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1 Introduction

In a recent paper, Ellenberg and Gijswijt [2] have shown that, for any odd prime
q, there exists αq < 1 such that a subset of Fd

q with at least qαqd elements must
contain a three-term arithmetic progression. This contrasts with the case for
finite cyclic groups, where Behrend [1] constructed a counter example– a subset
of Z/NZ with CϵN

1−ϵ elements that does not contain a three-term arithmetic
progression.

In this note, we will consider what happens in the vector space F∞
q - a vector

space of infinite dimension over Fq. By F∞
q , we mean the vector space consisting

of infinite sequences of elements of Fq with the product topology. This is a
compact abelian group that is isomorphic to the additive group of Fq[[t]], the
ring of formal power series over Fq.

In light of the result of Ellenberg and Gijswijt, one may be tempted to
guess that a subset of F∞

q of full Hausdorff dimension must contain a three-
term arithmetic progression; however, this has been shown not to be the case
[3]. The construction was inspired by a similar construction of Keleti [5] of
a subset of R of full Hausdorff dimension that does not contain any solutions
to x4 − x3 = x2 − x1 with x1 ̸= x2 and x3 ̸= x4. We will present a more
elementary counterexample in this paper for completeness. Because size in the
sense of Hausdorff dimension is not enough to guarantee the existence of a three-
term arithmetic progression, some additional condition, such as a Fourier decay
condition, is needed.
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In the real-variable setting, Laba and Pramanik [6] have shown that a subset
of R supporting a measure satisfying a Fourier decay condition as well as a ball
condition depending on the rate of Fourier decay must contain a three-term
arithmetic progression. However, Shmerkin [11] has constructed a subset of R
of Fourier dimension 1 not containing any three-term arithmetic progressions.
Shmerkin’s construction relied on the Behrend example [1] of a large subset of
{1, 2, . . . , N} that does not contain a three-term arithmetic progression. Because
the result [2] of Ellenberg and Gijswijt implies that no such example can exist
for finite vector spaces, it seems sensible to guess that a subset of F∞

q with large
Fourier dimension must contain a three-term arithmetic progression. This is
exactly what we will show:

Theorem 1.1. Let q be an odd prime. Let E be a compact subset of F∞
q

supporting a probability measure µ such that for some 2/3 < β < 1 and some
0 < α < 1, and some positive constants C1 and C2:

1. There exists E′ ⊂ E such that µ(E′) > 0 and for all balls B ⊂ F∞
q ,

µ′(B) ≤ C1rad(B)α.

Here, µ′ is the measure µ1E′ whose support is restricted to E′.

2. ˆ︁µ(ξ) ≤ C2|ξ|−β/2 for all nontrivial characters ξ.

We will see in Lemma 2.6 that condition 2 above implies condition 1 for all
α < β. Let αq be such that, for sufficiently large d, any subset of Fd

q consisting of

at least qαqd elements must contain a three-term arithmetic progression. Suppose
that α and β satisfy the following condition:

1 − α <

(︃
3β

2
− 1

)︃(︃
1 − αq

3 − αq

)︃
(1)

Then the set E must contain a three-term arithmetic progression. In particular,
Lemma 2.6 implies that the condition (1) is met provided that

β >
8 − 4αq

9 − 5αq
. (2)

This differs from the Laba-Pramanik result [6] because the value α does not
depend on the constants C1 and C2. This allows us to drop the first assumption
provided that β is sufficiently close to 1. The counterexample of Shmerkin [11]
shows that this assumption cannot be dropped in the Euclidean setting.

In order to properly interpret this theorem, we need to discuss some of the
basic properties of the Fourier transform on F∞

q .
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2 Fourier Analysis on F∞
q

2.1 The abelian groups F∞
q and ˆ︂F∞

q

Much of the material in this section can be found in Taibleson’s book [12]. Let
q be an odd prime, and let F∞

q be the group

∞∏︂
j=0

Fq

equipped with the product topology. With respect to this topology, F∞
q is a

compact abelian group. The topology on F∞
q is induced by an absolute value:

given an element x = (x0, x1, x2, . . .) of F∞
q , we define |x| = q−j , where j is the

index of the first nonzero component of x. If x = 0, then we take |x| = 0. There
is a natural projection πd : F∞

q → Fd
q given by πd(x) = (x0, . . . , xd−1). Note

that for any d∗ > d, there is a natural projection from Fd∗

q → Fd
q ; we will abuse

notation and also use πd for this projection. As for Fd
q , we define an absolute

value on Fd
q by |(x0, . . . , xd−1)| = q−j , where j is the index of the first nonzero

component of (x0, . . . , xd−1), and |(0, 0, . . . , 0)| = 0. Notice that if x ∈ F∞
q is

such that |πd(x)| > 0, then |πd(x)| = |x|.
The compact abelian group F∞

q is equipped with a Haar probability measure

dx. This measure assigns a measure of q−j to any closed ball of radius q−j . The
pushforward of this measure under πd yields the uniform probability measure
on Fd

q .

The Fourier character group ˆ︂Fd
q of Fd

q is isomorphic to Fd
q as an abelian

group. We will write (ξ1, . . . , ξd) for a typical character on Fd
q (notice that the

indexing will start from 1 instead of 0). We define an absolute value on ˆ︂Fd
q by

|ξ| = qj , where j is the maximum index of a nonzero component of (ξ1, . . . , ξd).
The product (ξ1, . . . , ξd) · (x0, . . . , xd−1) is defined by ξ1x0 + · · ·+ ξdxd−1, which
is defined as an element of Fq. We can therefore make sense of exp( 2πi

q ξ · x),
which will be written as

eq(ξ · x) = exp

(︃
2πi

q
ξ · x

)︃
. (3)

This describes the action of ˆ︂Fd
q on Fd

q .

The Fourier character group ˆ︃F∞
q consists of sequences of the form ξ =

(ξ1, ξ2, ξ3, . . .) where only finitely many ξj are nonzero. The absolute value
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|ξ| of ξ is given by qj , where j is the largest index of a nonzero component
of ξ, with |0| taken to be 0. Because all of the components of ξ after the jth

component are zero, we can define a product ξ · x for ξ ∈ ˆ︃F∞
q and x ∈ F∞

q as
the finite sum

j∑︂
k=1

ξkxk−1

which makes sense as an element of Fq. We can thus define eq(ξ · x) as before,

giving the action of ˆ︃F∞
q on F∞

q . Notice that each element of ˆ︃F∞
q can be viewed

as an element of ˆ︂Fd
q where d ≥ j and qj = |ξ|. In this sense, every element ofˆ︃F∞

q can be viewed as an element of
ˆ︂Fj
q for some finite j. In fact, if |ξ| ≤ qd, then

ξ · x = ξ · πd(x). In other words, the function x ↦→ ξ · x is constant on closed
balls of radius |ξ|−1 for ξ ̸= 0.

Given d∗ > d, and x ∈ Fd∗

q , we can write x = (x0, x1, . . . , xd∗−1) as a sum
x = x′ + x′′, where

x′ = (x0, . . . , xd−1, 0, . . . , 0)

x′′ = (0, . . . , 0, xd, . . . , xd∗−1).

We call this the order d decomposition on Fd∗

q . Similarly, given ξ ∈ˆ︃Fd∗
q , we

can write ξ = ξ′ + ξ′′, where

ξ′ = (ξ1, . . . , ξd, 0, . . . , 0)

ξ′′ = (0, . . . , 0, ξd+1, . . . , ξd∗).

We will call this the order d decomposition of ξ. We note some trivial facts
about these order d decompositions. First, we observe that |x′′| ≤ q−d and
|ξ′| ≤ qd. We have |ξ′′| ≥ qd+1 unless ξ′′ = 0. We also have that (x′ +x′′) · (ξ′ +
ξ′′) = x′ · ξ′ + x′′ · ξ′′.

The Haar measure on ˆ︃F∞
q will be denoted dξ. This Haar measure is simply

the counting measure on ˆ︃F∞
q . Because the abelian group ˆ︃F∞

q is not compact,

the Haar measure on ˆ︃F∞
q is not finite.

