
Parameterized stable/unstable manifolds for

periodic solutions of implicitly defined dynamical systems

Archana Neupane Timsina ∗ 1 and J.D. Mireles James †2

1,2Florida Atlantic University, Department of Mathematical Sciences

June 8, 2022

Abstract

We develop a multiple shooting parameterization method for studying stable/unstable man-
ifolds attached to periodic orbits of systems whose dynamics is determined by an implicit rule.
We represent the local invariant manifold using high order polynomials and show that the
method leads to efficient numerical calculations. We implement the method for several exam-
ple systems in dimension two and three. The resulting manifolds provide useful information
about the orbit structure of the implicit system even in the case that the implicit relation is
neither invertible nor single-valued.
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1 Introduction

A smooth diffeomorphism F : Rd ! R
d generates a dynamical system by the rule

xn+1 = F (xn), n 2 N,

with initial condition x0 2 R
d. The infinite sequence {xn}

1
n=0 is called the (forward) orbit of x0

generated by F , and the fundamental objective of dynamical systems theory is to understand the
qualitative features of the set of all orbits generated by F . This analysis often begins by considering
simple invariant sets like fixed points, periodic orbits, and their attached invariant manifolds. If
this program goes well one may move on to bifurcations of these objects, or to the study of more
exotic invariant sets like connecting orbits, horseshoes, strange attractors, and invariant tori.

A interesting generalization, whose motivation and literature are discussed briefly in Section
1.2, is to consider a smooth map T : Rd ⇥R

d ! R
d, and to study the properties of the mapping F

defined by the implicit rule
y = F (x) if T (y, x) = 0.
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This immediately raises delicate questions about the domain of F , or whether F is even single valued.
Of course the implicit function theorem provides valuable information. That is, if (ȳ, x̄) 2 R

d ⇥R
d

has T (ȳ, x̄) = 0, and D1T (ȳ, x̄) is an isomorphism, then there exists an open set U ⇢ R
d, x̄ 2 U,

and a smooth diffeomorphism F : U ! R
d with F (x̄) = ȳ and having that

T (F (x), x) = 0, for all x 2 U.

We say that T implicitly defines the diffeomorphism F near x̄.
We remark that for fixed x̄ 2 R

d, the solution ȳ of T (y, x) = 0 may not be unique. Hence F
depends on the choice of ȳ. Nevertheless, for a given choice of ȳ the associated “branch” of F is a
perfectly well defined diffeomorphism. This and other fundamental notions for implicitly defined
maps are discussed in Appendix B.

To iterate the procedure suppose x̃ 2 F (U) and ỹ 2 R
d have T (ỹ, x̃) = 0, with D1T (ỹ, x̃)

an isomorphism. Then there is an open set an open set U ⇢ R
d, x̃ 2 U, and a diffeomorphism

F̃ : Ũ ! R
d with F̃ (x) a branch of solutions of T (y, x) = 0 having F̃ (x̃) = ỹ. Now, for any

x 2 U \ F�1(Ũ), the composition of x under the two implicitly defined maps F and F̃ is well
defined.

Continuing in this way, suppose that y1 6= . . . 6= yN 2 R
d have

T (y2, y1) = 0

T (y3, y2) = 0

...

T (yN , yN+1) = 0

T (y1, yN ) = 0,

(1)

with the linear maps D1T (y2, y1), . . ., D1T (y1, yN ) all isomorphisms. Then there exist neighbor-
hoods Uj ⇢ R

d, and diffeomorphisms Fj : Uj ! R
d so that each Fj is a branch of solutions of

T (y, x) = 0 having Fj(yj) = yj+1 for j = 1, N (with the understanding that yN+1 = y1). Indeed,
by taking the Uj disjoint, there is no reason to think of the Fj different maps. Rather, we think of
y1, . . . , yN as a period-N orbit of a single mapping F : U1 [ . . . [ UN ! R

d, and have that F is a
diffeomorphism in a neighborhood of each of the points y1, . . . , yN .

It makes sense in this context to consider the linear stability of the periodic orbit of F , and to
study in turn the attached invariant manifolds. The main goal of the present work is to develop
efficient numerical procedures for computing high order polynomial approximations of the local
stable/unstable manifold attached to a periodic orbit of an implicitly defined dynamical system.
We also implement and profile the results in some example applications.

We stress that our approach does not require information about the implicitly defined diffeo-
morphism F , much less any compositions of F . Rather, we develop a multiple shooting scheme
for the invariant manifolds which depends only on the mapping T and the choice of periodic solu-
tion x1, . . . , xN for the system given by Equation (1). A power matching argument leads to linear
systems of equations for the jets of the manifold, reducing the calculation of the stable/unstable
manifold parameterizations to a problem in linear algebra. As we will see, computing the local
invariant manifolds to high order leads to polynomial approximations valid in fairly large neigh-
borhoods of the periodic orbit. This in turn provides insights into the existence of more global
dynamical objects like heteroclinic/homoclinic connecting orbits for the implicitly defined system.
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The remainder of the paper is organized as follows. In the next section, Section 1.1, we introduce
the main examples considered in the remainder of the present work. In Section 1.2 we briefly
discuss the literature concerning generalized notions of a dynamical system. In Section 2 we review
some basic notions from the parameterization method for invariant manifolds, and in Section 3 we
review how these notions work for fixed points of implicitly defined dynamical systems. We then
introduce the multiple shooting parameterization method for stable/unstable manifolds attached
to periodic orbits of implicitly defined maps. In Section 4 we develop power series solutions for the
parameterized manifolds, and in Section 5 we implement numerical methods based on the power
series approach. Some conclusions are given in Section 6. The Appendices A, B, and C fill in some
background details and develop some more technical extensions of the methods developed in the
main text.

All the MATLAB codes discussed in the present work are on github at

https://github.com/aneupanetims2016/Implicit-map-archana

1.1 A class of examples: perturbations of explicitly defined maps

We now describe a class of examples sufficient for the needs of the present work. Other potential
applications are mentioned in Section 6

Let f : Rd ! R
d be a Ck diffeomorphism (or real analytic with real analytic inverse if k = !).

Then for any x0 2 R
d, f defines a dynamical system by the rule

f(xn) = xn+1,

for n = 0, 1, 2, . . . Define the function T : Rd ⇥ R
d ! R

d by

T (y, x) = y � f(x),

and note that for a given x̄ 2 R
d, ȳ solves the equation T (y, x̄) = 0 if and only if

ȳ = f(x̄).

In this case, the problem T (y, x) = 0 implicitly defines the dynamical system generated by the
diffeomorphism f(x). Now let U, V be open subsets of Rd and H : U ⇥ V ! R

d be a Ck function.
Consider the one parameter family of problems T✏ : U ⇥ V ! R

d by

T✏(y, x) = y � f(x) + ✏H(y, x), (2)

and note that for any (ȳ, x̄) 2 V ⇥ U we have that

D1T✏(ȳ, x̄) = Id + ✏D1H(ȳ, x̄).

Note that D1T0(ȳ, x̄) = Id, so that –by the implicit function theorem – there is a � > 0 and a
smooth curve y : (��, �) ! V ⇢ R

d so that y(0) = ȳ and

T✏(y(✏), x̄) = 0,

for all ✏ 2 (��, �).
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Moreover, for a possibly smaller � > 0 we have that

D1T✏(y(✏), x̄) = Id + ✏D1H(y(✏), x̄),

is invertible for each ✏ 2 (��, �), by the Neumann theorem [44, 40]. Then there exists an r > 0 and
a family of functions F✏ : Br(x̄)⇥ (��, �) ! R

d so that

F0(x) = f(x),

and
T✏(F✏(x), x) = 0,

for all x 2 Br(x̄) and ✏ 2 (��, �). The family F✏ depends smoothly on ✏ and is Ck for each fixed
✏. Moreover, for small ✏ 6= 0 and x̄ 2 U we take ȳ = f(x̄) as an approximate zero for T✏(y, x̄) and
apply Newton’s method to find y(✏) so that T✏(y(✏), x̄) = 0. That is, for small ✏ we can compute
images of the implicitly defined mapping F✏(x) using Newton’s method. For larger ✏ we perform
numerical continuation from the ✏ = 0 case.

Note that we make no attempt to guarantee that for a given ✏ the ȳ we find is globally unique.
Indeed, it may not be. What is required for our purposes is the local uniqueness given by the
implicit function theorem. This is expected to apply whenever the Newton method is successful
(as Newton will struggle or fail when a solution is degenerate) and is enough to give a unique local
branch of F having F (x̄) = ȳ. Finally, suppose that x̄ 2 U is a hyperbolic fixed point of f , and
recall that F0(x) = f(x). Since F✏ depends smoothly on ✏, it follows that for small ✏ 6= 0 the map
F✏(x) has a hyperbolic fixed point near x̄ by the usual perturbation argument for maps.

The discussion just given shows that problems of the form given in Equation (2) provide a
natural class of examples - perturbations of diffeomorphisms - for which our method applies. Two
specific examples are when f is either the classic Hénon map or its three dimensional generalization
to the Lomelí map. These are discussed briefly now.

1.1.1 Example 1: the Hénon map

Let ✓1 = (x1, y1), ✓2 = (x2, y2) denote points in the plane. The Hénon map is a two parameter
family of quadratic mappings defined by

f(✓1) = f(x1, y1) =

0
@ 1 + y1 � ↵x2

1

�x1

1
A (3)

The mapping is a classic example of a system with complicated dynamics, and was originally
introduced in [35]. See also the books of [22, 61]. We define an implicit Hénon system T✏ :
R

2 ⇥ R
2 ! R

2 given by

T✏(✓2, ✓1) = T✏(x2, y2, x1, y1) =

0
@ x2 � (1� ↵x2

1 + y1 + ✏x5
2)

y2 � �x1 + ✏y52

1
A . (4)

Here we have choosen, somewhat arbitrarily, the perturbation term

H(y, x) =

0
@ x5

y5

1
A ,
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to be of high enough polynomial order that it is difficult (if not impossible) to work out useful
formulas for the implicitly defined system.

The equation for a fixed point is T✏(x,x) = 0, or
0
@ x1 � (1� ↵x2

1 + y1 + ✏x5
1)

y1 � �x1 + ✏y51

1
A =

0
@ 0

0

1
A .

Similarly, the multiple shooting equations for a period two orbit are

T✏(✓2, ✓1) = 0

T✏(✓1, ✓2) = 0,
(5)

or
x2 � (1� ↵x2

1 + y1 + ✏x5
2) = 0

y2 � �x1 + ✏y52 = 0

x1 � (1� ↵x2
2 + y2 + ✏x5

1) = 0

y1 � �x2 + ✏y51 = 0

(6)

The implicit equations for fixed points or periodic orbits are solved using Newton’s method. Eigen-
values and eigenvectors we compute using the approach outlined in Section B.1.

For classical parameters a, b 2 R the Hénon map has a pair of hyperbolic fixed points, each with
one stable and one unstable eigenvalue. Then for small epsilon the same is true for the perturbation.
The numerical value of the unperturbed fixed points serve as initial guesses for the perturbed fixed
points in the Newton method. Similar comments hold for periodic orbits.

1.1.2 Example 2: the Lomelí map

We consider also the five parameter family of maps f : R3 ! R
3 given by

f(x, y, z) =

0
BBB@

z +Q(x, y)

x

y

1
CCCA (7)

where Q(x, y) = ⇢+�x+ax2+bxy+cy2 and one usually takes a+b+c = 1. The system is known as
the Lomelí map, and it is a normal form quadratic volume preserving maps with quadratic inverse.
In that sense it can be thought of as a three dimensional generalization of the area preserving Hénon
map. The map was first introduced in [49], and was subsequently studied by a number of authors
including [49, 23, 55, 57, 11, 28].

