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Abstract

We show that subsets of Fg° of large Fourier dimension must contain
three-term arithmetic progressions. This contrasts with a construction
of Shmerkin of a subset of R of Fourier dimension 1 with no three-term
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1 Introduction

In a recent paper, Ellenberg and Gijswijt [2] have shown that, for any odd prime
g, there exists a; < 1 such that a subset of Fg with at least ¢®¢¢ clements must
contain a three-term arithmetic progression. This contrasts with the case for
finite cyclic groups, where Behrend [I] constructed a counter example— a subset
of Z/NZ with C.N'~¢ elements that does not contain a three-term arithmetic
progression.

In this note, we will consider what happens in the vector space F °- a vector
space of infinite dimension over F,. By Fg°, we mean the vector space consisting
of infinite sequences of elements of IF; with the product topology. This is a
compact abelian group that is isomorphic to the additive group of F[[t]], the
ring of formal power series over F,.

In light of the result of Ellenberg and Gijswijt, one may be tempted to
guess that a subset of Fg® of full Hausdorff dimension must contain a three-
term arithmetic progression; however, this has been shown not to be the case
[3]. The construction was inspired by a similar construction of Keleti [5] of
a subset of R of full Hausdorff dimension that does not contain any solutions
to x4 — x3 = Ty — x1 with 1 # zo and z3 # x4. We will present a more
elementary counterexample in this paper for completeness. Because size in the
sense of Hausdorff dimension is not enough to guarantee the existence of a three-
term arithmetic progression, some additional condition, such as a Fourier decay
condition, is needed.



In the real-variable setting, Laba and Pramanik [6] have shown that a subset
of R supporting a measure satisfying a Fourier decay condition as well as a ball
condition depending on the rate of Fourier decay must contain a three-term
arithmetic progression. However, Shmerkin [I1] has constructed a subset of R
of Fourier dimension 1 not containing any three-term arithmetic progressions.
Shmerkin’s construction relied on the Behrend example [I] of a large subset of
{1,2,..., N} that does not contain a three-term arithmetic progression. Because
the result [2] of Ellenberg and Gijswijt implies that no such example can exist
for finite vector spaces, it seems sensible to guess that a subset of Fg® with large
Fourier dimension must contain a three-term arithmetic progression. This is
exactly what we will show:

Theorem 1.1. Let g be an odd prime. Let E be a compact subset of Fg°
supporting a probability measure p such that for some 2/3 < 8 < 1 and some
0 < a <1, and some positive constants C, and Cs:

1. There exists E' C E such that u(E') > 0 and for all balls B C Fg°,
W (B) < Cirad(B)*.

Here, i is the measure plg whose support is restricted to E'.

(&) < Col¢| 7P for all nontrivial characters €.

We will see in Lemma[2.6] that condition[d above implies condition [1] for all
a < B. Let ay be such that, for sufficiently large d, any subset of Fg consisting of
at least ¢*a@ elements must contain a three-term arithmetic progression. Suppose
that o and B satisfy the following condition:

1_a<<3§_1) (;:z) (1)

Then the set E must contain a three-term arithmetic progression. In particular,

Lemma implies that the condition is met provided that
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(2)

This differs from the Laba-Pramanik result [6] because the value « does not
depend on the constants C; and C5. This allows us to drop the first assumption
provided that S is sufficiently close to 1. The counterexample of Shmerkin [I1]
shows that this assumption cannot be dropped in the Euclidean setting.

In order to properly interpret this theorem, we need to discuss some of the
basic properties of the Fourier transform on Fg°.
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2 Fourier Analysis on F*°

2.1 The abelian groups F° and Iﬁg\o

Much of the material in this section can be found in Taibleson’s book [12]. Let
q be an odd prime, and let F® be the group
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equipped with the product topology. With respect to this topology, F° is a
compact abelian group. The topology on F¢® is induced by an absolute value:
given an element & = (o, 1,2, ...) of F°, we define |z| = g™/, where j is the
index of the first nonzero component of . If z = 0, then we take |z| = 0. There
is a natural projection mq : Fg® — IFg given by m4(z) = (zg,...,24-1). Note

that for any d* > d, there is a natural projection from F¢" — F¢; we will abuse
d

q7
value on ]Fg by |(zo,...,74_1)] = ¢~7, where j is the index of the first nonzero
component of (xg,...,z4-1), and [(0,0,...,0)] = 0. Notice that if 2 € F° is
such that |mg(z)| > 0, then |r4(z)| = |z|.

The compact abelian group F° is equipped with a Haar probability measure
dx. This measure assigns a measure of ¢~/ to any closed ball of radius ¢~7. The
pushforward of this measure under 7y yields the uniform probability measure
on Fg.

notation and also use 7y for this projection. As for F¢, we define an absolute

The Fourier character group Fg of ]Fg is isomorphic to ]Fg as an abelian
group. We will write (&1,...,&q) for a typical character on IFg (notice that the

indexing will start from 1 instead of 0). We define an absolute value on F¢ by
|¢] = ¢7, where j is the maximum index of a nonzero component of (&1, ..., &q).
The product (&1, ...,&4) - (%o, ..., x4—1) is defined by {120+ - - - + Egxq—1, which
is defined as an element of F,. We can therefore make sense of exp(%f - x),
which will be written as

eql€  7) = exp (225 - :c) . 3)

This describes the action of IE"g on Fg.

The Fourier character group fg? consists of sequences of the form & =
(&1,&2,&3,...) where only finitely many &; are nonzero. The absolute value



|| of ¢ is given by ¢’, where j is the largest index of a nonzero component
of &, with |0] taken to be 0. Because all of the components of & after the jth

component are zero, we can define a product £ - x for £ € EOE and z € F° as

the finite sum 4
J
Z EkTr—1
k=1

which makes sense as an element of F,. We can thus define e,(§ - =) as before,
giving the action of F2° on F7°. Notice that each element of F2° can be viewed
as an element of Fg where d > j and ¢/ = |¢]. In this sense, every element of
]I?éz can be viewed as an element of IFZ for some finite j. In fact, if |¢| < ¢¢, then
&-x =& myg(x). In other words, the function x — £ - = is constant on closed
balls of radius |¢|~1 for & # 0.

