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Abstract

Proteome-wide identification of protein-protein interactions is a formidable task which has yet to
be sufficiently addressed by experimental methodologies. Many computational methods have
been developed to predict proteome-wide interaction networks, but few leverage both the
sensitivity of structural information and the wide availability of sequence data. We present
PEPPI, a pipeline which integrates structural similarity, sequence similarity, functional
association data, and machine learning-based classification through a naive Bayesian classifier
model to accurately predict protein-protein interactions at a proteomic scale. Through
benchmarking against a set of 798 ground truth interactions and an equal number of non-
interactions, we have found that PEPPI attains 4.5% higher AUROC than the best of other state-
of-the-art methods. As a proteomic-scale application, PEPPI was applied to model the
interactions which occur between SARS-CoV-2 and human host cells during coronavirus
infection, where 403 high-confidence interactions were identified with predictions covering 73%
of a gold standard dataset from PSICQUIC and demonstrating significant complementarity with
the most recent high-throughput experiments. PEPPI is available both as a webserver and in a
standalone version and should be a powerful and generally applicable tool for computational

screening of protein-protein interactions.
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1. Introduction

The biological function of many proteins is conferred through their interactions with other
proteins. Therefore, to fully understand the function of each protein in an organism, one must
first attain a comprehensive network of the protein-protein interactions (PPIs) that occur within
the cell. The discovery of critical interactions within this interaction network, or “interactome”,
can lead to drug development[1] or protein engineering[2, 3] targeting these interactions.
However, many of these experiments do not guarantee that the interactions detected are, in fact,
direct physical contacts between the proteins; some of the earliest databases for PPI prediction
involve features that assert only a functional association between proteins[4]. While these
databases can be useful for prediction of physical interactions, as all physical interactions are
functionally associated, the converse is not true; many biological applications, such as drug
target discovery, require knowledge of which proteins come into physical contact. The methods
for elucidating these direct physical interactions are at present either prohibitively costly for
whole-proteome analysis (such as structure solving or crosslinking mass spectrometry) or are too
susceptible to errors (such as yeast-two hybrid[5]). As an alternative, computational methods
can be used to model proteome-wide interactions, as well as refine existing interaction datasets.

One of the most straightforward methods of computational interaction prediction is to
determine whether the query protein pair is similar to an already known interaction. Many
programs directly leverage sequence similarity for this purpose because the sequence comparison
operation is quick and sequence data is plentiful[6, 7]. However, since structure is more
evolutionarily conserved than sequence, structural similarity is much more effective at detecting
distantly similar PPIs; methods which leverage this structural information[8-11] grow more

powerful as modern structural biology methods such as cryo-EM facilitate the solving of



complicated protein complex structures and as computational approaches offer improved
accuracy in predicting the folds of individual proteins[12]. In addition, structures provide a clear
ground truth as to whether two proteins interact physically; if a solved structure of the interaction
exists, the proteins are likely to interact in vivo. Therefore, an effective similarity-based program
should consider both structural and sequence similarity.

Another common method for PPI prediction is the application of machine learning-based
classifiers. In the earlier days of machine learning, the major novelty of machine learning-based
PPI predictors was in how they extracted features from the input amino acid sequences in order
to create a fixed-length vector that could be utilized in standard machine learning algorithms,
such as the conjoint triad method[13] or autocorrelation[14]. As more modern deep learning
techniques became available, improved PPI predictions were achieved with features solely from
evolutionary profiles[15] or even based on sequence alone[16, 17]. Despite these initial studies
into deep learning, to our knowledge these methods have yet to demonstrate success in a species
agnostic context; more commonly, they are benchmarked by either combining a few species-
specific datasets[16] or by training on one species and testing on another[15, 17].

Here, we present a Pipeline for the Extraction of Predicted Protein-protein Interactions
(PEPPI), which offers high-accuracy PPI predictions through a consensus of sequence and
structural similarity, functional association, and neural network classification. While the source

code for PEPPI can be found at https://github.com/ewbell94/PEPPI, an online webserver

implementation of this pipeline can be found at https://zhanggroup.org/PEPPI/, which allows
users to create PPI predictions from sequences alone. We additionally present an application of

PEPPI to make predictions of the inter-species interactome between human host cells and SARS-
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CoV-2. Through the following benchmarks and examples, we demonstrate that PEPPI is a

useful tool for predicting both pairwise and systems-level PPIs.