Let ✓1 = (x1, y1, z1), ✓2 = (x2, y2, z2) 2 R
3. We consider the dynamics implicitly defined by the

map T✏ : R
3 ⇥ R

3 ! R
3 given by

T✏(✓2, ✓1) = T✏(x2, y2, z2, x1, y1, z1)

=

0
BBB@

x2 � ⇢� ⌧x1 � z1 � ax2
1 � bx1y1 � cy22 + ✏

�
↵y52 + �z52

�

y2 � x1 + ✏�z52

z2 � y1

1
CCCA . (8)
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Note that T✏ is analytic in all variables. We remark that the perturbation is chosen so that the
system still preserves volume.

Fixed of points of the implicit Lomelí system (8) are obtained as solutions of
0
BBB@

x� ⇢� ⌧x� z � ax2 � bxy � cy2 + ✏(↵y5 + �z5)

y � x+ ✏�z5

z � y

1
CCCA =

0
BBB@

0

0

0

1
CCCA (9)

Similarly, a period four orbit for the Lomelí system solves the equations

T✏(✓2, ✓1) = 0

T✏(✓3, ✓2) = 0

T✏(✓4, ✓3) = 0

T✏(✓1, ✓4) = 0.

(10)

More explicitly, this is

x2 � ⇢� ⌧x1 � z1 � ax2
1 � bx1y1 � cy21 + ✏(↵y52 + �z52) = 0

y2 � x1 + ✏�z52 = 0

z2 � y1 = 0

x3 � ⇢� ⌧x2 � z2 � ax2
2 � bx2y2 � cy22 + ✏(↵y53 + �z53) = 0

y3 � x2 + ✏�z53 = 0

z3 � y2 = 0

x4 � ⇢� ⌧x3 � z3 � ax2
3 � bx3y3 � cy23 + ✏(↵y54 + �z54) = 0

y4 � x3 + ✏�z54 = 0

z4 � y3 = 0

x1 � ⇢� ⌧x4 � z4 � ax2
4 � bx4y4 � cy24 + ✏(↵y51 + �z51) = 0

y1 � x4 + ✏�z51 = 0

z1 � y4 = 0

(11)

The equations for fixed and periodic orbits are again amenable to Newton’s method, and the
multipliers �1,�2,�3 2 C, and associated eigenvectors ⇠j1, ⇠j2, ⇠j3 2 C

3, 1  i  4 are are computed
as discussed in Section A.3,

1.2 Generalized notions of dynamical systems

Generalizations of nonlinear dynamics to the setting of relations instead of functions, where neither
uniqueness of forward or backward iterates is required, appeared in the early 1990’s in the work of
Akin [2] and McGehee [53]. The Ph.D. dissertation of Sander generalized stable/unstable manifold
theory to the setting of relations [25], and work by Lerman [45] and Wather [65] studied transverse
homoclinic/heteroclinic phenomena in the setting of non-invertible dynamical systems, with a view
toward applications to semi-flows in infinite dimensions. Further work by Sander [63, 62, 64] studied
homoclinic bifurcations for noninvertible maps and relations.

6



The ideas of the authors mentioned above have been applied to generalized dynamical systems
coming from applications to population dynamics [3], iterated difference methods/numerical algo-
rithms [50, 25], delay differential equations [65], adaptive control [1], discrete variational problems
[27, 67], and economic theory [41, 42, 43, 54]. Indeed, this list is far from comprehensive and the
interested reader will find a wealth of additional references in the works just cited. We mention also
the recent book on dynamical systems defined by implicit rules [51], where many further examples
and references are found.

A complementary approach to the study of generalized dynamics, based on functional analytic
rather than topological tools, is given by the parameterization method. The idea of the param-
eterization method is to consider the equation defining a (semi-)conjugacy between a subset of
the given system, and some simpler model problem. Example include stable/unstable manifolds
attached to fixed or periodic orbits, or a quasiperiodic family of orbits - that is an invariant torus.
The equations describing special solutions often have nicer properties than the Cauchy problem
describing a generic orbit. While this observation is important for a classical dynamical system
defined by an invertible map, it can be even more useful when studying dynamical systems which
are not invertible, are ill posed, or are not even single valued.

The parameterization method was originally developed for studying non-resonant invariant man-
ifolds attached to fixed points of infinite dimensional maps between Banach spaces in a series of
papers by Cabré, Fontich, and de la Llave [6, 7, 8], though the approach has roots going back to the
Nineteenth Century (see appendix B of [8]). The method has since been extended to the study of
parabolic fixed points [4], invariant tori and their stable/unstable fibers [31, 30, 32, 10, 38], for sta-
ble/unstable manifolds attached to periodic solutions of ordinary differential equations [37, 13, 59],
and to develop KAM arguments without action angle variables [18, 9]. See also the recent book of
Haro, Canadell, Figueras, Luque and Mondelo [29] for much more complete overview.

The parameterization method can also be extended to generalized dynamical systems like those
mentioned in the first paragraph of this section. We refer for example to the work of [14, 15] on
stable and center manifolds for ill-posed problem, the work of [20, 68] on invariant tori for ill-posed
PDEs and state dependent delay differential equations [34, 33], the work of [17, 16] on periodic orbits
and their isochrons in state dependent perturbations of ODEs, and the related work of [12, 26] on
computer assisted existence proofs for periodic orbits in the Boussinesq equation and in some state
dependent delay differential equations.

Remark 1.1. The work of [19], which develops numerical methods for computing stable/unstable
manifolds attached to fixed points of implicitly defined discrete time dynamical systems, is the
jumping off point for the present study – which extends their method to periodic orbits. Another
paper closely related to the present work is [28], where the authors develop a multiple shooting
parameterization method for computing stable/unstable manifolds attached to periodic orbits of
diffeomorphisms. The main contribution of the present work is to extend the methods of [28] to
the more general setting of implicitly defined systems, and to illustrate their implementation in
examples. This also extends the applicability of the parameterization method for implicit systems
beyond the foundations laid in [19].

2 A brief overview of the parameterization methods for maps

We review some basic results about the parameterization method for maps.
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2.1 Parameterization of stable/unstable manifolds attached to fixed points

In this section we recall some basic results from the work of [6, 7, 8]. In fact, we paraphrase these
results, simplifying them to the finite dimensional setting of the present work. The reader interested
in infinite dimensional dynamics can consult the references just cited for theorems formulated in
full generality. Moreover, we recall that spec(x) refers to the eigenvalues of DF (x), and refer to
Section A.2 for a review of notions and notation related to stability of fixed points.

Lemma 2.1 (Parameterization method for fixed points in R
d). Suppose that U ⇢ R

d is an open
set, that F : U ! R

d is a Ck(U) mapping with k = 1, 2, 3, . . . ,1,!, that x⇤ 2 U is a fixed point of
F , and that DF (x⇤) is invertible. Take ds = dim(Es) to be the dimension of the stable (generalized)
eigenspace/the number of stable eigenvalues (counted with multiplicity).

Let ↵,� > 0 have that
|�|  ↵ < 1,

for all � 2 specs(x⇤) and
1 < �  |�|,

for all � 2 specu(x⇤). Let L 2 N be the smallest natural number with

↵L <
1

�
,

and assume that
L+ 1 < k.

Then there exists an open set Ds ⇢ R
ds with 0 2 Ds, a polynomial K : Ds ! R

ds of degree not
more than L, and a Ck mapping P : Ds ! R

d so that

1.
P (0) = x⇤,

2. The columns of DP (0) span E
s, and

3.
F (P (✓)) = P (K(✓)), (12)

for all ✓ 2 Ds.

Moreover, P is unique up to the choice of the scalings of the columns of DP (0).

Several additional comments are in order. First, we remark that the columns of DP (0) can be
taken as stable (generalized) eigenvectors of DF (x⇤), so that DP (0) is unique up to the choice of the
scalings of these vectors. The theorem says that once these scalings are fixed, the parameterization
P is uniquely determined.

Note also that if k = 1 or k = ! then L + 1 < k is automatically satisfied. Consider the case
when k = !, that is F (real) analytic at x⇤, and suppose that the scalings of DP (0) are fixed. Then
P , and hence its power series expansion at 0, is uniquely determined. In this case K and P are
worked out by power matching arguments, and these arguments lead in turn to practical numerical
schemes. In fact, the scalings of the eigenvectors can be chosen so that the power series coefficients
of P decay at a desired exponential rate. Numerical schemes for determining the optimal scalings
of eigenvectors are developed in [5].

The following lemma allows us to determine the polynomial mapping K a-priori, in the case
that some (generic) non-resonance conditions hold between the stable eigenvalues.
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Lemma 2.2 (Non-resonant eigenvalues implies K linear ). Let �1, . . . ,�ds
2 C denote the stable

eigenvalues of DF (x⇤), and assume that each has multiplicity exactly one. Moreover, assume that
for all (n1, . . . , nds

) 2 N
ds with

2  n1 + . . .+ nds
 L,

we have that
�n1

1 . . .�
nds

ds
/2 specs(x⇤). (13)

Then we can choose K to be the linear mapping

K(✓) = Λ✓,

where ✓ = (✓1, . . . , ✓ds
) 2 R

ds and Λ is the ds ⇥ ds matrix

Λ =

0
BBBBBBBBB@

�1 0 . . . 0 0

0 �2 . . . 0 0
...

...
. . .

...
...

0 0 . . . �ds�1 0

0 0 . . . 0 �ds

1
CCCCCCCCCA

.

That is, Λ is the matrix with the stable eigenvalues on the diagonal entries and zeros in all other
entries.

We say that the stable eigenvalues are non-resonant when the condition given by Equation (13)
is satisfied. We say there is a resonance at (n1, . . . , nds

) 2 N
ds if

�n1

1 . . .�
nds

ds
2 specs(x⇤).

In this case, the polynomial K is required to have a monomial term of the form c ✓n1

1 . . . ✓
nds

ds
with

non-zero c 2 R
ds . That is, even in the resonant case the form of the polynomial K can be determined

by examining the resonances between the stable eigenvalues. Numerical procedures for determining
P and K in the resonant case are discussed in [66].

It is worth remarking that when the stable eigenvalues are non-resonant, Equation (12) reduces
to

F (P (✓)) = P (Λ✓), ✓ 2 Ds ⇢ R
ds , (14)

so that P is now the only unknown in the equation. Indeed, the equation is viewed as requiring
a conjugacy between the dynamics on the image of P and the diagonal linear map given by the
stable eigenvalues.

We also note that the domain Ds can be chosen so that ΛsDs ⇢ Ds. In this case, since Equation
(14) holds, it is easy to see that P parameterizes a local stable manifold. To see this, let ✓ 2 Ds.
Since P is continuous (in fact Ck) we have that

lim
n!1

Fn(P (✓)) = lim
n!1

F (P (Λn✓))

= F
⇣
P
⇣
lim
n!1

Λ
n✓
⌘⌘

= F (P (0))

= F (x⇤)

= x⇤,
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so that image(P ) ⇢ W s(x⇤). Noting that image(P ) is a ds dimensional manifold tangent to E
s at

x⇤ gives equality rather than inclusion.

Remark 2.3 (Generality). Lemma 2.1 follows trivially from Theorem 1.1 of [6, 7, 8]. In the much
more general work just cited U is taken to be an open subset of a Banach space, and the infinite
dimensional complications result in more delicate spectral assumptions. The finite dimensional
setting of the present work, and the fact that we parameterize the full stable manifold simplify
somewhat the statement of Lemma.

Remark 2.4 (Unstable manifold parameterization). Note that in Lemma 2.1, the assumption that
DF (x⇤) is invertible implies that F is a local diffeomorphism. Then, in a small enough neighborhood
of x⇤ there is a well defined Ck inverse mapping F�1. Let Σ denote the diagonal matrix of unstable
eigenvalues of DF (x⇤), so that Σ

�1 is the matrix of stable eigenvalue of DF�1(x⇤). Assume that
these stable eigenvalues (entries of Σ�1) are non-resonant. Then there exists an open set Du and a
Ck mapping Q : Du ! R

d so that

F�1(Q(�)) = Q(Σ�1�), � 2 Du.

