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Abstract

Proteome-wide identification of protein-protein interactions is a formidable task which has yet to 

be sufficiently addressed by experimental methodologies.  Many computational methods have 

been  developed  to  predict  proteome-wide  interaction  networks,  but  few  leverage  both  the 

sensitivity  of  structural  information  and the wide availability  of sequence data.   We present 

PEPPI,  a  pipeline  which  integrates  structural  similarity,  sequence  similarity,  functional 

association data, and machine learning-based classification through a naïve Bayesian classifier 

model  to  accurately  predict  protein-protein  interactions  at  a  proteomic  scale.   Through 

benchmarking  against  a  set  of  798  ground  truth  interactions  and  an  equal  number  of  non-

interactions, we have found that PEPPI attains 4.5% higher AUROC than the best of other state-

of-the-art  methods.   As  a  proteomic-scale  application,  PEPPI  was  applied  to  model  the 

interactions  which  occur  between  SARS-CoV-2  and  human  host  cells  during  coronavirus 

infection, where 403 high-confidence interactions were identified with predictions covering 73% 

of a gold standard dataset from PSICQUIC and demonstrating significant complementarity with 

the most recent high-throughput experiments. PEPPI is available both as a webserver and in a 

standalone version and should be a powerful and generally applicable tool for computational 

screening of protein-protein interactions.

Keywords: Direct interaction prediction, interology, dimer threading, interactome, SARS-CoV-2
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1. Introduction

The biological function of many proteins is  conferred  through their interactions with other 

proteins.  Therefore, to fully understand the function of each protein in an organism, one must 

first attain a comprehensive network of the protein-protein interactions (PPIs) that occur within 

the cell.  The discovery of critical interactions within this interaction network, or “interactome”, 

can  lead  to  drug  development[1] or  protein  engineering[2,  3] targeting  these  interactions. 

However, many of these experiments do not guarantee that the interactions detected are, in fact, 

direct physical contacts between the proteins; some of the earliest databases for PPI prediction 

involve  features  that  assert  only  a  functional  association  between  proteins[4].   While  these 

databases can be useful for prediction of physical interactions, as all physical interactions are 

functionally  associated,  the converse is  not  true;  many biological  applications,  such as  drug 

target discovery, require knowledge of which proteins come into physical contact.  The methods 

for elucidating  these direct  physical  interactions  are  at  present  either  prohibitively  costly for 

whole-proteome analysis (such as structure solving or crosslinking mass spectrometry) or are too 

susceptible to errors (such as yeast-two hybrid[5]).  As an alternative, computational methods 

can be used to model proteome-wide interactions, as well as refine existing interaction datasets.

One  of  the  most  straightforward  methods  of  computational  interaction  prediction  is  to 

determine  whether  the query protein pair  is  similar  to an already known interaction.   Many 

programs directly leverage sequence similarity for this purpose because the sequence comparison 

operation  is  quick  and  sequence  data  is  plentiful[6,  7].   However,  since  structure  is  more 

evolutionarily conserved than sequence, structural similarity is much more effective at detecting 

distantly  similar  PPIs;  methods  which  leverage  this  structural  information[8-11] grow more 

powerful  as  modern  structural  biology  methods  such  as  cryo-EM  facilitate  the  solving  of 
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complicated  protein  complex  structures  and  as  computational  approaches  offer  improved 

accuracy in predicting the folds of individual proteins[12].  In addition, structures provide a clear 

ground truth as to whether two proteins interact physically; if a solved structure of the interaction 

exists, the proteins are likely to interact in vivo.  Therefore, an effective similarity-based program 

should consider both structural and sequence similarity.

Another common method for PPI prediction is the application of machine learning-based 

classifiers.  In the earlier days of machine learning, the major novelty of machine learning-based 

PPI predictors was in how they extracted features from the input amino acid sequences in order 

to create a fixed-length vector that could be utilized in standard machine learning algorithms, 

such as the conjoint triad method[13] or autocorrelation[14].  As more modern deep learning 

techniques became available, improved PPI predictions were achieved with features solely from 

evolutionary profiles[15] or even based on sequence alone[16, 17].  Despite these initial studies 

into deep learning, to our knowledge these methods have yet to demonstrate success in a species 

agnostic  context; more commonly, they are benchmarked by either combining a few species-

specific datasets[16] or by training on one species and testing on another[15, 17].

