ON THE LOCAL SUM CONJECTURE IN TWO DIMENSIONS

ROBERT FRASER AND JAMES WRIGHT

ABSTRACT. The local sum conjecture is a variant of some of Igusa’s questions
on exponential sums put forward by Denef and Sperber in [7]. In a remark-
able paper [6] by Cluckers, Mustata and Nguyen, this conjecture has been
established in all dimensions, using sophisticated, powerful techniques from a
research area blending algebraic geometry with ideas from logic. The purpose
of this paper is to give an elementary proof of this conjecture in two dimensions
which follows Varcenko’s treatment of euclidean oscillatory integrals based on
Newton polyhedra for good coordinate choices. Another elementary proof is
given by Veys [18| from an algebraic geometric perspective.

1. INTRODUCTION

In their seminal paper [7], Denef and Sperber formulated the following local sum

conjecture. Let ¢ € Z[ X1, ..., X,] and consider the local exponential sum
1 : s
So=So(6.p") = — 3 el
p z€[Z/p°Z]™
=0 (mod p)

the local sum being a truncation of the complete exponential sum

1 . s
S=S0.p) == o Y e

z€[Z/psZ)"

which selects the terms z = (z1,...,2,) where p|z; for all 1 < j < n. The
conjecture postulates that there exists a constant C, independent of p and s, and
a finite set P = Py of primes such that for all p ¢ P,

Sol < Csmlpoe (1)

where 0. = 0.(¢) is the complex oscillation inde)ﬂ of ¢ at 0. We will recall the
precise definitions for this and other notions in Section The conjecture is
related to one of the Igusa conjectures on exponential sums which posits similar
uniform bounds for S when ¢ is any homogeneous polynomial.

In [7], Denef and Sperber proved (1) when ¢ is C-nondegenerate and when an
auxilary condition on the vertices of Newton polyhedron holds (in [5], Cluckers
removed this auxiliary condition). The notion of C-nondegenerate was introduced
in [II] and will be defined in Section |3| In this case the complex oscillation index

1n the literature, oscillation indices tend to be defined as negative numbers. We will consider
their absolute values and define them as positive numbers.

1
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o.(¢) = 1/d(¢) is the reciprocal of the Newton distance d(¢) of ¢, see [7]. In the
same paper, Denef and Sperber also established the Igusa conjecture under the
same hypotheses; in [4], Cluckers removed the auxiliary condition on the vertices,
establishing the Igusa conjecture when ¢ is C-nondegenerate.

As mentioned in the abstract, Cluckers, Mustata and Nguyen [6] established the
local sum conjecture in all dimensions and much more; they also established the
Igusa conjecture for complete exponential sums S(¢, p®) where ¢ is a general homo-
geneous polynomial, where the exponent is replaced by the log-canonical threshold
of ¢. In two dimensions, this will always be equal to the complex oscillation in-
dex. Earlier, the Igusa conjecture was established in two dimensions [2I] by an
elementary argument. Afterwards, Lichtin [I2] gave an alternative proof of the two
dimensional Igusa conjecture from a different perspective.  Albarracin-Mantilla
and Ledn-Cardenal [2] gave a detailed description of the behaviour of the non-
truncated sum S in two dimensions based on the poles of the corresponding local
zeta function under an additional nondegeneracy condition.

One difficulty in higher dimensions is that it is hard to get one’s hands on the oscil-
lation index o.(¢) in a precise way for general ¢. For our arguments, it is essential
that we work with an explicit description of o.. Although such a description is not
available in higher dimensions, we can describe o, explicitly in two dimensions. To
see this, consider the case when ¢ is homogeneous so that it can be factored

N
d(x,y) = cay’ [[(w—&a)™ (2)

Jj=1

for some roots {fj}év:l lying in Q*#; see in Section |4l It can be shown that
oc.(¢) = 1/max(mg,d/2) where d is the degree of the polynomial ¢ and mg =
max(a, B, {n; : £ € Q}); see [21] and Section [3]

This gives an explicit description of the oscillation index for general homogeneous
¢ in two variables. Below we will see that a more involved description can be
made for general polynomials ¢ in two variables. Such a concrete description is not
available in higher dimensions. Furthermore one easily sees that ¢ is C-degenerate
precisely when there is at least one root &; with multiplicity n; larger than one.
This provides many examples of degenerate homogeneous polynomials.

As mentioned above, when ¢ is C-nondegenerate, the oscillation index o.(¢) is
given in terms of the Newton distance d(¢), a quantity we can easily compute.
Nevertheless, in two dimensions, we can get our hands on the oscillation index
since it is knowrﬂ that o.(¢) = 1/h(¢) where h(¢) := sup, d.(¢) is the so-called
height of ¢. Here the supremum is taken over all local coordinate systems z = (z,y)
of the origin (real-analytic coordinate systems if the phase ¢ is real-analytic and
smooth coordinate systems if ¢ is smooth) and d,(¢) denotes the Newton distance
of ¢ in the coordinates z.

2This equation is usually stated for the real oscillation index o,. In two dimensions, we have
that o, = o¢; see Section
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In two dimemsions, the supremum sup, d,(¢) = d,,(¢) is attained in the definition
of the height h(¢); any such coordinate system zj is called adapted. The height h(¢)
gives us the exact decay rate for the corresponding euclidean oscillatory integral

@) = [ @) da

where ¢ is a smooth, real-valued function, A is a large real parameter and ¢ € C°.
When ¢ is of finite type, we have for some constant Cy, depending on ¢ but not on
A
[1p(&, M| < Oy log” (IANIA]7HM?) 3)
for large A\ and all ¢ € C° supported in a sufficiently small neighbourhood of
0. Here v(¢) € {0,1} is the so-called Varcenko’s exponent (also known as the
multiplicity of the oscillation index). We emphasise that in higher dimensions the
Var¢enko exponent v(¢) lies in {0,1,...,n — 1}. Furthermore,
1/h

lim —-——1 A) = 4

ey w(6,A) = cv(0) (4)
where ¢ = ¢4 is nonzeroﬂ In this generality, the results in and were es-
tablished by Ikromov and Miiller in [§] and [9]. Their work was influential in our
analysis establishing the following.

Theorem 1.1. Let ¢ € Z|X,Y]. Then there exists a finite set P of primes and a
constant C = Cy such that for any p ¢ P and s > 1,

So(6,p°)| < C ¥ Pp=s/M@) )

holds for all ¢ except for an exceptional class E. For ¢ € £, the estimate holds
with v = 1; that is |So(¢, p*)| < Csp~/"9) holds for ¢ € .

