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We obtain a Fourier dimension estimate for sets of exact approximation order introduced by Bugeaud for certain
approximation functions . This Fourier dimension estimate implies that these sets of exact approximation order
contain normal numbers.

1 Introduction and Background

1.1 Hausdorff and Fourier Dimension

Let E C R be a compact set. Frostman’s lemma [6] implies that the Hausdorff dimension dimy (E) of E is the
supremum over all values of s < 1 such that E supports a Borel probability measure p satisfying the condition

/ ORI de < oo,

This condition essentially says, up to an e-loss in the exponent, that |fi(£)| decays, in an L2-average sense, at
least as quickly as |£]~%/2.

A related notion of dimension is given by the Fourier dimension. For a compact set E, the Fourier
dimension of E, denoted dimp(FE), is the supremum over all s < 1 such that E supports a measure 4 satisfying
the pointwise Fourier decay condition

A(E)] < |¢]7*/2.

Clearly, we have that dimp(FE) < dimpy(E) for every compact subset E C R. If a compact set F satisfies
dimp(F) = dimg (E), then we say that E is a compact Salem set.

In fact, it is nontrivial to construct examples of Salem sets. The earliest constructions of Salem sets are
random constructions, such as random Cantor sets of Salem [19]. Korner [14] shows that the Fourier dimension
of a set E C R can take any value from 0 to dimg(F).

1.2 Metric Diophantine Approximation

A classical result of Jarnik and Besicovitch [2] [I0] concerns the Hausdorff dimension of the set of 7-approximable
numbers. The T-approximable numbers are the set

E(r) :=={x: |x —p/q| < ¢~7 for infinitely many pairs of integers (p, q).}

For 7 < 2, it is easy to see using the Dirichlet principle that E(7) = R. Jarnik and Besicovitch show that for
7> 2, dimy(E(7)) = 2.
Kaufman [I2] shows that, in fact, the set E(7) has Fourier dimension equal to 2, implying that E(7) is
a Salem set. Notably, this is the first explicit non-random construction of a Salem set of Hausdorff dimension
other than 0 or 1 in R.
In fact, Jarnik’s result can be extended to a more general type of set. Suppose that 1(q) : N = Rt is a

decreasing function satisfying the condition that
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AT () = —limsupM > 2.

q—00 log q

If we define the set W (v, 6) to be the set of inhomogeneous well-approximable numbers defined by

-0
2% < (q) for infinitely many pairs (p, q) of relatively prime integers,

then a result of Levesley [I5] implies that this set has Hausdorfl dimension equal to /\% In fact, Levesley

computes the Hausdorfl dimension even in the case of simultaneous or dual approximation.

In fact, for limsup sets such as W (1, ), statements about the Hausdorff dimension can be deduced from
the mass transference principle of Beresnevich and Velani [I]. For the specific case of W (v, 0), the Hausdorff
dimension can be computed by applying the mass transference principle with a result of Khintchine [I3] in the
homogeneous case and a result of Sziisz [20] in the inhomogeneous case.

The sets W (1, 0) are shown to be Salem sets in the homogeneous case § = 0 by Bluhm [3], and in the
inhomogeneous case 6 # 0 by Hambrook [7] and independently by Zafeiropoulos [21].

Fourier dimension calculations are of interest in metric Diophantine approximation because of a celebrated
result of Davenport, Erdds, and Leveque [B]. This result concerns the presence of normal numbers in subsets
ECR.

Specifically, Davenport, Erdés and Leveque show that if i is a positive Borel probability measure, and a is a
positive integer, then the sequence {a?x}°° ; is uniformly distributed modulo 1 almost everywhere with respect

to the measure p if
N

Z N3 Z f(m(a? —a*)) < oo (1)

N=1 j=1 k=1

for every nonzero integer m € Z. If we crudely assume |fi(€)| < |£|~%/? for every & € R, the sum in k in () is
essentially a geometric sum, so we have that the sum in j is bounded above by an m-dependent constant times
N, and the sum certainly converges for all nonzero integers m, and all integers a > 2. Therefore, if p is a Borel
probability measure such that |f(€)] < |€]~%/2 for some s > 0, then p-almost every point is a normal number.
Note that a far weaker assumption on p suffices to locate normal numbers; see e.g. [16].

In particular, any set E of positive Fourier dimension must contain normal numbers. It is therefore of
interest to find Fourier dimension estimates for subsets of R arising in Diophantine approximation. Of course,
the well-approximable numbers, being a Salem set of positive dimension, contain normal numbers. In fact,
Kaufman [I1] also shows a Fourier dimension result for sets of badly-approximable numbers.

The badly approximable numbers consist of those z € R such that the partial quotients in the continued
fraction expansion of z are bounded. Given a finite set S C N with at least two elements, we use the term
S-badly-approximable numbers to refer to those real numbers x such that the partial quotients of the continued
fraction expansion of x all lie in the finite set S. Kaufman [II] shows that, if S is a finite set such that the
Hausdorff dimension of the S-badly-approximable numbers is greater than 2/3, then the S-badly approximable
numbers have positive Fourier dimension.

The method used by Kaufman to estimate the Fourier dimension of the badly approximable numbers is
very different from the method used to estimate the Fourier dimension of the well-approximable numbers. For
the well-approximable numbers, Kaufman’s argument relies on the cancellation of the exponential sum

q

> elps/q) (2)

p=0

for any integers s, q such that g does not divide s; since s has a small number of divisors, the sum of over
all M/2 < g < M will also be small.