2.2 The Fourier transform on F∞
q

The Fourier transform of an L1 function f : F∞
q → C is given by

ˆ︁f(ξ) =

∫︂
f(x)eq(−x · ξ) dx

where dx is the Haar measure on F∞
q and eq is as defined in (3). The Fourier

transform of a finite measure µ on F∞
q is

ˆ︁µ(ξ) =

∫︂
eq(−x · ξ) dµ(x)

The Fourier transform of a function f : Fd
q → C is

ˆ︁f(ξ) =
∑︂
x∈Fd

q

f(x)eq(−x · ξ)
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Notice that, if µ is a measure on F∞
q and µd is the pushforward of µ under πd

(which can be interpreted as a function on Fd
q), and |ξ| ≤ qd, then we have (by

conflating ξ ∈ F∞
q with ξ ∈ Fd

q as above)

ˆ︁µd(ξ) =
∑︂

x0∈Fd
q

µd(x0)eq(−x0 · ξ)

=
∑︂

x0∈Fd
q

∫︂
πd(x)=x0

eq(−x0 · ξ) dµ(x)

=
∑︂

x0∈Fd
q

∫︂
πd(x)=x0

eq(−x · ξ) dµ(x)

= ˆ︁µ(ξ)

This means that the Fourier coefficients of a measure µ(ξ) where |ξ| ≤ qd can
be computed directly in the finite vector space Fd

q without passing to the limit.

One important algebraic fact about Fourier analysis on Fd
q is the convo-

lution rule. This rule states that for complex-valued functions f and g on
Fd
q :

ˆ︂fg(ξ1) = q−d
∑︂
ξ2∈ˆ︂Fd

q

ˆ︁f(ξ2)ˆ︁g(ξ1 − ξ2). (4)

The factor q−d will be important in the following arguments.

2.3 Hausdorff and Fourier dimension of subsets of F∞
q

A good general reference for Hausdorff and Fourier dimensions in Euclidean
spaces is [8]. The notion of Fourier dimension occurring in this section is the
F∞
q equivalent of the Euclidean Fourier dimension. Most of the material in this

section appears in the thesis of Christos Papadimitropoulos [9].
Because F∞

q is a metric space, we can define the Hausdorff dimension of
compact subsets of F∞

q in the usual manner. We will briefly review this definition
now.

For a compact set E ⊂ F∞
q , t > 0, define a t-covering of E to be a covering

of E by closed balls of radius at most t. Define the s-dimensional t-Hausdorff
content of E as follows:

Hs
t (E) := inf

B t-covering of E

∑︂
B∈B

rad(B)s.

Here, the notation rad(B) denotes the radius of the ball B. The value of
Hs

t (E) increases as t → 0 because the infimum is taken over a smaller family of
coverings. We define

Hs(E) := sup
t>0

Hs
t (E),

with the understanding that this supremum may be infinite.
Hs(E) is a non-increasing function of s. In fact, Hs(E) will be equal to either

0 or ∞ except for at most one value of s. Let s0 = sup{0 ≤ s ≤ 1 : Hs(E) = ∞},
taking the supremum to be zero if no such s exist. Then s0 is called the Hausdorff
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dimension of the set E. Note that Hs0(E) may be equal to 0, ∞, or a finite
non-zero value.

Frostman’s Lemma relates the Hausdorff dimension of a compact subset E
of F∞

q to the ball condition of measures supported on the set E. In fact, this
statement holds without the assumption that E is compact, but that is all we
will need.

The following version of Frostman’s lemma can be found in Mattila [7] as
Theorem 8.17.

Lemma 2.1. [Frostman’s Lemma on Compact Metric Spaces] Let X be a com-
pact metric space such that Hs(X) > 0. Then there exists a Radon probability
measure µ and a constant C such that

µ(B) ≤ Crs for all closed balls B of radius r and for all r > 0. (5)

Conversely, if X is a compact metric space supporting a Radon probability mea-
sure µ satisfying the condition (5), then we have Hs(X) > 0. ■

Technically, the converse statement does not appear in Theorem 8.17. We
will briefly present a proof of the converse below. This proof is a minor adap-
tation of the Euclidean version appearing in Theorem 2.7 from Mattila [8].

Proof of converse statement in Lemma 2.1. Suppose that X is a compact met-
ric space supporting a probability measure µ satisfying the condition (5). Cover
X by a collection of closed balls {Bj}. Then by (5), rad(Bj)

s > C−1µ(Bj) for
each Bj . By subadditivity, we also have

∑︁
j µ(Bj) ≥ µ(X). Thus∑︂

j

rad(Bj)
s ≥ C−1

∑︂
j

µ(Bj) ≥ C−1µ(X) = C−1.

Because this holds for all coverings of X by closed balls, this shows that Hs(X) ≥
C−1. ■

The equation (5) is called the s-dimensional ball condition. On F∞
q , the s-

dimensional ball condition is related to the finiteness of the s-energy of µ. The
following lemma appears in [9] as Lemma 4.3.1 and Lemma 4.3.2:

Lemma 2.2. Let µ be a Borel probability measure on F∞
q satisfying the s-

dimensional ball condition (5). If t < s, then the t-energy∫︂∫︂
|x− y|−t dµ(x) dµ(y) (6)

is finite. Here, we use the convention that the t-energy is infinite if µ×µ(∆) is
nonzero, where ∆ is the diagonal {(x, x) : x ∈ F∞

q }.
Conversely, if the t-energy (6) is finite, then there exists a set A ⊂ F∞

q such
that µ(A) > 0 and such that the measure 1Aµ satisfies the t-dimensional ball
condition. ■

There is also a Fourier-analytic expression for the t-energy. This lemma is a
small modification of Lemma 4.3.4 (ii) in [9].
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Lemma 2.3. If µ is a probability measure on F∞
q ,∫︂∫︂

|x− y|−tdµ(x) dµ(y) =
1 − q−1

1 − qt−1
|ˆ︁µ(0)|2 +

∑︂
ξ ̸=0

1 − q−t

1 − qt−1
|ˆ︁µ(ξ)|2|ξ|t−1.

Therefore, the t-energy of µ is finite if and only if
∑︁

ξ ̸=0 |ˆ︁µ(ξ)|2|ξ|t−1 is finite.
■

The proof of this result is based on a formula for the Fourier transform of
the Riesz potential. We have included a proof of this result in the appendix for
the interested reader.

We are now ready to define the Fourier dimension of a compact subset E ⊂
F∞
q .

Definition 2.4. Let E ⊂ F∞
q be a compact set. The Fourier dimension of

E is the supremum over all real numbers s such that there exists a probability
measure µs supported on E such that

|ˆ︁µs(ξ)| ≤ Cs|ξ|−s/2 for all ξ ̸= 0. (7)

We will now quickly verify that any measure satisfying (7) will have finite
t-energy for any t < s- thus a set of Fourier dimension s0 will support a measure
with finite s-energy for any s < s0.

Lemma 2.5. Suppose that µ satisfies the condition (7). Then the t-energy of
µ is finite for any t < s.

Proof. By Lemma 2.3, it is sufficient to verify that the sum∑︂
ξ ̸=0

|ˆ︁µ(ξ)|2|ξ|t−1

is finite. In order to estimate this sum, we split the summation region {ξ : ξ ̸= 0}
into disjoint annuli {ξ : |ξ| = qj}.∑︂

ξ ̸=0

|ˆ︁µ(ξ)|2|ξ|t−1

=

∞∑︂
j=1

∑︂
|ξ|=qj

|ˆ︁µ(ξ)|2|ξ|t−1

≤ C2
s

∞∑︂
j=1

∑︂
|ξ|=qj

|ξ|−s|ξ|t−1

= C2
s

∞∑︂
j=1

∑︂
|ξ|=qj

qj(t−s−1)

≤ C2
s

∞∑︂
j=1

qj(t−s−1)qj

= C2
s

∞∑︂
j=1

qj(t−s),

which converges because s > t. ■
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Combining all of these facts gives the following simple statement:

Lemma 2.6. Suppose µ is a Borel probability measure supported on a compact
set E ⊂ F∞

q such that |ˆ︁µ(ξ)| ≤ C|ξ|−β/2 for some constant C and all nonzero

ξ ∈ ˆ︃F∞
q . Then there exists a set A such that µ(A) > 0 and such that 1Aµ

satisfies the α-dimensional ball condition for any α < β.

Proof. Let α < β. By Lemma 2.5, the α-energy of µ is finite. Therefore, by
Lemma 2.2, there exists A ⊂ F∞

q such that µ(A) > 0 and such that 1Aµ satisfies
the α-dimensional ball condition. ■

3 An AP-free subset of F∞
q with Hausdorff di-

mension 1

We will present an example of a subset E of F∞
q of Hausdorff dimension 1 that

does not contain a three-term arithmetic progression. This example has the
advantage that E is easily seen to have Fourier dimension 0. The author would
like to thank the anonymous referee for suggesting this example.