Here,  we  present  a  Pipeline  for  the  Extraction  of  Predicted  Protein-protein  Interactions 

(PEPPI),  which  offers  high-accuracy  PPI  predictions  through  a  consensus  of  sequence  and 

structural similarity, functional association, and neural network classification. While the source 

code  for  PEPPI  can  be  found  at  https://github.com/ewbell94/PEPPI,  an  online  webserver 

implementation of this  pipeline can be found  at  https://zhanggroup.org/PEPPI/, which allows 

users to create PPI predictions from sequences alone. We additionally present an application of 

PEPPI to make predictions of the inter-species interactome between human host cells and SARS-
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CoV-2.   Through the following benchmarks  and examples,  we demonstrate  that  PEPPI is  a 

useful tool for predicting both pairwise and systems-level PPIs.

2. Results

2.1 Pipeline Overview and Module Cross-Validation

PEPPI is  a  protein-protein interaction  prediction  pipeline  which takes  in  a pair  of  query 

sequences and quantifies their likelihood of interaction as a natural log-transformed likelihood 

ratio (log(LR)) through a consensus of five independent prediction modules (Figure 1).  This 

consensus  is  determined by a  naïve  Bayesian classifier  model  trained on a  set  of 800 high-

confidence interactions from IntAct[18] and 800 curated non-interactions from the Negatome 2.0 

database[19] (see Supplementary Methods). 

Figure 2a presents the 10-fold cross validation performance of each individual module and 

the full pipeline on this training set.  The best-performing individual modules are SPRING and 

SEQ, which implement structure and sequence-based similarity approaches, respectively.  The 

SPRING module uses the dimeric threading program SPRING[20] to identify dimer structure 

templates  out of a database of interacting proteins extracted from the PDB, while  SEQ uses 

BLAST[21] sequence  searching  to  identify  similar  interactions  in  a  database  of  direct 

interactions  identified  by  high-throughput  experiment  (HTE)  data.  These  homology-based 

modules  will  perform  well  for  any  cases  which  have  homologous  similarity  to  existing 

interactions, which is the case for many true interactions.  The next best-performing module is 

the neural network-based CT module, which transforms the input amino acid sequences into a 

fixed-length vector according to the conjoint triad method[13] and classifies the resulting vector 

through a neural network model. This module helps PEPPI retrieve true positive predictions in 
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case there is only loose homologous similarity to existing interactions.  The STRING module, a 

module  which  extracts  various  query  functional  association  features  from  the  STRING 

database[22], performs relatively poorly on its own; this  is expected because of its focus on 

functional association data instead of physical interaction data and because of its inability to 

provide data if the interaction is not located in STRING.  SPRINGNEG has a nearly identical 

methodology to SPRING but it performs least well because it searches through a database of 

non-interacting protein structures and thus a hit in this database will only lower the interaction 

score because by design it only provides information to filter out functionally associated non-

interactions.  Overall,  the combination of all  modules clearly outperforms any single module, 

demonstrating that the modules are complimentary in classification.

2.2 PEPPI Benchmark and Performance

In order to quantify the classification performance of PEPPI against existing methods, we 

benchmarked PEPPI alongside PRISM[8], a structure-based similarity predictor, SPRINT[6], a 

sequence-based  similarity  predictor,  PIPR[16],  a  deep  learning  predictor  which  utilizes  a 

combination  of  recurrent  and  convolutional  layers  in  its  architecture,  and D-SCRIPT[17],  a 

“structure aware” deep learning predictor  improving upon on PIPR. These benchmarks  were 

performed using a randomly selected test  set  of 798 interacting structure pairs  and an equal 

number of structure pairs involving chains from the same protein complex but known to not 

come into physical contact (and thus do not form a physical interaction). All structures of this 

test set were taken from the PDB and were confirmed to have <50% sequence identity to the 

PEPPI training protein pairs.  It should be noted that these protein pairs are classified through 
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their sequence alone, and therefore, even though many of these PDB structures contain more 

than one interaction, each pair of chains can be considered independently.