Given d* > d, and x € ]Fg , we can write © = (xg,Z1,...,Tg+—1) as & sum
x =2’ + 2", where

¥ = (zo,...,74-1,0,...,0)

' =(0,...,0,2q, ..., Ta 1)

We call this the order d decomposition on Fg*. Similarly, given £ € ]EC}\*, we
can write £ = ¢ 4 &”, where

&= (&1,...,€4,0,...,0)
é-”: (07"'707£d+17"'7§d*)'

We will call this the order d decomposition of £. We note some trivial facts
about these order d decompositions. First, we observe that |z”| < ¢~ and
|¢'] < q%. We have €| > g%+ unless ¢” = 0. We also have that (z' +2")- (&' +
g//) R 5/ + g €,/~

The Haar measure on Ef]; will be denoted d¢. This Haar measure is simply
the counting measure on ﬁg? Because the abelian group ﬁg\o is not compact,

the Haar measure on Fgo is not finite.

2.2 The Fourier transform on IF;’O

The Fourier transform of an L' function f : Fge — C is given by

7o) = / f(@)eq(~ - €) de

where dx is the Haar measure on Fg° and e, is as defined in (3). The Fourier
transform of a finite measure p on Fg© is

(e) = [ eol-a-) dula)
The Fourier transform of a function f : ]Fg — Cis

O =" f@)eg(—z-¢)

z€Fd



Notice that, if 4 is a measure on Fg° and pg is the pushforward of y under 74
(which can be interpreted as a function on Fg), and |¢] < ¢%, then we have (by
conflating £ € F° with £ € ]Fg as above)

1a(§) = Z pra(zo)eq(—xo - §)

d
xo E]Fq

=, /wd(x)—m(, eq(—x0 - §) du()

woe]F‘;

= > / oy, Col = ) dula)

xoe]Fg
= (&)

This means that the Fourier coefficients of a measure u(¢) where |£] < ¢¢ can
be computed directly in the finite vector space Iﬁ‘g without passing to the limit.
One important algebraic fact about Fourier analysis on Fg is the convo-

lution rule. This rule states that for complex-valued functions f and g on
Fe:
q

fo€) = > Fl&)iE - &) (4)

&2€Fd

The factor ¢~% will be important in the following arguments.

2.3 Hausdorff and Fourier dimension of subsets of IF;O

A good general reference for Hausdorff and Fourier dimensions in Euclidean
spaces is [8]. The notion of Fourier dimension occurring in this section is the
Fg° equivalent of the Euclidean Fourier dimension. Most of the material in this
section appears in the thesis of Christos Papadimitropoulos [9].

Because Fg° is a metric space, we can define the Hausdorff dimension of
compact subsets of Fg° in the usual manner. We will briefly review this definition
now.

For a compact set £2 C F°, ¢ > 0, define a {-covering of £ to be a covering
of E by closed balls of radius at most ¢t. Define the s-dimensional ¢t-Hausdorff
content of E as follows:

Hi(E) = inf > rad(B)*.

B t-covering of E BeB
Here, the notation rad(B) denotes the radius of the ball B. The value of
H?(E) increases as t — 0 because the infimum is taken over a smaller family of
coverings. We define
H*(E) :=sup Hi (F),
t>0
with the understanding that this supremum may be infinite.
‘H?(F) is a non-increasing function of s. In fact, H*(E) will be equal to either
0 or oo except for at most one value of s. Let sg = sup{0 < s < 1: H*(F) = oo},
taking the supremum to be zero if no such s exist. Then s is called the Hausdorff



dimension of the set E. Note that H®°(E) may be equal to 0, oo, or a finite
non-zero value.

Frostman’s Lemma relates the Hausdorff dimension of a compact subset E
of Fg® to the ball condition of measures supported on the set E. In fact, this
statement holds without the assumption that E is compact, but that is all we
will need.

The following version of Frostman’s lemma can be found in Mattila [7] as
Theorem 8.17.

Lemma 2.1. [Frostman’s Lemma on Compact Metric Spaces] Let X be a com-
pact metric space such that H*(X) > 0. Then there exists a Radon probability
measure p and a constant C' such that

w(B) < Cr® for all closed balls B of radius r and for all r > 0. (5)

Conversely, if X is a compact metric space supporting a Radon probability mea-
sure u satisfying the condition , then we have H*(X) > 0. |

Technically, the converse statement does not appear in Theorem 8.17. We
will briefly present a proof of the converse below. This proof is a minor adap-
tation of the Euclidean version appearing in Theorem 2.7 from Mattila [§].

Proof of converse statement in Lemma[2.1 Suppose that X is a compact met-
ric space supporting a probability measure p satisfying the condition . Cover
X by a collection of closed balls {B;}. Then by (f)), rad(B;)* > C~1u(B;) for
each B;. By subadditivity, we also have }; u(B;) > u(X). Thus

> rad(B;)* > C7' Y u(By) > CT'u(X) =C
J J

Because this holds for all coverings of X by closed balls, this shows that H*(X) >
c—h [ |

The equation is called the s-dimensional ball condition. On FZ°, the s-
dimensional ball condition is related to the finiteness of the s-energy of p. The
following lemma appears in [9] as Lemma 4.3.1 and Lemma 4.3.2:

Lemma 2.2. Let p be a Borel probability measure on F° satisfying the s-
dimensional ball condition . If t < s, then the t-energy

/ |z — y| ™" du(x) du(y) (6)

is finite. Here, we use the convention that the t-energy is infinite if p X u(A) is
nonzero, where A is the diagonal {(z,z) : x € F°}.

Conversely, if the t-energy @ is finite, then there exists a set A C Fg° such
that (1(A) > 0 and such that the measure 144 satisfies the t-dimensional ball
condition. |

There is also a Fourier-analytic expression for the ¢t-energy. This lemma is a
small modification of Lemma 4.3.4 (ii) in [9].



Lemma 2.3. If u is a probability measure on Fg°,

[ 1a sl au@) dnty) = T2 RO + 30— @ Plel

70!
Therefore, the t-energy of p is finite if and only if D ¢ 4, (&) |EEL is finite.
|

The proof of this result is based on a formula for the Fourier transform of
the Riesz potential. We have included a proof of this result in the appendix for
the interested reader.

We are now ready to define the Fourier dimension of a compact subset £ C
Foe.

Definition 2.4. Let E C F° be a compact set. The Fourier dimension of
E is the supremum over all real numbers s such that there exists a probability
measure (s supported on E such that

s (&)] < Cul€[7/2 for all € # 0. (7)

We will now quickly verify that any measure satisfying will have finite
t-energy for any t < s- thus a set of Fourier dimension sy will support a measure
with finite s-energy for any s < sg.

Lemma 2.5. Suppose that p satisfies the condition . Then the t-energy of
w is finite for any t < s.