The class £ consists of those polynomials of the form
é(z,y) = a(by® + cay + dz®)™ + higher order termsﬂ

where the quadratic polynomial by? + cxy + dx? is irreducible over the rationals
Q. For example when ¢(z,y) = a(x? + y*)™, we have h(¢) = m and v(¢) = 0.
However when m > 2 and p = 1 mod 4, then [Sy(¢,p®)| ~ sp~*/™ for infinitely
many s > 1. Furthermore when p = 3 mod 4, then |Sy(¢, p*)| ~ p~/™ for infinitely
many s > 1. These calculations are not difficult; see for example [21I] where more
general bounds are derived.

The estimate in Theorem is a slight strengthening in the two dimensional
case only in that the exponent v(¢) in is more precise, determining exactly
when it matches the euclidean case. More importantly, we establish using ele-
mentary arguments, only basic p-adic analysis is used. A key step in our argument
will follow ideas from Ikromov and Miiller in [§] in the euclidean setting which in
turn were inspired from the arguments developed in [14] which gave an elementary

3The existence of this limit is proved under the additional condition that the principal face of
¢ in adapted coordinates is compact.
4We will describe this class precisely in section
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treatment of Karpushkin’s work [I0] on stability bounds of euclidean oscillatory
integral estimates in two dimensions.

The main effort in this paper is to rework euclidean arguments in the local field
setting. Basic euclidean arguments for estimating oscillatory integrals rely heavily
on the order structure of the reals (in applications of the mean value and interme-
diate value theorems which are implicitly used in integration by parts arguments).
We need to readdress these arguments, relying more on rudimentary sublevel set
estimates (bounds for the number of solutions to polynomial congruences) in place
of integration by parts arguments. These sublevel set bounds will be derived from
a higher order Hensel lemma and so matters are kept on an elementary level.

In our argument, we will decompose the sum Sy(¢, p®) in the same manner as Denef
and Sperber [7]. This decomposition partitions the sum Sy(¢, p®) into components
corresponding to each compact face of the Newton diagram of ¢. We will obtain
a bound for each component of the sum. This bound will be sufficient to prove
Theorem provided that the coordinate system is chosen appropriately.

Assuming this coordinate change has been applied, we can describe the finite set
P as follows. For each compact face 7 of the Newton polyhedron of ¢, there is a
natural associated part of ¢, a quasi-homogeneous polynomial ¢, (see Section .
Let A denote the collection of algebraic numbers consisting of the roots & as well
as the differences of distinct roots £; — & of each ¢,. The set P consists of

e prime numbers that are at most deg ¢
e prime divisors of the coefficients of ¢
e prime divisors of the coefficients of the minimal polynomials of each £ € A.

Notation. All constants C,c,co > 0 throughout this paper will depend only on
the polynomial ¢, although the values of these constants may change from line to
line. Often it will be convenient to suppress explicitly mentioning the constants
C or ¢ in these inequalities and we will use the notation A < B between positive
quantities A and B to denote the inequality A < CB (we will also denote this as
A = O(B)). When we want to emphasise the dependence of the implicit constant
in A < B on a parameter k, we write A <; B to denote A < CyB. Finally we use
the notation A ~ B to denote that both inequalities A < B and B S A hold.

Acknowledgements. We would like to thank Allan Greenleaf and Malabika Pra-
manik for informative and enlightening discussions about oscillatory integrals.

We are grateful to the anonymous referee both for their speedy review and for their
very useful comments and suggestions, which greatly improved the final version of
the paper.

We would like to thank Dimitrios Karslidis for providing a translation of Theorem
4.4 of [17].
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2. OUTLINE OF THE PAPER

In the next section we will define precisely the various notions introduced above,
including reviewing the Newton polyhedron, diagram and distance of a polynomial.
We will also give a quick review of the required p-adic analysis that we will use and
show how we can lift our exponential sum Sy over Z/p*Z to an oscillatory integral
over the p-adic field. This will illustrate the close analogy between these kinds of
exponential sums and euclidean oscillatory integrals. In Sections [f] and [f] we will
derive a basic bound for Sy(¢, p?®) which will imply in Theorem when the
coordinates z = (z,y) of our given polynomial ¢(z,y) are adapted.

This basic bound will employ a useful estimate for exponential sums in one variable
which depends on a generalisation of the classical Hensel lemma. We will outline
the proof of this one dimensional bound in Section [7}

The main effort then will be to find a change of variables to put our polynomial ¢
into adapted coordinates. In general the change of variables that accomplishes this
will be analytic. Attempting to keep our analysis on an elementary level, we will
find a polynomial change of variables

p(x7y) = (pl(x7y)7p2(x7y)) € Q[X,Y]
so that the new phase ¢(z,y) = é(p(x,y)) will be a polynomial with rational

coefficients. The polynomial (i(x, y) will not quite be in adapted coordinates but
nevertheless the bound established in Sections [4 and [5] will be sufficient to prove

Theorem [L.1]

To produce this change of variables, we will follow an algorithm due to Ikromov
and Miiller [§] in the euclidean setting. They, in turn, blend ideas from two dif-
ferent algorithms due to Varcenko [I6] and Phong, Stein and Sturm [I4]. This
will be carried out in Section [} The algorithm producing this change of variables
with rational coefficients is based on the clustering of the roots of ¢ which can be
expressed in terms of Puiseux series.

3. DEFINITIONS AND PRELIMINARIES

A good reference for the following basic results and definitions regarding oscillatory
integrals can be found in [3].

Oscillation indices. Any polynomial ¢ € Z[X1,..., X,] can be viewed as a real-
valued phase and so oscillation indices make sense for ¢. The complex oscillation
index 0.(¢) is defined as the supremum of ’s where the bounds | [, 2™ | <
CrA~% hold for large A > 1 and all n-dimensional chains I" in a sufficiently small
neighbourhood of 0 in C”, such that the imaginary part ¢ is strictly positive on
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the boundary of I'. The real oscillation index o,.(¢) is defined as the supremum
of B where the bounds | [5, e2™**@(z)dz| < CA™F hold for large A > 1 and
all smooth 1 supported in some neighbourhood of 0. In general these indices are
difficult to compute. However when ¢ satisfies a certain nondegeneracy condition,
then these numbers have a simple description.

The Newton polyhedron and diagram. To describe this nondegeneracy con-
dition, we need to recall the definition of the Newton polyhedron of a polyno-
mial ¢; we will restrict ourselves to two dimensions although these notions make
sense in any dimension. Let N := {0,1,2,...} include zero. For any polynomial
(z,y) =Dk cj iy, we call the set S(¢) == {(j, k) € N>\ {0} : ¢ # 0}, the
reduced support of ¢. The Newton polyhedron T'(¢) of ¢ is the convex hull of the
union of all quadrants (j, k) + R% in R? with (j, k) € S(¢). Let A(¢) be the collec-
tion of compact faces (vertices and edges) of I'(¢p). The Newton diagram Ng(¢) is
the union of the faces in A(¢).