In contrast, Kaufman’s Fourier dimension estimate for the badly-approximable numbers [I1] follows a rather
different argument. This argument relies on constructing a certain random measure on bounded integer sequences
whose pushforward under the continued fraction map satisfies the relevant Fourier decay condition, which is
established via a van der Corput-type lemma.

For the set of S-approximable numbers, Queffelec and Ramaré [I7] improve the 2/3 requirement on the
Hausdorff dimension, which ensured positive Fourier dimension, to 1/2; in particular, this condition holds if
S ={1,2}. Hochman and Shmerkin [8] show that, without any Hausdorfl dimension assumption, the set of
S-badly-approximable numbers contains normal numbers for any finite set S C N with at least two elements.
In a recent work, Sahlsten and Stevens [I§] improved on all of these results by showing, without any Hausdorff
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dimension assumption, that the S-badly-approximable numbers have positive Fourier dimension for any finite
set S C N with at least two elements.

Of note is that, while Kaufman’s argument for the well-approximable numbers [12] works just as well in
the inhomogeneous setting, there does not seem to be an easy way to modify Kaufman’s argument for the
badly approximable numbers, [I], to this case. Doing so would require a satisfactory analogue of the continued
fraction expansion for the inhomogeneous version of the badly approximable numbers.

1.3 Approximation to Exact Order

Bugeaud [4] introduces sets of exact approximation order. We will now define an inhomogeneous analogue.
Definition 1.1 (Sets of exact approximation order). Given a function % : N — (0,00) and a real number

0 € 10,1), define the set Exact(v, ) to be the set of real numbers x satisfying the pair of conditions:

-0
‘x - < 9(q) for infinitely many pairs (p, ¢) of relatively prime integers

—0
‘x . < (q) —cb(q) for only finitely many pairs (p, q) of relatively prime integers and any ¢ > 0.

q

O

Observe that the set Exact(t,0) is not a limsup set, so the mass transference principle of Beresnevich and
Velani cannot be applied to compute the Hausdorff dimension. Nonetheless, Bugeaud [4] computes the Hausdorff
dimension of the set Exact(v,0) for certain functions . Specifically, Bugeaud considers functions ¢ such that
the function 22y () is nonincreasing. Bugeaud shows that the Hausdorff dimension of Exact(¢,0) is 53, where

1
AT () = —limsupoigi((n >2
q—o0 0gq

The upper Hausdorff dimension bound follows trivially from the Jarnik-Besicovitch theorem. For the lower
bound, Bugeaud considers a subset of Exact(1,0) consisting of numbers whose continued fractions have partial
quotients that typically grow very slowly, except for some exceptional partial quotients that are larger.
Observe that the set Exact(v,0) is invariant under translations by integers. Therefore, we can view
Exact(1), 0) as a subset of the torus [0,1) in a natural way. We will use the notation Exact!®V (¢, 6) to refer to
this subset of the torus.
Let 6 € [0,1). We define the Diophantine approximation exponent of 6 to be the supremum over values
of ~ such that the equation
g P
q
has infinitely many solutions for integers p and ¢. Note that if 0 is rational, then v = 1. If () is the Diophantine
approximation exponent of an irrational number 6, and n > 0, then, for any integers p and g with ¢ > 0,

0< <q7

lgo — p| > ¢~V Ot

provided q is sufficiently large depending on n and 6. Since € is irrational, we can then observe that there exists
a constant D, 9 > 0 such that for ¢ > 0,

|q0]] > Dy pq O+, (3)

where ||¢0]| is the distance from ¢ to the nearest integer.

Theorem 1.2. Let 0 € [0,1) be either 0 or an irrational number with finite Diophantine exponent 7. Let
¥ : N = (0,00) be a positive, decreasing function such that the limit

A(@) := — lim log ¥(a) (4)

q—00 IOg q

exists and is finite. Suppose 7 = A(¢) is such that

212+ /2+77)7 4
St (2”) . 5)
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Then dimg Exact(v, 6) is positive, and therefore, Exact(v,0) contains normal numbers. Moreover, we have the
inequality
2(8—1)

dimp Exact(¢),0) > a := m,

(6)

where
Bi=7"2(r—1)% (7)
O

For technical reasons, we do not consider non-zero rational 6 in Theorem An indication of these
technicalities is made at Remark which follows the relevant proof.

One can observe that the condition implies that § > 7; this implies that the right side of @ is positive.
Indeed, to see this, one considers solutions to the quadratic equation 8(7) — 7 = 0 in 7, which is equivalent to

-2+ +1=0.
The largest solution of this equation is

2+ +/(2+4%)2 -4
7'+: 2

so that, for 7 > 74, we must have B(7) > 7. Let us make some quick observations about Theorem [1.2

Remark 1.3. If § = 0, we are able to take v = 1. In this case, the inequality reduces to

T>32¢3 (8)

O

Remark 1.4. For a fixed 7, observe that in the regime 7 — 0o, we have that 8 = y~272 4 O(7). Therefore,

2(B—7)
lim T2D
T—00 2/7’
This means that, if 7 is large, Theorem “nearly” shows the set Exact(1),0) is a Salem set. O

In fact, our proof yields a slightly more general Fourier dimension estimate than the one in Theorem [T.2]
In order to state this estimate, we will introduce sets of tight approximation order.