We define the set E as follows:

E := {x ∈ F∞
q : x0 = x1 = 0 and xn2 = (xn)2 for all integers n ≥ 2.}

Because no conditions are imposed on xj for non-square j, it is not difficult to
show that E has Hausdorff dimension 1.

To see that E has no three-term arithmetic progressions, we use the following
algebraic fact about Fq.

Lemma 3.1. Let q be an odd prime power. Then the only solutions in Fq to
the system

a− 2b + c = 0

a2 − 2b2 + c2 = 0

are the trivial solutions for which a = b = c.

Proof. From the first equation and the fact that q is odd, we have that

b =
a + c

2
.

Thus

b2 =
a2

4
+

ac

2
+

c2

4

and

a2 − 2b2 + c2 =
a2

2
− ac +

c2

2
=

1

2
(a2 − 2ac + c2) =

1

2
(a− c)2.

So if a2 − 2b2 + c2 = 0, then we have a = c. Thus a = b = c. ■

Lemma 3.1 is easily seen to imply that E does not contain any nontrivial
three-term arithmetic progressions. For if (x, y, z) ∈ E3 solves the equation
x − 2y + z = 0, then for each j ≥ 2, we have the equations xj − 2yj + zj = 0
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and x2
j − 2y2j + z2j = 0, which implies xj = yj = zj for all j ≥ 0 (by Lemma 3.1

and the fact that x0 = x1 = y0 = y1 = z0 = z1 = 0), so (x, y, z) must be trivial.
It only remains to be seen that the Fourier dimension of E is zero. A stronger

statement is shown in the following lemma.

Lemma 3.2. Let µ be a Borel probability measure supported on E, and let
j be any non-square integer. Then there exists a vector ξ of the form ξ =
(0, . . . , 0, ξj+1, 0, . . . , 0, ξj2+1, 0, 0, . . .), with (ξj+1, ξj2+1) ̸= (0, 0), such that |ˆ︁µ(ξ)| ≥
Cq, where Cq > 0 is a constant depending only on q.

Proof. For j ≥ 2, we define the auxiliary function fj : F2
q → R≥0 as follows:

fj(x1, x2) := µ({y ∈ E : yj = x1, yj2 = x2}).

because µ is supported on the set E, it follows that fj is supported on the set

S := {(x, x2) : x ∈ Fq},

and furthermore, for j ≥ 2, we have
∑︁

x∈Fq
fj(x, x

2) = 1.
We define Cq to be the constant

Cq = inf
suppg⊂S

g≥0∑︁
x∈Fq g(x,x2)=1

max
(ξ1,ξ2)∈ˆ︂F2

q

(ξ1,ξ2 )̸=(0,0)

|ˆ︁g(ξ1, ξ2)|.

This constant is strictly greater than zero, since the only functions g on F2
q for

which ˆ︁g(ξ1, ξ2) = 0 for all nonzero (ξ1, ξ2) are the constant functions, none of
which is close to a nonnegative function supported on S that sums to 1.

For each j ≥ 2, we choose 2-tuple (ξj+1, ξj2+1) ̸= (0, 0) such that

| ˆ︁fj(ξj+1, ξj2+1)| ≥ Cq.

Choose
ξ = (0, 0, . . . , ξj+1, 0, 0, . . . , ξj2+1, 0, 0, . . .),

where ξj+1, ξj2+1 are as above. We have that

ˆ︁µ(ξ) = ˆ︁µj2+1(ξ)

=
∑︂

x∈F(j2+1)
q

µj2+1(x)eq(−x · ξ)

=
∑︂
xj

∑︂
xj2

eq(−xjξj+1 − xj2ξj2+1)
∑︂

y∈F(j2+1)
q

yj=xj
yj2=xj2

µj2+1(y)

=
∑︂
xj

∑︂
xj2

eq(−xjξj+1 − xj2ξj2+1)fj(xj , xj2)

= ˆ︁fj(ξj+1, ξj2+1)

which is at least Cq in absolute value, independent of j. ■

Therefore, E is a set of Hausdorff dimension 1 with no three-term arithmetic
progressions. Furthermore, any measure µ supported on E has the property that
there exist ξ with arbitrarily large absolute value such that |ˆ︁µ(ξ)| ≥ Cq. This
implies that E has Fourier dimension 0.
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4 An example of a measure satisfying the con-
ditions of Theorem 1.1

We will describe a procedure for constructing a random Cantor set in F∞
q . Let

d ∈ N be a large integer, and let 0 < α < 1 be a number such that αd is also an
integer.

Let R be the set of all subsets of Fd
q containing exactly qαd elements equipped

with the uniform probability distribution. Let Ẽ1 be a set chosen from R at
random. Let E1 denote the set

{y ∈ F∞
q : (y0, . . . , yd−1) ∈ Ẽ1}.

We define the measure dµ1 to be the normalized Haar probability measure with
support restricted to E1.

dµ1 = q(1−α)d1E1
dx.

We will now describe an inductive procedure for constructing a set Ej+1 from

Ej . We will assume that we have constructed a subset Ẽj of Fdj
q containing qαdj

elements, and a subset Ej ⊂ F∞
q given by

Ej = {y ∈ F∞
q : (y0, . . . , yjd−1) ∈ Ẽj}

This implies, in particular, that Ej is a union of closed balls of radius q−dj .

For each element x(j) in Ẽj , choose a random element from R, called Tx(j) .
Define Sx(j) to be the set

{z ∈ F(j+1)d
q : (z0, . . . , zjd−1) = x(j); (zjd, . . . , z(j+1)d−1) ∈ Tx(j)}

We now define the set Ẽj+1 to be⋃︂
x(j)∈Ẽj

Sx(j)

and let Ej+1 denote the set

{y ∈ F∞
q : (y0, . . . , y(j+1)d−1) ∈ Ẽj+1}.

Observe that Ej+1 ⊂ Ej for every j. We define the compact set E ⊂ F∞
q by

E =

∞⋂︂
j=1

Ej .

We will define the measure dµj+1 to be the normalized Haar probability measure
with support restricted to Ej+1:

dµj+1 = q(1−α)d(j+1)1Ej+1
dx.

Observe that, for any k < j + 1, and any ball B of radius q−kd, we have that

µj+1(B) = µk(B) = q−αkd.
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It is clear, then, that the probability measures µj have a weak limit probability
measure supported on E, which we will denote by µ. This measure µ is easily
seen to satisfy the ball condition (1) of Theorem 1.1 for the exponent α.

We will obtain a probabilistic estimate on ˆ︁µ(ξ), with the goal of showing that
(2) of Theorem 1.1 holds almost surely. First, we will need a straightforward
lemma.

Lemma 4.1. Let ξ ∈ ˆ︂Fd
q \{0}, and let Zξ be the complex-valued random variable

Zξ :=
∑︂
x∈Fd

q

e(−x · ξ)1R(x),

where R is chosen uniformly at random from R, the family of qαd-element
subsets of Fd

q . Then Zξ is a mean-zero random variable such that |Zξ| ≤ qαd.

Proof. The only statement in the lemma that is not obvious is the statement
that Zξ has mean zero. To see this, choose a ∈ Fd

q such that a · ξ ̸= 0. This is
possible because of the assumption that ξ ̸= 0. Partition R into orbits under
translation by a. Since x+ q · a = x for any x ∈ Fd

q , it follows that R+ q · a = R
for any R ∈ R. Hence, by primality of q, each orbit contains either 1 or q
elements. Let O be the collection of all orbits of R under translation by a. We
have

E[Zξ] = |R|−1
∑︂
O∈O

∑︂
R∈O

∑︂
x∈R

1R(x)e(−x · ξ)

We will show that∑︂
R∈O

∑︂
x∈R

1R(x)e(−x · ξ) = 0 for each O ∈ O

First, suppose O is an orbit containing only one set R0. Then R0 = R0 + ja for
each 0 ≤ j ≤ q − 1. Thus ∑︂

x∈R0

e(−x · ξ)

=
1

q

q−1∑︂
j=0

∑︂
x∈R0+ja

e(−x · ξ)

=
1

q

∑︂
x∈R0

q−1∑︂
j=0

e(−(x + ja) · ξ)

=
1

q

∑︂
x∈R0

e(−x · ξ)

q−1∑︂
j=0

e(−ja · ξ)

= 0

In the opposite case, in which the orbit O contains q elements, the calculation is
even simpler. The orbit O consists of q different sets R0, R0+a, . . . , R0+(q−1)a.
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Thus ∑︂
R∈O

∑︂
x∈R

e(−x · ξ)

=

q−1∑︂
j=0

∑︂
x∈R0

e(−(x + ja) · ξ)

=
∑︂
x∈R0

e(−x · ξ)

q−1∑︂
j=0

e(−ja · ξ)

= 0.