For each face v of I'(¢), we set ¢+ (z,y) = > ¢ r)ey cjrr’yk. We say that ¢ is
C-nondegenerate (R-nondegenerate) if for every compact face 7 € A(¢),

Vorle.) = (5(@n), G2 w)

never vanishes in (C\ {0})2 ((R\ {0})?).

The Newton distance and the height function. If we use coordinates (1, t2)
for points in the plane containing the Newton polyhedron, consider the point (d, d)
in this plane where the bisectrix ¢; = to intersects the boundary of T'(¢). The
coordinate d = d(¢) is called the Newton distance of ¢ in the coordinates z = (z,y).
The principal face () is the face of minimal dimension (an edge or vertex) which
contains the point (d,d). Following [8], we call ¢4 the principal part of ¢ and
denote it by ¢p,.

When ¢ is R-nondegenerate, then the real oscillation index is equal to the reciprocal
of the Newton distanceﬂ or-(¢) = 1/d(¢). Similarly, when ¢ is C-nondegenerate,
then the complex oscillation index is also equal to 1/d(¢) and so the real and
complex indices agree in this case.

In two dimensions, we can still get our hands on the real oscillation index o,.(¢)
for general ¢ since o..(¢p) = 1/h(¢) is the reciprocal of the height h(¢) := sup, d,
where d, is the Newton distance of ¢ in the coordinates z = (x,y). Furthermore
the supremum is attained h(¢) = d,, and we call any such coordinate system z
adapted. This is no longer the case in higher dimensions.

The notions of Newton polyhedron I'(¢), Newton diagram Ny(¢), Newton distance
d(¢) as well as principal face 7(¢) and principal part ¢, easily extend from poly-
nomials to any real-analytic function. This will be useful in Section [6]

5This is true in two dimensions but we need to assume in addition that d(¢) > 1 in higher
dimensions.
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The Varéenko exponent. The Varcenko exponent v(¢p) was introduced in [16]
and is defined to be zero unless h(¢) > 2 and in this case, when the principal face
(%) of ¢* in an adapted coordinate system z is a vertex, we define v(¢) to be 1.
Otherwise we set v(¢) = 0.

Complex o, versus real o,. The complex oscillation index o.(¢) is smaller (and
can be strictly smaller in dimensions three or more) than the real oscillation index
or(¢); see [3], Lemma 13.6. However in two dimensions, they agree. This follows
from Theorem 4.4 in [I7], which states that for polynomials in two variables, the
complex oscillation index is given by ﬁ(f)’ where h.(f) is the maximum of d, f
with respect to any complezx coordinate transformation z. Combining this with the
observation that the proof of Theorem 3.3 of [§] can be easily modified to give a
condition under which a coordinate system is not C-adapted to f, implying that a
coordinate system in two variables is C-adapted if and only if it is R-adapted, we
observe that o, = o, in two dimensions.

In general, it is the complex oscillation index o.(¢) and not the real oscillation index
o,(¢) which governs the decay bounds for the exponential sums Sy and S. Many
simple examples show this; for example, consider the homogeneous polynomial
d(x,y,2) = (2% + y? + 2?)? which is R-nondegenerate (but C-degenerate) and so
or(¢) = 1/d(¢) = 3/4. However a simple computation using Gauss sums shows
that |S(¢,p*)| < 10p~%/2 for all k > 1 and when k is even, cop~*/2 < [S(¢,p")|
for large primes p. Here o.(¢) = 1/2. For lower bounds in great generality, see [6],
Proposition 3.9.

The exceptional class £. With the notions of the Newton diagram and the
principal part of ¢, we can now describe the exceptional class £ precisely. It is the
class of polynomials ¢ whose principal part ¢p,(z,y) = a(bx? + cxy + dy*)™ where
the quadratic polynomial bx? + cxy + dy? is irreducible over the rationals Q.

The p-adic number field. We fix a prime p and define the p-adic absolute valueﬁ
|| =-|p on the field of rationals Q as follows. For integers a € Z, we define
la| :== p~" where k& > 0 is the largest power such that p¥ divides a. This p-adic
absolute value extends to all rationals a/b by |a/b| = |a|/|b| and satisfies the basic
conditions |uv| = |ul|lv| and |u + v| < |u| + |v| for all rationals u,v € Q, giving
Q a metric space structure d(u,v) = |u — v|. The p-adic absolute value in fact
satisfies a stronger version of triangle inequality called the ultrametric inequality:
|u + v| < max(|ul, |v]). This implies |u 4+ v| = |u| if |v| < |u| and so if v € B,.(u) :=
{w e Q:|w—u| <r}, then B,(v) = B,(u).

The p-adic field Q, is the completion of the rational field Q with respect to the
metric defined by the p-adic absolute value. The elements in the completed field

6We will also use the notation |z| for the usual absolute value on elements z € C but the
context will make it clear which absolute value is being used.
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z € @, can be represented by a Laurent series

o0
r = Z a;p’, a; €Z/pZ = {0,1,--- ,p—1}, (6)
j=—
convergent with respect to |-| = |-|, which extends uniquely to all of Q, by |z| = pV

where a_x # 0 is the first term of the series representation @ We also define
|0] = 0.

The compact unit ball B1(0) = {z € Q, : |z| < 1} plays a special role as it is a
ring due to the ultrametric inequality. We call this compact ring the ring of p-adic
integers and denote it by Z,. Hence Q, is a locally compact abelian group and
has a unique Haar measure p which we normalise so that ((Z,) = 1. To carry out
Fourier analysis on QQ,,, we fix a non-principal additive character e defined by

i -1 - . .
e(z) = *™Xi=-~ "] here x is represented as in ().

All other characters x on Q, are given by x(x) = e(vz) for some v € Q,. Hence
the Fourier dual of Q, is itself.

Hensel’s lemma. The following basic lemma harks back to the origins of p-adic
analysis and it, together with a generalisation described in Section [7] will be useful
for us.

Lemma 3.1. Let g € Z[X] such that g(xg) = 0 mod p* for some integer xy. If
P°||g' (o) (or |g'(z0)| = p~°) for some § < s/2, then there exists a unique x € Z,
such that g(z) =0 and x = x¢ mod p*~°.

For a proof of Hensel’s lemma, see [I5], Chapter 1.6.

The sum Sy(¢,p°) as an oscillatory integral. It is natural to analyse So(¢, p®)
by lifting this sum to an oscillatory integral defined over the p-adic field @Q,.