Definition 1.5 (Sets of tight approximation order). Let 11,19 : N — (0,00) be a pair of functions such that
Y2(q) < 1¥1(q) for all g. The set Tight(t)1, 19, 6) consists of those real numbers z satisfying the conditions

-0
‘x A < 1(q) for infinitely many pairs (p, q) of relatively prime integers,
q
—0
‘x A < 1(q) — ci2(q) for only finitely many pairs (p, ¢) of relatively prime integers and any ¢ > 0.
O
Remark 1.6. The set Exact(t), 0) is the same as the set Tight(v, ), 0). O

As is the case for Exact(v),0), the set Tight(t1,12,0) is invariant under translations by integers. So
Tight(e1, 12, 0) can naturally be associated to a subset of the torus, which we denote by Tight[o’l)(z/)l, 9, 0).
Given appropriate conditions on 7 and 1), we are able to estimate the Fourier dimension of the set

Tight(”@/]l, 2/)2, 0)

Theorem 1.7. Let 6 € [0, 1) be either 0 or an irrational number with finite Diophantine exponent . Let 11 (q)
and 12(q) be decreasing functions with 12(q) < 11(q) for all g, such that ¥;(q) — ¥2(q) is decreasing, and such
that the limits A(¢;) and A(1)2) exist and are finite. Let 71 = A(¢1), and 72 = A(1)9).

Let
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Bi=~"%(r - 1)% 9)

Suppose 71 = A(1)1) and 1o = A(¥)2) are such that 8 > 5. Then dimg Tight(t1, 12, ) is positive; moreover,
we have the inequality

dimp Tight (1, ¥2,0) > o = 28 = 2)

G (10)

O

Remark 1.8. Because 2(q) < 11(q) for all g, it follows that 75 > 7. In particular, the condition 8 > 75 implies
that 8 > 7. Combining this inequality with @ gives the condition

2447+ /@17 1 o
2 |

Ty > T >

In particular, since v > 1, we will always have

To > T1 >

+5
5

Remark 1.9. It is likely that Bugeaud’s proof [4] can be adapted to show that Tight(t)y,¢9,0) has Hausdorff

dimension % For more general 6, a simple covering argument shows that Tight(v1,12,0) has Hausdorff

S

dimension at most % O

Remark 1.10. If the quantity § could have been chosen to be an arbitrarily large real number rather
than v~2(r; — 1)?, then we would have dimpg Tight (i, )2,0) = 7—22, showing together with Remark that
Tight (11, 12,0) is a Salem set. However, the choice of 8 is dictated by Lemma 2.1. This places limits on
the growth rate of the sequence {1;}72, introduced in Section 6, leading to some interference in the Fourier
transform between scales that cannot be eliminated. This problem does not occur in the case of the well-
approximable numbers, where the corresponding sequence can be chosen to grow arbitrarily quickly, allowing

for the interference between scales to be minimized. O

2 An elementary Diophantine approximation lemma

The key to adapting Kaufman’s argument to the set Tight(t1, 9, 6) is an elementary lemma in Diophantine
approximation. This lemma states that if a real number x is approximable by rationals at two “fairly close”
scales, then = cannot be approximable at any intermediate scale.

Let

Be=7"2(n—1)" —e (13)
Lemma 2.1. Let > 7 > 2, 0<c <1, € >0 be real numbers, and let z € R. Suppose 91 : N — R and
1o : N — R are decreasing functions satisfying , with A\(v1) = 71 and A(¢2) = 72, chosen such that 1)1 — 9

is also decreasing. Let 6 € [0,1) be either 0 or an irrational number with Diophantine approximation exponent
~. Let us suppose that for some z € R such that there exist pairs (p1,¢1) and (pe, ¢2) € Z x N for which

p1—0
q1

p2 — 0
q2

Y1(q1) — ce(qr) <

<vY1(q1)

T —

T —

P1(q2) — c2(q2) <

< ¥1(ge),
where Q(e) < ¢1 < g2 < qf < and g5 is prime. Then x does not satisfy any inequality of the form

—0
‘x— p‘ < 41(q) - (),

for any integer pair (p,q) € Z x N with ¢; < ¢ < ¢o.
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Proof. Suppose q, q1, q2, p, p1, and py are positive integers such that ¢o is prime and Q(€) < ¢1 < ¢ < ¢2, and
suppose that = satisfies the inequalities

Yi(q1) —co(q1) < |z — plq: 9’ < 1(q1) (14)
VY1(q2) — ca(qe) < |z — p2q; 0’ < 1(qe) (15)
o= 2 < ua(o) ~ etala). (16)

We will prove the lemma by showing that, provided we choose our Q(e) = Q(e, 8, 11) sufficiently large, we must
have that g5 > qff.
We will split into two cases depending on whether 6 = 0.

Case 1 Here we consider § = 0. In this case, ([14) reduces to

Y1(qr) — cpa(qr) < < Pi(q1)- (17)

b1
r— 2
q1

Observe that if there exist p, ¢, with g > g1, such that holds, then we must have ’qi #* %; this follows from
and the fact that ¥; — ¢ is decreasing.
Thus, we have the inequality

_ lpg1 — p1g| > 1

’p_pl
qq Tqq’

q q1

since the numerator is a nonzero integer. On the other hand, equations and imply by the triangle
inequality that

’z Zi < ¥1lqr) + 91(a) — cva(a) = 291 (ar),

where the last inequality follows from the fact that 1 is decreasing.
Combining these inequalities gives that

1
— < 2¢1(q1). 18
” 1(q1) (18)
We consider some small 1 > 0, later to be fixed. At this stage, we select some @, such that % <—-T1+7

for all ¢ > @,. Then, it follows from , that if ¢, > @),

q 2 qII_]-_"].