Proof. By Lemma [2.3] it is sufficient to verify that the sum
Dol PEr!
§#0

is finite. In order to estimate this sum, we split the summation region {¢ : £ # 0}
into disjoint annuli {¢ : [¢] = ¢’ }.

S la©PEr

€40

=3 > (APt

J=11¢|=¢

<CIY > e

J=1[¢|=q¢7

:(]fi Z qj(t—s—l)

J=1|¢l=g

< Cs Z qj(t—s—l)qj
j=1

— Cf Z qj(t—s)7
j=1

which converges because s > t. ]



Combining all of these facts gives the following simple statement:

Lemma 2.6. Suppose p is a Borel probability measure supported on a compact
set B C Fg° such that [ju(§)] < C|&|78/2 for some constant C' and all nonzero

¢ € ﬁq;. Then there exists a set A such that u(A) > 0 and such that 1apu
satisfies the a-dimensional ball condition for any o < B.

Proof. Let o < 8. By Lemma the a-energy of y is finite. Therefore, by
Lemma there exists A C Fg° such that ;1(A) > 0 and such that 14p satisfies
the a-dimensional ball condition. ]

3 An AP-free subset of ]Fgo with Hausdorff di-
mension 1

We will present an example of a subset E of F¢® of Hausdorff dimension 1 that
does not contain a three-term arithmetic progression. This example has the
advantage that F is easily seen to have Fourier dimension 0. The author would
like to thank the anonymous referee for suggesting this example.

We define the set E as follows:

E:={x €F? 20 =1 =0 and z,2 = (z,,)* for all integers n > 2.}

Because no conditions are imposed on z; for non-square j, it is not difficult to
show that F has Hausdorff dimension 1.

To see that F has no three-term arithmetic progressions, we use the following
algebraic fact about IFy.

Lemma 3.1. Let q be an odd prime power. Then the only solutions in Fy to
the system

a—2b+c=0
a? =22+ =0

are the trivial solutions for which a =b = c.

Proof. From the first equation and the fact that ¢ is odd, we have that

p=27¢
2
Thus
B2 a® achc2
42 4
and
2 2 ,_ a c? 2 2 1 2
a®—2b"+c :?—ac+?=§(a —2ac—|—c):§(a—c).
So if a® — 2b% + ¢? = 0, then we have a = c¢. Thusa =b = c. |

Lemma [3.1] is easily seen to imply that E does not contain any nontrivial
three-term arithmetic progressions. For if (z,y,2) € E® solves the equation
x — 2y + z = 0, then for each j > 2, we have the equations z; — 2y; +2; =0



and x? = 2yj2» + ij = 0, which implies z; = y; = z; for all j > 0 (by Lemma
and the fact that o = 1 = yo = y1 = 20 = 21 = 0), so (z,y, z) must be trivial.

It only remains to be seen that the Fourier dimension of E is zero. A stronger
statement is shown in the following lemma.

Lemma 3.2. Let p be a Borel probability measure supported on E, and let
j be any mon-square integer. Then there exists a vector & of the form £ =

(0, ey 0, §j+1, 07 e ,O7 £j2+17 0, O, .. .), with (€j+17 §j2+1) §£ (0, 0), such that |,Zl(§)| Z
Cy, where Cy > 0 is a constant depending only on q.

Proof. For j > 2, we define the auxiliary function f; : F7 — Rx¢ as follows:
fi(z,m2) = p({y € E 1 y; = 21, y;2 = 22}).
because u is supported on the set F, it follows that f; is supported on the set
S = {(x,2?) :z € F,},

and furthermore, for j > 2, we have ZmGFq fj(%mz) =1.
We define C; to be the constant

C, = inf ; max__ [g(&1,82)|-
Sup!JngOC (£1,€2)€F2

Saer, 9wa?)=1 E18)7(00)

This constant is strictly greater than zero, since the only functions g on ]F3 for
which g(&1,&) = 0 for all nonzero (£1,&3) are the constant functions, none of
which is close to a nonnegative function supported on S that sums to 1.

For each j > 2, we choose 2-tuple (&;11,&241) # (0,0) such that

1f3 (€1, €241)] > C

Choose
£=1(0,0,...,&+1,0,0,...,&241,0,0,...),

where £;11,§;241 are as above. We have that

1) = pyz11(8)
= Z pjz11(@)eq(—z - §)

wE]F,(Zj2+1)
= Z Zeq(—%‘ﬁjﬂ — zj2€211) Z ti241(y)
T; T2 yeFG+D
=T,
Y;2=2
=3 eg(—wi&i — wpépi) £, 352)
Ij :Ej2
= fi(&+1,&24+1)
which is at least Cy in absolute value, independent of j. |

Therefore, F is a set of Hausdorff dimension 1 with no three-term arithmetic
progressions. Furthermore, any measure p supported on E has the property that
there exist & with arbitrarily large absolute value such that |fi(§)| > C,. This
implies that E' has Fourier dimension 0.



4 An example of a measure satisfying the con-
ditions of Theorem [I.1]

We will describe a procedure for constructing a random Cantor set in Fg°. Let
d € N be a large integer, and let 0 < o < 1 be a number such that ad is also an
integer.

Let R be the set of all subsets of ]F;l containing exactly ¢®? elements equipped
with the uniform probability distribution. Let El be a set chosen from R at
random. Let E; denote the set

{y € Fgo : (y07' . 7yd—1) € El}

We define the measure dy; to be the normalized Haar probability measure with
support restricted to Fy.

dyy = ¢~ g da.

We will now describe an inductive procedure for constructing a set F;; from
E;. We will assume that we have constructed a subset E; of F# containing ¢*%
elements, and a subset E; C F¢© given by

Ej ={y € F : (yo,---,yja1) € Ej}

This implies, in particular, that E; is a union of closed balls of radius ¢~

For each element z() in Ej, choose a random element from R, called T ).
Define S,;) to be the set

dj

{Z S ng+1)d : (Zo, ey Zjd—l) = x(j); (Zjd, ey Z(j+1)d—1) S Tm(j)}

We now define the set Ej+1 to be

U SLt

w(j)EEj
and let F;,; denote the set
{y €FZ: (Yo, Y(+1)a—1) € Bjr1}.

Observe that Fj.; C Ej for every j. We define the compact set E2 C Fg© by

oo
E=()E;.
j=1
We will define the measure dyj41 to be the normalized Haar probability measure
with support restricted to E;4q:
dpji1 = q(lfa)d(jJrl)lEHldx.