First let us see how the complete exponential sum S(¢,p®) can be written as the
following oscillatory integral; we claim that

S(bp") = / / el 0(r.9)) dule)duly) (7)

holds. Consider a pair xg,yo of integers and note that for any x € B,-(xo) and
y € By-:(yo0), we have e(p~*¢(x,y)) = e(p”*¢(x0,y0)). This simply follows from
the definition of the character e. Hence the oscillatory integral in can be written

Z //Bp—s(xo)pr_s(yo) e(p—s¢($7 y)) d,U(CC)dM(y)

(0,0 €12/p 72
= Z e(p_%(xo,yo))u(Bpﬂ)Q = p_zs Z £27i0(x0,y0) /p°
(0,0 (2 /v 2" (0,00 € 2/p2)?

and this last sum is our complete exponential sum S(¢,p®). The last equality
follows since e(p~*¢(zq,y0)) = €27*¢(x0:%0)/P" by the definition of e.
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A similar argument shows that our local sum Sy(¢, p®) has the following oscillatory
integral representation:

Solop) = [ el ot ) dute)inty) 0

To simplify notation, we will denote the Haar measure du(x) by dx and u(E) by
| E].

4. A REDUCTION OF THEOREM [1.1/ TO A BASIC BOUND FOR Sy(¢, p®)

In this section we will give a basic bound on the oscillatory integral in which
represents our local sum Sy(¢,p*). This bound by itself will fall short in proving
the desired bound in Theorem and so one of our main tasks will be to find
a change of variables in so that the bound formulated in this section, with the
transformed phase under this change of variables, is sufficient to establish Theorem

LT

First though, we observe that we may assume that V¢(0,0) = 0. If V¢(0,0) # 0,
say 0,¢(0,0) = ¢ # 0 and since ¢ is a coefficient of ¢, we have p fc whenever p ¢ P.
Then for any integer y = 0 mod p, consider the polynomial g € Z[X] defined by
g(x) = ¢(z,y) and note that p [¢'(z) for every x = 0 mod p. Hence by Hensel’s
lemma, the map x — g(x) defines a bijection on {z € Z/p*Z : x = 0mod p} so that

p°—1

. s . s

§ e27r7,g(:r)/p _ E 627rzu/p
z€L/P°L u=0
=0 (mod p) plu

which is equal to zero when s > 2, and equal to 1 when s = 1. Hence

1 . s
Sol6p’) = 5 > FTEN — g (9)

(z,y)€(Z/p°Z)?
z,y=0 (mod p)

2

when s > 2 and equal to p~° when s = 1.

A key result in this paper is the following.
Theorem 4.1. For any ¢ € Z[X,Y] with V¢(0,0) = 0, we can find a polynomial

W € QIX] such that if ¢(z,y) = d(z,y + ¢(x)), then h(¢) = h($) = h(pr)-

This result was established in the euclidean setting by Tkromov and Miiller, [8]. We
follow their argument closely but with an extra effort to ensure that the polynomial
1) we end up with has rational coefficients. We postpone the proof until Section [f]

Theorem is useful because there is a convenient expression for the height of
the principal part of a polynomial. This characterisation will be given later in

Proposition [4.4]

This change of variables (z,y) — (x,y + ¥(z)) depends only on ¢. As described
in the introduction, the exceptional set of primes P include the prime divisors



10 ROBERT FRASER AND JAMES WRIGHT

of the coefficients of the transformed phase ¢(x,y) = ¢(x,y + (z)) € Q[X,Y].
Hence for p ¢ P, ¢ will not only be a polynomial with rational coefficients, these
coefficients will be units (their p-adic absolute values are equal to 1) in the ring of
p-adic integers Z,. Hence implementing this change of variables in shows that

SO((bvps) = SO(éva)

Therefore in order to prove Theorem according to Theorem it suffices to
assume that the phase ¢ in the oscillatory integral representing the local sum
So is a polynomial with rational coefficients lying in Z, and h(¢) = h(dpr).

We begin with the decomposition

ser) = X Y ] e(p~*dlw,y)) dudy  (10)
TEA(S) [en? lz|=p~'1,|y|=p~t2
F(l)=r

introduced in [7]. Here, for each [ = (I1,15) € N2, F(I) is the face of I'(¢) of largest
dimension which is contained in the supporting line of I'(¢) perpendicular to I. In
other words,

F(l) = {feT(¢): t-I'=N()} where N(I) := min -1.
feT ()

-

Note that F'(I) is a compact face of T'(¢) if and only if Il # 0 which explains why
only compact faces A(¢) enter into the decomposition of Sy above.

For each compact face 7 € A(¢) and each [ such that 7 = F(I), write ¢(z,y) =
¢r(2,y) + 117 (2, y). Then

¢ (pwpy) = Y pU e iyt = pN U (2,y)
(G.k)er
and
e (pha, pl2y) = Z plik) Cj’kxjyk _ pN(l)pgT(x,y)

(k) ET(@)\7
for some polynomial g € Z,[X,Y].

Changing variables to normalise the region of integration, we have

So(e:p")= D D, P‘M// e(p~ VD (6, (2,y) + pgr(x,v))) dudy.

TEA(P) [en? |z],|y|=1
F(l)=r

Now let us fix a compact face 7 € A(¢). If 7 = {(«, §)} is a vertex, then ¢, (z,y) =
cx®y? is a monomial where c is a rational number with |c| = 1. If 7 is a compact
edge, then

T C {(tl,tg) 1 qty +miy = 7’L}

for some integers (m,q,n) = (mr,¢-,n;) with ged(m,q) = 1 and ¢, is a quasi-
homogeneous polynomial, ¢, (r"1a, r*2y) = r¢,(z,y) for r > 0 where k1 = ¢/n and
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k2 = m/n. The polynomial ¢, consists of at least two terms and so by homogeneity,
we can facto

N
¢r(z,y) = ca H Yy —&a (11)

for some roots {§J} | lying in Q*#. Tt will be convenient for us to think of the

roots {¢;} as lying in some finite field extension of Q,. Again c is a rational with
le| = 1.

Assume, without loss of generality, that 1 < g < m. We define the homogeneous
distanceﬁ dr =d; () of ¢, as
1 qa + mpB 4+ gmM

d, = = = (12)
K1 + Ka m+q m+q
7)o

where M := Z] 1 ;. The point (d;,d;) on the bisectrix lies on the line {(t1,%5) :
(¢

qt1 +mto = n} containing 7. Hence d,(¢) < d(¢) for every compact edge 7 € A().
If 7 is the principal face, then d,(¢) = d(¢) is the Newton distance of ¢.