The results  of the PPI predictions  are summarized presented in Figure 2b and Table S1, 

where it is shown that PEPPI significantly outperforms all competing methods in terms of area 

under ROC (AUROC), average precision (similar to area under precision-recall curve, AUPRC), 

and all but SPRINT in maximum achievable Matthew’s correlation coefficient (MCC).  PRISM 

had the lowest performance in  this  benchmark,  which is  likely due to  its  outdated  interface 

structure library, which misses many structures which have been solved since its release to the 

public.   Interestingly,  the  highest  performance  from  a  competing  program  was  seen  from 

SPRINT, a sequence motif-based similarity classifier, and not from either D-SCRIPT or PIPR, 

the more sophisticated deep-learning pipelines.  The deep learning architectures of PIPR and D-

SCRIPT were benchmarked based on performance of species-specific interaction datasets; when 

this method was applied to the species agnostic dataset of this benchmark, the deep learning 

methods’ ability to accurately classify interactions decreased.  As a result,  the method which 

draws its conclusions from explicit similarity (SPRINT) outperforms the methods which try to 

sub-optimally learn the interaction problem itself (PIPR & D-SCRIPT).  However, we still found 

that D-SCRIPT outperforms PIPR, as is consistent with D-SCRIPT’s benchmarks.

One particular case of interest in this benchmark is the interaction between chain A and chain 

B of PDB code  1F3M  (corresponding to the N- and C-terminal domains of the human kinase 

PAK1).  While this is a true interaction, no hit was found by PEPPI in either the sequence or  

structure  databases  after  homologous  template  removal,  leading  to  poor  scores  for  those 

pipelines (SPRING: 8.937, STRING: not found, SEQ: 0.129, SPRINGNEG: 4.618).  However, 

this  case  was  still  classified  as  positive  with  a  log(LR)  of  0.056  due  to  a  high  interaction 
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probability  from the  CT module  (0.999),  thus  demonstrating  the  utility  of  CT for  rescuing 

interactions that do not attain significant similarity.  On the side of non-interaction classification, 

the classification of chain G and chain I of 3CJH (corresponding to two Tim13 chains of the 

yeast Tim8-Tim13 complex) poses an interesting case, as PEPPI was able to classify this as 

negative  (log(LR)=-0.939)  where  competing  programs  could  not,  despite  attaining  a  high 

SPRING score (34.208), a high CT confidence (1.0), and loose SEQ homology (0.217).  The 

reason  for  this  is  a  high  score  from  SPRINGNEG  (36.108)  which  pushes  down  the  total 

interaction  likelihood,  thus  demonstrating  a  case  where  SPRINGNEG’s  false  positive 

identification ability rescues the pipeline from misclassifying the interaction.

While the previous balanced dataset is convenient for benchmarking, it is not fully reflective 

of the context in which an interactome prediction algorithm is applied because true interactions 

are much sparser relative to the total set of pairwise combinations of query proteins in almost all  

contexts.  Therefore, we randomly sampled 100 interacting pairs from the previous test set and 

paired the 200 chains  from these interactions  in  an all-by-all  fashion (excluding homodimer 

pairings), resulting in an unbalanced test set of 100 true interacting pairs and 19,890 decoy pairs. 

These  decoys  are  not  confirmed  non-interactions,  but  due  to  the  low likelihood  of  finding 

interactions by random chance, benchmarking using this dataset is still valuable. Due to the high 

number of protein pairs, PRISM was excluded from this benchmark because of its slow speed 

and poor performance on the preceding benchmark.  The results of this unbalanced benchmark 

are presented in Figure 2c and Table S2.  The outcome is similar to the previous benchmark, 

with PEPPI outperforming all  other  programs,  followed most  closely by the  sequence-based 

algorithm SPRINT.  In this benchmark, however, the superiority of PEPPI is much clearer, as 

SPRINT is on average more susceptible to false positive detection for comparable recalls.  This 
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resulted in a statistically significant difference in max MCC performance between PEPPI and 

SPRINT, which was not the case on the balanced benchmark set.   Also made clearer  is the 

relatively  poor performance of PIPR with respect  to false  positive  errors;  so many pairs  are 

classified with the highest confidence score that the maximum achievable precision is 0.186.  D-

SCRIPT again clearly  outperforms PIPR but fails  to perform as well  as the similarity-based 

methods.  One particular case of interest in this benchmark is the interaction between chain J and 

chain K of PDB code 3CI0 (part of the type 2 secretion system of enterotoxigenic  E. coli), an 

interaction which was detected only by PEPPI (Fig 2d).  This interaction was able to be detected 

solely through structural similarity (SPRING: 51.45), with all other modules failing to detect the 

interaction  (STRING: not  found,  SPRINGNEG: 4.09,  SEQ: 0.279,  CT:  0.026),  leading to  a 

log(LR) of 1.433.  