This shows that Zξ has mean zero, as desired. ■

The importance of Lemma 4.1 is that it will allow us to apply Hoeffding’s
inequality [4]:

Lemma 4.2 (Hoeffding’s inequality). Let X1, . . . , Xn be a collection of inde-
pendent real-valued random variables with mean zero such that |Xj | ≤ C almost
surely for all 1 ≤ j ≤ n. Then

P

⎛⎝⃓⃓⃓⃓⃓⃓ n∑︂
j=1

Xj

⃓⃓⃓⃓
⃓⃓ ≥ t

⎞⎠ ≤ exp

(︃
− t2

2nC2

)︃
.

■

We are now ready to compute ˆ︁µ(ξ) for nonzero characters ξ. If ξ ̸= 0, then
there exists some j such that

q(j−1)d < |ξ| ≤ qjd.

Observe that ˆ︁µk(ξ) = ˆ︁µj(ξ) for any k > j. So it is enough to compute ˆ︁µj(ξ).
Let ξ = ξ′ + ξ′′ be the order (j − 1)d decomposition of ξ. Now,

ˆ︁µj(ξ) = q−αdj
∑︂
x∈Ẽj

e(−x · ξ)

= q−αdj
∑︂

x′∈Ẽj−1

e(−x′ · ξ′)
∑︂

x′′∈Tx′

e(−x′′ · ξ′′).

Here, Tx′ is the randomly selected set described in the construction of E. Ob-
serve that ∑︂

x′′∈Tx′

e(−x′′ · ξ′′)

has the same distribution as the random variable Zξ′′ described in Lemma 4.1.
Therefore, each of the sums

e(−x′ · ξ′)
∑︂

x′′∈Tx′

e(−x′′ · ξ′′)

is a complex-valued random variable with mean zero and absolute value bounded
above by qαd. We can apply Hoeffding’s inequality separately to the real and
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imaginary parts of ˆ︁µj(ξ). Observe that the number of elements of Ẽj−1 is exactly
equal to qα(j−1)d. So Lemma 4.2 applies with n = qα(j−1)d and C = qαd. This
suggests the choice t = q(1+ϵ)αdj/2.

With this choice, we have

t2

2nC2
=

qαdj(1+ϵ)

2qαd(j−1)q2αd

=
qαd(jϵ−1)

2
≥ qαdjϵ/2

provided that j ≥ j0(q, d, ϵ).
Therefore, Hoeffding’s inequality shows that, for j ≥ j0,

P

⎛⎝⃓⃓⃓⃓⃓⃓Re
∑︂

x′∈Ẽj−1

e(−x′ · ξ′)
∑︂

x′′∈Tx′

e(−x′′ · ξ′′)

⃓⃓⃓⃓
⃓⃓ ≥ q(1+ϵ)αdj/2

⎞⎠
≤ exp

(︂
−qαdjϵ/2

)︂
,

With a similar inequality for the imaginary part. Thus we have, for j ≥ j0,

P
(︂
|ˆ︁µ(ξ)| ≥ 2q(−1+ϵ)αdj/2

)︂
≤ 2 exp

(︂
−qαdjϵ/2

)︂
.

Because we have |ξ| ≤ qjd,∑︂
|ξ|≥qj0d

P
(︂
|ˆ︁µ(ξ)| ≥ 2q(−1+ϵ)αdj/2

)︂
≤

∑︂
|ξ|≥qj0d

2 exp (−|ξ|αϵ) < ∞.

So by the Borel-Cantelli lemma, it follows that, with probability 1, there exists
some K such that

|ˆ︁µ(ξ)| < 2q(−1+ϵ)αdj/2 whenever K ≤ q(j−1)d < |ξ| ≤ qjd.

This inequality implies

|ˆ︁µ(ξ)| < 2|ξ|(−1+ϵ)α/2 whenever K ≤ |ξ|

This shows that, for any ϵ > 0, the measure µ satisfies an inequality of the same
form as (2) of Theorem 1.1 for the value β = (1 − ϵ)α with probability 1. By
continuity of probability, this shows that E almost surely has Fourier dimension
equal to α.

Thus Theorem 1.1 implies that if α >
8−4αq

9−5αq
, then the random set E con-

structed above will contain a three-term arithmetic progression almost surely.

5 A Varnavides-type theorem for thin subsets
of Fd

q

Varnavides’s theorem [13, Theorem 10.9] gives a quantitative statement about
the number of three-term arithmetic progressions in large subsets of {1, . . . , N}.
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We will prove a similar result for the finite group Fd
q . This version of Varnavides’s

theorem was established by Pohoata and Roche-Newton [10] using the result
of Ellenberg and Gijswijt [2] and the triangle removal lemma. We present a
different proof using a simple counting argument instead of the triangle removal
lemma. The proof is similar to the standard proof of Varnavides’s theorem, and
in particular uses the strategy of intersecting with random planes described by
Tao and Vu [13, Exercise 10.1.9] to arrive at a quantitative statement for thin
sets.

Proposition 5.1 (Varnavides’s theorem for Fd
q). Let q be an odd prime, and

let αq be as in Theorem 1.1. Suppose α > αq and ϵ > 0. Let A ⊂ Fd
q be such

that |A| ≥ qαd. Define the value cq by

cq =
3 − αq

1 − αq
.

Then, provided that d is sufficiently large, A contains at least q2d−(cq+ϵ)(1−α)d

three-term arithmetic progressions.

Proof. Let η be a positive real number satisfying 1 + η <
1−αq

1−α . We will choose
a parameter d′ depending on η as follows.

d′ =

⌊︃
d(1 + η) · 1 − α

1 − αq

⌋︃
. (8)

Observe that the condition on η guarantees d′ < d.
Let Graff(Fq, d, d

′) denote the set of planes of dimension d′ in Fd
q . Then we

define M to be the fraction of elements of Graff(Fq, d, d
′) that contain at least

one nontrivial arithmetic progression in the set A. We will need the following
estimate on M .

Lemma 5.2. Let q, A, and α be defined as in Lemma 5.1, and let M and d′ be
as defined above. If d is large enough depending on α, then we have the estimate

M ≥ 1

2
q(α−1)d.

Fix a nontrivial three-term arithmetic progression P = {x, x + a, x + 2a}.
We let L denote the fraction of elements of Graff(Fq, d, d

′) that contain P . An
easy symmetry argument shows that L does not depend on P . We will need the
following estimate on L.

Lemma 5.3. Let q and α be as defined in Lemma 5.1, and let L and d′ be
defined as above. Then L satisfies the estimate

L = (1 + oq(1))q2(d
′−d).

Here, the oq(1) term approaches zero as d → ∞ for a fixed q.

We will now complete the proof of Proposition 5.1 assuming Lemmas 5.2 and
5.3. Let p(A) denote the number of nontrivial three-term arithmetic progressions
in the set A. Let I be the number of incidences between d′-dimensional planes in
Fd
q and nontrivial 3-term arithmetic progressions in A; that is, I is the number
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of pairs (P,W ) where P is a three-term arithmetic progression contained in both
the set A and the plane W . Then we have

I =
∑︂
P⊂A

P 3-term AP

IP ,

where IP is the number of planes in Graff(Fq, d, d
′) containing the progression

P . By definition of L, we have

IP = |Graff(Fq, d, d
′)| · L

for every P , and thus

I = |Graff(Fq, d, d
′)| · L · p(A). (9)

On the other hand, the definition of M guarantees that we have

I ≥ |Graff(Fq, d, d
′)| ·M. (10)

Combining equations (9) and (10) gives

p(A) ≥ M

L
. (11)

Now, we combine equation (11) with Lemmas 5.2 and 5.3 to give, for sufficiently
large d,

p(A) ≥ 1

3
q(α−1)d−2(d′−d).

Since d′ ≤ d(1 + η)(1 − α)(1 − αq)−1, we get

p(A) ≥ 1

3
q(α−1)d−2(d′−d)

≥ 1

3
q2d−((1−α)+2(1+η)(1−α)(1−αq)

−1)d.

Now, if η is chosen to satisfy η < (1 − αq)ϵ/2, we have

p(A) ≥ q2d−(1−α)(1+ϵ+2(1−αq)
−1)d

= q2d−(cq+ϵ)(1−α)d.