Because g2 > ¢ and ¢o is prime, it follows that % # ’;—z, so a similar argument reveals that

and thus, we combine to get that

So if we choose 7 sufficiently small that (71 — 1 —7)? > (71 — 1)? — ¢, we must have

q2 2 qfev

as desired.
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Case 2 Now, we will assume 6 € [0,1) is an irrational number with Diophantine approximation exponent +.
As before, we will consider some small > 0, later to be fixed. In this case, we simply observe that if and
both hold, then we must have, by the triangle inequality and the fact that v is decreasing, that

p—0 p-0
q1 q
ap1 —p1 — (¢ —q1)0

qq1

< 2(qr),

(19)

< 2¢1(qr).

or, equivalently, ’

Now, gp1 — pq1 is an integer, as is (¢ — ¢1). Therefore, if § has Diophantine exponent ~, then, by , we have
(g — q1)0|| > Dyy.o(q —q1) "1~ 7/2. Here, ||-|| denotes the distance to the nearest integer. If we then take
q > Qn.1, where Q, 1 is chosen to be sufficiently large, we have that ||(g — q1)0|| > ¢~ *17". Thus, for such g,

we have
g Vti-m
>

(20)

aq1
By combining inequalities and 7 we get

a7 < 241 (q).

‘ ap1 —pg1 — (@ — q1)0
qq1

Now, observe that if g1 > @, for some suitably large @, chosen as in Case 1, then we have from the fact that
71 = A1) that 2¢1(q1) < ¢, 7. Thus, for ¢; > max(Q, 1,Q,), we have

vy —1 -+
¢ g < g

and solving for ¢ yields

+n) " H(ri—1-
quY{ n)~ (11 n)'

By a similar argument, we can observe

go > g0 T (=1

Combining these inequalities gives

-2 1 2
g > q§w+n) (11—1-7) )

Thus we can see, provided we take 1 > 0 sufficiently small depending on €, we have the inequality

q2 Z qfea
as desired. |

Remark 2.2. Besides § = 0, we do not present any argument for rational 6. More specifically, we are unable to
obtain a lower bound of the form 7 since gp1 — pg1 — (¢ — ¢1)0 might vanish, so our argument doesn’t carry
over to this case. O

For the purposes of the rest of the argument, it will be important to have 5. > 7o for sufficiently small e.
In particular, 5. > 7, which explains the restriction .

3 A periodization trick

In order to establish Theorem [1.7] we must construct, for any € > 0, a finite Borel measure p. supported on
Tight (11,12, 0) N[0, 1] such that 7i.(£) < C(1 + |¢])~2/2F¢ for all £ € R. However, it is convenient to evaluate

Le(§) at only integer values of € and for this purpose, we consider the set Tight[o’l)(wl,wg, 0), a subset of the

)

torus. To this end, we will construct a measure MEO’I on the torus with support contained in T ight[o’l) (11,12, 0).

Observe that, as MLO’U is a measure on the torus, it has a corresponding Fourier-Stieltjes series, the coefficients

of which will be denoted uLO’l)(f). The measure MLO’I) can be associated to a 1-periodic measure u supported

on the real numbers.

Lemma 3.1. Suppose that MLO’D is a measure on the torus with support contained in Tight[o’l)(wl,wg,ﬁ),

with the property that |u£0’1)(§)\ < Cy(1+)€)~2/2F€ for all € € Z\{0}. Let ¢ € C° be any smooth function

supported in [0,1]. Then there exists a Cy not depending on ¢ such that ¢uP(€) < Cy(1 + [£])~/2F¢ for all
EeR O
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Proof. Observe that the Fourier transform of u?, viewed as a tempered distribution on R, is given by
>
§=—00

where J; is the Dirac mass centered at s.
Therefore, we can make sense of (i)pé as the convolution of ue and d) This convolution is equal to

[ate = sz is =Y de— ().

S§=—00

We now apply our assumption on ,uLO’l)(s)7 as well as the Schwartz bound on &5, to conclude
onPOIS Y (L4 16— s) 7100+ [s]) />, (21)

We will now write the sum in as S1 + S, where

Si= Y (14 [E—s) 00+ [s)) /2
js—€I<lel/2

Sp= Y (4= s)T00+[s]) />
s[> €l/2

We will first estimate S7. Observe that if |s — | < |£|/2, we must have 1+ |s| > |£|/2. Therefore, we have

St (L [€]/2)772 Y (Lt [u)) ™'

ful<Jé] /2
S L+ fg))—e/2te

This gives the desired estimate for S;. It remains to estimate So. In order to estimate Ss, one can observe that
the inequality |s —&| > |£]/2 implies that |s — &| > |s|/4. Indeed, for |s| < 2|¢], |s — &| > |€]/2 > |s|/4 and, for
Is| > 2[¢], |s — &] > |s|/2. Applying this estimate gives

So< D0 (Ll Jsl/4) A+ s /2

[s—€l>l¢l/2
SA+EN™ D (4o
ls—€l>l¢l/2
(oo}
<L+ [E)7 Y (L syt
S(+eh™
Adding S; and S5 gives the result. n

We will need one more result that goes in the other direction—a result that allows us to lift compactly
supported, bounded, measurable functions f on R to bounded, measurable functions f[1) the torus. We
emphasize that the following lemma allows us to control the Fourier coefficients of f1%) by knowing f ( )
for integer values s.