2. Results

2.1 Pipeline Overview and Module Cross-Validation

PEPPI is a protein-protein interaction prediction pipeline which takes in a pair of query
sequences and quantifies their likelihood of interaction as a natural log-transformed likelihood
ratio (log(LR)) through a consensus of five independent prediction modules (Figure 1). This
consensus is determined by a naive Bayesian classifier model trained on a set of 800 high-
confidence interactions from IntAct[18] and 800 curated non-interactions from the Negatome 2.0
database[19] (see Supplementary Methods).

Figure 2a presents the 10-fold cross validation performance of each individual module and
the full pipeline on this training set. The best-performing individual modules are SPRING and
SEQ, which implement structure and sequence-based similarity approaches, respectively. The
SPRING module uses the dimeric threading program SPRING[20] to identify dimer structure
templates out of a database of interacting proteins extracted from the PDB, while SEQ uses
BLAST[21] sequence searching to identify similar interactions in a database of direct
interactions identified by high-throughput experiment (HTE) data. These homology-based
modules will perform well for any cases which have homologous similarity to existing
interactions, which is the case for many true interactions. The next best-performing module is
the neural network-based CT module, which transforms the input amino acid sequences into a
fixed-length vector according to the conjoint triad method[13] and classifies the resulting vector

through a neural network model. This module helps PEPPI retrieve true positive predictions in



case there is only loose homologous similarity to existing interactions. The STRING module, a
module which extracts various query functional association features from the STRING
database[22], performs relatively poorly on its own; this is expected because of its focus on
functional association data instead of physical interaction data and because of its inability to
provide data if the interaction is not located in STRING. SPRINGNEG has a nearly identical
methodology to SPRING but it performs least well because it searches through a database of
non-interacting protein structures and thus a hit in this database will only lower the interaction
score because by design it only provides information to filter out functionally associated non-
interactions. Overall, the combination of all modules clearly outperforms any single module,

demonstrating that the modules are complimentary in classification.

2.2 PEPPI Benchmark and Performance

In order to quantify the classification performance of PEPPI against existing methods, we
benchmarked PEPPI alongside PRISM[8], a structure-based similarity predictor, SPRINT[6], a
sequence-based similarity predictor, PIPR[16], a deep learning predictor which utilizes a
combination of recurrent and convolutional layers in its architecture, and D-SCRIPT[17], a
“structure aware” deep learning predictor improving upon on PIPR. These benchmarks were
performed using a randomly selected test set of 798 interacting structure pairs and an equal
number of structure pairs involving chains from the same protein complex but known to not
come into physical contact (and thus do not form a physical interaction). All structures of this
test set were taken from the PDB and were confirmed to have <50% sequence identity to the

PEPPI training protein pairs. It should be noted that these protein pairs are classified through



their sequence alone, and therefore, even though many of these PDB structures contain more
than one interaction, each pair of chains can be considered independently.

The results of the PPI predictions are summarized presented in Figure 2b and Table S1,
where it is shown that PEPPI significantly outperforms all competing methods in terms of area
under ROC (AUROC), average precision (similar to area under precision-recall curve, AUPRC),
and all but SPRINT in maximum achievable Matthew’s correlation coefficient (MCC). PRISM
had the lowest performance in this benchmark, which is likely due to its outdated interface
structure library, which misses many structures which have been solved since its release to the
public. Interestingly, the highest performance from a competing program was seen from
SPRINT, a sequence motif-based similarity classifier, and not from either D-SCRIPT or PIPR,
the more sophisticated deep-learning pipelines. The deep learning architectures of PIPR and D-
SCRIPT were benchmarked based on performance of species-specific interaction datasets; when
this method was applied to the species agnostic dataset of this benchmark, the deep learning
methods’ ability to accurately classify interactions decreased. As a result, the method which
draws its conclusions from explicit similarity (SPRINT) outperforms the methods which try to
sub-optimally learn the interaction problem itself (PIPR & D-SCRIPT). However, we still found
that D-SCRIPT outperforms PIPR, as is consistent with D-SCRIPT’s benchmarks.

One particular case of interest in this benchmark is the interaction between chain A and chain
B of PDB code 1F3M (corresponding to the N- and C-terminal domains of the human kinase
PAK1). While this is a true interaction, no hit was found by PEPPI in either the sequence or
structure databases after homologous template removal, leading to poor scores for those
pipelines (SPRING: 8.937, STRING: not found, SEQ: 0.129, SPRINGNEG: 4.618). However,

this case was still classified as positive with a log(LR) of 0.056 due to a high interaction



probability from the CT module (0.999), thus demonstrating the utility of CT for rescuing
interactions that do not attain significant similarity. On the side of non-interaction classification,
the classification of chain G and chain I of 3CJH (corresponding to two Tim13 chains of the
yeast Tim8-Tim13 complex) poses an interesting case, as PEPPI was able to classify this as
negative (log(LR)=-0.939) where competing programs could not, despite attaining a high
SPRING score (34.208), a high CT confidence (1.0), and loose SEQ homology (0.217). The
reason for this is a high score from SPRINGNEG (36.108) which pushes down the total
interaction likelihood, thus demonstrating a case where SPRINGNEG’s false positive
identification ability rescues the pipeline from misclassifying the interaction.

