L1 > yj.

ForM € N,and N; € Nfor1 <i < M and basis elements e,; € RYi where1 < n; < N;,

we fix tensors
M M
Ae (QRY) @ RM @ RV, Be (QRY) @ RM
i=1 i=1
component-wise by
Aji = A;fjl'{""M ey, ® - ®eny,, Bj = B]V.L""”M cen, ® - epy,-
For this arrangement of constants, we say that a pair (u, ®) satisfies Condition A.1 on

a time interval [0, T] if the functions u = (uj)yil and the positive tensor @ € ®f‘i1 RV
satisfy the inequalities
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' '
e_)“f’uj(t) <Bjw +/ e T Z eMT A rwdt —|—/ e_kaH]’»ui(r)dt forallt € [0, T].
0 0<k=<N, 0

(82)

In all cases where we consider constants satisfying Condition A.1, we take N, = my, and
Al,..., AN, asin (6),and H I as in Definition 2.9. Hence, the definition of y; here coincides
with that given in Definition 3.3. For the other variables, we take them in the various sections
according to the following table.

We note that for A x in Sect. 4 we use a double index (k1, k2) to index over the elements of
{1k }. For a system given as in Condition A.1 we are interested in finding a tensor G satisfying
Condition A.2 below.

Condition A.2 Given w as in Assumption A.1 and a pair (u, ) of functions u = (uj)j.vil
on [0, T and a positive tensor w € ®f‘i] RN, we say that the tensor G € (®,Ai1 RN") ®
RN @ RN« with components

ni...n
Giu =G "en, ® - ®eny,
. .. . N,
satisfies Condition A.2 if uj(t) < Y .2 ™' G ro forallt € [0, T].
From these two conditions, we can bootstrap our bounds on a tensor G.

Proposition A.3 Assume the pair (u, w) satisfies Condition A.1 on [0, T] and assume G
satisfies Condition A.2. Fix 1 < j < N,. If Aj ; = 0 and G; x = 0 whenever u; = y;, then
we have:

Mkl _ oVt .
w0 < B+ Y #(Aj,k + Y H;gi,k)w forallt € [0, T).
1<k=n, M7V 1<i<N;
HkFEYj i#]
(83)
In other words, define a map T (®lﬁi1 RY) @ RM @ RNe — QM RYNi by:
(pr — Vj)_l<Aj,k + 2 H}Qi,k) if e # vj
1<i<N;,
i
T k(A B, G) = ’ : .
! B/ - Z (m — yj)71 (-Aj,m + Z H;gi,m) if pe = Vij-
0<m<N, 1<i<N;
Hm#Y; i#]
(84)

Then G also satisfies Condition A.2 if we replace Gj x by T; x (A, B, G) for all k.
Proof of Proposition A.3 Splitting HJ’:u,- = Zi#j Hj‘:u,' + HJ{ uj, we write (82) as
' 1 .
e_)\-f’uj(t) <Bjw+ f e (T, w)dt + f e_kfrHj!uj(r)dr.
0 0

where

vrw) = Y Ao+ Y Hiu(o).
1<k<N, 1<i<N
WKV i#]
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By plugging in the bound assumed in Condition A.2, we obtain

v(t, ) < Z e“”(Aj,ka)—i— Z ng,-,kw).

1<k<N, 1<i<N;
HkFEYj i#]

By applying Lemma 3.9 we obtain (83).

In order to obtain tensors satisfying the requirement that A x, G; x = 0 whenever j; = y;,
we define an operator Q; as below.

Proposition A.4 Fix 1 < j < N, and define a map Q; : (®f‘i1 RT) RV @ RNk —
(R, RY) @ RV @ RNx by

0 if e = vj
G ™ + Gty i ey =), and GG > 0
GIY™ + GG i e = vy and Gl <0

ni...n .
Gy otherwise.

Q@) =

Then Q;(G)i k = O whenever ju; = y;. Furthermore, if G satisfies Condition A.2 then Q ;(G)
satisfies Condition A.2.

We are able to generalize Algorithm 3.11 as follows.

Algorithm A.5 Take as input all the constants in Condition A.1, an input tensor é\satisfying
Condition A.2, and a computational parameter Npoorsirap- The algorithm outputs a tensor

g.
GG
Jorl<ic< Npoostrap do
for1 < j <mgdo
Gik < T k(Q;(A), B, Q;(9))
end for
end for
return G

Proposition A.6 [fthe input tensor Gro Algorithm A.5 satisfies Condition A.2, then the output
tensor G satisfies Condition A.2.

The proof of Proposition A.4 follows from the assumption that @y > pg+1. The proof
of Proposition A.6 follows from an induction argument which uses Proposition A.3 for the
inductive step. Both proofs are left to the reader.

B Semigroup Estimates for Fast-Slow Systems

In Eq. (8) we require constants Cy, Ag satisfying
e Mt LD x| < o xgl, t>0,x € X,. (85)

Our assumption that A; < 0, and moreover that yo = Ay + Cﬂ% < 0, is essential. In
Proposition 3.13 this is used to prove that solutions x(¢, &, «) stay inside the ball B, (p) for
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all + > 0. While our method of bootstrapping Gronwall’s inequality greatly mitigates the
effect of these constants Cy, Ay on our final estimates, for the Lyapunov-Perron operator to
be well defined it is essential that we prove yg < O.