2.3 SARS-CoV-2 and Human Interactome Modeling

The COVID-19 pandemic,  caused by the  SARS-CoV-2 virus,  has  disrupted  the  lives  of 

almost every person to some degree, and as of November 2021, over 5 million people have lost 

their lives to the disease worldwide[23].  SARS-CoV-2 has thus become an essential entity to 

understand,  as  our  expedient  comprehension  of  this  virus  translates  to  the  development  of 

therapeutic medicines, such as antiviral drugs and vaccines, for current and future coronavirus 

infections.  One fundamental step towards understanding the function of the virus is to model the 

virus-host interactome, with which we can begin to identify the purpose of each viral protein 

through  our  functional  understanding  of  the  human  proteins  with  which  each  viral  protein 

interacts.  To this end, we have predicted the set of interactions which occur between SARS-

CoV-2 and human proteins using PEPPI.
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Our SARS-CoV-2/Human interactome model consists of 403 interactions whose likelihood 

ratios  were  determined  to  be  greater  than  1,  i.e.,  interactions  which  are  more  likely  to  be 

interacting than not.  As shown in Figure 3a-b, the SARS-CoV-2 protein which has the highest 

number of predicted interactions is the Spike protein (86 interactions), followed by the 2’-O-

methyltransferase nsp16 (46 interactions), and the RNA polymerase nsp12 (41 interactions).  The 

highest  confidence  interaction  of  this  network  was  the  Spike/ACE2  interaction  (Figure  3c), 

which is expected given the extensive study of this interaction due to its essential role in viral 

entry[24].   PEPPI  also  correctly  predicted  Spike  to  interact  with  two  other  host  proteins 

important to viral entry: Furin, a protease which cleaves Spike during entry of SARS-CoV-2 but 

is not involved in SARS-CoV-1 entry[25], and TMPRSS2, a cell-surface protease involved in 

viral entry of both SARS-Cov-2 and SARS-CoV-1[24]. The PEPPI results also demonstrated the 

power of structure similarity-based PPI prediction through the prediction of the PARP15-nsp3 

interaction (Figure 3d);  this interaction was predicted with high confidence (log(LR)=1.435), 

mainly due to  the SPRING module’s  high confidence score (35.6).   The PARP proteins  are 

known to interact with the nsp3 macrodomain in other coronaviruses[26], so detection of this 

interaction in our dataset stands as an important validation. 

To evaluate PEPPI’s overall performance at recapitulating known biology, we constructed a 

gold standard dataset from PSICQUIC[27] of known interactions for comparison. This dataset 

consisted of 128 interactions,  94 (73%) of which were predicted by PEPPI.  In addition,  we 

compared the overlap between our predicted dataset and a high-throughput experimental dataset 

recently published in [28].  PEPPI’s predictions only shared one interaction with this dataset (an 

interaction between MARK3 and ORF9b), but the experimental dataset presents only functional 

associations  due  to  their  use  of  AP-MS,  which  is  known  to  pull  down  entire  interacting 

10



complexes instead of only the “prey” protein of interest. Compared to PEPPI, the dataset in [28] 

also misses crucial interactions, such as the interactions involving the Spike protein with ACE2, 

Furin, and TMPRSS2. In fact, only 3 of the 128 (2%) gold standard interactions we isolated from 

PSICQUIC  are  present  in  this  dataset.  Thus,  even  in  the  presence  of  a  high  throughput 

experimental  dataset,  PEPPI  provides  a  demonstrably  useful  complement  and  reveals  many 

direct physical interactions which would otherwise be missed.