While the previous balanced dataset is convenient for benchmarking, it is not fully reflective
of the context in which an interactome prediction algorithm is applied because true interactions
are much sparser relative to the total set of pairwise combinations of query proteins in almost all
contexts. Therefore, we randomly sampled 100 interacting pairs from the previous test set and
paired the 200 chains from these interactions in an all-by-all fashion (excluding homodimer
pairings), resulting in an unbalanced test set of 100 true interacting pairs and 19,890 decoy pairs.
These decoys are not confirmed non-interactions, but due to the low likelihood of finding
interactions by random chance, benchmarking using this dataset is still valuable. Due to the high
number of protein pairs, PRISM was excluded from this benchmark because of its slow speed
and poor performance on the preceding benchmark. The results of this unbalanced benchmark
are presented in Figure 2c and Table S2. The outcome is similar to the previous benchmark,
with PEPPI outperforming all other programs, followed most closely by the sequence-based
algorithm SPRINT. In this benchmark, however, the superiority of PEPPI is much clearer, as

SPRINT is on average more susceptible to false positive detection for comparable recalls. This



resulted in a statistically significant difference in max MCC performance between PEPPI and
SPRINT, which was not the case on the balanced benchmark set. Also made clearer is the
relatively poor performance of PIPR with respect to false positive errors; so many pairs are
classified with the highest confidence score that the maximum achievable precision is 0.186. D-
SCRIPT again clearly outperforms PIPR but fails to perform as well as the similarity-based
methods. One particular case of interest in this benchmark is the interaction between chain J and
chain K of PDB code 3CIO (part of the type 2 secretion system of enterotoxigenic E. coli), an
interaction which was detected only by PEPPI (Fig 2d). This interaction was able to be detected
solely through structural similarity (SPRING: 51.45), with all other modules failing to detect the
interaction (STRING: not found, SPRINGNEG: 4.09, SEQ: 0.279, CT: 0.026), leading to a

log(LR) of 1.433.

2.3 SARS-CoV-2 and Human Interactome Modeling

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has disrupted the lives of
almost every person to some degree, and as of November 2021, over 5 million people have lost
their lives to the disease worldwide[23]. SARS-CoV-2 has thus become an essential entity to
understand, as our expedient comprehension of this virus translates to the development of
therapeutic medicines, such as antiviral drugs and vaccines, for current and future coronavirus
infections. One fundamental step towards understanding the function of the virus is to model the
virus-host interactome, with which we can begin to identify the purpose of each viral protein
through our functional understanding of the human proteins with which each viral protein
interacts. To this end, we have predicted the set of interactions which occur between SARS-

CoV-2 and human proteins using PEPPI.



Our SARS-CoV-2/Human interactome model consists of 403 interactions whose likelihood
ratios were determined to be greater than 1, i.e., interactions which are more likely to be
interacting than not. As shown in Figure 3a-b, the SARS-CoV-2 protein which has the highest
number of predicted interactions is the Spike protein (86 interactions), followed by the 2’-O-
methyltransferase nsp16 (46 interactions), and the RNA polymerase nsp12 (41 interactions). The
highest confidence interaction of this network was the Spike/ACE2 interaction (Figure 3c),
which is expected given the extensive study of this interaction due to its essential role in viral
entry[24]. PEPPI also correctly predicted Spike to interact with two other host proteins
important to viral entry: Furin, a protease which cleaves Spike during entry of SARS-CoV-2 but
is not involved in SARS-CoV-1 entry[25], and TMPRSS2, a cell-surface protease involved in
viral entry of both SARS-Cov-2 and SARS-CoV-1[24]. The PEPPI results also demonstrated the
power of structure similarity-based PPI prediction through the prediction of the PARP15-nsp3
interaction (Figure 3d); this interaction was predicted with high confidence (log(LR)=1.435),
mainly due to the SPRING module’s high confidence score (35.6). The PARP proteins are
known to interact with the nsp3 macrodomain in other coronaviruses[26], so detection of this
interaction in our dataset stands as an important validation.