Observe that, for any k < j 4 1, and any ball B of radius ¢~ *¢, we have that

pi1(B) = p(B) = ¢~

10



It is clear, then, that the probability measures p; have a weak limit probability
measure supported on E, which we will denote by p. This measure y is easily
seen to satisfy the ball condition of Theorem for the exponent a.

We will obtain a probabilistic estimate on ji(£), with the goal of showing that
(2) of Theorem holds almost surely. First, we will need a straightforward
lemma.

Lemma 4.1. Let€ € I/E‘g\{()}, and let Z¢ be the complex-valued random variable

Ze =Y e(—z-&1p(x),

IEFZ

where R is chosen uniformly at random from R, the family of q®®-element
subsets of ]FZ, Then Zg is a mean-zero random variable such that |Zg¢| < g

Proof. The only statement in the lemma that is not obvious is the statement
that Z; has mean zero. To see this, choose a € IFZ such that a - € # 0. This is
possible because of the assumption that & # 0. Partition R into orbits under
translation by a. Since x4+ ¢-a = x for any x € Fg, it follows that R4+¢q¢-a = R
for any R € R. Hence, by primality of ¢, each orbit contains either 1 or ¢
elements. Let O be the collection of all orbits of R under translation by a. We

have
=RV DD tn(@)e(—x-€)

0OcO REO z€R
We will show that

Z Z 1r(z)e(—z-&) =0 foreach O € O

ReO zeR

First, suppose O is an orbit containing only one set Ry. Then Ry = Ry + ja for
each 0 < j < q—1. Thus

> el=z-¢)

J,ERO

S MDY

j 0$€R0+]¢1

S S e

IERO 7=0
q—l
DI A
xGRo ]:0
=0

In the opposite case, in which the orbit O contains ¢ elements, the calculation is
even simpler. The orbit O consists of ¢ different sets Rg, Ro+a, ..., Ry+(g—1)a.

11



Thus

D> el

Reo T€R
= Z > el—(z+ja)-¢)
7=0z€Ry
g—1
=3 )Y elja-§)
rE€Ry 7=0
= 0.
This shows that Z; has mean zero, as desired. |

The importance of Lemma is that it will allow us to apply Hoeffding’s
inequality [4]:

Lemma 4.2 (Hoeffding’s inequality). Let Xi,...,X, be a collection of inde-
pendent real-valued random variables with mean zero such that | X;| < C almost
surely for all 1 < j <n. Then

P ;Xj >t | <exp <_2n02>'
[ |

We are now ready to compute [1(€) for nonzero characters . If £ # 0, then
there exists some j such that

¢I= < e < ¢

Observe that fi3,(§) = f1;(€) for any k£ > j. So it is enough to compute fi;(§).
Let £ =& + ¢ be the order (j — 1)d decomposition of . Now,

1 (&) = q ¥ Z e(—

CEEE]‘
— qfadj Z e(_x/ . 5/) Z 6(—1‘” . f//)-
z’EE]-,l €T,

Here, T, is the randomly selected set described in the construction of E. Ob-
serve that
Z 6(—1’” . 5//)
x" €T,

has the same distribution as the random variable Z¢» described in Lemma
Therefore, each of the sums

e(_x/ . 5/) Z e(—x” . 5//)

2" €T,

is a complex-valued random variable with mean zero and absolute value bounded
above by ¢®®. We can apply Hoeffding’s inequality separately to the real and

12



imaginary parts of [;(£). Observe that the number of elements of E~'j,1 is exactly
equal to ¢®U~1? So Lemma applies with n = ¢®U~14 and C = ¢*¢. This
suggests the choice t = g1 T)ad/2,

With this choice, we have

+2 qadj(lJre)
202~ 2gad(i—1)g2ad
qad(je—l)
I
> qadje/Q

provided that j > jo(q,d,€).
Therefore, Hoeffding’s inequality shows that, for j > jo,

P Re Z 6(—3)/ . g/) Z 6(—.13” . 51/) > q(1+5)adj/2

‘,L,/EE"]_71 :E”ETEI
< exp (—qadj‘/z) ,

With a similar inequality for the imaginary part. Thus we have, for j > jo,
P ((6)] = 2074920/ < 2exp (—g*¥2).
Because we have |¢| < ¢/,
S P ([ > 200 2) < 37 2exp (] < oo,
|€]>q70¢ |€|>gdod

So by the Borel-Cantelli lemma, it follows that, with probability 1, there exists
some K such that

[7i(&)] < 2¢71F9)24/2 whenever K < ¢V D < |¢] < g%
This inequality implies
(6] < 2|¢| 71992 whenever K < |¢]

This shows that, for any € > 0, the measure u satisfies an inequality of the same
form as of Theorem for the value 8 = (1 — €)ar with probability 1. By
continuity of probability, this shows that E almost surely has Fourier dimension
equal to a.

Thus Theorem implies that if o > g:ézz,

structed above will contain a three-term arithmetic progression almost surely.

then the random set £ con-

5 A Varnavides-type theorem for thin subsets
of IFZ

Varnavides’s theorem [13, Theorem 10.9] gives a quantitative statement about
the number of three-term arithmetic progressions in large subsets of {1,..., N}.

13



We will prove a similar result for the finite group Fg. This version of Varnavides’s
theorem was established by Pohoata and Roche-Newton [I0] using the result
of Ellenberg and Gijswijt [2] and the triangle removal lemma. We present a
different proof using a simple counting argument instead of the triangle removal
lemma. The proof is similar to the standard proof of Varnavides’s theorem, and
in particular uses the strategy of intersecting with random planes described by
Tao and Vu [I3], Exercise 10.1.9] to arrive at a quantitative statement for thin
sets.

Proposition 5.1 (Varnavides’s theorem for IFZ). Let g be an odd prime, and
let og be as in Theorem . Suppose o > ag and € > 0. Let A C ]Fg be such
that |A| > q®. Define the value c, by

3— a4

Cq =
q
14*aq

Then, provided that d is sufficiently large, A contains at least ¢>¢—(cate)(1—a)d
three-term arithmetic progressions.

l—a4

T=ot. We will choose

Proof. Let i be a positive real number satisfying 1 +n <
a parameter d’ depending on 7 as follows.

d’{d(1+n)~ 1‘C“J. (8)

1—-ay

Observe that the condition on 7 guarantees d’ < d.

Let Graff(Fy,d, d’) denote the set of planes of dimension d’ in IE"g. Then we
define M to be the fraction of elements of Graff(F,, d,d’) that contain at least
one nontrivial arithmetic progression in the set A. We will need the following
estimate on M.