Let f € L>(R) be compactly supported. Define f¥ by

=Y fl@+7).

JEZ

The assumptions on f guarantee that f¥(x) converges a.e. to a 1-periodic function in L>°(R). This function can
naturally be associated to a function f[%) on the torus.

—

Lemma 3.2. Let f € L™(R) be a compactly supported function, and define 1% as above. Then fI01)(s) =
f(s) for all integers s. O



Fourier Dimension Estimates for Exact Order Sets 9

Proof. We have

1

f/[(rl)(s) _ / 72772’530]0[0,1) (1,) dx
01 |
—_ / 727”8fo(£€) dx
0
1 .
:/ 727”8‘702.]((564*]‘) dx
0 JEZ
J+1 . )
_ / 6727rzs(x7])f(x) dx
JEZ
J+1
— / —27r1.51,f )
jez I

e—2m’sacf($) dx

I
>%

|
~

4 A single-scale estimate

Lemma reduces the proof of Theorem [1.7] - to finding a measure p supported on Tight(r,72,6) N [0,1) such
that |f(s )| < |s|~*/?*¢ for integers s. This measure will be constructed as a weak-limit of products of functions,
each of which is a sum of smoothed indicator functions of balls of an appropriate scale.

For now, we consider functions supported on R. We will later lift these functions to the torus. We define a
function gps at scale M which we use to construct our measure supported in the exact order set. The function
we consider is supported in the set

U U {en@-am@s|o-2<uw}cr 22)
M<qg<2M 0<p<q
q prime
where we take
enp = M~/ (23)

Observe that 0 < c¢p; < 1, with cps close to 0 if M is chosen sufficiently large. For the remainder of this section,
we typically suppress the dependence on M and write ¢ for ¢y, though this dependence will be recalled at the
appropriate points.
For a given prime g € [M,2M), the interval I , = {z : ¥1(q) — cpa(q) < = — % < 11(q)} can be expressed
as
Iop =zqp + ch2(q)[-1/2,1/2],

where z,, = p7 +v1(q) — (¢/2)¢2(q)-

Let ¢ be a smooth, nonnegative function with supp ¢ C [—1/2,1/2] for which |QAS(§)\ < Cexp (f|§|3/4) for
large ||. Such a function ¢ is provided by Ingham [9], who in fact constructs a real-valued function whose square
satisfies the desired properties.

We define
gm(x) = Z Z Pp.q(T)
M<g<2M 0<p<q
q prime
where

Fpg(@) = (c2(0) 7' ((c2(0) ™! (2 — 2q,p)) -

Observe that the Fourier transform of ¢, , satisfies

Opa(8) = e(sq)(ctba(q)s), (24)

where e(z) = 2™, We then set fis(z) = gar(x)/gar(0) so that ]?;[(0) =1.
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Lemma 4.1. Let gy, far be defined as above. Let 7 = A(1)2). Then

e

Far(0) =1, (25)
fa(s) =0 if 1< |s| < M, (26)
[Far(s)] < Cebr e if M < || < MTOF/), (27)
—~ 1/2

|fa(s)] <e ( ) it |s| > M0t/ (28)

Proof. Equation follows directly from our normalization of fj;.
For the proof of , , and , we will begin by computing gas(s) explicitly. From , we have

guls) = > e(swp) o(ca(q)s). (29)
M<q<2M 0<p<q
q prime

By plugging in the value for z,,, we obtain

M<g<2M 0<p<q

- MZZM (5 (57 + 9100 - /202(0)) ) Bttt > (2)

E

p ) is a geometric series that evaluates to 0 unless g|s, in which case it evaluates to

The inner sum » o, _ e (
q. Therefore, we have

i) = X (s (40 - @200) ) Hevs) o

M<q<2M
q prime
qls

For 0 < |s| < M this sum is empty, establishing that ga/(s) = 0 and giving (26)). If s = 0, the sum in ¢ consists
of all M < ¢ < 2M, giving

—~ ~ M?
0) = &(0 ~ 30
gu(0)=06(0) > ¢ log 11 (30)
M<q<2M
q prime
by the prime number theorem.
For other values of s, we use the triangle inequality to give the estimate
Gu()I SM Y [dlewa(q)s)- (31)
M<qg<2M
q prime
qls
Combining and gives the estimate
[Fur(s)l S M log M > [@lcypa(q)s)]. (32)
M<q<2M
q prime
qls

We now consider the regime where M < |s| < M™(+¢/2) Observe that the number of terms ¢ in the sum

on the right hand side of is bounded above by izilM Using the bound |@(cib2(q)s)| < 1, we find

|Far(s)] S M~log|s| S M~Hlog M < CM e,

establishing .
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For |s| > M 72(1+€/2) " we take advantage of our choice of ¢. First, observe that, because 1), is decreasing,
we can bound cy2(q)|s| from below by cipo(2M)|s|. By (23), this is M ~</*00y,(2M)|s|. Provided that M is
sufficiently large depending on €, we can use to conclude that

|C"/}2(Q)S| > 2_T2_6/100M_72_6/50|5‘,
Therefore, applying our assumption on ¢, we have that
‘a(cw2(Q)S)‘ < Cexp (_2—3/4(Tz+e/100)M_3/4(72+E/50) ‘3'3/4) . (33)