We will use the notation mp,(¢) to denote the maximal multiplicity among the roots
{§ };-Vzl appearing in the factorisation of the principal part ¢, of ¢ when 7(¢)
is a compact edge.

The following simple lemma will be useful.
Lemma 4.2. Let 7 € A(¢) be a compact edge.

(a) If T is not the principal face, then M = Z _1n; < dr. Furthermore strict
inequality M < d, holds unless an endpoint of T lzes on the bisectriz.

(b) Suppose that T = w(¢) is the principal face, mp: (@) > d(¢), and j, is such that
N, = Mp(¢). Then n; < d(¢) for all j # j. and &;, € Q.

(c) Again suppose that T = w(¢) but now n;, = mp(p) = d(¢). Then either
bpr(,y) = c(y* + bry + dz*)™ is a power of a quadratic form or

Opr(T,y) = cx yﬁH (y — &a™ (13)

n; < n;, forall j #j. and &, € Q.

Proof. To prove (a), let us suppose that 7 lies below the bisectrix so that the left
endpoint («, 8 + gM) of T satisfies a« > 5 + gM. Hence by ,

q(B +qM) + gnM (B+qM) +mM

d, >
q+m q+m

> M

"See [§] for details.
8We are borrowing terminology from [§].
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since ¢ > 1. If the left endpoint (o, 8 + ¢M) does not lie on the bisectrix, then
we have the strict inequality o > 8 + gM which in turn implies that the strict
inequality d, > M holds.

To prove (b), suppose that n;, > d(¢) and that there exists a 1 < j < N with
j # jx such that d(¢) < n;. Then M > 2d(¢) and so by (12),

d(¢) = d(¢) = d(¢)

which is a contradiction. Hence n; < d(¢) for all j # j,. To show that §;, € Q,
we argue by contradiction once again and suppose that the degree of ;, over the
rationals is at least 2. Since the conjugates of £;, all lie among the roots {¢; }j-vzl,
we would be able to find a conjugate &; with j # j.. As all conjugates must have
the same multiplicity, we see that n; = n;, which we have just seen is impossible.

qgmM S 2gm
m+q m+q

Finally to prove (c), suppose that n;, = d(¢) and that there is a 1 < j < N with
J # j« and nj = n;, . Hence M > 2n; = 2d(¢) and so

qmM S 2gm
m+q ~— m-+gq

d(¢) = (),

implying 2gm/(m + ¢) < 1 and hence ¢ = m = 1. Plugging this back into , we
have

2d(¢) =a+8+M
and since M > 2d(¢), this gives a contradiction unless @« = 8 = 0 and M = 2d(¢).
Hence d(¢) = n;, = n; and
Ppr(t,y) = cly — &) (y — &x)" = c(y® + bry + da?)"
is a power of a quadratic form with n = n;. Otherwise we have n; < n;, = d(¢)

for all j # j, and reasoning as part (b), we also conclude that §;, € Q.

O

The following theorem contains our basic estimate for Sy which will imply Theorem

[l via Theorem E1]
Theorem 4.3. Suppose that the coefficients of ¢ € Q[X,Y| are units in Zy.

(a) If n(®) is a compact edge, then
p~¥HDifmy(¢) <d
|SO(¢aps)| 5d8g¢ Spis/d((b) if mpr(¢) =d
pmme i mpe(¢) > d(

&

(b) If w(¢) is a vertex, then

1S0(, %) Sego sp~/*?) (15)

and this improves to |So(¢, p*)|Sdeg o 0~/ U?) when the verter w(¢) = (1,1).
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(c) If (@) is an unbounded edge, then
1S0(6,7°)] Sacgs ™). (16)

To see how Theorem [4.3|implies Theorem [I.1] under the assumption h(¢) = h(¢ppr)
(which we can make by Theorem [4.1)), we need the following characterisation of

h(¢pr)-

Proposition 4.4. Suppose that the principal face 7(¢) of ¢ € Q[X,Y] is a compact
edge. Then

h(¢pr) = max(d(¢)7mpr(¢))'

Proof. In [21] it was shown that when ¢ (z,y) = cx%y”® H;.Vzl(yq—fjxm)"ﬂ' is a quasi-
homogeneous polynomial with rational coefficients, then h(1) = max(dy(¢), mg(¥))
where

mq(v) = max(a,,n;:§ € Q)
and dj, (1)) is the homogeneous distance given in (12). This result in [21] is a minor
adjustment of the corresponding euclidean result found in [g].

Note that if the principal face w(¢) is a compact edge, then the left endpoint
(v, B+ ¢M) lies above the bisectrix (so that a < 8+ ¢M) and the right endpoint
(a +mM, f3) lies below the bisectrix (so that 8 < a+mM). Hence by we see
that max(a, 8) < d(¢) and so by Lemma [4.2 part (b), we see that

h(¢pr) = max(dh(¢pr)amQ(¢pr)) = max(d(¢)vmpr(¢))' (17)
(Il

Recall that the Varcenko exponent v(¢) = 1 if and only if h(¢) > 2 and there is
an adapted coordinate system in which the principal face is a vertex. According to
Tkromov and Miiller in [8] (Corollaries 2.3 and 4.3), a coordinate system z = (z,y)
is adapted to ¢(x,y) if and only if one of the following conditions is satisfied:

(a) m(¢) is a compact edge and mp,(¢) < d(¢);
(b) m(¢) is a vertex; or
(¢) m(¢) is an unbounded edge.

Hence if the principal face 7(¢) of our polynomial ¢(z,y) is a vertex (d,d) (where
necessarily d = d(¢)), then the coordinates z = (z,y) are adapted and so v(¢) =1
when d = h(¢) > 2 and v(¢) = 0 when d = 1. In this case the bound in
implies |So(¢,p°*)| < Cs*(#)p=s/M(#) establishing Theorem in this case. When
7m(¢) is an unbounded edge, the coordinates are adapted and hence d(¢) = h(d).
Thus establishes Theorem (1.1

Next suppose that 7(¢) is a compact edge and mp, (¢) # d(¢). Then by Proposition
the bound implies |So(,p®)| < Cp~3/M?) since we are assuming h(¢) =
h(¢pr). This establishes Theorem in this case. Finally suppose that m(¢) is a
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compact edge and myp,(¢) = d(¢). Then h(¢) = d(¢) by Proposition If ¢ € &,
then establishes Theorem in this case.

Hence we may suppose that ¢ ¢ £. In this case, we claim that there is a coordinate
system in which the principal face is a vertex so that can be used to show that
Theorem [1.1] holds in this case as well. Lemma [.2] part (c) implies that

N
bpr(2,y) = cay’ [[(w—&am)™ (18)
j=1
with &;, € Q. Recall that when ¢p(z,y) = c(y® + bzy + da®)" is a power of a
quadratic, then ¢p(z,y) = c(y — &) (y — &)™ where &,& € Q since ¢ ¢ £.
This is of the form . It is simple matter to see that the change of variables
(z,y) — (z,y + &) transforms our polynomial to one whose principal part is a
vertex.