Applying F to both sides of the equation and composing with Σ leads to the equation

Q(Σ�) = F (Q(�)), � 2 Du.

In other words, the unstable parameterization Q satisfies exactly the same invariance equation as
the stable parameterization P . Only the conjugating matrix changes, in the sense that the matrix
of stable eigenvalues Λ is replaced by the matrix of unstable eigenvalues Σ.

2.2 Stable/unstable manifolds attached to periodic orbits

The material in this section provides a brief review of the techniques developed in [28] for parameteri-
zation of stable/unstable manifolds attached to periodic orbits of an explicitly given diffeomorphism.
The main idea is to exploit multiple shooting schemes which avoid function compositions.

Let x1, , ..., xN 2 R
d be the points along a hyperbolic period N orbit. Let �1, . . . ,�ds

denote
the stable multipliers of the periodic orbit, and let

Λ =

0
BBBBBBBBB@

�1 0 . . . 0 0

0 �2 . . . 0 0
...

...
. . .

...
...

0 0 . . . �ds�1 0

0 0 . . . 0 �ds

1
CCCCCCCCCA

,

denote the ds ⇥ ds diagonal matrix of stable multipliers (similarly Σ denote the du ⇥ du diagonal
matrix of unstable multipliers). For 1  j  ds, let ⇠j,1, . . . , ⇠j,ds

⇢ C
d denote the eigenvectors of

DF (xj) associated with the eigenvalue �j .
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Assume that the stable multipliers are non-resonant, in the sense of Lemma 2.2. Then, by
Lemma 2.2, there is an open set Ds ⇢ R

ds and are unique P1, . . . PN : Ds ! R
d so that

P1(0) = x1

...

PN (0) = xN

and

DP1(0) = [⇠1,1, . . . , ⇠1,ds
]

...

DPN (0) = [⇠N,1, . . . , ⇠N,ds
],

having that
FN (P1(✓)) = P1(Λ✓)

...

FN (PN (✓)) = PN (Λ✓)

(15)

Note that we are treating the periodic point as a fixed point of the composition map, so that
Lemmas 2.2 and 2.1 apply directly.

On the other hand, the presence of composition mapping FN is precisely what makes these
equations difficult, as FN is in general a much more complicated map than F . The main result of
[28] (see Section 3) is that the parameterizations admit a composition free formulation.

Lemma 2.5 (Composition free invariance equations). Under the hypotheses above (non-degenerate
periodic orbit and non-resonant multipliers), the functions P1, . . . , PN : Ds ! R

d satisfy the system
of composition free equations

F (P1(✓)) = P2

⇣
Λ̃✓
⌘

F (P2(✓)) = P3

⇣
Λ̃✓
⌘

...

F (PN�1(✓)) = PN

⇣
Λ̃✓
⌘

F (PN (✓)) = P1

⇣
Λ̃✓
⌘

where

Λ̃ =

0
BBBBBBBBB@

N
p
�1 0 . . . 0 0

0 N
p
�2 . . . 0 0

...
...

. . .
...

...

0 0 . . . N
p
�ds�1 0

0 0 . . . 0 N
p

�ds

1
CCCCCCCCCA

,
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is the diagonal matrix of N -th roots of the multipliers. (Here it is sufficient to choose any branch
of the N -th root).

On easily checks that if P1, . . . , PN satisfy the invariance equations in Lemma 2.5, then they
solve Equations (15). From the perspective of numerical calculations it is much easier to solve
simultaneously the system of equations given in Lemma 2.5 than it is to apply the parameterization
method directly to the composition mapping FN . This is illustrated by examples in [28]. Note also
that the N -th roots of the multipliers are the eigenvalues of the derivative of the multiple shooting
map, see Equation (31).

3 Parameterization methods for implicitly defined maps

Recall that implicitly defined dynamical system were discussed in the introduction and are reviewed
in more detail in Section B. We now discuss the parametrization method for fixed points of implicit
maps as introduced in [19], and then extend these ideas via a multiple shooting scheme to periodic
orbits of implicit systems. For the sake of clarity let us recall that T : Rd ⇥ R

d ! R
d is a smooth

mapping, and that we are interested in the implicitly defined dynamical system F is given by the
rule

F (x) = y if and only if T (y, x) = 0.

Then x⇤ is a fixed point if F if and only if T (x⇤, x⇤) = 0. See Equation (1) in the introduction for
the implicit equations satisfied by a periodic orbit.

3.1 Stable/unstable manifolds attached to implicit fixed points

Before introducing new results for periodic orbits of implicitly defined maps, we first review the
main result of[19] for fixed points.

Theorem 3.1. Suppose that U, V ⇢ R
d are open sets and that T : U ⇥ V ! R

d is a Ck mapping
with fixed point x⇤ 2 U \ V , that is

T (x⇤, x⇤) = 0.

Assume that

• D1T (x⇤, x⇤) is invertible.

• Let �1, . . . ,�ds
2 C denote the stable eigenvalues and ⇠1, . . . , ⇠ds

2 C
d associated eigenvectors

of �D1T (x⇤, x⇤)
�1D2T (x⇤, x⇤). Assume that the stable eigenvalues are distinct (otherwise

choose the appropriate ⇠j as generalized eigenvectors).

• Let
↵ = max

1jds

|�j |,

� = max
�2spec

u
(x∗)

����1
�� ,

and 2  L be the smallest integer so that

↵L� < 1.

Assume that L+ 1  k.

12



• Assume that for all (n1, . . . , nds
) 2 N

ds with 2  n1 + . . .+ nds
 L we have that

�n1

1 . . .�
nds

ds
6= �j

for 1  j  �ds
.

Then there exists an open set Ds ⇢ R
ds with 0 2 Ds, and a Ck mapping P : Ds ! R

d so that

P (0) = x⇤,

DP (0) = [⇠1, . . . , ⇠ds
],

and
T (P (Λ✓), P (✓))) = 0, ✓ 2 Ds (16)

where Λ is the ds ⇥ ds matrix with the stable eigenvalues on the diagonal entries and zero entries
elsewhere. P parameterizes a local stable manifold attached to the fixed point x⇤ of the implicitly
defined mapping F . P is unique up to the choices of the scalings of the eigenvectors.

The proof is a simple matter of translating the assumptions about T , its derivative, and its
eigenvalues/eigenvectors into equivalent statements about F , and then applying Lemma 2.1 to the
implicitly defined mapping F . Recalling for example that F (x) = y if and only if T (y, x) = 0, then
by letting y = P (Λ✓) and x = P (✓), Equation (16), is equivalent to

F (P (✓)) = P (Λ✓), ✓ 2 Ds,

and this is precisely Equation (14).

3.2 Stable/unstable manifolds attached to implicit periodic orbits

We now introduce a multiple shooting version of the parameterization method for periodic orbits
of implicitly defined systems. We remark that the multipliers and eigenvectors for such an orbit
are computed as discussed in Section B.1.

Theorem 3.2. Suppose that U, V ⇢ R
d are open sets and that T : U ⇥ V ! R

d is a Ck mapping,
and that x1, . . . , xN 2 U \ V have

T (x2, x1) = 0

...

T (xN�1, xN ) = 0

T (x1, xN ) = 0

Assume that:

• the matrices D1T (x2, x1), . . . , D1T (xN , xN�1), D1T (x1, xN ) are invertible.

• Let �1, . . . ,�ds
2 C denote the stable multipliers and for 1  j  N let ⇠j,1, . . . , ⇠j,ds

2 C
d

denote associated eigenvectors. Assume that the stable multipliers are distinct (otherwise
choose the appropriate generalized eigenvectors).

13



• Let
↵ = max

1jds

|�j |,

� = max
�2spec

u
(x∗)

����1
�� ,

and 2  L be the smallest integer so that

↵L� < 1.

Assume that L+ 1  k.

• Assume that for all (n1, . . . , nds
) 2 N

ds with 2  n1 + . . .+ nds
 L we have that

�n1

1 . . .�
nds

ds
6= �j

for 1  j  �ds
.

Then there exists an open set Ds ⇢ R
ds with 0 2 Ds, and Ck mappings P1, . . . , PN : Ds ! R

d so
that

P1(0) = x1, . . . , PN (0) = xN

DP1(0) = [⇠1,1, . . . , ⇠1,ds
], . . . , DPN (0) = [⇠N,1, . . . , ⇠N,ds

],

and
T (P2(Λ̃✓), P1(✓))) = 0

T (P3(Λ̃✓), P2(✓))) = 0

...

T (PN (Λ̃✓), PN�1(✓))) = 0

T (P1(Λ̃✓), PN (✓))) = 0

(17)

for all ✓ 2 Ds. Here Λ̃ is the ds⇥ds matrix with N -th roots of the stable eigenvalues on the diagonal
entries and zero entries elsewhere. Pj parameterizes a local stable manifold attached to the periodic
point xj of the implicitly defined mapping F . The Pj are unique up to the choices of the scalings
of the eigenvectors.

The theorem follows by applying Lemma 2.5 to the implicit map F defined by T (y, x) = 0. We
remark that the knowledge the Pj exist tells us that it is reasonable to develop numerical methods
to find them. Moreover, the fact that they solve a functional equation leads to efficient numerical
methods and a-posteriori error bounds. Indeed, if T is analytic then the Pj are analytic as well, and
it makes sense to look for power series solutions of the functional equations. This topic is pursued
in the next section.

4 Formal series solution of equation (17)

In this section we illustrate the formal series calculations which allow us to compute stable/unstable
manifolds using the parameterization method. In particular, we derive the linear recurrence equa-
tions for the power series coefficients of the functions solving Equation (17). We illustrate the
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method for several examples of one dimensional stable/unstable manifolds attached to implicitly
defined fixed and periodic points. These calculations involve only power series of one variable. Sim-
ilar calculations for two dimensional manifolds, involving power series of two variables, are given in
the Appendices.

4.1 Operations on formal power series

We recall some basic facts about manipulating power series. Consider two infinite sequences of
complex numbers {an}

1
n=0, {bn}

1
n=0 ⇢ C and the corresponding power series

f(z) =

1X

n=0

anz
n and g(z) =

1X

n=0

bnz
n.

Suppose that � 2 C. Then

f(�z) =

1X

n=0

�nanz
n.

Also, for any ↵,� 2 C the linear combination ↵f + �g has power series

↵f(z) + �g(z) =

1X

n=0

(↵an + �bn)z
n.

Moreover, the product of two power series is given by the Cauchy product

f(z)g(z) =

1X

n=0

(a ⇤ b)nzn,

where

(a ⇤ b)n =
X

k1+k2=n

ak1
bk2

=

nX

k=0

an�kbk.

Higher order products are defined analogously. For example suppose that f1, . . . , fN are power
series given by

fi(z) =

1X

n=0

ainz
n, 1  i  N.

Then

f1(z) . . . fN (z) =

1X

n=0

�
a1 ⇤ . . . ⇤ aN

�
n
zn,

where the N -th Cauchy product is given by

(a1 ⇤ . . . ⇤ aN )n =
X

k1+...+kN=n

a1k1
. . . aNkN

=

nX

k1=0

k1X

k2=0

. . .

kN−3X

kN−2=0

kN−2X

kN−1=0

a1n�k1
a2k1�k2

. . . aN�1
kN−2�kN−1

aNkN−1
.
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Note that the first form of the sum is easier to read, but that the second form is easily implemented
in computer programs as a loop.

Another important operation is the extraction of the coefficients of n-th order from the n-th
term of a Cauchy product. For example, we have that

(a ⇤ b)n = b0an + a0bn +
n�1X

k=1

an�kbk.