To evaluate PEPPI’s overall performance at recapitulating known biology, we constructed a
gold standard dataset from PSICQUIC[27] of known interactions for comparison. This dataset
consisted of 128 interactions, 94 (73%) of which were predicted by PEPPI. In addition, we
compared the overlap between our predicted dataset and a high-throughput experimental dataset
recently published in [28]. PEPPI’s predictions only shared one interaction with this dataset (an
interaction between MARK3 and ORF9b), but the experimental dataset presents only functional

associations due to their use of AP-MS, which is known to pull down entire interacting
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complexes instead of only the “prey” protein of interest. Compared to PEPPI, the dataset in [28]
also misses crucial interactions, such as the interactions involving the Spike protein with ACE2,
Furin, and TMPRSS2. In fact, only 3 of the 128 (2%) gold standard interactions we isolated from
PSICQUIC are present in this dataset. Thus, even in the presence of a high throughput
experimental dataset, PEPPI provides a demonstrably useful complement and reveals many
direct physical interactions which would otherwise be missed.

Lastly, PEPPI made the potentially significant predictions that nsp3 interacts with the post-
translational modifiers NEDD8 and UBD (FAT10). While it is well-documented that the papain-
like protease (PLPro) of SARS-CoV-2 nsp3 both deISGylates and deubiquitinates viral proteins
to avoid host detection and thus evade immune response[29], there has been less study of the role
of the related, ubiquitin-like, post-transcriptional modifiers NEDD8 and UBD in SARS-CoV-2
disease. NEDDS8 tags proteins for degradation, has been implicated in the innate immune
response to viruses[30], and is a target by some viruses for modulation of host immune
response[31]. UBD has been shown to be a ubiquitin-independent and cytokine-inducible
modifier targeting proteins for proteasomal degradation[32] and has additionally been shown to
have roles in viral infection defense[33]. Furthermore, the top structural templates PEPPI found
for nsp3/NEDDS (Figure 3e) and nsp3/UBD (Figure 3f) were a PLPro in complex with free
ubiquitin and a PLPro in complex with the ubiquitin-like and innate-immune-modulating protein
ISG15, respectively. We therefore hypothesize that SARS-CoV-2 modulates host innate immune
response through interaction of nsp3 with NEDDS8 and UBD in a similar manner that nsp3

interacts with ubiquitin.

3. Discussion & Conclusion
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We have presented a novel PPI prediction pipeline which demonstrates superior performance
relative to other approaches. In addition to performance, this method presents a few unique
advantages. Firstly, because the structure-based analysis makes use of threading rather than
structural alignment, it is much faster than pipelines which need to explicitly model the input
chains, while retaining the flexibility of not requiring an input structure. Second, because
structure-based analysis is a component of the pipeline, PEPPI can produce rough structural
models of the interactions, which can help deepen biological insights such as interface residue
determination and can guide follow-up experiments. Finally, because PEPPI is a consensus
model, it is not solely dependent on any one methodology to make its predictions; even if all
modules classify an interaction with low confidence, if these classifications agree, the final
prediction will have reasonable confidence (as we have shown in several examples above). In
addition, the consensus classifier is constructed such that if any modules are intentionally
excluded or fail to produce a score, a prediction can still be made from the remaining modules.

A few shortcomings and assumptions of the pipeline should also be discussed. First, the
interaction predictions made in this pipeline are based largely on similarity to known PPIs, and
these modules will only detect interactions with similarity to solved structures or to interactions
detected in high-throughput screens. Therefore, the method’s performance will depend on the
coverage of our knowledge of the existing interaction space, which is currently far from fully
comprehensive. However, this knowledge will expand as more interactions are discovered, so the
power of the similarity-based method will improve over time. Second, because PEPPI is
similarity dependent, if an interaction is predicted between proteins of two given families, all
other proteins in those families will likely also be predicted to interact. In this case, interactions

involving proteins of the same families can be sorted by LR; the highest rated interaction is the
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most likely to be true. Finally, this pipeline predicts the capability for proteins to interact
regardless of biological context. As a result, it is possible for some of the interactions predicted
here to not exist within the context of the cell due to factors such as incompatible subcellular
localization or insufficient expression of the proteins of interest in vivo. While this additional
biological insight can be useful in pruning the interaction space in a proteome-wide interactome
modeling study, it is not explicitly considered in PEPPI’s interaction predictions. Therefore, it is
worth validating the interactions predicted with this program with more focused small-scale
biochemical studies, such as crosslinking mass spectrometry experiments. Despite these
shortcomings, the whole proteome interaction networks modeled by PEPPI can help biologists
retrieve existing biology and derive novel biology for their system of interest, as we did for the
SARS-CoV-2/Human interaction system. Through the understanding of PPI networks on the
whole-proteome scale that PEPPI provides, future studies will be able to better understand the
systems-level complexity that underpins biological phenomena as well as target individual edges

of the network for therapeutic benefit.