Lemma 5.2. Let q, A, and a be defined as in Lemma and let M and d' be
as defined above. If d is large enough depending on «, then we have the estimate

M > 1q(“_l)d.
-2

Fix a nontrivial three-term arithmetic progression P = {z,z + a,x + 2a}.
We let L denote the fraction of elements of Graff(F,,d, d’) that contain P. An
easy symmetry argument shows that L does not depend on P. We will need the
following estimate on L.

Lemma 5.3. Let g and o be as defined in Lemma ﬂ and let L and d' be
defined as above. Then L satisfies the estimate

L= (1+0,(1)g?@ =9,

Here, the 04(1) term approaches zero as d — oo for a fized q.

We will now complete the proof of Proposition [5.1] assuming Lemmas|[5.2] and
Let p(A) denote the number of nontrivial three-term arithmetic progressions
in the set A. Let I be the number of incidences between d’-dimensional planes in
IFZ and nontrivial 3-term arithmetic progressions in A; that is, I is the number
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of pairs (P, W) where P is a three-term arithmetic progression contained in both
the set A and the plane W. Then we have

I= Y  Ip

PCA
P 3-term AP

where Ip is the number of planes in Graff(F,,d,d’) containing the progression
P. By definition of L, we have

Ip = |Graff(F,,d,d')| - L
for every P, and thus
I = |Graff(F,,d,d’)| - L-p(A). 9)
On the other hand, the definition of M guarantees that we have
I > |Graff(F,,d,d')| - M. (10)

Combining equations @D and gives

M
p(A) > f

(11)
Now, we combine equation with Lemmasandto give, for sufficiently
large d,
1 /
A) > = (a—1)d—2(d —d).
p(4) = 34
Since d’ < d(1+n)(1 —a)(1 —ay) ™!, we get

1 (g —
p(A) > gq(oz 1)d—2(d'—d)
> %qzd%(lfa)u(lm)(lfa)(1faq)*1)d.
Now, if 7 is chosen to satisfy n < (1 — ay)e/2, we have

(A) N qzd—(l—a)(1+e+2(1—aq)*1)d

p =
_ q2d7(cq+e)(1fa)d.

It remains to prove Lemmas [5.2] and [5.3]

Proof of Lemma[5-3 The result of Ellenberg and Gijswijt [2] implies that if d’
is sufficiently large, any subset of a d’-dimensional plane consisting of at least
q"‘qd/ elements will contain a three-term arithmetic progression, where oy < 1
is a real number depending only on ¢. In order to obtain a lower bound on M,
it suffices to obtain a lower bound on the fraction M’ of d’-dimensional planes
that contain at least ¢®e@ elements of A. We will apply a pigeonhole-principle
argument in order to obtain a lower bound for M’.

The average number of elements of A contained in a plane of dimension d’
is at least qadqd/_d. On the other hand, the average number of elements of A
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in such a plane is bounded above by (1 — M’)q®® + M’q*. This gives the
inequality / : :
qozd—‘rd —d S (1 _ M/)qaqd _|_ (M/)qd .

When we isolate M’ in this inequality, we arrive at the inequality

, 1— q(a—l)d
M 2 M 2 ]. - m. (12)
From and , we get
1— q(oz—l)d

M=>1- 1 — g+ (a=1)d+1

If d is large enough depending on «, then M will be larger than %q(“_l)d as
can be seen by using e.g. the linearization of the function i—j near (0,0). This
gives the desired lower bound on M. |

Proof of Lemma[5.3 Let Aff(d,F,) denote the group of affine-linear maps of
full rank on IFg. Fix a d’-dimensional plane V C ]F;l. We will compute L by
counting in two different ways the number Affpy of elements of Aff(d,F,) that
map P into the plane V.

First, we will count the number Ny, of nontrivial three-term arithmetic
progressions in Fg. Note that, while y and b are sufficient to determine the
three-term arithmetic progression {y,y + b,y + 2b}, the three-term arithmetic
progression {y,y + b,y + 2b} corresponds to multiple choices of y and b. For
q # 3, this arithmetic progression can be described in exactly two ways:

{y,y + b,y +2b}
{(y + 2b), (y + 2b) — b, (y + 2b) — 2b}.

When ¢ = 3, we have 2 -2 = 1, so the arithmetic progression {y,y + b,y + 2b}
can be described in exactly six ways:

{y,y + b,y +2b}
{y,y+2b,y+2-2b}
{(y+0),(y+0)+b(y+0) +2b}
{(y+0),(y +b) +2b,(y +b) +2-2b}
{(y + 2b), (y + 2b) + b, (y + 2b) + 2b}
{(y +2b), (y + 2b) + 2b, (y + 2b) + 2 - 2b}.
So the number Ng4 of nontrivial three-term arithmetic progressions in F? is
given by
_Jsd%e? =1 ifq#3
Nag =4 Tadjad :

539(3° =1) ifg=3
Now, we observe that the group Aff(d,F,) acts transitively on the set of nontriv-
ial three-term arithmetic progressions in Fg. Therefore, by the orbit-stabilizer
lemma, it follows that for any nontrivial arithmetic progression P’ = {y,y +
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b,y + 2b} the number of elements Affp pr of Aff(d,F,) mapping P onto P’ is

exactly
1
Aﬂp P =
’ Na,qg

|AfE(d, Fy)l.

Summing this over all nontrivial three-term arithmetic progressions P’ lying in

the plane V gives

Ng

Affpy = —2
7 Na,q

Afi(d, F,). (13)

We will now count Affp v in a different way. Let U be an arbitrary d’-dimensional
plane in F¢. We will first count Affy; -, the number of elements of Aff(d, F,) that
map U onto V. Let Graff(F,, d,d’) denote the collection of all d’-dimensional
planes in Fg. We observe that Aff(d,[F,) acts transitively on the set Graff(F,, d, d’).
Therefore, by the orbit-stabilizer lemma, we have

1

Affpy = —
UV 7 \Graff(F,, d, d')|

|AfE(d, Fq)l.

We sum this over all d’-dimensional planes U containing the progression P.
Observe that the number of such planes is L - |Graff(F,, d,d')|. Therefore, we
get

Aftpy = LIAfE(d,Fy)|. (14)
Combining and gives
1= Nt
Nagq
_ ¢ (" -1
q*(q? = 1)

= (1+0(1))g* .