We write

(da ⇤ b)n =

n�1X

k=1

an�kbk,

to denote the terms in the Cauchy product depending only on lower order terms. Note that this is

(da ⇤ b)n = (a ⇤ b)n � a0bn � b0an =
X

k1+k2=n

k1,k2 6=n

ak1
bk2

Similarly, define

( \a1 ⇤ . . . ⇤ aN )n = (a1 ⇤ . . . ⇤ aN )n � a10 . . . a
N�1
0 aNn � . . .� a20 . . . a

N
0 a1n,

which is equivalent to

( \a1 ⇤ . . . ⇤ aN )n =
X

k1+...+kN=n

k1,...,kN 6=n

a1k1
. . . aNkN

.

4.2 An overview of the power matching strategy

In pursuit of a formal series solution of Equation (17), suppose that x1, . . . , xN 2 R
d is a period

N -orbit for the implicitly defined dynamics. That is, we assume that T : Rd ⇥ R
d ! R

d is a
smooth function and that x1, . . . , xN solve Equation (1). In the discussion to follow, let � denote
a stable/unstable multiplier and ⇠1, . . . , ⇠N 2 R

d be an associated collection of stable/unstable
eigenvectors, computed as described in Section A.3.

Since we want to solve a functional equation (Equation (17)) with prescribed first order data,
we look for a power series solution of form

Pj(✓) =

1X

n=0

pjn✓
n. 1  j  N.

Here, for each n 2 N and 1  j  N , the power series coefficient pjn 2 R
d. Note that if the Pj are

the solutions of Equation (17), then for 1  j  N we have that

pj0 = xj , and pj1 = ⇠j .

Supposing that T is analytic in both variables (otherwise we proceed formally) write

Qj(✓) = T (Pj+1(Λ̃✓), Pj(✓)) =

1X

n=0

qjn✓
n = 0, (18)
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where it is understood that jN+1 = j1, and where the qjn depend on the coefficients of the Pj in a
possibly complicated way. Nevertheless, since Qj(✓) = 0, we have that

qjn = 0, (19)

for all n � 0. Since our unknowns are the coefficients pjn, and since the qjn depend on them, we use
Equation (19) to derive recurrence relations for the coefficients of the Pj . The following example is
meant to provide some insight into this procedure. Detailed calculations for non-trivial examples
are given in the following sections, and the appendices.

Example 4.1. As a simple example, consider the nonlinear mapping T : R2 ! R given by

T (y, x) = x+ y + xy +
1

2
x2.

Let F : U ⇢ R ! R denote the mapping defined by the implicitly by the requirement that F (x) = y
if and only if

T (y, x) = 0.

Suppose now that xj 2 R, 1  j  N are periodic for F . That is, assume that

T (x2, x1) = 0

...

T (x1, xN ) = 0,

with
@1T (xj+1, xj) 6= 0,

for 1  j  N , again with the understanding that xN+1 = x1. Suppose in addition that the periodic
orbit has multiplier �1 < � < 1. In this case the stable manifold is the union of a one dimensional
neighborhoods of the points xj , and we seek

P1(✓) =

1X

n=0

p1n✓
n

...

PN (✓) =
1X

n=0

pNn ✓n,

satisfying Equation (17).
Our aim is to work out the coefficients of the Qj(✓) defined in Equation (18). To this end,

consider the component equation

Qj(✓) =
1X

n=0

qjn✓
n = T (Pj+1(�✓), Pj(✓)) = 0,

17



which becomes

Qj(✓) = Pj(✓) + Pj+1(�✓) + Pj(✓)Pj+1(�✓) +
1

2
Pj(✓)

2

=

1X

n=0

pjn✓
n +

1X

n=0

pj+1
n �n✓n +

 
1X

n=0

pjn✓
n

! 
1X

n=0

pj+1
n �n✓n

!
+

1

2

 
1X

n=0

pjn✓
n

!2

=
1X

n=0

 
pnn + �npj+1

n +
nX

k=0

�kpjn�kp
j+1
k +

nX

k=0

1

2
pjn�kp

j
k

!
✓n.

Matching like powers results in

qjn = pjn + �npj+1
n +

nX

k=0

�kpjn�kp
j+1
k +

nX

k=0

1

2
pjn�kp

j
k,

for n � 2 (the first order coefficients are already constrained). Recalling that qjn = 0 and isolating
the pjn and pj+1

n terms on the left hand side of the equality leads to

pjn + �npj+1
n + �npj0p

j+1
n + pj+1

0 pjn + pj0p
j
n = �

n�1X

k=1

�kpjn�kp
j+1
k �

n�1X

k=1

1

2
pjn�kp

j
k

= �( \pj ⇤ pj+1)n � 1

2
(\pj ⇤ pj)n

or
⇣

1 + pj+1
0 + pj0 �n(1 + pj0)

⌘
2
4 pjn

pj+1
n

3
5 = sjn

where sn depends only on lower order coefficients.
Since pj0 = xj for 1  j  N , one easily checks that the entries of the row vector on the left hand

side of the equation depend on derivatives of T evaluated along the periodic orbit. More precisely,
we have that

⇣
@

@xT (xj+1, xj) �n @

@yT (xj+1, xj)
⌘
2
4 pjn

pj+1
n

3
5 = sjn

By combining the results for each of the components, we see that the n-th order coefficients solve
a linear equation of the form

An

2
6664

p1n
...

pNn

3
7775 =

2
6664

s1n
...

sNn

3
7775 ,

for n � 2. Since the first order terms are known, we can solve for n = 2. Once these have been
obtained, we solve for n = 3. And so on.
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The problem of determining the power series coefficients can be solved quite generally for multi-
variable power series by exploiting the Faa di Bruno formula (multivariable generalization of the
Leibniz rule). See for example the arguments for maps in [6], or the arguments for unstable manifolds
of delay differential equations in [36]. This approach however leads to formulas which may be
cumbersome in practice, and we find it illuminating to consider the procedure in the context of
specific examples. We illustrate the formal series computation of the power series coefficients for
parameterizations of some one and two dimensional stable/unstable manifolds attached to fixed
and periodic orbits in polynomial examples in two and three dimensions. It is fairly straightforward
to generalize these computations to any polynomial system. Computations for non-polynomial
systems are handled using automatic differentiation for power series. Non-polynomial nonlinearities
are discussed in detail in [29]. See also [39, 19, 28].

4.3 A worked example: fixed points of an implicit Hénon system

We now derive a formal series solution of the invariance equation given in Equation (16) for the sta-
ble/unstable manifold attached to a fixed point of the implicit Hénon system given in Equation (4).
Since the Hénon mapping is on R

2 and the fixed points will have one dimensional stable/unstable
eigenspace, this provides a simple example where the attached invariant manifolds have dimension
less than that of the phase space.

Let x⇤ 2 R
2 have T✏(x⇤,x⇤) = 0, and suppose that � 2 C is the stable eigenvalue and that

⇠ 2 C
2 is an associated eigenvector. Indeed, note that � 2 R (as the only other eigenvalue is

unstable), so that we can choose ⇠ 2 R
2. The eigendata is computed numerically following the

discussion in Section 1.1.1.
Motivated by Theorem 3.1 we seek P : (�⌧, ⌧) ! R

2 so that

P (0) = x⇤, P 0(0) = ⇠,

and
T✏(P (�✓), P (✓)) = 0,

for ✓ 2 (�⌧, ⌧). Observe that since � is the only stable eigenvalue, the resonance conditions of
Theorem 3.1 are automatically satisfied.

Since T✏ is analytic in both variables we look for analytic P of the form

P (✓) =

0
@
P1

n=0 an✓
n

P1
n=0 bn✓

n

1
A ,

and note that

T✏(P (�✓), P (✓)) = T✏

 
1X

n=0

�nan✓
n,

1X

n=0

�nbn✓
n,

1X

n=0

an✓
n,

1X

n=0

bn✓
n

!
= 0

has component equations

1X

n=0

�nan✓
n � 1 + ↵

"
1X

n=0

an✓
n

#2
�

1X

n=0

bn✓
n � ✏

"
1X

n=0

�nan✓
n

#5
= 0

1X

n=0

�nbn✓
n � �

1X

n=0

an✓
n + ✏

"
1X

n=0

�nbn✓
n

#5
= 0.

(20)
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Define the infinite sequence {�n}
1
n=0 by

�n =

(
1 n = 0

0 n � 1
,

to represent the power series coefficients of the constant function taking the value 1. We rewrite
Equation (20) in terms of Cauchy products as

1X

n=0

[�nan � �n + ↵(a ⇤ a)n � bn � ✏�n(a ⇤ a ⇤ a ⇤ a ⇤ a)n] ✓n = 0

1X

n=0

[�nbn � �an + ✏�n(b ⇤ b ⇤ b ⇤ b ⇤ b)n] ✓n = 0.

Recalling the Cauchy “hat products” defined in Section 4.1, we observe that

(a ⇤ a)n = 2a0an + ([a ⇤ a)n,

and that
(a ⇤ a ⇤ a ⇤ a ⇤ a)n = 5a40an + ( \a ⇤ a ⇤ a ⇤ a ⇤ a)n,

and similarly for the coefficients involving the 5-th power of b. Matching like powers of ✓ in both
sides of (20), and recalling that the first order coefficients n = 0 and n = 1 are already known, we
obtain for n � 2

an�
n � bn + 2↵a0an + ↵([a ⇤ a)n � 5✏a40�

nan � ✏�n( \a ⇤ a ⇤ a ⇤ a ⇤ a)n = 0

�nbn � �an + 5✏b40�
nbn + ✏�n( \b ⇤ b ⇤ b ⇤ b ⇤ b)n = 0

(21)

and note that the “hat” products depend only on terms of order lower that n.
Isolating terms of order n on the left and lower order terms on the right leads to the Homological

equations 0
@ �n + 2↵a0 � 5✏a40�

n �1

�� 5✏b40�
n + �n

1
A
0
@ an

bn

1
A =

0
@ S1

n

S2
n

1
A (22)

for n � 2, where,
S1
n = �↵([a ⇤ a)n + ✏�n( \a ⇤ a ⇤ a ⇤ a ⇤ a)n

S2
n = �✏�n( \b ⇤ b ⇤ b ⇤ b ⇤ b)n.

(23)

This is a linear equation for (an, bn), where the right hand side depends only on terms of lower
order. We can solve the homological equations to any desired order, provided that the matrices are
invertible.