Therefore Theorem [L.1] follows from Theorems [A.1] and [£.3]

5. PROOF OF THEOREM [4.3]

A key step in the proof of the bounds for the local sum Sp(¢,p®) in Theorem
will be to freeze one of the variables and estimate a sum in the other variable.
Equivalently, we will reduce to bounding a one dimensional oscillatory integral and
for this, we will employ the following useful bound.

Proposition 5.1. Let 1) € Z,[X] and suppose there is ann > 1 such that )™ (x)/n! #
0 mod p for all x lying in some subset S C Z/pZ. Then there exists a constant C,
depending on the degree of ¥ (and not on S or p) such that

| [ ] < op (19)

xTo€ES

holds for all s > 2. Furthermore when n =1, the sum in vanishes.

When S = Z/pZ, Proposition was proved in [20] using a higher order Hensel
lemma. However the proof given in [20] also gives the strengthening stated here
where we consider a truncated integral (or sum) on which we know some derivative
of ¢ is non-degenerate. We will outline the proof of Proposition [5.1] in Section [7]

Now let us recall the decomposition of the oscillatory integral representation
of So(¢,p*) and write Sy(¢p,p®) = ETeA(¢) I. where

Yoot // e(p~ VD (g (2,y) + pgr(2,y))) dady.

P! jal, lyl=1
F(l)=r

We will provide a bound for each I, with 7 € A(¢). We split into two cases: the
case in which 7 is a compact edge and the case in which 7 is a vertex.
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When 7 is a compact edge. In this case, ¢, is a quasi-homogeneous polynomial
which can be factored

N
¢r(z,y) = cay? [J (" — &am™)ms;
j=1

see . If ['is such that F(l_j = 7, then the vector [ is perpendicular to the line
{(t1,1t2) : gt1 + mt; = n} containing 7 if and only if I = I(¢g,m) for some integer
[ > 1. Hence N(I) = In and so

o= S [ ety o ag) + g o)) dedy. (20
>1 |z],|y|=1
Set k = [ﬂ — 1 so that s = kn+7r where 1 <r <n and split I, = IT1 +I3 into two
parts where I! = lenﬂ I, and I? = Elgn I 1; here I ; denotes the integral in
. Note that [ > x4+ 1 precisely when s —In < 0 and hence the integrand in I,
is identically equal to 1. Thus I,; = (1 — p~1)? for such [ and so
I = (1-p1)? Z plmta) < p=(st)mta) < py=stmta)/n — p=s/dr

I>k+1

Since d, < d(¢), we have
1| < pm/ U (21)

which is smaller than the bounds , , in the statement of Theorem
Hence gives an acceptable contribution for Theorem

Let us now concentrate on bounding each integral I,; arising in I? when L :=
s —nl > 2. In this case we will use Proposition [5.1] to bound

o = //lwl’yl_l e(p " (o (z,y) + pg-(2,))) dady.

Set

X = {(z0,90) € [Z/pZ]* : zoyo # 0}
and note that the region of integration in the integral 7, ;, is precisely the set of
(z,y) € Z2 such that (z,y) is congruent mod p to an element of X.

We will split X = ZyU Z; U---U Zy according to roots {&;} of ¢,. All the roots
arising from the quasi-homogeneous polynomials ¢, with 7 € A(¢) are algebraic
numbers lying in our set .4 defining the exceptional primes P and hence lie in a
finite field extension of Q,. Therefore each p-adic absolute value |-| = | - |, extends
uniquely to these elements. Elementary considerations (see [21]) show that for
p &P, &l =1 and |¢; — &, = 1 whenever j # k.

We define
Zo = {(z0,%0) € X : ¢-(20,y0) # 0 mod p} and
Z;j = {(z0,y0) € X : Jyd — &zg'| < 1} for1<j<N.

Note that Z; may be empty if there are no ordered pairs of elements of (z¢,yo) €
(Z/pZ)? for which the inequality defining Z; holds. Furthermore, the Z; are dis-
joint: if |yd — &xf'| < 1 and j # j' then the ultrametric inequality shows that
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lyd — &l = |yd — &aft + Ealt — Epaft] = 1, since |§al — x| = 1 by the
separation of the roots.

This gives us a disjoint decomposition of X. Accordingly, we split Z, ; = Z;V:() 7
where

7= 3 / / (6, (e ) + pgr (@, y))) dady.

(0,y0)E€Z; p=1 (@0, yO)

Here B,-1(z0,y0) = {(z,y) € Z : max(|z — zo|, [y — yo|) < p~'} consists of those
elements of Zf, that are congruent to (zg,yo) modulo p.

First we claim that Zy = 0. In fact, each integral appearing in the sum defining
T vanishes. Fix (zo,y0) € Zy and let I, ,, denote the corresponding integral in
Zo. By a simple extension of Euler’s homogeneous function theorem to the quasi-
homogeneous case, we have (qz, my)-Vo,(x,y) = nd,(z,y) and so Vo, (xg,yo) Z0
mod p. Set p(z,y) = ¢,(x,y) + pg-(z,y) and note that V(xo,yo) Z 0 mod p.
Hence the argument establishing @ shows I(zg,yo) = 0 and thus Zy = 0.

Let us now examine the other terms Z;, 1 < j < N. We have

7, - 3 / / el ) dedy

(z0,Y0)€EZ;

= ) ) // e(p~Pp(x,y)) dudy

20 €L/ PIN{O} YoEZ; zy ¥ ¥ Bp—1(0:%0)

where Z; o = {yo € Z/pZ\ {0} : (z0,y0) € Z;}.
Interchanging the sum in yg and the x integration, we have
=), / / e(p"o(x,y)) dy) dz.
w0€Z/pI\{0} fl(fo) Y0€ 25,4’ Bo—1(¥0)
Denoting Inner,, (z) as the sum in yo, we have
7, = Z / ) Inner,, (x) dz.
—1 (IO

wo€Z/pz\{0} " B

For any fixed x¢ € Z/pZ \ {0} and z such that |z — x¢| < p~!, define ¥, (y) to be
the function ¢(x,y). Thus we have

Inner,, (x) = Z / e(p™ ", (y)) dy,

YoE€Zj,z, Bp—1(y0)
putting us in a position to employ our bound since it is straightforward to
check that w(n])(yo)/nj! # 0 mod p for every yo € Z; »,. Hence the uniform bound