There are two types of estimates which we will apply to obtain pairs (Cs, Ag) satisfy-
ing (85). First, for linear operators A, B € £L(X, X) with leA’x| < ke*|x| for all x € X and
t > 0, and || B]| < oo, we have (the proof is analogous to the one of Proposition 3.2)

(A+B)t

le x| < ke®HKIBDT x| forallt > 0,x € X. (86)

This estimate by itself is not enough, as the largest eigenvalue of A is often small in compar-
ison with ||L{||. For example, in Sect. 6 we showed that leitx;| < eit|x;| and ||L’j | < D;
with values

S

4x10719 1.6
_ _ 4 s
A=-—-141, l = —4.58 x 107, D,—< 16 5.7>.
Since A1 +||L3]l > 0, just an estimate of the type in (86) with A the diagonal part of D{ and B
the off-diagonal part will not suffice. We further note that our estimates for Dj do notimprove
with a larger Galerkin projection dimension. Hence we want to change basis to diagonalize
As+L?, atleast approximately, and then take advantage of the identity e””/? Tt = peltp-l

in our estimates. To motivate our construction, we first consider a 2 x 2 matrix

Y 2
M_<86 kw).

If Ao is much larger in absolute value than the other matrix entries, then the eigenvalues of
M are approximately given by A1 and L. In particular, if |8,8.| < |A1roo]l and A1, Ao < O,
then all of the eigenvalues of M have negative real part. Below in Theorem B.1 we prove
an analogous theorem where we replace A by a finite dimensional matrix, and A by an
infinite dimensional linear operator. This is the second type of estimate that we use to find
pairs (Cy, Ay) satistying (85).

Theorem B.1 Consider Banach spaces CN and X o, with arbitrary norms, and their product
CVN x Xoo with norm |(xn, Xs0)| = (IXN1P + |X00|P)Y? forany 1 < p < oo.
Consider the linear operators M, A, L : CN x Xoo — CV x X4 given by

_ (A0 (LI LY
M=A+L, A-(O Aoo)’ L_<LéoL£ } (87)

We require A to be densely defined and L to be bounded. Suppose that Ay is diagonal and
that A~ has a bounded inverse.
Fix constants (1, [too, C1, Coo € R such that for all t > O we have

le™ ] < Cret, lle>"|| < Cooe">".
Fix constants 81, &p, 8¢, 64, € > O such that
1 1
L1l < 8, LN < 8p, ILooll <6, LS < 8a.

and set

. 1A
= ) T Tt )
rea(Aq) oo 11104
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Assume that the inequalities
1A <5d + sup I)»k|> <1, oo+ Coo (84 + &8p8c(1 + £%8580)) < p1,  (88)
A€o (A1)
are satisfied. Then we have
leM ] < Coe™",
where
Cy = (14 £8,)*(1 + £6.)* max{C1, Coo}
As = w1 + Cyéq + Amax{Cy, Co}
A = e8p8e (14 £(20p + 8c) + 28p8c (1 + £8p)) .
First we prove a lemma for general Banach spaces which allows us to approximately

diagonalize our matrix. When | - | denotes the norm on a Banach space, then by | - |, we
denote the norm on its dual.

LemmaB.2 For a Banach space Xoo consider the linear operator My : CN x Xoo —
CVN x X defined as
A B
= (22).

Suppose that o (A) N o (D) = @ and that A has distinct eigenvalues L1, . .., Ay with eigen-
vectors vi, ..., vy, and dual eigenvectors uy, ...,un (the corresponding eigenvectors of
A*). Normalize the vectors so that u?v; = §;;, the Kronecker delta.

We define Wy, : Xoo — CN and W, : CN — X as a sum of products between vectors
in their codomains, and dual vectors acting on their domains:

N N
Wy =Y u [(D* = Aflo) ' B*ui],  We:=) —[(D—Mlo) ' Cui]u,
k=1 k=1

where D* : X% — XX and B* : (CN)* — XZ, are the dual transformations. Define
invertible operators Py, P, : CN x Xoo = CN x Xoo by

(I W _(Iy O
P"‘(o 100> P“_<WCIOO>'

. (A0
(PePp)” "M (P:-Pp) = <0 D + E,

Then

where

E_ Iy + WpyW.)BW, BW. W), + W, W.B(I + W.Wp)
—W.BW., —WeB(Iso + WeWp) ‘

Proof. First we show that
1 (AB\, (A0 (A0, (A0
By <0D P=\op) Fe\cp)f=\op) 89)
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We begin with the second equality in (89), and calculate

p1(A0)p _ A 0
¢c \c¢cbD) ¢“ " \-W.A4+C+DW.D)"

We compute the action of —W,.A + C + DW, on an eigenvector v of A as follows:
(=W:A+C+DWovk = Cuog 4+ (D — A loo) Wevg.
To see that the right hand side is equal to zero, we calculate, using ul’.‘v i = 0ij,
Wevg = — (D — Mdog) ™! Cg.