Remark 4.2 (Non-resonances and uniqueness). Again, if the fixed point is a saddle, then �n is
never resonant, and Equation (22) has a unique solution for all n � 2. It follows that the formal
power series solution is unique up to the choice of the scaling of the eigenvector. This comment in
fact holds generally. See [6].
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4.4 A second worked example: period two orbit of implicit Hénon

Suppose now that x1 = (x1, y1) and x2 = (x2, y2) is a period two point for the implicit Hénon
system, which is computed numerically – along with its first order data – as discussed in Section
1.1.1. Motivated by Theorem 3.2, we seek parameterizations P,Q : (�⌧, ⌧) ! R

2 so that

T✏(Q(�✓), P (✓)) = 0

T✏(P (�✓), Q(✓)) = 0.
(24)

Letting

P (✓) =

1X

n=0

0
@ an

bn

1
A ✓n, Q(✓) =

1X

n=0

0
@ cn

dn

1
A ✓n,

Equation (24) becomes

1X

n=0

an�
n✓n �

0
@1� ↵

"
1X

n=0

cn✓
n

#2
+

1X

n=0

dn✓
n + ✏

"
1X

n=0

an�
n✓n

#51
A = 0

1X

n=0

bn�
n✓n � �

1X

n=0

cn✓
n + ✏

"
1X

n=0

bn�
n✓n

#5
= 0

1X

n=0

cn�
n✓n �

0
@1� ↵

"
1X

n=0

an✓
n

#2
+

1X

n=0

bn✓
n + ✏

"
1X

n=0

cn�
n✓n

#51
A = 0

1X

n=0

dn�
n✓n � �

1X

n=0

an✓
n + ✏

"
1X

n=0

dn�
n✓n

#5
= 0

. (25)

Expanding the powers as Cauchy products and extracting the terms of order n, we have

1X

n=0

0
BBBBBB@

�nan � �n + ↵(c ⇤ c)n � dn � ✏�n(a ⇤ a ⇤ a ⇤ a ⇤ a)n
�nbn � �cn + ✏�n(b ⇤ b ⇤ b ⇤ b ⇤ b)n

�ncn � �n + ↵(a ⇤ a)n � bn � ✏�n(c ⇤ c ⇤ c ⇤ c ⇤ c)n
�ndn � �an + ✏(d ⇤ d ⇤ d ⇤ d ⇤ d)n

1
CCCCCCA

✓n =

0
BBBBBB@

0

0

0

0

1
CCCCCCA

. (26)

Extracting from the Cauchy products terms of order n and matching like powers of ✓ leads to the
equations

�nan + 2↵c0cn + ↵(dc ⇤ c)n � dn � ✏�n5a40an � ✏�n( \a ⇤ a ⇤ a ⇤ a ⇤ a)n = 0

�nbn � �cn + ✏�n5b40bn + ✏�n( \b ⇤ b ⇤ b ⇤ b ⇤ b)n = 0

�ncn + 2↵a0an + ↵([a ⇤ a)n � bn � ✏�n5c40cn � ✏�n( \c ⇤ c ⇤ c ⇤ c ⇤ c)n = 0

�ndn � �an + ✏�n5d40dn + ✏�n( \d ⇤ d ⇤ d ⇤ d ⇤ d)n = 0
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for n � 2. Observing that these equations are linear in (an, bn, cn, dn) we isolate the terms of order
n on the left and have the homological equations

0
BBBBBB@

�n � 5✏a40�
n 0 2↵c0 �1

0 �n + 5✏b40�
n �� 0

2↵a0 �1 �n � 5✏c40�
n 0

�� 0 0 �n + 5✏d40�
n

1
CCCCCCA

0
BBBBBB@

an

bn

cn

dn

1
CCCCCCA

=

0
BBBBBB@

S1

S2

S3

S4

1
CCCCCCA

(27)

Where
S1 = �↵(dc ⇤ c)n + ✏�n( \a ⇤ a ⇤ a ⇤ a ⇤ a)n
S2 = �✏�n( \b ⇤ b ⇤ b ⇤ b ⇤ b)n
S3 = �↵([a ⇤ a)n + ✏�n( \c ⇤ c ⇤ c ⇤ c ⇤ c)n
S4 = �✏�n( \d ⇤ d ⇤ d ⇤ d ⇤ d)n.

(28)

Once the period two point and its eigenvectors are known, so that we have the first and second
order coefficients, we solve the homological equations for 2  n  N to find the coefficients of the
parameterization to order N . Indeed, the scheme just described generalizes to manifolds attached
to periodic orbits of any period in an obvious way.

5 Numerical Results

We illustrate the utility of the explicit homological equations derived in the previous section with
some example calculations.

5.1 Numerical example: stable/unstable manifolds attached to fixed
points of the implicit Hénon system

As a first example we consider stable/unstable manifolds attached to fixed points of the implicit
Hénon system defined in Equation (4). We compute a fixed point, and its stable/unstable eigen-
values and eigenvectors as discussed in Section B.1. The results are summarized in Figure 1. This
first order data allows us to compute the Taylor coefficients of parameterizations of the manifolds
order by order, by recursively solving the homological equations. Some results are reported for the
unstable manifold in Figure 1.

The results in the Figure illustrate the fact that, while small changes in ✏ result in small changes
in the first order data, the global dynamics are greatly affected. Note also that the scaling of the
eigenvector has to be decreased as ✏ increases. This reflects the fact that the domain of analyticity
of the parameterization shrinks as ✏ increases. See also the remark below. We note that while
the parameterized manifold is not terribly large (roughly order one) many terms are needed to
conjugate the nonlinear to the linear dynamics.

The program which generates the results discussed here is

henonPaperEx_fixedPoint.m
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First order data: implicit Hénon

parameter fixed point eigenvalues eigenvectors

✏ = 0.01 p0 ⇡

0
@ 0.6317

0.1895

1
A �u ⇡ �1.939

�s ⇡ 0.1559
⇠u ⇡

0
@ �0.9882

0.1529

1
A ⇠s ⇡

0
@ �0.4612

�0.8873

1
A

✏ = 0.03 p0 ⇡

0
@ 0.6326

0.1898

1
A �u ⇡ �1.971

�s ⇡ 0.1559
⇠u ⇡

0
@ �0.9886

0.1505

1
A ⇠s ⇡

0
@ �0.4613

�0.8873

1
A

✏ = 0.0315 p0 ⇡

0
@ 0.6326

0.1898

1
A �u ⇡ �1.973

�s ⇡ 0.1559
⇠u ⇡

0
@ �0.9886

0.1503

1
A ⇠s ⇡

0
@ �0.4613

�0.8872

1
A

✏ = 0.04 p0 ⇡

0
@ 0.6330

0.1900

1
A �u ⇡ �1.987

�s ⇡ 0.1560
⇠u ⇡

0
@ �0.9888

0.1492

1
A ⇠s ⇡

0
@ �0.4613

�0.8872

1
A

Table 1: Fixed point/stability data: the table reports the location and stability of one of
the fixed points of the implicit Hénon system as the parameter ✏ varies. Data is given to four
decimal places. More accurate values (approximately machine precision) are obtained by running
the programs.

Remark 5.1 (Loss of the hypotheses of the implicit function theorem). Following the discussion
in Section 1.1, we see that the implicit Hénon equations define a local diffeomorphism whenever

D1T✏(x2, y2) = Id + ✏

0
@ �5✏x4 0

0 5✏y4

1
A ,

is invertible. For ✏ > 0 the matrix is singular on the vertical line through

x⇤(✏) =

✓
1

5✏

◆1/4

.

Note that when ✏ = 0.01 we have that

x⇤(0.01) ⇡ 2.115,

and the singular line is far from the attractor. However as ✏ increases the singular line moves closer
to the attractor, disrupting the assymptotic dynamics dramatically. In particular note that

x⇤(0.0315) ⇡ 1.587,

and
x⇤(0.04) ⇡ 1.495,

so that the singular line eventually moves into the attractor, creating the jumps, or breaks see in
the bottom left and right frames of Figure 1.
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Figure 1: Implicit Hénon –stable/unstable manifolds attached to fixed points: four calcu-
lations of the local unstable manifold of the fixed point with data as in Table 1. The local unstable
manifold is colored dark blue, and eight of its forward iterates are lighter. In each case we computed
N = 75 Taylor coefficients, with the eigenvector scalings as reported below. Top left: ✏ = 0.01.
The eigenvector is scaled by ↵ = 1.0. Top right: ✏ = 0.031. The eigenvector is scaled by ↵ = 0.85.
Bottom left: ✏ = 0.0315. The eigenvector is scaled by ↵ = 0.8. Bottom right: ✏ = 0.04. The
eigenvector is scaled by ↵ = 0.6. These scalings insure that the highest order coefficient computed
has magnitude on the order of machine epsilon.

5.2 Numerical example: stable/unstable manifolds attached to periodic
orbits of the implicit Hénon system

We now illustrate the computation of the stable/unstable manifolds attached a period two point
for the implicit Hénon systems. For the period two problem we consider only the two larger values
of ✏. When ✏ = 0.0315 there is a period two orbit located at

p1 ⇡

0
@ �0.4945

0.2940

1
A p2 ⇡

0
@ 0.9802

�0.1483

1
A
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Figure 2: Implicit Hénon –stable/unstable manifolds attached to period 2 orbits: two
calculations of the local unstable manifolds colored with light blue attached to a period two orbit of
the implicit Hénon system. In each case we computed N = 50 Taylor coefficients, with eigenvector
scalings as reported below. Left: ✏ = 0.0315. The eigenvector is scaled by ↵ = 0.75. Right:
✏ = 0.04. The eigenvector is scaled by ↵ = 0.5. These scalings ensure that the highest order
coefficient computed has magnitude on the order of machine epsilon.

with multipliers
�u ⇡ �3.807, and �s ⇡ �0.0279.

We choose the square roots

�̃u ⇡ 1.951i, and �̃s ⇡ 0.1670i.

and eigenvectors

⇠u1 ⇡

0
@ 0.7868

�0.0919

1
A ⇠u2 ⇡

0
@ �0.5982

�0.1210

1
A ⇠s1 ⇡

0
@ 0.3958

�0.5076

1
A and ⇠s2 ⇡

0
@ 0.2829

0.7110

1
A .

Similarly, when ✏ = 0.04 the data is

p1 ⇡

0
@ �0.4995

0.2943

1
A p2 ⇡

0
@ 0.9814

�0.1499

1
A

with multipliers
�u ⇡ �4.080, and �s ⇡ �0.0274.

We choose the square roots

�̃u ⇡ 2.020i, and �̃s ⇡ 0.165i.
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and eigenvectors

⇠u1 ⇡

0
@ 0.7800

�0.0902

1
A ⇠u2 ⇡

0
@ �0.6083

�0.1158

1
A ⇠s1 ⇡

0
@ 0.3923

�0.5107

1
A and ⇠s2 ⇡

0
@ 0.2821

0.711

1
A .

The results are reported with only four significant figures. More accurate data is obtained by
running the computer programs.

In both cases these are taken as initial data for computation of the stable/unstable parame-
terizations, whose Taylor coefficients for orders 2  n  N are found by recursive solution or the
homological equations defined explicitloy in Equations (27) and (28). The resulting local manifolds
and a number of forward iterations are illustrated in Figure 2. See Remark 5.1 for the explication
of the “jump/break” in the attractor.

The programs which generate the results discussed here are

more_iteration.m

and

henonForPaper_per2.m

Remark 5.2 (Heteroclinic/homoclinic connections: infinite forward and backward time orbits).
Figures 3 and 4 illustrate local parameterizations of the the stable and unstable manifolds attached
to the fixed points and the period two orbit of the implicit Hénon system with ✏ = 0.04, without
and with that application of two iterates of the implicit dynamics. At this parameter value the
singular value has moved into the basin of attraction and strongly disrupts the system. Nevertheless,
the intersection of unstable and stable manifolds illustrated in the figure suggest the existence of
heteroclinic and homoclinic orbits: that is, dynamics which exist for all forward and backward time.
The figures illustrates that, even though simulating the system for long times is very difficult (the
intersection of the singular set with the attractor disrupts iteration schemes based on Newton’s
method) we nevertheless obtain a great deal of useful information about the global dynamics by
studying the parameterized manifolds.

5.3 Numerical example: stable/unstable manifolds attached to fixed
points of the implicit Lomelí system

In this section we compute and extend the two dimensional local stable/unstable manifolds attached
to fixed points of the implicit Lomelí system defined by Equation (8) with parameter values ⇢ = 0.34,
⌧ = 1.3, a = 0.5, b = 0.5, c = 1, ↵ = 1, � = 1, � = 1, and ✏ = 0.01. We also compute the
two dimensional local stable/unstable manifolds associated with a period four orbit. The results
illustrated in Figures 5 and 6 are obtained by solving order by order the homological equations
given in Equations (37) and (39) respectively.

The local manifolds in Figures 5 have been iterated (forward for the unstable manifolds and
backwards for the stable) and seem to intersect transversally. This suggests that the heteroclinic
arcs of the ✏ = 0 system studied in [57] persist into the implicit system at least for small ✏. Numerical
values of the fixed points, period orbits, and their first order data can be found by running the
computer programs.