6 Proof of Theorem [1.1

6.1 Two trilinear forms

For any d, define pug to be the pushforward of p under the projection 7my. In
order to prove Theorem [1.1} we will introduce the trilinear forms

ga() = Y pa(@)ua(z+ a)pa(x + 2a)
a€Fg\{0}

and
haae() = Y pia (@) pa- (z + ) pa- (x + 2a).

aEFZ*

la|>q~

Sy=Y" gala)

z€Fd

d

Note that the sum
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gives the p x p x py-measure of the set of points (z,y,2) that lie within ¢~ of
a three-term arithmetic progression (z, z 4+ a,x 4+ 2a) whose common difference
a satisfies |a| > ¢~%, and the sum

Sy = Z ha,q ()

J)E]F;l

gives the 1 X p x p-measure of the set of points (x,y, z) that lie within ¢=¢" of
a three-term arithmetic progression (z,x + a, z + 2a) whose common difference
a satisfies |a| > ¢~

The main result we will need to prove Theorem is the following:

Lemma 6.1. Suppose that i is a measure satisfying the conditions of Theorem
[I73l Then there exists a d € N such that for any d* > d, we have the inequality

Z ha,a- (.T) > 0. (15)

e
z€Fy]

Proof of Theorem[1.1] assuming Lemma[6.1 Let d > 0 be such that holds

whenever d* > d. For any d* > d, select an (z4+, Y4+, 24+) € E® and an |ag-| >
¢~ % such that
[Yar = (@a- +ag) < a5 Jzar — (war +2a0) < g7 (16)

Because E x E x E is compact, the sequence {(zg4+,Yar, zd+ ) }a+>q has at least
one limit point. Choose such a limit point, and call this limit point (z,y, 2).
We claim that (z,y, z) is a nontrivial three-term arithmetic progression.

First, we check that (z,y,2) is a three-term arithmetic progression. The
inequalities imply that

lim zg« — 2yg= + 24+ = 0.
d*—o00
Hence (z,y, z) is an arithmetic progression. On the other hand, equation ,
the bound |ag-| > ¢~¢, and the ultrametric inequality guarantee that |yz- —
> ¢~ for each of the points (zg«,yq~, zq+), and therefore |y — 2| > ¢~ ¢ as
well. Thus F contains a three-term arithmetic progression. |

€T q*

It remains to prove Lemma In the next subsection, we will obtain an
estimate on ) _ps ga(z) that will be helpful in proving the lemma.
q

6.2 Locating approximate arithmetic progressions in F
We will to prove the following estimate.

Lemma 6.2. Let pu be a measure satisfying the first assumption of Theorem
and let € > 0 be a positive real number. If € is sufficiently small depending
on g, and if d is sufficiently large depending on u, q, and €, then

Sg > q(flfcq(lfa)fe)d (17)
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Proof. The first assumption of Theorem implies that there exists a finite
Borel measure p’ obtained by restricting the support of the measure u to a
subset £’ of E such that i satisfies the ball condition of dimension a.

Let p; be the pushforward of y/ under the projection m4. Suppose a > ayq,
where oy is defined as in Lemma @ The ball condition implies that 0 <
py(x) < Crg~*? for all x € FY. Let K = y/(F°). If we then define

" py(x) i py(z) > Kq=9)2
‘U,d(l') = 0 . / —d )
if py(x) < Kq=?/2

a simple pigeonholing argument shows erlb‘g py(x) > K/2.

Let 0 <e< ﬁ be so small that o —e€ > . We will accumulate small losses
in exponents in our argument that will, ultimately, be controlled by this e.

Let A be the support of yj in Fg. Because p1/j(z) < C1q~%? for z € A and

Y zea Hg(x) > K/2, we have the lower bound |A[ > K9™' We can absorb the

2C
constants by replacing o by the slightly smaller number o — 30— we have for
q

sufficiently large d (depending on «,¢,q,Cy, and K) that |A| > q(a_ﬁ)d.
We apply Lemma to the set A. This lemma guarantees that, if d is
(2=(eqtg)(A—atgg))d q(z—cq(l—a)—%)d

sufficiently large, there are at least ¢
three-term arithmetic progressions contained in A. Because there are at least
q@ea1=2)=5)d pairg (2, a) such that {z,z + a,z + 2a} is contained in A, and
pa(z) > py(z) > £q=2 on A, we have, by absorbing the constant K3/8 into a

¢~ 5% term, that
Z g(x) > q(—l—cq(l—a)—e)d’

z€Fd

as desired. ]

6.3 Refining the approximate arithmetic progressions
The core remaining task is to relate the sum Sy to the sum S.
Lemma 6.3. The sums S, and Sy, are related by the equation
Sh=g""" Sy + S0, (18)
where
Spo=q Y D Far (=€) — &+ )T (€ + ) (6 — 267)-

&1€FI" §,€FY
&' #0

D7 eq(— (28] +€5) - )
a'EIFZ
a’#0

Here, & = & + & is the order d decomposition of the character &;.
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Proof. In order to relate Sj, and S,, we observe that Sj is equal to h/d:i(O).
Therefore, by two applications of the convolution rule (4):

ha-a(0) = 37 (uar (Ypia- (- + @) (- + 2))(0)
|Z|€>F;*
== 3 (ha Opar (- + a)N—E) T (E1)eq (€1 - 2a)

ae]Fd Eleﬂrd*
\a\>q a

— > Z Z fa- (—&1 — &2)ta= (§1) frar (§2)eq(— (261 + &2) - a).

aele 516Fd 526Fd
|a|>q 4

d

Here, & and & are elements of ]Fg*. We will write

a*
a="..d)
52:(€él)w'~a éd ))

We will apply the order d decomposition to a = a’+a”, & = &1 +&7, & = E5+E&5
and observe that the condition |a| > ¢~ is equivalent to the statement that
a’ #0. So we can rewrite this sum as

B a0) = e SO S (6 - €~ & — ) + ) (6 + €
a #O a// 5/ E/ gi/ gé/
eq(— (261 + &) - a')eq (= (26 + &) - a”))
We rearrange this sum so that the sums in a’ and a” are inside:

haal0) = ST S (€ — € — & — (€ + € (€ + €)
1.€5 &1,84

3 eu(—(26 + &) - ) (Z ea(—(26] + &) >>
a’#0 a
We will first consider the sum

D eq(—(26] +&5) - a”),

This sum vanishes if 26} + &4 is nonzero. If 2&] + £ is equal to zero, then each
summand is equal to 1, so the sum is equal to ¢ —¢, the number of summands.
Therefore, we have

hd* =q Z Zud* —&1 — & + &)= (&1 + &) ha- (& — 267)-
f1’52 1

D eg(—(26 + &) - a)

a’#0

We can therefore write o
ha+.qa(0) = So + Sxo,
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where

So =g Y B (€ — &) (§)ma (€5) | D eq(—(28] + &) - o))
givgé a’#0
(19)
and

Spo=q "D > B (=8 — &+ EDRa (€ + §)Ra (8 — 2€)-
§1,85 §#0

> eg(— (265 + &) - a)

a’#0

The S term is as promised in the statement of the lemma. We need only
relate Sy to Sy. By a calculation similar to the one above, we can compute

S = 9a(0).