Now, we estimate the series using the bound (33)). There are no more than M terms in this sum, so, for an
appropriate constant C,

|fM(@|g(7bgﬂ4exp(—2—W4ﬁf“/wmA4*V“w+d“Dbﬁﬂﬁ.
Since we are in the regime |s| > M7™(1+e/2),
|fM(S)| < Clog M exp (_ (‘8‘1/2M_T2/2) (2—3/4(72+e/100)M672/8—36/200)) .
Because the exponent €72 /8 — 3¢/200 is positive, it follows that for M sufficiently large, we have the bound
()] < exp (sl M772/2)

establishing the desired bound . [ ]

5 A Convolution Stability Lemma

In this section, we establish a convolution stability lemma. This lemma will later be used in Section [f] in
combination with Lemma applied at different scales as part of an induction argument, to complete the
construction of the measure with the Fourier decay required to complete the proof of of Theorem

To this end, we will consider a sequence {1 };";1 of positive numbers whose growth rate is dictated by
Lemma 211

The convolution stability lemma will provide an estimate for F' x G, where functions F' and G satisfy certain
bounds following Lemma In practice, the function G will be far, * far, * -+ - * far; for some appropriate j,
and F' will be taken to be fa, ;.

In this section, we will assume that 71 = A\(v1) and 75 = A(1)2) satisfy the condition 3 > 75. Recall we defined
Be =~v72(m1 — 1) — e = B — € in the equation (13). We consider only those € small enough so that 8. > 7.

For the next lemma, given a small € > 0, it will be convenient to define an auxiliary exponent () given by
the equation
5e) = Pl =) (146"

To(Be —1)(1 +¢)

Observe that, since 8. — 8 as ¢ — 0 and 8 > 7o, we have

(34)

lim 6(e) = 52 .,

e—0 7-2(ﬂ7 1)

Thus there exists an €y > 0 such that if 0 < € < €, then d(e) — e > 0. Note that for such €, we have that §(e) > 0

and thus

(L+e)
1—e¢

Be > T2 > (14 €)m. (35)

Lemma 5.1 (Convolution Stability Lemma). Given suitably large M; € N, we define the sequence {M; };";1 by

j—1
My =M
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where B, > 19 > 2. For € > 0, we define the quantity § = d(€) as in (34]). Suppose € is small enough to ensure
that 6 — e > 0. Let F,G : Z — C be functions satisfying the following estimates:

£(0) (36
F(s)=0 if 1 <|s| < My, (37)
|F(s)] < CM e if Myyy < |s| < MU/ (38)
1/2

S . T €

[F(s)] < exp ( 'MTQ ) i [s] > M7, (39)
Jj+1
and

G(0) <2 (40)
G(s)| < 2| |+ if |s| < M0, (41)

/2
1 S . T: €
|G(s)] < exp <—2 iE ) if |s| > Mj2(1+ ) (42)
J

Then, provided that M; is sufficiently large depending on €, we have the following three conclusions:

(a)

|F«G(s) — G(s)] < M7y if |s| < M09

(b)

FxG(s)] < |s| 0% if M0 < 5] < M0

1/2
1 S . T2(1+4¢€)
|F * G(s)] < exp < 3 ‘Mfi1 ) if [s| > M,

O

For reference, in Figure 1 we give a sketch of F' and G corresponding to some index j. The usage of ~ in
this figure indicates an e-loss in the exponent on M; or M.

Note that in region A, we have that |G(s)| < |s|~°. In region B, G(s) decays rapidly. In regions A and B
(not including 0), F' vanishes. In region C, F' decays rapidly.

Remark 5.2. Lemma is called a convolution stability lemma because of the bound @, which shows
that for small values of s, the convolution F' x G will be very close to G.

The bound (]E[) will dictate the Fourier decay of the infinite product measure supported on our set. Note
that the bound |s| =€ is significantly worse than the bound M He available for F' in this region—this is the
reason for the loss in Fourier dimension compared to the set of Well—approximable numbers from Kaufman’s
argument.

The bound will allow for the convolution stability lemma to be applied inductively. Although this bound
gets slightly worse at each stage of the induction, it will always be good enough to match the conditions required
for G at the next stage of the induction.

O

Proof. We will first prove @) To this end, we assume |s| < Msz(He) . We write

FxG(s ZF G(s —t).

teZ

The main contribution to this sum will come from the ¢ = 0 term, which is precisely G(s). Additionally, there
is no contribution for 1 < [¢| < M;41 because F(t) = 0 there. Thus, we see that

|F «G(s) — G(s)| < > F(t)G(s —t)| + > F)G(s—1)]. (43)

o (14€/2) To(1+4€/2)
Mj+1§|t‘§Mji1 ‘t|>Mj42r1



Fourier Dimension Estimates for Exact Order Sets 13

~ -1 1 T e
j - S
~ M sz %MjTﬁ
— — — S~———

Fig. 1. Sketch of F and G

We now estimate the size of the first term on the right hand side of and consider the corresponding
M < Jt] < M2/ We have |F(t)| < CGM]]_lfrE. Furthermore, because |s| < M;2(1+€)7 it follows from

Jj+1
M1

that we have |s — t| > =5* provided M, is chosen large enough. Thus, we see

1/ M\ 2
_ < _ - ]+1
|G(s t)l_exp< 5 (2M;2> )

Recall that 5. — 75 > 0. Combining the bounds on F' and G and counting the number of terms in the sum, the
first sum of is bounded by