The program generating the results discussed here is

TwoD_Manifold_period4.m
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Figure 3: Implicit Hénon – connecting orbits: Stable and unstable manifolds when ✏ = 0.04.
The green curves represent the unstable manifolds of the two fixed points. The blue curves represent
unstable manifolds attached to the period two orbit. Similarly, the cyan curves represent the
stable manifolds of the two fixed points, and the red curves the stable manifolds of the period two
orbit. All curves are plots of polynomial approximations of the local manifolds computed using the
parameterization method; no iteration has been applied to “grow” the manifolds. Note that the
blue and cyan curves, as well as the green and the red curves already intersect. These intersections
provide numerical evidence for the existence of transverse connecting orbits from the period two
orbit to the fixed point and from the fixed point to the period two. These connections also appear
to be isolated away from the singular set, so that their existence would imply the existence of a
geometric horseshoe (heteroclinic cycle).

6 Conclusions

In this work we have developed a multiple shooting method for studying invariant manifolds at-
tached to periodic orbits of implicitly defined dynamical systems, effectively extending the param-
eterization method to this setting. After some preliminary formal series calculations are performed
“by hand”, our approach reduces the computation of the parameterizations, the basic linear algebra
and facilitates polynomial approximation to any desired order. By judiciously adjusting the scalings
of the eigenvectors, the method can be used to compute fairly large portions of the attached local
stable/unstable manifolds of the fixed/periodic orbits. In some examples these large local manifolds
parameterizations already indicate the existence of heteroclinic and homoclinic connecting orbits-
for the implicitly defined dynamics. In other examples, some globalization methods can be applied
after the initial parameterization.

An interesting direction for further research would be to use the methods developed here to
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Figure 4: Implicit Hénon – more connecting orbits: In this figure the local unstable manifolds
of the period two points have been iterated twice, again for the ✏ = 0.04 system. Iterates of different
manifold segments are shown in matching colors, so that yellow is the image of yellow, orange of
orange, brown of brown, and black of black. After “growing” the local manifolds under iteration we
now see that the unstable manifolds of the period two points intersect the stable manifolds of the
period two, providing evidence for another geometric horseshoe (homoclinic tangle).

study problems in crystalline lattices, like the Frenkel Kontorova model [24, 19]. While constant
solutions of such models can be studied by finding fixed points, non-trivial equilibrium solutions
appear as periodic solutions of some implicitly defined maps. Connecting orbits between periodic
solutions describe traveling waves in the lattice. Moreover, the methods developed in the present
work are amenable to mathematically rigorous computer assisted validation methods similar to
those discussed in [58, 56, 5, 47]. Combining the methods of the present work with the techniques
of the references just cited would lead computer assisted methods of proof for theorems about
Frenkel Kontorova and other such problems.

Another interesting direction of research is to extend the methods of the present work to infinite
dimensional implicitly defined dynamical systems, like delay differential equations. For example,
with ⌧ > 0 and f : Rd ⇥ R

d ! R
d a smooth function, a delay differential equation of the form

y0(t) = f(y(t), y(t� ⌧)),
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Figure 5: Implicit Lomelí systems– stable/unstable manifolds attached to fixed points:
the local invariant manifold parameterizations and a number of forward/backward iterations. The
image on the right illustrates both manifolds superimposed together, and suggests that the manifolds
intersect transversally.

can be rewritten as a step map

T (y(t), x(t)) = y(t)� x(0)�
Z t

�⌧

f(y(s), x(s)) ds, (29)

where x(s) is the history function defined on [�⌧, 0]. That is, given x, if y has T (y, x) = 0 then
y(t� ⌧) is a solution of the delay differential equation on the interval [0, ⌧ ] with history x(t) given
on [�⌧, 0].

The interested reader can consult the papers [21, 48, 46] where the authors study the dynamics
generated by some delay differential equations by considering discretization of the implicitly defined
dynamical system defined by the zeros of Equation (29). In particular, computer assisted proofs
of periodic orbits for delay equations are given in the last reference just cited, using a multiple
shooting setup much like the one considered in the present work. The authors of [36] are currently
adapting the methods of the present work to the infinite dimensional setting of delay equations to
study homoclinic chaos in systems like Mackey-Galss [52].
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Figure 6: Implicit Lomelí systems– stable/unstable manifolds attached to a period 4
orbit: the local invariant manifold parameterizations.
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A Definitions and Background

In this section we review some basic definitions from the qualitative theory of nonlinear dynamical systems. We also
review the main results from [6, 7, 8] about the parameterization method for fixed points of local diffeomorphisms,
and results from [28] extending these results to periodic orbits. The reader familiar with this material may want to
skim or skip this section upon first reading, referring back to it only as needed.
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A.1 Discrete time semi-dynamical systems: Maps
The material in this section is standard, and an excellent reference is [61]. Suppose that U ⇢ Rd is an open set and
F : U ! U is a Ck(U) mapping, with k = 0, 1, 2, . . . ,1,!. For x0 2 U , define the sequence x1 = F (x0), x2 = F (x1),
and in general xn+1 = F (xn) for n � 0. We refer to the set {xn}∞n=0 as the forward orbit of x0 under F , and write
orbit(x0, F ) to denote this set. Let F 0(x) = x, F 1(x) = F (x), F 2(x) = F (F (x)) and in general Fn(x) denote the
composition of F with itself n times applied to x. When F is understood we simply write orbit(x0) and talk about
the orbit of x0. Then

orbit(x0) =

∞[

n=0

Fn(x0).

A sequence {xn}0n=−∞
⇢ U with F (x−1) = x0 and F (xn) = xn+1 for all n < 0 is a backward orbit of x0

under F . The pair (U, F ) is referred to as a semi-dynamical system, as, while forward orbits are uniquely defined,
backwards orbits need not exist and when they do exist they need not be unique.

A.2 Local stable/unstable manifolds for fixed points/periodic orbits

Let F 2 Ck(U) with k � 1 and suppose that x∗ 2 U is a fixed point, so that

F (x∗) = x∗.

We write spec(x∗) = {�1, . . . ,�d} ⇢ C to denote the set of eigenvalues of DF (x∗). Let ⇠1, . . . , ⇠d 2 Cd be an
associated choice of (possibly generalized) eigenvectors. Let D1 ⇢ C denote the open unit disk in the complex plane,
and S1 denote the unit circle. Define

specs(x∗) = spec(x∗) \D1

specc(x∗) = spec(x∗) \ S1

specu(x∗) = spec(x∗)\ (specs(x∗) [ specc(x∗)) ,

and note that specs(x∗) is the set of eigenvalues with complex absolute value less than one, specc(x∗) is the set of
eigenvalues with complex absolute value equal to on, and specu(x∗) is the set of eigenvalues with complex absolute
value greater than one. There are referred to as the stable, center, and unstable eigenvalues respectively, and we
note that any of two of these sets could be empty. If specc(x∗) = ; then we say that x∗ is a hyperbolic fixed point.

Define the vector spaces Es, Ec, and Eu to be the span of the stable, the center, and the unstable eigenvectors
respectively. These are referred to as the stable, center, and unstable eigenspaces of DF (x∗), and they are invariant
linear subspaces for the dynamics induced by DF (x∗). It is a classical fact that they are tangent to corresponding
locally invariant nonlinear manifolds of F in a neighborhood of x∗. Let ds = dim(Es), dc = dim(Ec), and du =
dim(Eu) denote the dimension of the stable/center/unstable eigenspaces, or equivalently the number (counted with
multiplicity) of stable/center/unstable eigenvalues.

Define the sets

W s(x∗) =
n
x 2 U : lim

n→∞

Fn(x) = x∗

o

Wu(x∗) =

⇢
x 2 U : there exists a backward orbit {xn} of x with lim

n→−∞

xn = x∗

�
.

These are referred to as the stable and unstable sets for x∗ respectively. In a similar fashion, for any open set V ⇢ U

with x∗ 2 V , define

W s
loc

(x∗, V ) = {x 2 V : Fn(x) 2 V for all n � 0, and Fn(x) ! x∗ as n ! 1}

Wu
loc

(x∗, V ) =

⇢
x 2 V : there is a backward orbit for x in V with lim

n→−∞

xn ! x∗

�
,

and note that for any V ⇢ U we have that W s
loc

(x∗, V ) ⇢ W s(x∗), and Wu
loc

(x∗, V ) ⇢ Wu(x∗).
The following stable manifold theorem says that if x∗ is hyperbolic then there exist local stable/unstable sets

with especially nice properties.

Theorem A.1 (Local stable manifold theorem). Suppose that x∗ is a hyperbolic fixed point for F . Then there

exists an open set V ⇢ U with x∗ 2 V so that W s
loc

(x∗, V ) and Wu
loc

(x∗, V ) are respectively ds and du dimensional

embedded disks – as smooth as F– and tangent at x⇤ to Es and Eu respectively.
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The theorem gives that the stable/unstable sets are locally smooth manifolds. If F is a diffeomorphism then the
full stable/unstable sets are obtained by iterating F and F−1, hence the stable/unstable sets are smooth manifolds
(which can nevertheless be embedded in U in very complicated ways). However, if F is not invertible the global
stable/unstable sets might misbehave in a number of ways.

• Connectedness: While the unstable set must be connected ( image of a disk is connected under iteration of
a continuous map) the stable set can in general be disconnected. The unstable set can have self intersections.

• Dimension: both the stable/unstable sets can increase in dimension outside a neighborhood of x∗.

• Smoothness: the stable/unstable sets need not be smooth manifolds away from x∗. At points where DF (x)
has an isolated non-singularity the set can develop corners or cusps.

Examples of each of these phenomena are discussed in [64], and many explicit examples are given. See also [25].

A.3 Multiple shooting for periodic orbits
With U ⇢ Rd an open set, and F : U ! Rd a smooth mapp, suppose that x1, . . . , xN 2 U have

F (x1) = x2

...

F (xN−1) = xN

F (xN ) = x1

Then {x1, . . . , xN} is a periodic orbit for F . If the xj , 1  j  N are distinct, then N is the least period. We refer
to xj , 1  j  N as a period N point. If DF (xj) is invertible for each 1  j  N we say that the periodic orbit is
non-degenerate.

Note that x̄ 2 U is a period N point for F if and only if x̄ is a fixed point of the composition FN . If the orbit of
x̄ is non-degenerate and least period N then DFN (x̄) is invertible. We note that if {x1, . . . , xN} is a non-degenerate
periodic orbit then the matrices DFN (xj), 1  j  N have the same eigenvalues. These are also referred to as the
multipliers of the periodic orbit.

If DFN (x̄) has no eigenvalues on the unit circle we say that the periodic orbit is hyperbolic and Theorem A.1
applies to the composition mapping FN . In particular, there are local stable and unstable manifolds attached to the
points of the periodic orbit.

Let UN = U ⇥ . . .⇥ U ⇢ RNd denote the product of N copies of U . Define G : UN ! RNd by

G(x1, x2, . . . , xN−1, xN ) =

0
BBBBBBBBB@

F (xN )

F (x1)

F (x2)

.

.

.

F (xN−1)

1
CCCCCCCCCA

. (30)

and observe that if (x1, . . . , xN ) 2 RNd is a fixed point of G then {x1, . . . , xN} is a period N orbit for F . We refer
to G as a multiple shooting map for a period N orbit of F . In practice numerically computing fixed points of G

using Newton’s method is more stable than computing fixed points of FN [28] also with Newton. This is because the
condition number of DFN grows exponentially with N . While DG is a larger matrix, it has a much better condition
number, and modern linear algebra routines easily solve the Newton step. Taking advantage of the sparse structure
of DG (which we have not done) leads to even great improvements.

Note also that if

DG(x1, . . . , xN ) =

0
BBBBB@

0 0 . . . 0 DF (xN )

DF (x1) 0 . . . 0 0

0 DF (x2) . . . 0 0

0 0 . . . DF (xN−1) 0

1
CCCCCA

(31)

is invertible then the periodic orbit is non-degenerate. In fact, � 2 C is an eigenvalue of DG(x1, . . . , xN ) if and
only if �N is an eigenvalue of DFN (xj). Moreover, one can check that if ⇠ = (⇠1, . . . , ⇠N ) 2 CdN is an eigenvector
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associated with the eigenvalue � of the matrix DG(x1, . . . , xN ), then for 1  j  N we have that (�N , ⇠j) is an
eigenvalue/eigenvector pair for the matrix DFN (xj). That is, the multipliers of the periodic orbit and the eigenspaces
of DFN (xj) are easily recovered from the eigenvalues/eigenvectors of DG(x1, . . . , xN ). The interested reader will
find a more thorough discussion of the relationship between multiple shooting maps and periodic orbits in [28].