■

It remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. The result of Ellenberg and Gijswijt [2] implies that if d′

is sufficiently large, any subset of a d′-dimensional plane consisting of at least
qαqd

′
elements will contain a three-term arithmetic progression, where αq < 1

is a real number depending only on q. In order to obtain a lower bound on M ,
it suffices to obtain a lower bound on the fraction M ′ of d′-dimensional planes
that contain at least qαqd

′
elements of A. We will apply a pigeonhole-principle

argument in order to obtain a lower bound for M ′.
The average number of elements of A contained in a plane of dimension d′

is at least qαdqd
′−d. On the other hand, the average number of elements of A
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in such a plane is bounded above by (1 − M ′)qαqd
′

+ M ′qd
′
. This gives the

inequality
qαd+d′−d ≤ (1 −M ′)qαqd

′
+ (M ′)qd

′
.

When we isolate M ′ in this inequality, we arrive at the inequality

M ≥ M ′ ≥ 1 − 1 − q(α−1)d

1 − q(αq−1)d′ . (12)

From (12) and (8), we get

M ≥ 1 − 1 − q(α−1)d

1 − q(1+η)(α−1)d+1

If d is large enough depending on α, then M will be larger than 1
2q

(α−1)d as
can be seen by using e.g. the linearization of the function 1−x

1−y near (0, 0). This
gives the desired lower bound on M . ■

Proof of Lemma 5.3. Let Aff(d,Fq) denote the group of affine-linear maps of
full rank on Fd

q . Fix a d′-dimensional plane V ⊂ Fd
q . We will compute L by

counting in two different ways the number AffP,V of elements of Aff(d,Fq) that
map P into the plane V .

First, we will count the number Nd,q of nontrivial three-term arithmetic
progressions in Fd

q . Note that, while y and b are sufficient to determine the
three-term arithmetic progression {y, y + b, y + 2b}, the three-term arithmetic
progression {y, y + b, y + 2b} corresponds to multiple choices of y and b. For
q ̸= 3, this arithmetic progression can be described in exactly two ways:

{y, y + b, y + 2b}
{(y + 2b), (y + 2b) − b, (y + 2b) − 2b}.

When q = 3, we have 2 · 2 = 1, so the arithmetic progression {y, y + b, y + 2b}
can be described in exactly six ways:

{y, y + b, y + 2b}
{y, y + 2b, y + 2 · 2b}
{(y + b), (y + b) + b, (y + b) + 2b}
{(y + b), (y + b) + 2b, (y + b) + 2 · 2b}
{(y + 2b), (y + 2b) + b, (y + 2b) + 2b}
{(y + 2b), (y + 2b) + 2b, (y + 2b) + 2 · 2b}.

So the number Nd,q of nontrivial three-term arithmetic progressions in Fd
q is

given by

Nd,q =

{︄
1
2q

d(qd − 1) if q ̸= 3
1
63d(3d − 1) if q = 3

Now, we observe that the group Aff(d,Fq) acts transitively on the set of nontriv-
ial three-term arithmetic progressions in Fd

q . Therefore, by the orbit-stabilizer
lemma, it follows that for any nontrivial arithmetic progression P ′ = {y, y +
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b, y + 2b} the number of elements AffP,P ′ of Aff(d,Fq) mapping P onto P ′ is
exactly

AffP,P ′ =
1

Nd,q
|Aff(d,Fq)|.

Summing this over all nontrivial three-term arithmetic progressions P ′ lying in
the plane V gives

AffP,V =
Nd′,q

Nd,q
|Aff(d,Fq)|. (13)

We will now count AffP,V in a different way. Let U be an arbitrary d′-dimensional
plane in Fd

q . We will first count AffU,V , the number of elements of Aff(d,Fq) that
map U onto V . Let Graff(Fq, d, d

′) denote the collection of all d′-dimensional
planes in Fd

q . We observe that Aff(d,Fq) acts transitively on the set Graff(Fq, d, d
′).

Therefore, by the orbit-stabilizer lemma, we have

AffU,V =
1

|Graff(Fq, d, d′)|
|Aff(d,Fq)|.

We sum this over all d′-dimensional planes U containing the progression P .
Observe that the number of such planes is L · |Graff(Fq, d, d

′)|. Therefore, we
get

AffP,V = L|Aff(d,Fq)|. (14)

Combining (13) and (14) gives

L =
Nd′,q

Nd,q

=
qd

′
(qd

′ − 1)

qd(qd − 1)

= (1 + o(1))q2(d
′−d).

■

6 Proof of Theorem 1.1

6.1 Two trilinear forms

For any d, define µd to be the pushforward of µ under the projection πd. In
order to prove Theorem 1.1, we will introduce the trilinear forms

gd(x) =
∑︂

a∈Fd
q\{0}

µd(x)µd(x + a)µd(x + 2a)

and
hd,d∗(x) =

∑︂
a∈Fd∗

q

|a|>q−d

µd∗(x)µd∗(x + a)µd∗(x + 2a).

Note that the sum
Sg :=

∑︂
x∈Fd

q

gd(x)
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gives the µ × µ × µ-measure of the set of points (x, y, z) that lie within q−d of
a three-term arithmetic progression (x, x + a, x + 2a) whose common difference
a satisfies |a| > q−d, and the sum

Sh :=
∑︂
x∈Fd

q

hd,d∗(x)

gives the µ× µ× µ-measure of the set of points (x, y, z) that lie within q−d∗
of

a three-term arithmetic progression (x, x + a, x + 2a) whose common difference
a satisfies |a| > q−d.

The main result we will need to prove Theorem 1.1 is the following:

Lemma 6.1. Suppose that µ is a measure satisfying the conditions of Theorem
1.1. Then there exists a d ∈ N such that for any d∗ > d, we have the inequality∑︂

x∈Fd∗
q

hd,d∗(x) > 0. (15)

Proof of Theorem 1.1 assuming Lemma 6.1. Let d > 0 be such that (15) holds
whenever d∗ > d. For any d∗ > d, select an (xd∗ , yd∗ , zd∗) ∈ E3 and an |ad∗ | ≥
q−d such that

|yd∗ − (xd∗ + ad∗)| ≤ q−d∗
; |zd∗ − (xd∗ + 2ad∗)| ≤ q−d∗

. (16)

Because E × E × E is compact, the sequence {(xd∗ , yd∗ , zd∗)}d∗>d has at least
one limit point. Choose such a limit point, and call this limit point (x, y, z).
We claim that (x, y, z) is a nontrivial three-term arithmetic progression.

First, we check that (x, y, z) is a three-term arithmetic progression. The
inequalities (16) imply that

lim
d∗→∞

xd∗ − 2yd∗ + zd∗ = 0.

Hence (x, y, z) is an arithmetic progression. On the other hand, equation (16),
the bound |ad∗ | > q−d, and the ultrametric inequality guarantee that |yd∗ −
xd∗ | > q−d for each of the points (xd∗ , yd∗ , zd∗), and therefore |y − x| > q−d as
well. Thus E contains a three-term arithmetic progression. ■

It remains to prove Lemma 6.1. In the next subsection, we will obtain an
estimate on

∑︁
x∈Fd

q
gd(x) that will be helpful in proving the lemma.

6.2 Locating approximate arithmetic progressions in E

We will to prove the following estimate.

Lemma 6.2. Let µ be a measure satisfying the first assumption of Theorem
1.1, and let ϵ > 0 be a positive real number. If ϵ is sufficiently small depending
on g, and if d is sufficiently large depending on µ, q, and ϵ, then

Sg ≥ q(−1−cq(1−α)−ϵ)d (17)
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Proof. The first assumption of Theorem 1.1 implies that there exists a finite
Borel measure µ′ obtained by restricting the support of the measure µ to a
subset E′ of E such that µ′ satisfies the ball condition of dimension α.

Let µ′
d be the pushforward of µ′ under the projection πd. Suppose α > αq,

where αq is defined as in Lemma 5.1. The ball condition implies that 0 ≤
µ′
d(x) ≤ C1q

−αd for all x ∈ Fd
q . Let K = µ′(F∞

q ). If we then define

µ′′
d(x) =

{︄
µ′
d(x) if µ′

d(x) > Kq−d/2

0 if µ′
d(x) ≤ Kq−d/2

,

a simple pigeonholing argument shows
∑︁

x∈Fd
q
µ′′
d(x) ≥ K/2.