Since the eigenvectors v; ... vy span CV, then —W,.A + C + DW,. = 0, yielding the desired
equality.
The argument is analogous for the first identity in (89). Again we begin by calculating

p1 (A B p _ (AAWs+B—WyD
b \op)""~\o D '

Hence, we would like to show the map (AW, + B — WD) : Xoo — CV is the zero map,
which we do by arguing that uz(A W, + B — W, D) = 0 for all k. The latter follows from a
calculation similar to the one performed above.

Finally, we calculate (P, Pp)~1 M, P, P, as follows:

_ _ A0 _1(0B
(P.Py) ' My(P.Py) = P! <(0 D) +p (0 0) Pc> Py

_,-1((AB BW, 0
=5 <<0 D) + (—WCBWC ~w.p) )
3 (A o) N ((IN + WyWe)BW, BWW, + Wy WeB(I + Wch)>

—W.BW, _WCB(Ioo+Wch)

O

Proof of Theorem B.1. Let M = M + M>, where

_(AB\_ (A LY _(Llo
Ml'_<CD>'_<LéOAOO+L£ ’ M=)

We will apply Lemma B.2 to the matrix M. Since we have assumed that A is diagonal we
may take uy = vy = e, the standard basis vectors in CN.We begin by proving || Wy || < &6
and | W, || < ed.. We first calculate

(D = hidoo) ™" = (Moo + LY = Micdoo) ™! = (oo + AL (L = M) T AL
By our hypothesis, we are allowed to apply the Neumann series and we obtain
1A
L= A 1B + 12k

1D = 2adoo) ™" < (90)
We note that the same estimate holds for the dual operator (D* — A} Iso) L.

We now show that ||Wp|| < &d,,. Namely, by using that ||MZ||((CN)* = |lvkllcy = 1 we find
that

W= sup | w [0 =i 1) B ] | x|
x€Xoo,|Ix[[=1 o (Ar)

CN
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. [0 ~rir 5 )]
x€Xoo,llx||=1 A€o (Ay)

IA

3 H(D* — ML) B

A€o (Ar)

LACMY* X3)

A—l
<18y A5 | .
A€o (A1) 1 —|[Aco 182 + |2k])
Hence, by plugging in ||B*|| = ||L{°|| we obtain [|[W,| < &85. The proof of the estimate

|We|l < €. is analogous. Next, we note that
1Pl 1Py < 1+ €8y [Pl 1P < 1+ &8
By Lemma B.2 we have
(PePy)~" (M1 + M2)(PePy) = M3 + My + (Py Py) ™' Ma(Pe Py), O

where

v (M 0
TTN0 Ao +LE — WeLP(Ioo + WeWp) )

v e (AN WoWOLPWe LYWW + Wy WeL(Id + We W)
4T —W LW, 0 '

For (xn, ¥oo) € CN x Xo we see that

oo __ o]
M (xn ) xoo) = (eAerN’t,{,(/\oo+L(,o WeLS <1m+wcwb>>txoo).

We also have || L — WL.L‘I’Q(Ioo +W-Wp)ll < 8a+€bpdc.(1+¢pe.). By applying the estimate
(86) we obtain, for all t > 0,

A
e xnll < Cre|xnll,

”e(Aoo"FLz—Wt‘LTC(Ioo"I‘W(‘Wh))txOO” < Cooe(ll-oo'i‘cco[ad"rb“sbac(]+5h50)])t”xoo”.

From our assumption in (88) that ;11 > oo + Coolda + €550 (1 + £28,8.)], we obtain, for
any p-norm, 1 < p < oo, on the product CN x Xeo,

le™ (e, xo0) || < max{C1, Coo}e™ || (¥, Xoo) -
We may estimate the norm of the components of My as
Iy + Wy W)L We |l < £8p8(1 + £2858,),
| = WL Well < 28,87,
LW Wiy 4+ Wy WL (Id + WeWp)|| < €2828:(2 4 £28,5,).
‘We then obtain the bound
[IMall < A = e8p8c (1 + (28 + 8c) + e288.(1 + £8p))

by summing the component bounds.
We now perform the final estimate. By using (91) we obtain

M = (PoPy)exp {[M3 + My + (PePy) "' Ma(PoPy)]t} (PePy) ™"
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By then applying (86) to the sum of M3 and the bounded operator My + (P, Py) ™' Mo (P, Pp)
we obtain, with C o := max{C1, Cu},

le™ | < 1P Pyll - 1(PePp) M C1 o exp {11 + Ci oo | Ma + (PePy) "' Ma(P.Py)|| t} .

Defining Cs; = max{C1, Coo}(1 + £8)>(1 4 £5.)? and plugging in our bounds, we finally
infer

”eMt” < Cse(/L1+C;§a+A max{Cl,Coo})t.
|

Remark B.3 If we use the p = 1 norm for the product space CV x X then our bound for
A can be sharpened to

I Msll < e8p8. max {1+ e8:(1 + 8p), 8,2 + 28,50} .
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