9a(0) =g " Fa(—m — n)ia(m)fa(nz) > eq(—(2m +1m2) - b).
nthe@ bEFZL
b0
Because £ and & in have absolute value at most ¢¢, it follows that
& -x=¢& - mg(z) for any x € Fg*. Thus, if n; is the vector (551), ce, %d)) and
72 is the vector ( él), e éd)), then fig+(€]) is equal to fig(m1), and similarly
for & and —¢&; — &,. Re-indexing the sum in & and &, in Sy by 71 and 7, and
b = mg(a), we observe

So=a"" """ Ha(=m = na)Ha(m)Ea(nz) Y eq(—(2m +12) - b)

M15M2 beF]
b#£0

= ¢ 54(0).
This establishes the equation . |

The only remaining task is to bound the error term Sx. This will be
accomplished in the next subsection.

6.4 Estimating the error term

In this section, we will establish the following estimate on So.

Lemma 6.4. For some constant Cy g depending only on q and 8 (and in par-
ticular, not on d or d*), the following bound holds for the sum Sxo defined in
Lemmal6.3

|Soko| < Cy g™ TI730/24, (20)
Proof. Because &; is nonzero in the sum S, we have in fact that |£]| > g%+
In particular, this means that [£]| > max(|£][, |€5]), and thus |[&] +&7|, |5 —2&7 ],
and | — &) — &, +&Y| are all equal to [€]| by the ultrametric inequality. Applying
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the second assumption of Theorem and the triangle inequality, we therefore
have the estimate

S0l g™ TN N UG eq(—(281 + &5) - a)

165 6770 a/#0
=g T ) DD D] ea— (26 + &) - d)
€1'#0 1.6 [a'#0

First, we will estimate

ST eg(—28 + &) -a)].

£1,€5 |’ #0
The sum
> a2+ &) -d)
a’#0
will take the value —1 if 2¢] + &, is nonzero, and will take the value ¢ — 1

otherwise. For a fixed £{, there is exactly one choice of & (namely, —2¢&) such
that 2¢1 + &4 = 0. Thus for each &1, we have

ST e 26 + &) -a)| = 2(¢ - 1),

¢, |a'#0
and thus
DD eg(—(26 + &) - a')| = 2¢%(q" — 1) < 2¢*. (21)
€1,6L |a’#0

We will now estimate

D e,

£/#0
This sum can be rewritten
g
> @ e = a e
j=d+1

Note that |£]| = ¢/ whenever ] has the form
= (0,...,0,&4HD (D ) g o)

where fgj) # 0. There are ¢ choices for each of §§d+1),...,§§j_1) and ¢ — 1
choices for 59 ) and thus there are (g —1)g7~41 < ¢~ values of &} such that
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€] = ¢/. Thus

-
ST < N gl

€/ #0 j=d+1
-
—g? Y )

j=d+1

oo
<q Z q3(1—3ﬂ/2)‘
j=d+1

The sum Y72, ¢/ (1-36/2) is convergent because of the assumptiqn that 8 >
2/3. The geometric series formula gives the estimate Y °2 | ¢/0=3%/2) <
Cy.5q"1=38/2) Thus we get

D 172 < Cy g, (22)
{0

Combining and and absorbing the constant 2 into C; g, we get

Suol < C q—d*—d—3dﬁ/2+2d =C q—d*+(1—3/3/2)d.
# a8 a8

We will now use Lemmas and to prove Lemma thereby
completing the proof of Theorem [I.1

Proof of Lemma[6.1 By Lemma we can write
S = qdid* Sg + Sxg.
Let € > 0. We can apply Lemma and [6.4] to obtain an estimate on Sj,.

Sy, > ¢ Sy — 1Sxol
> g e (1=)=d _ o =d"+(1-38/2)d

— g (q(—cq(l—a)—e)d _ Cq,bq(l—SB/Q)d) )

In order to guarantee that this expression is positive for sufficiently large d, we
need only verify the inequality

—cg(l—a)—e>1-35/2.

Rearranging this inequality and solving for 1 — « gives the inequality

1—
l—a< % <35—1)—cle.

3—ag \ 2 1

Under the assumption of Theorem this inequality holds provided that
€ is sufficiently small depending on ¢, o, and 3. Therefore, if d is sufficiently
large, S, is positive, as claimed. |
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7 Concluding Remarks

We crucially used the result of Ellenberg-Gijswijt [2] in the proof of Lemma
For this reason, the proof described here does not apply to the Euclidean setting.
As stated before, Shmerkin [I1] has provided a counterexample to Theorem
in R.

The only use of the Fourier decay condition occurred in the estimate of the
term Sg.

8 Appendix: Fourier analysis of the Riesz po-
tential

The goal for this section is to prove Lemma For this purpose, we define,
for 0 < t < 1, the Riesz potential r(z) to be the L! function on Fo° defined by
the formula

re(x) = |z|7"  for x # 0. (23)

In terms of the Riesz potential, we observe that the t-energy of a measure p is

given by
/ / re(x —y) du(z) du(y).
]Fgo ><]F3°

Again, we use the convention that this energy is infinite if © x p(A) > 0, where
A is the diagonal.
We now restate Lemma using this notation.

Lemma 8.1. The t-energy of a measure i is given by the formula

/ /Foowm re(z —y) dp(z) du(y)

R
= RO+ Y LA Ple (24)

€40

In order to establish this formula, we will need to compute the Fourier trans-
form of the Riesz potential. The following formula appears as Lemma 4.3.4 (i)
in [9].