Let 0 < ϵ < 1
100 be so small that α−ϵ > αq. We will accumulate small losses

in exponents in our argument that will, ultimately, be controlled by this ϵ.
Let A be the support of µ′′

d in Fd
q . Because µ′′

d(x) ≤ C1q
−αd for x ∈ A and∑︁

x∈A µ′′
d(x) ≥ K/2, we have the lower bound |A| ≥ Kqαd

2C1
. We can absorb the

constants by replacing α by the slightly smaller number α − ϵ
30cq

: we have for

sufficiently large d (depending on α, ϵ, q, C1, and K) that |A| ≥ q
(α− ϵ

30cq
)d

.
We apply Lemma 5.1 to the set A. This lemma guarantees that, if d is

sufficiently large, there are at least q
(2−(cq+

ϵ
3 )(1−α+ ϵ

30cq
))d ≥ q(2−cq(1−α)− 2ϵ

3 )d

three-term arithmetic progressions contained in A. Because there are at least
q(2−cq(1−α)− 2ϵ

3 )d pairs (x, a) such that {x, x + a, x + 2a} is contained in A, and
µd(x) ≥ µ′

d(x) ≥ K
2 q

−d on A, we have, by absorbing the constant K3/8 into a
q−

ϵ
3d term, that ∑︂

x∈Fd
q

g(x) ≥ q(−1−cq(1−α)−ϵ)d,

as desired. ■

6.3 Refining the approximate arithmetic progressions

The core remaining task is to relate the sum Sg to the sum Sh.

Lemma 6.3. The sums Sg and Sh are related by the equation

Sh = gd−d∗
Sg + S̸=0, (18)

where

S̸=0 := q−d∗−d
∑︂

ξ1∈ˆ︃Fd∗
q

ξ1
′′ ̸=0

∑︂
ξ′2∈ˆ︂Fd

q

ˆ︃µd∗(−ξ′1 − ξ′2 + ξ′′1 )ˆ︃µd∗(ξ′1 + ξ′′1 )ˆ︃µd∗(ξ′2 − 2ξ′′1 )·

·

⎛⎜⎜⎜⎝∑︂
a′∈Fd

q

a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⎞⎟⎟⎟⎠ .

Here, ξ1 = ξ′1 + ξ′′1 is the order d decomposition of the character ξ1.
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Proof. In order to relate Sh and Sg, we observe that Sh is equal to ˆ︁hd∗,d(0).
Therefore, by two applications of the convolution rule (4):

ˆ︁hd∗,d(0) =
∑︂

a∈Fd∗
q

|a|>q−d

(µd∗(·)µd∗(· + a)µd∗(· + 2a))∧(0)

=
1

qd∗

∑︂
a∈Fd∗

q

|a|>q−d

∑︂
ξ1∈ˆ︃Fd∗

q

(µd∗(·)µd∗(· + a))∧(−ξ1)ˆ︃µd∗(ξ1)eq(−ξ1 · 2a)

=
1

q2d∗

∑︂
a∈Fd∗

q

|a|>q−d

∑︂
ξ1∈ˆ︃Fd∗

q

∑︂
ξ2∈ˆ︃Fd∗

q

ˆ︃µd∗(−ξ1 − ξ2)ˆ︃µd∗(ξ1)ˆ︃µd∗(ξ2)eq(−(2ξ1 + ξ2) · a).

Here, ξ1 and ξ2 are elements of Fd∗

q . We will write

ξ1 = (ξ
(1)
1 , . . . , ξ

(d∗)
1 )

ξ2 = (ξ
(1)
2 , . . . , ξ

(d∗)
2 ).

We will apply the order d decomposition to a = a′+a′′, ξ1 = ξ′1+ξ′′1 , ξ2 = ξ′2+ξ′′2 ,
and observe that the condition |a| > q−d is equivalent to the statement that
a′ ̸= 0. So we can rewrite this sum as

ˆ︁hd∗,d(0) =
1

q2d∗

∑︂
a′ ̸=0

∑︂
a′′

∑︂
ξ′1,ξ

′
2

∑︂
ξ′′1 ,ξ′′2

(︁ˆ︃µd∗(−ξ′1 − ξ′′1 − ξ′2 − ξ′′2 )ˆ︃µd∗(ξ′1 + ξ′′1 )ˆ︃µd∗(ξ′2 + ξ′′2 )·

·eq(−(2ξ′1 + ξ′2) · a′)eq(−(2ξ′′1 + ξ′′2 ) · a′′)
)︁

We rearrange this sum so that the sums in a′ and a′′ are inside:

ˆ︁hd∗,d(0) =
1

q2d∗

∑︂
ξ′1,ξ

′
2

∑︂
ξ′′1 ,ξ′′2

ˆ︃µd∗(−ξ′1 − ξ′′1 − ξ′2 − ξ′′2 )ˆ︃µd∗(ξ′1 + ξ′′1 )ˆ︃µd∗(ξ′2 + ξ′′2 )·

·

⎛⎝∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⎞⎠(︄∑︂
a′′

eq(−(2ξ′′1 + ξ′′2 ) · a′′)

)︄

We will first consider the sum∑︂
a′′

eq(−(2ξ′′1 + ξ′′2 ) · a′′).

This sum vanishes if 2ξ′′1 + ξ′′2 is nonzero. If 2ξ′′1 + ξ′′2 is equal to zero, then each
summand is equal to 1, so the sum is equal to qd

∗−d, the number of summands.
Therefore, we have

ˆ︁hd∗,d(0) = q−d∗−d
∑︂
ξ′1,ξ

′
2

∑︂
ξ′′1

ˆ︃µd∗(−ξ′1 − ξ′2 + ξ′′1 )ˆ︃µd∗(ξ′1 + ξ′′1 )ˆ︃µd∗(ξ′2 − 2ξ′′1 )·

·

⎛⎝∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⎞⎠
We can therefore write

ˆ︁hd∗,d(0) = S0 + S̸=0,
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where

S0 := q−d∗−d
∑︂
ξ′1,ξ

′
2

ˆ︃µd∗(−ξ′1 − ξ′2)ˆ︃µd∗(ξ′1)ˆ︃µd∗(ξ′2)

⎛⎝∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⎞⎠
(19)

and

S̸=0 := q−d∗−d
∑︂
ξ′1,ξ

′
2

∑︂
ξ′′1 ̸=0

ˆ︃µd∗(−ξ′1 − ξ′2 + ξ′′1 )ˆ︃µd∗(ξ′1 + ξ′′1 )ˆ︃µd∗(ξ′2 − 2ξ′′1 )·

·

⎛⎝∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⎞⎠ .

The S̸=0 term is as promised in the statement of the lemma. We need only
relate S0 to Sg. By a calculation similar to the one above, we can compute
Sg = ˆ︁gd(0).

ˆ︁gd(0) = q−2d
∑︂

η1,η2∈ˆ︂Fd
q

ˆ︂µd(−η1 − η2)ˆ︂µd(η1)ˆ︂µd(η2)
∑︂
b∈Fd

q

b ̸=0

eq(−(2η1 + η2) · b).

Because ξ′1 and ξ′2 in (19) have absolute value at most qd, it follows that

ξ′1 · x = ξ′1 · πd(x) for any x ∈ Fd∗

q . Thus, if η1 is the vector (ξ
(1)
1 , . . . , ξ

(d)
1 ) and

η2 is the vector (ξ
(1)
2 , . . . , ξ

(d)
2 ), then ˆ︁µd∗(ξ′1) is equal to ˆ︁µd(η1), and similarly

for ξ′2 and −ξ′1 − ξ′2. Re-indexing the sum in ξ′1 and ξ′2 in S0 by η1 and η2, and
b = πd(a), we observe

S0 = q−d∗−d
∑︂
η1,η2

ˆ︂µd(−η1 − η2)ˆ︂µd(η1)ˆ︂µd(η2)
∑︂
b∈Fd

q

b̸=0

eq(−(2η1 + η2) · b)

= qd−d∗ˆ︁gd(0).

This establishes the equation (18). ■

The only remaining task is to bound the error term S̸=0. This will be
accomplished in the next subsection.

6.4 Estimating the error term

In this section, we will establish the following estimate on S̸=0.

Lemma 6.4. For some constant Cq,β depending only on q and β (and in par-
ticular, not on d or d∗), the following bound holds for the sum S ̸=0 defined in
Lemma 6.3.

|S̸=0| ≤ Cq,βq
−d∗+(1−3β/2)d. (20)

Proof. Because ξ′′1 is nonzero in the sum S̸=0, we have in fact that |ξ′′1 | ≥ qd+1.
In particular, this means that |ξ′′1 | > max(|ξ′1|, |ξ′2|), and thus |ξ′1+ξ′′1 |, |ξ′2−2ξ′′1 |,
and |− ξ′1− ξ′2 + ξ′′1 | are all equal to |ξ′′1 | by the ultrametric inequality. Applying
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the second assumption of Theorem 1.1 and the triangle inequality, we therefore
have the estimate

|S̸=0| ≤ q−d∗−d
∑︂
ξ′1,ξ

′
2

∑︂
ξ′′1 ̸=0

|ξ′′1 |−3β/2

⃓⃓⃓⃓
⃓⃓∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⃓⃓⃓⃓
⃓⃓

= q−d∗−d

⎛⎝∑︂
ξ′′1 ̸=0

|ξ′′1 |−3β/2

⎞⎠⎛⎝∑︂
ξ′1,ξ

′
2

⃓⃓⃓⃓
⃓⃓∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⃓⃓⃓⃓
⃓⃓
⎞⎠ .