4. Methods

4.1 Pipeline overview

The PEPPI pipeline performs predictions through a set of independent modules, each of
which score the interaction likelihood in their own way. These modules include a conjoint triad
trained neural network, a STRING database lookup module, and two “interology” based
modules: a threading-based module using a modified version of SPRING and a sequence-based
module using BLAST. Scores from each of these modules are transformed into a ratio of

likelihood based on pre-trained score probability distributions, and the final likelihood ratio is
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calculated as the product of likelihood ratios from each independent module (i.e., the sum of log-
likelihood ratios). A full description of the pipeline methodology can be found in the

Supplementary Material.

4.2 SARS-CoV-2 Virus and human host protein sequence collection

The SARS-CoV-2 proteome was collected from the UniProtKB pre-release. Replicase
polyprotein lab was split into nspl-16 (excluding nspl1) according to its “chain” regions as
described in the “Protein Processing” subsection of its UniProtKB entry; nspl1 was extracted
from replicase polyprotein la in a similar fashion. As a result, the SARS-CoV-2 sequence set
consisted of 31 protein sequences in total. The human proteome, consisting of 20,600 proteins,
was also collected from the Uniprot database. All 20600*31=638,600 putative interactions were
analyzed with PEPPI; any pairs resulting in a log(LR) greater than O were classified as
interacting. The “gold standard” dataset is comprised interactions listed in the PSICQUIC
database annotated as “direct interaction” as of April 2021 between the proteins of either SARS-

CoV-1 or SARS-CoV-2 and human proteins, a total of 128 interactions.
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Figure 1. An illustration of the PEPPI pipeline. This pipeline functions by analyzing a pair of
input sequences via a series of independent modules, including structure similarity, sequence
similarity, neural network classification, and functional association data. These modules are
combined using a naive Bayesian consensus classifier, which provides the final interaction score
as a log-likelihood ratio.
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Figure 2. PEPPI benchmark results. (a) 10-fold cross validation AUROC reveals that the full
PEPPI pipeline outperforms its component modules: the neural network classifier (CT), the
functional association data (STRING), the sequence similarity method (SEQ), the structure
similarity method (SPRING), and the non-interaction similarity method (SPRINGNEG). (b) An
ROC curve of the performance of PEPPI against PRISM, a structure similarity-based method,
SPRINT, a sequence similarity-based method, PIPR, a deep learning-based method, and D-
SCRIPT, a structure-aware deep learning-based method on a balanced testing set. The dotted line
represents the performance of random classification. (c) Precision-recall curve of the
performance of PEPPI against several other comparable programs on an unbalanced testing set.
The dotted line represents the performance of random classification. (d) A superposition of an
example dimer model (PDB 3CI0; chain J in red, chain K in blue) on its dimer template structure
(PDB 5VTM; chain W in yellow, chain X in cyan).
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Figure 3. A summary of SARS-CoV-2/human interactome prediction. (a) A network overview
of the full interactome of human-covid protein pairs, with SARS-CoV-2 proteins colored red and
human proteins colored blue. (b) A bar chart of the number of predicted interactions involving
each SARS-CoV-2 protein. Proteins which were not predicted to have any interactions were
excluded. (c¢) A superposition of a dimer model of the top-ranked SARS-CoV-2 Spike (in red)
and Human ACE?2 (in blue) interaction on its dimer template structure (PDB 6ACG; chain D in
cyan, chain C in yellow). (d) A superposition of a dimer model of the SARS-CoV-2 nsp3
macrodomain (in red) and human PARP15 macrodomain (in blue) on its dimer template
structure (PDB 2W2G; chain A in cyan, chain B in yellow). (¢) A superposition of a dimer
model of a domain of the SARS-CoV-2 nsp3 (in red) and human NEDDS (in blue) on its dimer
template structure (PDB SWFI; chain C in cyan, chain A in yellow). (f) A superposition of a
dimer model of a domain of the SARS-CoV-2 nsp3 (in red) and human UBD (in blue) on its
dimer template structure (PDB 6BIS; chain C in cyan, chain A in yellow).
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