[Innerg, ()] < Caego p_L/”j

holds and when n; = 1, we have in fact Inner,, (z) = 0. This implies that

1Zi] < Clego p~ /" but when n; =1, Z; = 0. (22)
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Therefore |Z, 1| < C’degq;p*L/ Mz where m., is the maximal multiplicity of the
roots {&;} of ¢,. This gives us a bound on the sum of those terms in I? where

L =s5—1In > 2; write I? = I>! + I?? where [>! = 1%&& I, ; so that
s—in>2
|2t < C( > p_l(m+q)pl"/m*)p_s/m’ = ( > pfl"[ﬁ*m%])p_s/m*-
1<i<k 1<i<k
Hence
pfs/df if m; <d-
II2Y Sdegs $ sp~ /% ifm,; =d, . (23)

p=s/m i my > d,

If 7 = w(¢) is the principal face, then d, = d(¢) and m, = mp(¢) so that gives
an acceptable contribution to the bound in Theorem Now suppose that
the compact edge 7 is not the principal face. By Lemma art (a), we conclude
that m, < d,. Furthermore, if the endpoint of 7 does not lie on the bisectrix,
then in fact m, < d, and so implies |12 < p~%/% < p=s/4?) and this is an
acceptable bound as before.

Finally suppose that an endpoint of 7 lies on the bisectrix. Then the principal face
7m(¢) is a vertex and d, = d(¢). The bound gives an acceptable contribution
to the bound in Theorem unless the vertex 7(¢) is (1,1). In this case
m, =d; = d(¢) =1 and the formula for d, shows two possible outcomes: (1)
either g = M = o =1 and 5 = 0 in which case ¢, = ax(y — &x™) for some £ € Q or
(2) g=M =m=p=1and o =0 in which case ¢, = ay(y — £x) for some £ € Q.
In either case, I, = Zo + Z; where n; = 1. Hence by we see that Z, ;, =0
implying in turn I>! = 0 in this case.

It remains to treat I2:? where we are summing the integrals I, ; for 1 <1 < k and
s —In = 1. The condition s —In = 1 can only occur if I = k and s = 1 mod n.
Hence 122 = I, ,, and s — kn = 1 so that

13,2 _ p,,{(erq) //|| | e(p*1(¢7(x,y)))d$dy
z|,|y|=1

which is an exponential sum over a finite field. We claim that the bound
1122 S p7o 1) (24)

holds and as we have seen before, this is an acceptable bound.

First we can apply the Weil bound [19] for finite field sums (say to the y integral)
to see that

122 <y pmEma)pms/dr,
here we used the identity xk(m 4+ ¢) = (s — 1)(m + ¢)/n = (s — 1) /d.. Therefore if
d, > 2, we obtain the bound . We now treat the case when d, < 2.

First suppose that 7 is not the principal face. Then m., < d, by Lemma
which implies m, = 1 (and hence d, > 1) so that ¢,(z,y) = az®y’(y? — Ex™)
for some £ € Q. If 7 lies below the bisectrix, then the second coordinate of the
left endpoint must be equal to 1. Hence 8 4+ ¢ = 1 implying ¢ = 1, 8 = 0 and so
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or(x,y) = ax®(y — Ex™). Similarly if 7 lies above the bisectrix, then o =0, m =1

and so ¢, (x,y) = ay®(y — £x). In either case ¢, is either linear in y or linear in z
which implies that one of the integrals

/ e(p” (- (x,9))) dy, / e(p” (¢r(z,9))) dx
lyI<1 ol <1

is equal to 0. Hence
[ et o dod| 5 5
], ly|=1

which in turn implies
122 < Cyp~ma)p s/t < Cy p /U9,
establishing in this case.

Now suppose that 7 is the principal face. Then d, = d(¢). If d; < 1, then 7
cannot contain any lattice points away from the coordinate axes. Hence o = 3 = 0,
M =1 and so ¢;(z,y) = a(y? — £z™) for some £ € Q. Using the formula (12),
d; = gm/(m + q) and the restriction d, < 1 shows ¢ = 1. Therefore

// e(p (r (. y))) dady = —p~* / e(plar™)dr  (25)
|z],ly|=1 |z|=1

and if m = 1, the above integral is O(p~?2) leading to the bound

|I72_72| < Oy p—(Q—K)p—S/dT < Cy p—s/d(¢)
which proves (24). When m > 2, we are stuck with the bound O(p~3/?) arising
from a character sum estimate for the integral in but in this case, we have
d =m/(m+1) >2/3 and so

|I$72| < G, p*(%*i)p—s/dw < Gy p—s/d(¢')
which once again proves .

Finally suppose that 7 is the principal face but d,. > 1. Since
J e oy =[] o) ey + 067
z|,|y|=1 Ve
we can use Cluckers’s bound [5, Theorem 3.2.1] to conclude that

’//Myl_le(p‘l(qbf(x,y)))dxdy‘ < pl/dr

which implies

‘13,2 < C¢ p—s/dT < C¢ p—s/d(qﬁ')7

establishing in all cases.
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When 7 is a vertex. We will now consider the case where 7 = («, 8) is a vertex.
This means that ¢, (z,y) = cx*y” a monomial. However, the sum over [ will consist
of more than just integer multiples of a fixed vector.

Assume that 7 is the endpoint of two edges e; and eq, where es lies below (to the
right of) 7 and e; lies above (to the left of) 7. Hence if the edges are compact,

e C {(thtg) tquts Fmate = nl} and ey C {(tl,tg) 1 qot1 + Moty = ?12}

for some positive integers (g;,m;),j = 1,2 with ged(g;,m;) = 1. If the ey is
unbounded (that is, it is a horizontal line), then es C {(¢1,t2) : t2 = 8}. Likewise
if e; is unbounded (vertical), then ey C {(t1,t2) : t1 = a}.

If both edges e; and e5 are compact, then F(I) = 7 if and only if | = (I1,l3) satisfies
l
mo_l2 M2
a b @

If one of the edges is unbounded, the corresponding upper or lower restriction of
the ratio l/l; is removed; for example, if es is an infinite horizontal edge and e;

is compact, then F(I) = 7 if and only if my/q < l3/l;. We will, without loss of
generality, assume that a < 3.

—

Then N(I) = lya + I35 and our integral I to bound is

L= pi" // e(p™" NG (cxy’ + pg- (x,y))) dady

en? ], ly|=1
F(f):T
= Z p—l1—12 // e(p—s+N(l)(cxayﬁ+pgT(x7y)))dxdy
I1,l2>1 |z|,]ly|=1

T ks
l1ﬁ<lz<l1£

with the understanding that if one of edges e; and/or ey is unbounded, then the
corresponding restriction on the ratio lo/l; does not appear.