First, we will estimate

∑︂
ξ′1,ξ

′
2

⃓⃓⃓⃓
⃓⃓∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⃓⃓⃓⃓
⃓⃓ .

The sum ∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

will take the value −1 if 2ξ′1 + ξ′2 is nonzero, and will take the value qd − 1
otherwise. For a fixed ξ′1, there is exactly one choice of ξ′2 (namely, −2ξ′1) such
that 2ξ′1 + ξ′2 = 0. Thus for each ξ′1, we have

∑︂
ξ′2

⃓⃓⃓⃓
⃓⃓∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⃓⃓⃓⃓
⃓⃓ = 2(qd − 1),

and thus ∑︂
ξ′1,ξ

′
2

⃓⃓⃓⃓
⃓⃓∑︂
a′ ̸=0

eq(−(2ξ′1 + ξ′2) · a′)

⃓⃓⃓⃓
⃓⃓ = 2qd(qd − 1) ≤ 2q2d. (21)

We will now estimate ∑︂
ξ′′1 ̸=0

|ξ′′1 |−3β/2.

This sum can be rewritten

d∗∑︂
j=d+1

(#{ξ′′1 : |ξ′′1 | = qj})q−3βj/2.

Note that |ξ′′1 | = qj whenever ξ′′1 has the form

ξ′′1 = (0, . . . , 0, ξ
(d+1)
1 , ξ

(d+2)
1 , . . . , ξ

(j)
1 , 0, . . . , 0)

where ξ
(j)
1 ̸= 0. There are q choices for each of ξ

(d+1)
1 , . . . , ξ

(j−1)
1 and q − 1

choices for ξ
(j)
1 and thus there are (q − 1)qj−d−1 ≤ qj−d values of ξ′′1 such that
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|ξ′′1 | = qj . Thus

∑︂
ξ′′1 ̸=0

|ξ′′1 |−3β/2 ≤
d∗∑︂

j=d+1

qj−dq−3βj/2

= q−d
d∗∑︂

j=d+1

qj(1−3β/2)

≤ q−d
∞∑︂

j=d+1

qj(1−3β/2).

The sum
∑︁∞

j=d+1 q
j(1−3β/2) is convergent because of the assumption that β >

2/3. The geometric series formula gives the estimate
∑︁∞

j=d+1 q
j(1−3β/2) ≤

Cq,βq
d(1−3β/2). Thus we get∑︂

ξ′′1 ̸=0

|ξ′′1 |−3β/2 ≤ Cq,βq
−3dβ/2. (22)

Combining (21) and (22) and absorbing the constant 2 into Cq,β , we get

|S̸=0| ≤ Cq,βq
−d∗−d−3dβ/2+2d = Cq,βq

−d∗+(1−3β/2)d.

■

We will now use Lemmas 6.2, 6.3, and 6.4 to prove Lemma 6.1, thereby
completing the proof of Theorem 1.1.

Proof of Lemma 6.1. By Lemma 6.3, we can write

Sh = qd−d∗
Sg + S̸=0.

Let ϵ > 0. We can apply Lemma 6.2 and 6.4 to obtain an estimate on Sh.

Sh ≥ qd−d∗
Sg − |S̸=0|

≥ qd−d∗
q−d+(−cq(1−α)−ϵ)d − Cq,bq

−d∗+(1−3β/2)d

= q−d∗
(︂
q(−cq(1−α)−ϵ)d − Cq,bq

(1−3β/2)d
)︂
.

In order to guarantee that this expression is positive for sufficiently large d, we
need only verify the inequality

−cq(1 − α) − ϵ > 1 − 3β/2.

Rearranging this inequality and solving for 1 − α gives the inequality

1 − α <
1 − αq

3 − αq

(︃
3β

2
− 1

)︃
− c−1

q ϵ.

Under the assumption (1) of Theorem 1.1, this inequality holds provided that
ϵ is sufficiently small depending on q, α, and β. Therefore, if d is sufficiently
large, Sh is positive, as claimed. ■
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7 Concluding Remarks

We crucially used the result of Ellenberg-Gijswijt [2] in the proof of Lemma 5.1.
For this reason, the proof described here does not apply to the Euclidean setting.
As stated before, Shmerkin [11] has provided a counterexample to Theorem 1.1
in R.

The only use of the Fourier decay condition occurred in the estimate of the
term S̸=0.

8 Appendix: Fourier analysis of the Riesz po-
tential

The goal for this section is to prove Lemma 2.3. For this purpose, we define,
for 0 < t < 1, the Riesz potential rt(x) to be the L1 function on F∞

q defined by
the formula

rt(x) = |x|−t. for x ̸= 0. (23)

In terms of the Riesz potential, we observe that the t-energy of a measure µ is
given by ∫︂∫︂

F∞
q ×F∞

q

rt(x− y) dµ(x) dµ(y).

Again, we use the convention that this energy is infinite if µ× µ(∆) > 0, where
∆ is the diagonal.

We now restate Lemma 2.3 using this notation.

Lemma 8.1. The t-energy of a measure µ is given by the formula∫︂∫︂
F∞
q ×F∞

q

rt(x− y) dµ(x) dµ(y)

=
1 − q−1

1 − qt−1
|ˆ︁µ(0)|2 +

∑︂
ξ ̸=0

1 − q−t

1 − qt−1
|ˆ︁µ(ξ)|2|ξ|t−1. (24)

In order to establish this formula, we will need to compute the Fourier trans-
form of the Riesz potential. The following formula appears as Lemma 4.3.4 (i)
in [9].

Lemma 8.2. Let rt(x) denote the Riesz potential on F∞
q :

rt(x) = |x|−t. for x ̸= 0

Then

ˆ︁rt(ξ) =
1 − q−t

1 − qt−1
|ξ|t−1 if ξ ̸= 0

ˆ︁rt(0) =
1 − q−1

1 − qt−1
.
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Proof of Lemma 8.2. We will evaluate the integral defining ˆ︁rt(ξ) by partitioning
the region of integration according to the absolute value of x.

ˆ︁rt(ξ) =

∫︂
F∞
q

|x|−teq(x · ξ) dx

=

∞∑︂
j=0

∫︂
|x|=q−j

|x|−teq(x · ξ) dx

=

∞∑︂
j=0

qjt
∫︂
|x|=q−j

eq(x · ξ) dx

=

∞∑︂
j=0

qjt

(︄∫︂
Bq−j (0)

eq(x · ξ) dx−
∫︂
Bq−j−1 (0)

eq(x · ξ) dx

)︄

=

∞∑︂
j=0

qjt
∫︂
Bq−j (0)

eq(x · ξ) dx−
∞∑︂
j=0

qjt
∫︂
Bq−j−1 (0)

eq(x · ξ) dx (25)

We now consider the integral∫︂
Bq−j (0)

eq(x · ξ) dx.

Suppose first ξ ̸= 0. Then |ξ| = qd for some d. If d > j, then we have

x · ξ = xd−1ξd +
∑︂

1≤k≤d−1

xk−1ξk,

so ∫︂
Bq−j (0)

eq(x · ξ) dx

=

∫︂
Bq−j (0)

eq(xd−1ξd)eq

(︄
d−1∑︂
k=1

xk−1ξk

)︄
dx

=
∑︂
a∈Fq

eq(aξd)

∫︂
|x|≤q−j ;xd−1=a

eq

(︄
d−1∑︂
k=1

xk−1ξk

)︄
dx if j < d (26)

We implicitly use the fact that d > j, which implies d − 1 ≥ j, and therefore
the ball Bq−j (0) contains points for which xd−1 = a. Observe that the value of
the inner integral does not depend on a. Therefore, we have∫︂

Bq−j (0)

eq(x · ξ) dx = 0 if d > j.