Be—T2 Be—72
1 M; ® —14+e472(1+€/2 1 M-Eff —1+e4+72(1+€/2 1 -5
Ceexp D) ]\/5 j+1 2U+e/2) Ceexp 9 ]\/5 j+1 2(4e/2) < §Mj+1a (44)
provided M7 is chosen large enough.
The final step in proving @ is to bound the second term on the right hand side of (43). For |t| > M;i(11+€/ 2

we still have |s — 1| > M;2(1+€)7 so we can apply the tail estimate for F, |F(¢)| < exp <— ‘(t/Mjle) ’1/2>. We
simply bound |G(s — t)| < 2 to obtain the estimate

1/2 1
) S §M]:s15 (45)

S Fwets-n <2 Y exp<—‘M’;

o (14e/2) o (14e/2) Jj+1
‘t|>1\lji1 |t‘ZMj$,1

by comparing to the corresponding integral, if M; is sufficiently large. Summing the bounds and
completes the proof of @

We now prove @) We here consider those s with M;Q(He) <|s] < M]-Tfr(lHe). We bound F * G by writing

> F(s - t)G(t)

teZ




14 R. Fraser and R. Wheeler

<| > FG-nGm|+| Y. Fls—t)G() (46)

|t\<MT2(1+€) |t\>MT2(1+€)
=" =

The main contribution to this bound will be the first term. For such values of [t| < M; T2(1+e)

estimate |G(¢)| < 2[t|70F€ for t # 0 and |G(¢)| < 2 at t = 0.
We continue our analysis of the first term of ., where [t]| < MTQ(HE). Because s # t, one of the bounds
. . 9) will apply; in any case, we have that |F(s — )| < C.M H'e. As a result, for appropriate constants

, we have the

J+1
C and K,
M2+
J
Y. F(s—0GE)| < M [20.+4Cc Y0 7
|| <a720 O =t

1+5+( S4e+1) 22 (14-€) 1 _ 2 1
<KM,, e < O|s|maFa (FHFer(=aterDFe (1) — o150 < = H5ﬂ

since our choice of § at guarantees that the penultimate exponent on |s| above is —¢ and we can absorb
the constant C' in to the |s| term, which is possible if M; is sufficiently large.

We now consider the second term in the bound (46)). The relevant ¢ are those with [¢] > M 2079 including

1/2)

for |G(t)|. By comparison with a corresponding integral and ensuring that M; is sufficiently large, we have the
estimate

the case in which ¢t = s. For such ¢, we have a bound of 1 on |F(s—t)| and a bound of exp (— Ve
i

1 1
Y F(s—t)G(t) < Cexp <—4M;2€/2> < 5\8\*‘”5

7o (14+¢€)
|t|>M]

The established bounds on each of the terms in combine to show |F % G(s)| < |s|~%%¢, completing the

proof of (]ED

It remains to prove . Let s be such that |s| > M;i(ll'“) Writing the convolution, we use the preliminary
bound for F x G(s) given by

> F(s—t)G(t

teZ

<| Y. Fs=H)GW|+| > Fls=tGH)|+| > F(s—t)G(1)]. (47)
[t]<2]s] [t]<2]s]| [t1>2]s|
|s—t>15] |s—tl<l5l

The thrust of the proof is that, because |s| is so large, we are always in a situation for which the tail bounds
on either F' or G will apply.

We consider the first term of ([47)), where |t| < 2[s| and |s — ¢| > ‘—;l For such ¢, including ¢t = 0, we have the
bound |G (¢)| < 2. On the other hand, for such ¢, we certainly have |s — ¢| > %M]-Ti(llJrE) > M;i(11+€/2), provided
M is taken sufficiently large. Thus, we have

1/2>

S
F(s— )] < exp< \ SLE

Jj+1

Summing over [t| < 2|s|, we see

s |2 1
E F(s—t)G(t)| < 4|s|exp ( ’ = ) < = ( ‘ — )
<ol 2M3, 3 2| M3,
ls—t> 15!

provided Mj is large enough depending on e.
Next, we will bound the second term of (7). The relevant ¢ are such that |s —¢| < ‘—;l (including the

t = s term). Note that for such ¢, we certainly have |t| > ‘ > MT2(1+E , if M; is large enough. We also have
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|F(s—1t)| <1, and |G()|<exp( ‘

1/2
>. Observe that the total number of values of ¢ summed is at

2M*2
most |s|. If M7 is sufficiently large, keeping in mind that |s| > M]Ti(11+€), we observe that |s| is much less than
Lexp(Ls|'/2((2M;)~™2/? — M;T2/?)). Thus,

1/2 _ 1 . 1 ‘ s 1/2
> 5 eXp T .
3 2|17,

It remains to bound the third term in (47). Here, |t| > 2|s|, and we can see that |s — ¢| > % We will use

1 s
— < |
N F(s-1G(t) _sexp( 2\2M@
[t]<2|s] J
\s—t\<%

an estimate of 1 for |G(¢)| and a bound of exp (
F'. Hence,

1/2
) for |F(s —t)|, as we can apply the tail bound on

1/2 1 ’
9 T
=5 M]il
by comparison with the corresponding integral.
We arrive at the desired bound, , by summing the three terms. [ |

_ ‘#
T2
2M73,

t
S Fs-nGm|< Y exp< ]Mz

[t]>2]s] [t|>2]s] i+t

6 Construction of the Measure

In this section, we complete the proof of Theorem Recall from that

Be(l—¢€) —m(1+€)?