B Implicitly defined dynamical systems

Let U, V ⇢ Rd be open sets and suppose that T : V ⇥U ! Rd is a smooth function. We are interested in the existence
of open sets D ⇢ U , R ⇢ V and a mapping F : D ! R ⇢ Rd defined by the rule

F (x) = y, (32)

if and only if for a fixed given input x 2 D, y solves the equation

T (y, x) = 0, (33)

with y 2 R. We say that the mapping F is implicitly defined by the rule given in Equation (33). Note that F need
not be one-to-one or even single valued globally. However, if for a fixed x̄ 2 U we have that there are ȳ, ỹ 2 U so
that T (ȳ, x̄) = T (ỹ, x̄) = 0, then we are only interested in the case when there exist neighborhoods R̄, R̃ ⇢ V with
ȳ 2 R̄, ỹ 2 R̃ and R̄ \ R̃ = ;.

Existence and regularity of implicitly defined maps is subtle, yet– as already mentioned in the introduction – the
implicit function theorem provides sufficient conditions for the existence of a single valued branch. More precisely, let
D1T (y, x) and D2T (y, x) denote the partial derivatives of T with respect to the first and second variables respectively,
and suppose that T (x1, x0) = 0 (note that D1T (y, x), D2T (y, x) are d⇥d matrices). If D1T (x1, x0) is invertible then,
by the implicit function theorem [60], there exists an r > 0 and a function F : Br(x0) ⇢ U ! Rd so that F (x0) = x1

and
T (F (x), x) = 0, (34)

for all x 2 Br(x0). Moreover, the mapping F is as smooth as T . By differentiating (34) we have that DF (x0) solves
the equation

D1T (x1, x0)DF (x0) = �D2T (x1, x2), (35)

with D1T (x1, x0) invertible. Of course the map F depends on the choice of x1. However, once we choose a solution
x1, the deffeomorphism F is well defined and unique locally. The discussion above motivates the following definition.

Definition 1. We say that x̄ 2 U is a regular point for T if there exists ȳ 2 V such that

T (ȳ, x̄) = 0,

and D1T (ȳ, x̄) is invertible. Note that, by the implicit function theorem as above, x̄ is in the interior of D = dom(F ).
Moreover, F is a local diffeomorphism of a neighborhood of x̄ into a neighborhood of ȳ.

Remark B.1 (Numerical evaluation of F ). Evaluation of F (x) requires solving the nonlinear equation T (y, x) = 0
with x given. In practice we use Newton’s method as follows. Let x̄ be fixed and y0 be an approximate solution in
the sense that

kT (y0, x̄)k ⇡ 0.

For n � 0, define
yn+1 = yn +∆n,

where ∆n solves the linear equation
D1T (yn, x̄)∆n = �T (yn, x̄).

Convergence and error analysis for the algorithm is a classic topic (see any book on numerical analysis). For the
moment it is enough to remark that the algorithm is expected to perform well close enough to a regular point, as
invertibility of the derivative is an open property. In practice, if after N steps of the algorithm we have a numerical
approximation yN with kT (yN , x̄)k < ⌧tol (i.e. defect smaller than some prescribed tolerance) then we consider the
algorithm to have converged. We take yN as our numerical solution and have F (x̄) ⇡ yN .
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B.1 Fixed and periodic points
Assume that x∗ 2 U \ V ⇢ Rd is a regular point for T having

T (x∗, x∗) = 0.

Then there exists an open neighborhood D ⇢ U of x∗ and a diffromorphism F : D ! Rd with

F (x∗) = x∗.

In this case, there may be points near x∗ with well defined forward orbits under F . To further study this question
we consider the stability of x∗.

Exploiting the formula for the derivative in Equation (35), we have that

DF (x∗) = �D1T (x∗, x∗)
−1D2T (x∗, x∗),

where D1T (x∗, x∗) is invertible thanks to the assumption that x∗ is a regular point for F . If the stable and/or center
eigenspaces of DF (x∗) are non-empty, then the attached local stable and/or center manifolds are natural places to
look for orbits which remain in a neighborhood of x∗ under forward iteration of F . (Likewise the unstable manifold
is a natural place to look for points with backward orbits). We focus for a moment on the stable manifold.

Let �1, . . . ,�ds 2 C be the stable eigenvalues of DF (x∗) and ⇠1, . . . , ⇠ds 2 Cd denote associated stable eigenvec-
tors. Note (�, ⇠) is an eigenpair for DF (x∗) if and only if they solve the generalized eigenvalue problem

D2T (x∗, x∗)⇠ = �D1T (x∗, x∗)⇠.

From a numerical point of view, this equation has the advantage of not requiring the inversion of any matrix. Once
the the fixed point and eigendata are known we can apply the algorithms based on the parameterization method
discussed in the main body of the paper to compute the stable (or unstale) manifolds.

In a similar fashion, suppose that x1, . . . , xN 2 U \ V have

T (x2, x1) = 0

T (x3, x2) = 0

...

T (xN , xN−1) = 0

T (x1, xN ) = 0,

with the x1, . . . , xN distinct. If each of x1, . . . , xN is a regular point for T , then the collection is a periodic orbit
(of least period N) for an implicitly defined map F , whose domain can be taken as a union of neighborhoods of the
periodic orbit. Again, we are interested in the existence of well defined orbits near x1, . . . , xN , so we consider the
stability of the periodic orbit.

To find the multipliers and eigenvectors, proceed as follows. Recall from Section A.2 that the multipliers are
found by computing the eigenvalues and eigenvectors of the derivative of the multiple shooting map. The formula for
the derivative is in Equation (31), and exploiting again the formula for the derivative of F given in Equation (35),
and the fact that the periodic orbit is non-degenerate, the non-zero entries of DG(x1, . . . , xN ) are

DF (x1) = �D1T (x2, x1)
−1D2T (x2, x1)

DF (x2) = �D1T (x3, x2)
−1D2T (x3, x2)

...

DF (xN−1) = �D1T (xN , xN−1)
−1D2T (xN , xN−1)

DF (xN ) = �D1T (x1, xN )−1D2T (x1, xN ).

It is an exercise to write the associated generalized eigenvalue problem and avoid the matrix inversion. Once the stable
(or unstable) eigendata is determined, the stable (or unstable) manifold can be computed using the parameterization
method developed in the body of the present work.

C Parameterization of two dimensional invariant manifolds

In this appendix we provide the details for higher dimensional stable/unstable manifolds, focusing on the case of two
dimensions. These calculations involve power series of two variables.
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C.1 Formal power series of two variables
Let f and g be two variable power series if the form

f(z1, z2) =
∞X

m=0

∞X

n=0

amnz
m
1 zn2 , and g(z1, z2) =

∞X

m=0

∞X

n=0

bmnz
m
1 zn2 .

We have that

↵f(z1, z2) + �g(z1, z2) =
∞X

m=0

∞X

n=0

(↵amn + �bmn)z
m
1 zn2 ,

f(�1z1,�2z2) =

∞X

m=0

∞X

n=0

�m
1 �n

2 amnz
m
1 zn2 ,

and

f(z1, z2)g(z1, z2) =
∞X

m=0

∞X

n=0

(a ⇤ b)mnz
m
1 zn2 ,

where the coefficients of the two variable Cauchy product are given by

(a ⇤ b)mn =
X

j1+j2=m

k1+k2=n

aj1k1
bj2k2

=

mX

j=0

nX

k=0

am−j,n−kbjk.

If f1, . . . , fN are power series given by

fi(z1, z2) =
∞X

m=0

∞X

n=0

aimnz
m
1 zn2 1  i  N,

then

f1(z1, z2) . . . fN (z1, z2) =

∞X

m=0

∞X

n=0

(a1 ⇤ . . . ⇤ aN )mnz
m
1 zn2 ,

where

(a1 ⇤ . . . ⇤ aN )mn =
X

j1+...+jN=m

k1+...+kN=n

a1j1k1
. . . aNjNkN

=

mX

j1=0

j1X

j2=0

. . .

jN−2X

jN−1=0

nX

k1=0

k1X

k2=0

. . .

kN−2X

kN−1=0

a1m−j1,n−k1
. . . aNjN−1kN−1

For coefficient extraction define
(da ⇤ b)mn = (a ⇤ b)mn � b00amn � a00bmn,

and similarly

( \a1 ⇤ . . . ⇤ aN )mn = (a1 ⇤ . . . ⇤ aN )mn � a100 . . . a
N−1
00 aNmn � . . .� a200 . . . a

N
00a

1
mn,

to be the Cauchy product of order m,n with the m,n-th order coefficients removed.

C.2 Parameterized stable/unstable manifolds attached to fixed points of
the implicit Lomelí system

Consider the implicit Lomelí system defined in Equation (8). At the parameter values studied in the present work
the Lomelí map has a pair of hyperbolic fixed points. One of the fixed points has 2d unstable and 1d stable manifold,
while for the other it is vice versa. For small ✏ 6= 0 these features persist into the implicit system, and we will compute
the formal series expansion for the parameterization of a two dimensional stable manifold of the implicit system. We
focus on the case of complex conjugate eigenvalues, but the real distinct case is similar.
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So, let x∗ = (x∗, y∗, z∗) 2 R3 denote the fixed point, �1,�2 2 C the stable eigenvalues, and ⇠1, ⇠2 2 C3 be
associated stable eigenvectors. Note that �2 = �1 and we choose eigenvectors with the same symmetry. This data is
computed numerically as outlined in Section 1.1.2.

Let

Br(0) =

⇢
(✓1, ✓2) 2 R

2 |
q

✓21 + ✓22 < 1

�
.

Motivated again by Theorem 3.1, we seek a smooth function P : B1(0) ! R3 solving the invariance equation

T✏(P(�1✓1,�2✓2),P(✓1, ✓2)) = 0, (✓1, ✓2) 2 Br(0), (36)

of the form

P(✓1, ✓2) =

0
BBB@

P (✓1, ✓2)

Q(✓1, ✓2)

R(✓1, ✓2)

1
CCCA

=

0
BBB@

P
∞

m=0

P
∞

n=0 umn✓
m
1 ✓n2P

∞

m=0

P
∞

n=0 vmn✓
m
1 ✓n2P

∞

m=0

P
∞

n=0 wmn✓
m
1 ✓n2

1
CCCA .

The first order constraints require that0
BBB@

u00

v00

w00

1
CCCA =

0
BBB@

x∗

y∗

z∗

1
CCCA , and that

0
BBB@

u10

v10

w10

1
CCCA = ⇠1 and

0
BBB@

u01

v01

w01

1
CCCA = ⇠2.

To work out the higher order terms we plug the power series into the invariance equation and have0
BBB@

P (�1✓1,�2✓2)� ⇢� ⌧P (✓1, ✓2)�R(✓1, ✓2)�N(✓1, ✓2) + ✏H1(�1✓1,�2✓2)

Q(�1✓1,�2✓2)� P (✓1, ✓2) + ✏�H2(�1✓1,�2✓2)

R(�1✓1,�2✓2)�Q(✓1, ✓2)

1
CCCA =

0
BBB@

0

0

0

1
CCCA .

where
N(✓1, ✓2) = aP (✓1, ✓2)

2 + bP (✓1, ✓2)Q(✓1, ✓2) + cQ(✓1, ✓2)
2,

H1(�1✓1,�2✓2) = ↵Q(�1✓1,�2✓2)
5 + �R(�1✓1,�2✓2)

5,

and
H2(�1✓1,�2✓2) = �R(�1✓1,�2✓2)

5.