Lastly, PEPPI made the potentially significant predictions that nsp3 interacts with the post-

translational modifiers NEDD8 and UBD (FAT10). While it is well-documented that the papain-

like protease (PLPro) of SARS-CoV-2 nsp3 both deISGylates and deubiquitinates viral proteins 

to avoid host detection and thus evade immune response[29], there has been less study of the role 

of the related, ubiquitin-like, post-transcriptional modifiers NEDD8 and UBD in SARS-CoV-2 

disease.  NEDD8  tags  proteins  for  degradation,  has  been  implicated  in  the  innate  immune 

response  to  viruses[30],  and  is  a  target  by  some  viruses  for  modulation  of  host  immune 

response[31].  UBD  has  been  shown  to  be  a  ubiquitin-independent  and  cytokine-inducible 

modifier targeting proteins for proteasomal degradation[32] and has additionally been shown to 

have roles in viral infection defense[33]. Furthermore, the top structural templates PEPPI found 

for nsp3/NEDD8 (Figure 3e) and nsp3/UBD (Figure 3f) were a PLPro in complex with free 

ubiquitin and a PLPro in complex with the ubiquitin-like and innate-immune-modulating protein 

ISG15, respectively. We therefore hypothesize that SARS-CoV-2 modulates host innate immune 

response  through interaction  of  nsp3 with  NEDD8 and UBD in  a  similar  manner  that  nsp3 

interacts with ubiquitin. 

3. Discussion & Conclusion
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We have presented a novel PPI prediction pipeline which demonstrates superior performance 

relative to other approaches.   In addition to performance,  this method presents a few unique 

advantages.   Firstly,  because the structure-based analysis  makes use of threading rather than 

structural alignment, it is much faster than pipelines which need to explicitly model the input 

chains,  while  retaining  the  flexibility  of  not  requiring  an  input  structure.   Second,  because 

structure-based analysis  is  a component  of the pipeline,  PEPPI can produce rough structural 

models of the interactions, which can help deepen biological insights such as interface residue 

determination and can guide follow-up experiments.   Finally,  because PEPPI is  a consensus 

model, it is not solely dependent on any one methodology to make its predictions; even if all  

modules  classify  an  interaction  with  low confidence,  if  these  classifications  agree,  the  final 

prediction will have reasonable confidence (as we have shown in several examples above).  In 

addition,  the  consensus  classifier  is  constructed  such  that  if  any  modules  are  intentionally 

excluded or fail to produce a score, a prediction can still be made from the remaining modules.

A few shortcomings and assumptions of the pipeline should also be discussed.  First, the 

interaction predictions made in this pipeline are based largely on similarity to known PPIs, and 

these modules will only detect interactions with similarity to solved structures or to interactions 

detected in high-throughput screens.  Therefore, the method’s performance will depend on the 

coverage of our knowledge of the existing interaction space, which is currently far from fully 

comprehensive. However, this knowledge will expand as more interactions are discovered, so the 

power  of  the  similarity-based  method  will  improve  over  time.   Second,  because  PEPPI  is 

similarity dependent, if an interaction is predicted between proteins of two given families, all 

other proteins in those families will likely also be predicted to interact.  In this case, interactions 

involving proteins of the same families can be sorted by LR; the highest rated interaction is the 
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most  likely  to  be  true.   Finally,  this  pipeline  predicts  the  capability  for  proteins  to  interact 

regardless of biological context.  As a result, it is possible for some of the interactions predicted 

here to not exist within the context of the cell due to factors such as incompatible subcellular 

localization or insufficient expression of the proteins of interest  in vivo.  While this additional 

biological insight can be useful in pruning the interaction space in a proteome-wide interactome 

modeling study, it is not explicitly considered in PEPPI’s interaction predictions.  Therefore, it is 

worth  validating  the interactions  predicted  with this  program with more  focused small-scale 

biochemical  studies,  such  as  crosslinking  mass  spectrometry  experiments.  Despite  these 

shortcomings, the whole proteome interaction networks modeled by PEPPI can help biologists 

retrieve existing biology and derive novel biology for their system of interest, as we did for the 

SARS-CoV-2/Human interaction system.  Through the understanding of PPI networks on the 

whole-proteome scale that PEPPI provides, future studies will be able to better understand the 

systems-level complexity that underpins biological phenomena as well as target individual edges 

of the network for therapeutic benefit.