N AT

T2(B-1)
to construct a measure pi. on the torus [0, 1), supported in Tight®"Y (11, 1b5,0) and with decay |fic(s)| < |s| 70+
Indeed, once we have constructed such a measure p., we can apply Lemma [3.1] which gives the desired measure
on R supported in Tight (i1, 19,0) and with Fourier decay bounded in magnitude by |s|=°*¢, which gives the
result.
Let € > 0, and let M; be a number so large that Lemma applies (with M, = M]B for all j > 1), and

sufficiently large that Z;‘;l Mj*‘; = Z;‘;l Mfo1 < 155+ For each j, define fys, as in Lemma and fl[\g;l)

100
as in Lemma We define the function ugk) = Hjél fM 1). In the proof we conflate the function ,uek) with the

The stated lower bound on the Fourier dimension, o = 2B—r2) , was given in . To prove Theorem it suffices

absolutely continuous measure whose Radon-Nikodym derivative is p . We claim that the measures ug ) have
a subsequence with a weak limit pu. with the desired properties.

The proof of this will require us to estimate u( )( ) for integer values s. We will obtain the following estimate
by applying Lemma [5.1] inductively.

Lemma 6.1. Let My = 0 for convenience. We have the following estimates on ,u( )( ) for any integers k > 1
and s € Z:

k k
1= M7 < p®0) <14 M7, (48)
j=1 '
k
B8 (s)] < [s|70F + 3 M0 < 2fs[70¢ it MPUTY < |s| < MPUTY for 1 < J <k, (49)
j=J

1/2
. 1 . T €
29 (s)| < exp <—2 ‘]\/:/972 ) if |s| > Mkz(H ) (50)
k

O
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Proof. We prove this lemma by induction. The base case of this lemma is implied by Lemma [£.1] applied to
f J[\g’ll). So we need only show the inductive step.

Suppose, for some k > 1, we have that ,uik_l) satisfies the estimates in Lemma We must show that ,ugk)
also satisfies these estimates. Our tool for this is Lemma Observe that, by definition, we have that

) = N 0.

Therefore, by the convolution rule for the Fourier transform, we have

—

~ (o 0,1
Ak = B gt

The estimates , , and imply that ﬁé’“‘” is able to serve as the function G in Lemma Note that
for ugk) follows immediately by combining @) of Lemmal5.1jand for ugk_l). Similarly, for 1 < J < k — 1,
we have that holds for ugk) by combining @) of Lemma and (49) for ,ugk_l). The J = k case of the
estimate for ugk) is an immediate consequence of of Lemma nally, the estimate is given by

|

of Lemma

We are now in a position to define our measure .. It is clear from the Banach-Alaoglu theorem that some

subsequence of the ugk) converges weakly to some measure .. The estimate shows that the weak-limit of

this subsequence is a nonzero finite measure, and it is clear from the fact that ugk) >0 for all k£ that u. > 0.

The estimate implies that |fic(s)| < 2|s|79F¢ for all 5. Therefore, in order to establish the Fourier dimension
bound, the only statement it remains to prove about p. is that its support is contained in Tight!®" (1, 15, ).

Lemma 6.2. The measure p. is supported on Tight[o’l)(wl, 9, 0). O

Proof. The measures ,ugk) have nested, decreasing support, so we must have

0,1
supp pte C [ )supp u") = ()supp £1;".

k k

So it is sufficient to prove that

(supp £17" € Tight!® (41,955, 6).
k

In particular, according with Definition it suffices for us to show that, for z € (), supp f][S[’l)

k )

q
S
.

—0
‘x _b < 1(q) for infinitely many pairs (p, ¢) of relatively prime integers,

< 1(q) — cp2(q) for only finitely many pairs (p, ¢) of relatively prime integers and any ¢ > 0.

We recall that, by construction, supp fas, is contained in the set given at :

p—20
PO

U {:1: s 1(q) — ea¥2(q) <

M <g<2M; 0<p<q
q prime

< wq)} CR,

with ear, = Mk_e/loo. Let ¢ < 1. There exists K = K (e, ¢) such that M];e/lOO <ec.

Suppose x € [, supp f][\o/[;l). Let z* in R be the element of the interval [0,1) that is congruent modulo
1 to . Then for any k, there exists an integer z; such that z* + z, € supp fa,. This means that, for
any k> K, there exists a pair (pg,qr) with 0 <pp < ¢ and My < qp < 2My and ¢, prime such that

P1(qx) — chalqr) < |z* — %qu—e‘ < 1(gr). If we set p) = pr — zrqy, this gives, for every k> K, a pair

o+ _ Pt

(P)> ax), with My, < g < 2My, such that ¥1(qr) — ctba(qr) < -

< 91(gx) and, in particular, there are

infinitely many integer pairs (p, ¢) for which |z* — pf;e’ < 11(q). It remains to show that there are only finitely

many integer pairs (p, q) for which

T* — %‘ < 1(q) — cp2(q). By our choice of g, since gp11 S q,fs, it follows
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that there exists K’(e) such that g1 < q,fe/z for every k > K'(¢). Therefore, Lemma applied with ./ in
place of 8. shows that, provided k > K" for an appropriate value K" (e, ¢), there can be no integer pair (p, ¢) such

that g < ¢ < qg+1 and |z* — pT_E” < 1(q) — cb2(q). Because this works for all & > K := max(K, K', K"), this

shows that |z* — pre > 1(q) — cpa(q) for all pairs (p,q) with g > g, so there are only finitely many pairs
(p,q) with |z* — %‘ < 41(q) — ch2(q), establishing the result. [ ]
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