Lemma 8.2. Let ry(x) denote the Riesz potential on F°:

re(x) = |z|7t forx #0

Then
N 1—q b 1 .
Tt(&) = 1 o qtil ‘€|t ! ng 7& 0
N 1—q!
R0) = g
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Proof of Lemma[8.2 We will evaluate the integral defining 7 (£) by partitioning
the region of integration according to the absolute value of x.

j=0"lzl=a77
:qut/ eq(z-&)de
j=0 |z|=q—7
=> ¢ (/ eq<w~s>dx—/ eq<x-£>dar>
=0 -3 (0) B,—;-1(0)
Yo [ @iy o | e(w-€)dr (25)
=0 B,-;(0) §=0 B,—i-1(0)

We now consider the integral

/ eq(z - &) de.
B,-;(0)

Suppose first £ # 0. Then |¢| = ¢? for some d. If d > j, then we have

r-&=zg18at+ Y Teo1ék,

1<k<d—1

SO

[ atod
B, (0)

d-1
/Bq_J o eq(xa—18a)eq (;; xklfk) dx
d-1
= Z eq(agd)/ €q (Z xklfk) dzx ifj <d (26)

a€F, lz|<g=724-1=a =1

We implicitly use the fact that d > j, which implies d — 1 > j, and therefore
the ball B,-;(0) contains points for which 24_; = a. Observe that the value of
the inner integral does not depend on a. Therefore, we have

/ eq(z-&)de=0 1ifd>j.
B,—;(0)

On the other hand, for d < j, we have that 2 - = 0 on B,-;(0) since
Zg,...,%;—1 are equal to zero for any x in this ball. Thus

/ eq(x-&dr=q7 ifj>d (27)
B,-;(0)
We plug and into :
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)= - Y @
=d—

j=d j 1
o0
_ t— 1t -
— ¢ J_ E:q(] )t~
Jj=d

=(1-q" Zqﬂ(t Y

(1—q" )qd(t D
1_gi-1
l—g™" i1
Tt

It remains to consider the £ = 0 case. In this case, x-£ = 0 for all x, so
becomes

o0 o0
= Zqﬁq‘j - Z ¢tq !
(- qu )

1—¢q -1
1— qtfl ’
as desired. ]

Papadimitropoulos uses this expression for the Fourier transform of the Riesz
potential in order to compute a Fourier-analytic formula for the t-energy. We
will need the following formula for the partial sums of the Fourier series for the
Riesz potential, which is given implicitly in the proof of Lemma 4.3.4 (ii) in [9].

Lemma 8.3. Let S, r; denote the partial sum of the Fourier series for the Riesz
potential:

Sure(2) = Y FulE)e(z ).

[€]<qm

Then we have the following formula for Spr::

if |2| > q7"

Sur(2) = { ok,
re\2) = tngq_ —1 . _
" SO <
In particular, for each n, we have that S, nonnegative and is bounded above
by the integrable function
l—gq'
Snri(z) < 1_7qt,1|z| .

Proof of Lemma[8.3 This proof is very similar to the proof of Lemma
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We write out the sum

S ez €)

[E1<qm
= R0+ Y Y Ful@eqg(z
j=1 |§|qu
1—q! v
=T 30> (128 )t iente-)
J=11¢|=¢’
1—q! - o
- LS Y )
14 1-q Jj=1 |€]=q7
1— -1 1— —t
- lfqtfl 1— . Zq(t DILY D ez = D eql=08)
q a" Jj=1 |€]<q7 [€]<qi—1
l—q*1
= 1—gt
1— gt n ) n .
e =l D SUAED DENCHGED SYL D DERNCHON [0
T \j= €< i=1 €| <qi—1

But we know that
¢ iffz] < g7V
Do oelz-8) = {0 if z: >qd
I€<q? 7

We will now split into cases depending on the value of |z|. We will first consider
z such that |z| > ¢~™. For such z, there exists some k such that 0 < k < n and
such that |z| = ¢~*. The sum then reduces to

> Ful&e(z-9)

[€]<qm
1 B qil 1 . q k o k+1
=T Zq(tfl)JqJ _ Zq(t 1)j igi—1
q j=1 j=1
_ k k+1
1—q¢! 1-— q
_ = th] qtj 1
q j=1 g:l

_ 1— q—l 1— q t q B qt—l 1— qt(k-‘rl)
l—qH 1—g'~ l—q 1—¢t
1—q! 1_ q —t qt — qt(k+1) —gt 14 qt(k+2)
= +
e (i ) ( )

1—¢
1_q1_1+qtk+q—1 t(k+1)—
1—gt-1!

It remains to consider those z such that |z| < ¢~". For such z, we have that for

27



all 0 < 5 < n, we have

Therefore, the sum reduces to

> F©elz-€)

1€1<q™
1-q* 1—q" - tj - tj—1

_17qt71+1,qt71 Zq Zq
1

1—q 1—gq ) 1—=q™
R = ¢(1=a )7
_l-qg' (=g hHl-4¢")
1_qt—1 1_qt—1
¢ —-qh)
T 1—gt!
1—q~ 1 —t
ﬁ"

IN

We are now ready to prove Lemma

Proof of Lemma[8.1l The right side of equation is equal to

> )P

geFy

\£\<q

= lim //w e((x —y) - )T (€) du(z) du(y)

n—oo
a |¢|<qm

= lim / / Spre(z —y) du(z) du(y)
n—oo 3°><F§°

Let A be the diagonal {(z,z) : x € F°}. If o x pu(A) = oo, then the t-energy
of p is co by definition. Furthermore, we have that

//JF? xF2o Snre(@ —y) du(x) dp(y)

> / / Sure(@ — y) du() du(y)
// tZl;q o) duy)

¢"(1-q¢7")
ZNXM(A)I_iqt_l

= 0.
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So the energy formula is correct in this case.
Next, assume that g x p(A) = 0. In this case, we have

lim / / o Snre(z —y) du(z) du(y)

n—oo
= lim // Spri(x — y) du(z)du(y).
S S ey ga

Assume now that the t-energy of p is infinite. Then for any K > 0, there exists
no(K) > 0 such that we have

//| e = y) du(@) du(y) > K.

n

But by Lemma we have that for n > ng, Spri(x —y) > ri(z — y)lpe .
.
Therefore, for n > ng, we have

// Suri(x — y) du(z)dp(y) > K.
(zy)¢A
Because this can be done for any K, it follows that

PGIRAGEES
¢eF,
and the formula is proven in this case.
It remains to verify the formula when the t-energy of y is finite. In this case,

we have that S, r;(z — y) is nonnegative and uniformly bounded above by the

1 X p-integrable function
1—q7!
1_gi-1 P ri(z —y).

Therefore, the dominated convergence theorem applies, and we have

lim //(x,y)gA Spri(z —y) du(z) du(y)

n—r oo

B //(x,y)gm re(z —y) du(e) du(y),

which is precisely the t-energy of u. |
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