4. Methods

4.1 Pipeline overview

The PEPPI pipeline  performs predictions  through a set  of independent  modules,  each of 

which score the interaction likelihood in their own way.  These modules include a conjoint triad 

trained  neural  network,  a  STRING  database  lookup  module,  and  two  “interology”  based 

modules: a threading-based module using a modified version of SPRING and a sequence-based 

module  using  BLAST.   Scores  from each of  these  modules  are  transformed into  a  ratio  of 

likelihood based on pre-trained score probability distributions, and the final likelihood ratio is 
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calculated as the product of likelihood ratios from each independent module (i.e., the sum of log-

likelihood  ratios).   A  full  description  of  the  pipeline  methodology  can  be  found  in  the 

Supplementary Material.

4.2 SARS-CoV-2 Virus and human host protein sequence collection 

The  SARS-CoV-2  proteome  was  collected  from  the  UniProtKB  pre-release.   Replicase 

polyprotein 1ab was split  into nsp1-16 (excluding nsp11) according to its “chain” regions as 

described in the “Protein Processing” subsection of its UniProtKB entry; nsp11 was extracted 

from replicase polyprotein 1a in a similar fashion.  As a result, the SARS-CoV-2 sequence set  

consisted of 31 protein sequences in total.  The human proteome, consisting of 20,600 proteins, 

was also collected from the Uniprot database.  All 20600*31=638,600 putative interactions were 

analyzed  with  PEPPI;  any  pairs  resulting  in  a  log(LR)  greater  than  0  were  classified  as 

interacting.  The  “gold  standard”  dataset  is  comprised  interactions  listed  in  the  PSICQUIC 

database annotated as “direct interaction” as of April 2021 between the proteins of either SARS-

CoV-1 or SARS-CoV-2 and human proteins, a total of 128 interactions.
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Figures

Figure 1. An illustration of the PEPPI pipeline.  This pipeline functions by analyzing a pair of 
input sequences via a series of independent modules, including structure similarity,  sequence 
similarity,  neural  network classification,  and functional  association  data.   These modules  are 
combined using a naïve Bayesian consensus classifier, which provides the final interaction score 
as a log-likelihood ratio.
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Figure 2.  PEPPI benchmark results. (a) 10-fold cross validation AUROC reveals that the full 
PEPPI  pipeline  outperforms its  component  modules:  the  neural  network  classifier  (CT),  the 
functional  association  data  (STRING),  the  sequence  similarity  method  (SEQ),  the  structure 
similarity method (SPRING), and the non-interaction similarity method (SPRINGNEG). (b) An 
ROC curve of the performance of PEPPI against PRISM, a structure similarity-based method, 
SPRINT,  a  sequence  similarity-based method,  PIPR,  a  deep  learning-based method,  and D-
SCRIPT, a structure-aware deep learning-based method on a balanced testing set. The dotted line 
represents  the  performance  of  random  classification.  (c)  Precision-recall  curve  of  the 
performance of PEPPI against several other comparable programs on an unbalanced testing set. 
The dotted line represents the performance of random classification. (d) A superposition of an 
example dimer model (PDB 3CI0; chain J in red, chain K in blue) on its dimer template structure 
(PDB 5VTM; chain W in yellow, chain X in cyan).
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Figure 3. A summary of SARS-CoV-2/human interactome prediction. (a) A network overview 
of the full interactome of human-covid protein pairs, with SARS-CoV-2 proteins colored red and 
human proteins colored blue.  (b) A bar chart of the number of predicted interactions involving 
each SARS-CoV-2 protein.  Proteins which were not predicted to have any interactions were 
excluded. (c) A superposition of a dimer model of the top-ranked SARS-CoV-2 Spike (in red) 
and Human ACE2 (in blue) interaction on its dimer template structure (PDB 6ACG; chain D in 
cyan,  chain  C in  yellow).  (d)  A superposition  of  a  dimer  model  of  the  SARS-CoV-2 nsp3 
macrodomain  (in  red)  and  human  PARP15  macrodomain  (in  blue)  on  its  dimer  template 
structure (PDB 2W2G; chain A in cyan, chain B in yellow). (e) A superposition of a dimer 
model of a domain of the SARS-CoV-2 nsp3 (in red) and human NEDD8 (in blue) on its dimer 
template structure (PDB 5WFI; chain C in cyan, chain A in yellow). (f) A superposition of a 
dimer model of a domain of the SARS-CoV-2 nsp3 (in red) and human UBD (in blue) on its  
dimer template structure (PDB 6BI8; chain C in cyan, chain A in yellow).
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