Define {�mn}∞m+n=0 by

�mn =

(
1 m = n = 0

0 otherwise
,

the power series coefficients of the constant function taking value one. Then

∞X

m=0

∞X

n=0

0
BBB@

�m
1 �n

2umn � ⇢�mn � ⌧umn � wmn �Nmn + ✏H1
mn

�m
1 �n

2 vmn � umn + ✏H2
mn

�m
1 �n

2wmn � vmn

1
CCCA ✓m1 ✓n2 =

0
BBB@

0

0

0

1
CCCA ,

where

Nmn = a(u ⇤ u)mn + b(u ⇤ v)mn + c(v ⇤ v)mn

= 2au00umn + a([u ⇤ u)mn + bu00vmn + bv00umn + b([u ⇤ v)mn + 2cv00vmn + c( dv ⇤ v)mn

H1
mn = ↵�m

1 �n
2 (v ⇤ v ⇤ v ⇤ v ⇤ v)mn + ��m

1 �n
2 (w ⇤ w ⇤ w ⇤ w ⇤ w)mn

= 5↵�m
1 �n

2 v
4
00vmn + ↵�m

1 �n
2 ( \v ⇤ v ⇤ v ⇤ v ⇤ v)mn

+ 5��m
1 �n

2w00wmn + ��m
1 �n

2 ( \w ⇤ w ⇤ w ⇤ w ⇤ w)mn

and

H2
mn = 5��m

1 �n
2w00wmn + ��m

1 �n
2 ( \w ⇤ w ⇤ w ⇤ w ⇤ w)mn.
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Recall the definition of the Cauchy “hat products” given in Appendix C.1. We define

N̂mn = a([u ⇤ u)mn + b([u ⇤ v)mn + c( dv ⇤ v)mn

Ĥ1
mn = ↵�m

1 �n
2 ( \v ⇤ v ⇤ v ⇤ v ⇤ v)mn + ��m

1 �n
2 ( \w ⇤ w ⇤ w ⇤ w ⇤ w)mn

and

Ĥ2
mn = ��m

1 �n
2 ( \w ⇤ w ⇤ w ⇤ w ⇤ w)mn,

so that
Nmn = 2au00umn + bu00vmn + bv00umn + 2cv00vmn + N̂mn,

H1
mn = 5↵�m

1 �n
2 v

4
00vmn + 5��m

1 �n
2w00wmn + Ĥ1

mn,

and
H2

mn = 5��m
1 �n

2w00wmn + Ĥ2
mn,

are all terms of order mn plus lower order terms. Matching like powers of ✓ leads to

�m
1 �n

2umn � ⌧umn � wmn � 2au00umn � bu00vmn � bv00umn � 2cv00vmn � N̂mn

+5✏↵�m
1 �n

2 v
4
00vmn + 5✏��m

1 �n
2w00wmn + ✏Ĥ1

mn = 0

�m
1 �n

2 vmn � umn + 5✏��m
1 �n

2w00wmn + ✏Ĥ2
mn = 0

�m
1 �n

2wmn � vmn = 0

This leads to linear homological equations for (umn, vmn, wmn) when m+ n � 2 of the form

Amn

0
BBB@

umn

vmn

wmn

1
CCCA =

0
BBB@

S1
mn

S2
mn

0

1
CCCA , (37)

where

Amn =

0
BBB@

�m
1 �n

2 � ⌧ � 2au00 � bv00 �bu00 � 2cv00 + 5✏↵v400�
m
1 �n

2 �1 + 5✏�w4
00�

m
1 �n

2

�1 �m
1 �n

2 5✏�w4
00�

m
1 �n

2

0 �1 �m
1 �n

2

1
CCCA ,

and the components of the right hand side are given by

S1
mn = N̂mn � ✏Ĥ1

mn

S2
mn = �✏Ĥ2

mn.

Note that the homological equations can be solved order by order for 2  m + n  N to any desired N , as long
as the Amn are invertible. It is easy to check that in the case of a pair of complex conjugate stable (or unstable)
eigenvalues, when all other eigenvalues are not stable (or not unstable), then a resonance is impossible, and Amn is
invertible for all m+ n � 2.

C.3 Parameterized stable/unstable manifolds attached to period four
points of the implicit Lomelí system

Once again consider the implicit Lomelí system defined in Equation (8). We consider the case of a period four orbit
with stable saddle-focus stability. That is, we assume that the periodic orbit has that �i1 = �i2 with |�i1| < 1 for
i = 1, 2, 3, 4. Let

�̃1 = (�11)
1/4 , and �̃2 = (�12)

1/4 .

Motivated by Theorem 3.2, we seek smooth functions Pi : B
2
1(0) ! R3 for 1  i  4 having

Pi(0) = x
∗

i ,

@

@j
Pi(0) = ⇠ij ,
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for 1  j  4 and

T✏(P1(�̃1z1, �̃2z2), P4(z1, z2)) = 0

T✏(P2(�̃1z1, �̃2z2), P1(z1, z2)) = 0

T✏(P3(�̃1z1, �̃2z2), P2(z1, z2)) = 0

T✏(P4(�̃1z1, �̃2z2), P3(z1, z2)) = 0.

(38)

We write

Pi(z1, z2) =
∞X

n1=0

∞X

n2=0

pin1,n2
z
n1

1 z
n2

2 =

0
BBB@

P
∞

n1=0

P
∞

n2=0 u
i
n1,n2

z
n1

1 z
n2

2P
∞

n1=0

P
∞

n2=0 v
i
n1,n2

z
n1

1 z
n2

2P
∞

n1=0

P
∞

n2=0 w
i
n1,n2

z
n1

1 z
n2

2

1
CCCA ,

and have that

Pi(�1z1,�2z2) =

0
BBB@

P
∞

m=0

P
∞

n=0 u
i
m,n�̃

m
1 �̃n

2 z
m
1 zn2P

∞

m=0

P
∞

n=0 v
i
m,n�̃

m
1 �̃n

2 z
m
1 zn2P

∞

m=0

P
∞

n=0 w
i
m,n�̃

m
1 �̃n

2 z
m
1 zn2

1
CCCA ,

where

pi0,0 =

0
BBB@

u
(i)
00

v
(i)
00

w
(i)
00

1
CCCA = x

∗

i , pi1,0 =

0
BBB@

u
(i)
10

v
(i)
10

w
(i)
10

1
CCCA = ⇠i1, pi0,1 =

0
BBB@

u
(i)
01

v
(i)
01

w
(i)
01

1
CCCA = ⇠i2,

for i = 1, 2, 3, 4.
Let vmn = (u1

mn, v
1
mn, w

1
mn, . . . , u

4
mn, v

4
mn, w

4
mn) and plug the power series for Pi(z1, z2) and Pi(�1z1,�2z2)

into the equation (38). Expanding Cauchy products, matching like powers of z1, z2, extracting the coefficients of
order m,n from the Cauchy products, and isolating them from the lower order terms – just as in the other formal
series calculations above – leads to the homological equation for (m+ n)th term as follows

Amnvmn = Smn, (39)

where the explicit formulas for Amn and Smn are recorded in Section C.4, as they are needed in the numerical im-
plementation. Once again, solving these equations order by order gives the coefficients vmn of the parameterizations
to any desired accuracy. Moreover, the parameterizations of manifolds attached to longer period orbits are similar.

C.4 Explicit formulas for the period four homological equations of the
implicit Lomelí system

We have that Amn is the 12 by 12 matrix

Amn =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9 A1,10 A1,11 A1,12

A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 A2,8 A2,9 A2,10 A2,11 A2,12

A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 A3,8 A3,9 A3,10 A3,11 A3,12

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6 B1,7 B1,8 B1,9 B1,10 B1,11 B1,12

B2,1 B2,2 B2,3 B2,4 B2,5 B2,6 B2,7 B2,8 B2,9 B2,10 B2,11 B2,12

B3,1 B3,2 B3,3 B3,4 B3,5 B3,6 B3,7 B3,8 B3,9 B3,10 B3,11 B3,12

C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,7 C1,8 C1,9 C1,10 C1,11 C1,12

C2,1 C2,2 C2,3 C2,4 C2,5 C2,6 C2,7 C2,8 C2,9 C2,10 C2,11 C2,12

C3,1 C3,2 C3,3 C3,4 C3,5 C3,6 C3,7 C3,8 C3,9 C3,10 C3,11 C3,12

D1,1 D1,2 D1,3 D1,4 D1,5 D1,6 D1,7 D1,8 D1,9 D1,10 D1,11 D1,12

D2,1 D2,2 D2,3 D2,4 D2,5 D2,6 D2,7 D2,8 D2,9 D2,10 D2,11 D2,12

D3,1 D3,2 D3,3 D3,4 D3,5 D3,6 D3,7 D3,8 D3,9 D3,10 D3,11 D3,12

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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with entries

A1,1 = �
n1

1 �
n2

2 A1,2 = 5✏↵v
(1)
00 �

n1

1 �
n2

2 A1,3 = 5✏�w
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1 �
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(3)
00 �
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2 C2,10 = 0 C2,11 = 0 C2,12 = 0
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C3,7 = 0 C3,8 = 0 C3,9 = �
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1 �
n2

2 C3,10 = 0 C3,11 = 0 C3,12

D1,1 = 0 D1,2 = 0 D1,3 = 0 D1,4 = 0 D1,5 = 0 D1,6 = 0
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00 � bv
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00 D1,8 = �bu

(3)
00 � 2cv
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Similarly, the right hand side
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mn = a( \u4 ⇤ u4)mn + b( \u4 ⇤ v4)mn + c( \v4 ⇤ v4)mn

� ↵✏�̃m
1 �̃n

2 ( \v1 ⇤ v1 ⇤ v1 ⇤ v1 ⇤ v1)mn � �✏�̃m
1 �̃n

2 ( \w1 ⇤ w1 ⇤ w1 ⇤ w1 ⇤ w1)mn

S2
mn = �✏�̃m

1 �̃n
2 ( \w1 ⇤ w1 ⇤ w1 ⇤ w1 ⇤ w1)mn

S3
mn = a( \u1 ⇤ u1)mn + b( \u1 ⇤ v1)mn + c( \v1 ⇤ v1)mn

� ↵✏�̃m
1 �̃n

2 ( \v2 ⇤ v2 ⇤ v2 ⇤ v2 ⇤ v2)mn � �✏�̃m
1 �̃n

2 ( \w2 ⇤ w2 ⇤ w2 ⇤ w2 ⇤ w2)mn

S4
mn = �✏�̃m

1 �̃n
2 ( \w2 ⇤ w2 ⇤ w2 ⇤ w2 ⇤ w2)mn

S5
mn = a( \u2 ⇤ u2)mn + b( \u2 ⇤ v2)mn + c( \v2 ⇤ v2)mn

� ↵✏�̃m
1 �̃n

2 ( \v3 ⇤ v3 ⇤ v3 ⇤ v3 ⇤ v3)mn � �✏�̃m
1 �̃n

2 ( \w3 ⇤ w3 ⇤ w3 ⇤ w3 ⇤ w3)mn

S6
mn = �✏�̃m

1 �̃n
2 ( \w3 ⇤ w3 ⇤ w3 ⇤ w3 ⇤ w3)mn

S7
mn = a( \u3 ⇤ u3)mn + b( \u3 ⇤ v3)mn + c( \v3 ⇤ v3)mn

� ↵✏�̃m
1 �̃n

2 ( \v4 ⇤ v4 ⇤ v4 ⇤ v4 ⇤ v4)mn � �✏�̃m
1 �̃n

2 ( \w4 ⇤ w4 ⇤ w4 ⇤ w4 ⇤ w4)mn

S8
mn = �✏�̃m

1 �̃n
2 ( \w4 ⇤ w4 ⇤ w4 ⇤ w4 ⇤ w4)mn.
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