On the other hand, for d ≤ j, we have that x · ξ = 0 on Bq−j (0) since
x0, . . . , xj−1 are equal to zero for any x in this ball. Thus∫︂

Bq−j (0)

eq(x · ξ) dx = q−j if j ≥ d. (27)

We plug (26) and (27) into (25):
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ˆ︁rt(ξ) =

∞∑︂
j=d

qjtq−j −
∞∑︂

j=d−1

qjtq−j−1

=

∞∑︂
j=d

qjtq−j −
∞∑︂
j=d

q(j−1)tq−j

= (1 − q−t)

∞∑︂
j=d

qj(t−1)

=
(1 − q−t)qd(t−1)

1 − qt−1

=
1 − q−t

1 − qt−1
|ξ|t−1.

It remains to consider the ξ = 0 case. In this case, x · ξ = 0 for all x, so (25)
becomes

ˆ︁rt(0) =

∞∑︂
j=0

qjtq−j −
∞∑︂
j=0

qjtq−j−1

= (1 − q−1)

∞∑︂
j=0

qj(t−1)

=
1 − q−1

1 − qt−1
,

as desired. ■

Papadimitropoulos uses this expression for the Fourier transform of the Riesz
potential in order to compute a Fourier-analytic formula for the t-energy. We
will need the following formula for the partial sums of the Fourier series for the
Riesz potential, which is given implicitly in the proof of Lemma 4.3.4 (ii) in [9].

Lemma 8.3. Let Snrt denote the partial sum of the Fourier series for the Riesz
potential:

Snrt(z) =
∑︂

|ξ|≤qn

ˆ︁rt(ξ)e(z · ξ).

Then we have the following formula for Snrt:

Snrt(z) =

{︄
|z|−t if |z| > q−n

qtn(1−q−1)
1−qt−1 if |z| ≤ q−n

In particular, for each n, we have that Snrt nonnegative and is bounded above
by the integrable function

Snrt(z) ≤ 1 − q−1

1 − qt−1
|z|−t.

Proof of Lemma 8.3. This proof is very similar to the proof of Lemma 8.2.
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We write out the sum∑︂
|ξ|≤qn

ˆ︁rt(ξ)e(z · ξ)

= ˆ︁rt(0) +

n∑︂
j=1

∑︂
|ξ|=qj

ˆ︁rt(ξ)eq(z · ξ)

=
1 − q−1

1 − qt−1
+

n∑︂
j=1

∑︂
|ξ|=qj

(︃
1 − q−t

1 − qt−1

)︃
q(t−1)jeq(z · ξ)

=
1 − q−1

1 − qt−1
+

1 − q−t

1 − qt−1

n∑︂
j=1

q(t−1)j
∑︂

|ξ|=qj

eq(z · ξ)

=
1 − q−1

1 − qt−1
+

1 − q−t

1 − qt−1

n∑︂
j=1

q(t−1)j

⎛⎝ ∑︂
|ξ|≤qj

eq(z · ξ) −
∑︂

|ξ|≤qj−1

eq(z · ξ)

⎞⎠
=

1 − q−1

1 − qt−1
+

+
1 − q−t

1 − qt−1

⎛⎝ n∑︂
j=1

q(t−1)j
∑︂

|ξ|≤qj

eq(z · ξ) −
n∑︂

j=1

q(t−1)j
∑︂

|ξ|≤qj−1

eq(z · ξ)

⎞⎠ .(28)

But we know that

∑︂
|ξ|≤qj

eq(z · ξ) =

{︄
qj if |z| ≤ q−j

0 if |z| > q−j .

We will now split into cases depending on the value of |z|. We will first consider
z such that |z| > q−n. For such z, there exists some k such that 0 ≤ k < n and
such that |z| = q−k. The sum then reduces to∑︂

|ξ|≤qn

ˆ︁rt(ξ)e(z · ξ)

=
1 − q−1

1 − qt−1
+

1 − q−t

1 − qt−1

⎛⎝ k∑︂
j=1

q(t−1)jqj −
k+1∑︂
j=1

q(t−1)jqj−1

⎞⎠
=

1 − q−1

1 − qt−1
+

1 − q−t

1 − qt−1

⎛⎝ k∑︂
j=1

qtj −
k+1∑︂
j=1

qtj−1

⎞⎠
=

1 − q−1

1 − qt−1
+

(︃
1 − q−t

1 − qt−1

)︃(︃
qt
(︃

1 − qtk

1 − qt

)︃
− qt−1

(︃
1 − qt(k+1)

1 − qt

)︃)︃
=

1 − q−1

1 − qt−1
+

(︃
1 − q−t

1 − qt−1

)︃(︃
qt − qt(k+1) − qt−1 + qt(k+2)−1

1 − qt

)︃
=

1 − q−1 − 1 + qtk + q−1 − qt(k+1)−1

1 − qt−1

= qtk = |z|−t.

It remains to consider those z such that |z| ≤ q−n. For such z, we have that for
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all 0 ≤ j ≤ n, we have ∑︂
|ξ|≤qj

eq(z · ξ) = qj .

Therefore, the sum reduces to∑︂
|ξ|≤qn

ˆ︁rt(ξ)e(z · ξ)

=
1 − q−1

1 − qt−1
+

1 − q−t

1 − qt−1

⎛⎝ n∑︂
j=1

qtj −
n∑︂

j=1

qtj−1

⎞⎠
=

1 − q−1

1 − qt−1
+

1 − q−t

1 − qt−1

(︃
qt(1 − q−1)

1 − qtn

1 − qt

)︃
=

1 − q−1

1 − qt−1
− (1 − q−1)(1 − qtn)

1 − qt−1

=
qtn(1 − q−1)

1 − qt−1

≤ 1 − q−1

1 − qt−1
|z|−t.

■

We are now ready to prove Lemma 8.1.

Proof of Lemma 8.1. The right side of equation (24) is equal to∑︂
ξ∈ˆ︃F∞

q

|ˆ︁µ(ξ)|2ˆ︁rt(ξ)

= lim
n→∞

∑︂
|ξ|≤qn

ˆ︁µ(ξ)ˆ︁µ(ξ)ˆ︁rt(ξ)

= lim
n→∞

∑︂
|ξ|≤qn

∫︂∫︂
F∞
q ×F∞

q

e((x− y) · ξ) dµ(x) dµ(y)ˆ︁rt(ξ)

= lim
n→∞

∫︂∫︂
F∞
q ×F∞

q

∑︂
|ξ|≤qn

e((x− y) · ξ)ˆ︁rt(ξ) dµ(x) dµ(y)

= lim
n→∞

∫︂∫︂
F∞
q ×F∞

q

Snrt(x− y) dµ(x) dµ(y)

Let ∆ be the diagonal {(x, x) : x ∈ F∞
q }. If µ × µ(∆) = ∞, then the t-energy

of µ is ∞ by definition. Furthermore, we have that∫︂∫︂
F∞
q ×F∞

q

Snrt(x− y) dµ(x) dµ(y)

≥
∫︂∫︂

∆

Snrt(x− y) dµ(x) dµ(y)

=

∫︂∫︂
∆

qtn(1 − q−1)

1 − qt−1
dµ(x) dµ(y)

= µ× µ(∆)
qtn(1 − q−1)

1 − qt−1

= ∞.
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So the energy formula is correct in this case.
Next, assume that µ× µ(∆) = 0. In this case, we have

lim
n→∞

∫︂∫︂
F∞
q ×F∞

q

Snrt(x− y) dµ(x) dµ(y)

= lim
n→∞

∫︂∫︂
(x,y)/∈∆

Snrt(x− y) dµ(x)dµ(y).

Assume now that the t-energy of µ is infinite. Then for any K > 0, there exists
n0(K) > 0 such that we have∫︂∫︂

|x−y|>q−n0

rt(x− y) dµ(x) dµ(y) ≥ K.

But by Lemma 8.2, we have that for n > n0, Snrt(x − y) ≥ rt(x − y)1Bc
q−n

.

Therefore, for n > n0, we have∫︂∫︂
(x,y)/∈∆

Snrt(x− y) dµ(x)dµ(y) ≥ K.

Because this can be done for any K, it follows that∑︂
ξ∈ˆ︂Fq

|ˆ︁µ(ξ)|2ˆ︁rt(ξ) = ∞

and the formula (24) is proven in this case.
It remains to verify the formula when the t-energy of µ is finite. In this case,

we have that Snrt(x − y) is nonnegative and uniformly bounded above by the
µ× µ-integrable function

1 − q−1

1 − qt−1
rt(x− y).

Therefore, the dominated convergence theorem applies, and we have

lim
n→∞

∫︂∫︂
(x,y)/∈∆

Snrt(x− y) dµ(x) dµ(y)

=

∫︂∫︂
(x,y)/∈∆

rt(x− y) dµ(x) dµ(y),

which is precisely the t-energy of µ. ■
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