We decompose I, = I'' + I? + I? into three pieces according to whether N(f) > s,

N() = s —1 and N(I) < s — 2, respectively. When N(I) > s, the integrand is
identically equal to 1 and so

R D

ly,l2>1

N()>s
la/li<ra/q2
if the edge es is compact. When eg is unbounded, the only restriction on the sum
over [ = (l1,lz) with l1,lo > 1 is N(I) = lha + I3 > s. This is a geometric series,
and a straightforward argument shows

26
sp~s/de2  if = p3 (26)



20 ROBERT FRASER AND JAMES WRIGHT

Next let us turn our attention to

I = > prh //|| | e(p~ Doy (2,y)) dady
z|,|y|=1

l1,l22>1
s—N([)>2
my/q1<lz/li<ma/q2

where ¢, (z,y) = cx®y” + pg-(x,y). Since Vi, (x,y) # 0 mod p for any (z,y) € Z2

satisfying |z| = |y| = 1, the same argument above showing that Z; = 0 shows that
B =o.

Finally, the treatment of

= > P‘ll_lQ// ‘ e(pcx®y”) dudy
z|,ly|=1

l1,l2>1
N(l)=s—1
ri/t1<la/li<ra/qs
follows along the same lines for I}, showing that holds for I? as well. Hence
we have established Theorem [£.3] except in the solitary case that the principal face
of ¢ is (1,1) where we need to improve the bound for I to |I.| < p~® in order to
finish the proof of Theorem

The last step. When the vertex 7 = (1,1), then 7 = m(¢) and d(¢) = 1. Here we
will show the improved bound |I.| < p~* which will conclude the proof of Theorem
4.0l

Recall the decomposition I, = Il + I2 + I? above where I? = 0 and in this case,

I = (1-p ) > p iR (27)
LN()>s
my/q1<la/li<ma/qs
with the understanding that l1,ly > 1 and if one of edges e; and/or e5 is unbounded,
then the corresponding restriction on the ratio ls/l; does not appear. Also

I’ = Z plitl // e(ptexy) dady
|, ly|=1

l1,l22>1
N(=s—1
ri/ti<lz/li<ra/q2

so that we can write
I = —-1-p ! > p it

EN()=s—1
ri/t1<la/l1<r2/q2

Thus we see that in this case (when 7 = (1,1)), I, is a difference of two explicit
sums of positive terms. A careful examination of this difference will exhibit the
additional cancellation we seek.

We will show this when the edges e; and 5 are both infinite so the restrictions on
I = (l1,l2) are l1,lo > 1 and either N(I) > s or N(I) = s — 1. The case when one
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=

edge (or both) is compact is similar. In this case, N(I) =1 + I3 and so

I=0-p )2 > phh = 0-p 2y N-1p "

l1,l12>1 N2zs
li+l2>s

and by the geometric series formula,
I = (s=1p° + —(s—2)p*"".

In a similar but easy manner,

Z=-0-phpt Y phh=-(1-phHs-2p
l1,l2>1
l1+1lo=s5—1
and so I, = I} + I? = p~* which shows the desired cancellation between the two
terms I! and I2.

This completes the proof of Theorem [4.3]

6. PROOF OF THEOREM [4.1]

Here we give the proof of Theorem by developing an appropriate variant of an
algorithm due Ikromov and Miiller in [§] which produces an adapted coordinate sys-
tem for any real-analytic function f. This algorithm constructs a series of changes
of variables, and except for the final one, all are given by a simple polynomial map.
The goal will be to show that the polynomial change of variables reached by the
penultimate stage satisfies the conclusion of Theorem

6.1. Conditions for Adapted Coordinate Systems. For this section we will
work entirely with real-analytic functions f. We will observe what happens when
we apply the algorithm from [8] to a polynomial with rational coefficients.

The key observation is the one made in [21]: Corollary 2.3 from [§] is valid in any

perfect field K; in particular, it is valid over Q. The content of this corollary is to

relate the roots of a quasi-homogeneous polynomial f to its homogeneous distance

d(f). A polynomial f € K[X,Y] being quasi-homogeneous makes sense in any field
K and can be factored as

fla,y) = ca®y’

J

=

(y? = &a™)"
1

where ¢ € K and the roots {¢; }jvzl lie in some finite field extension of K. Here
ged(m,q) = 1 and K1 := ¢q/n, k2 := m/n are the dilation parameters so that
f(rera, re2y) = rf(x,y) for r > 0. Recall that the homogeneous distance of f is

defined as
1 qo +mpB + gmM

d = =
= 7 tm

where M = Z;\;l n;. Finally set ng = o and ny411 = 5.

We now reproduce the version Corollary 2.3 from [8] as it appeared in [21].
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Lemma 6.2 ([8], [2I]). Let K be a perfect field and f € K[X,Y] be a quasi-
homogeneous polynomial as above. Without loss of generality suppose that ko > K1
orl <qg<m.

(1) If there is a multiplicity n;, > d(f) for some 0 < j, < N + 1, then all the
other multiplicities must be strictly less than d(f); that is, n; < d(f) for
all 0 < j # j. < N+ 1. In particular, there is at most one multiplicity n;,
0<j<N+1 withn; > d(f).

(2) If ka/k1 € N, then M =30 n; < d(f).

(3) If ko/k1 €N, then n; < d(f) for any 1 < j < N such that §; ¢ K.

The corollary says that the multiplicity of every root §;,1 < 7 < N, is bounded by
d(f) unless k2/k1 € N, in which case there is at most one root §;,1 < j < N with
multiplicity exceeding d(f). If such a root exists, it necessarily lies in K and we
shall call it the principal root of f.

We will need the following theorem in [§].

Theorem 6.3 (Ikromov-Miiller). Let f be a real-analytic function near the origin
with £(0,0) = 0 and Vf(0,0) = 0. Then the given coordinates are not adapted to
f if and only if the following hold true:

(1) The principal face w(f) of the Newton polyhedron is a compact edge. It
thus lies on a uniquely determined line kit1 + kaoto = 1 with K1,k > 0.
Swapping coordinates if necessary, we may assume Ko > Kq.

(2) 2 € N. Note that this implies that ¢ =1 in (1).

(3) The inequality my(f) > d(f) holds.

Moreover, in this case, an adapted coordinate system for f,, is given by y, = x1,
Y2 1= To — ax]", where a is the root of fp, in the sense of with the mazimum
multiplicity. The height of fpr is then given by h(fpr) = mpr(f).

We will apply Theorem in the case when f has rational coefficients. In this case,
when the principal face is a compact edge, mp,(f) = maxi<;<n n; where the {n;}
are the multiplicities of the roots of the principal part fu.(z,y) = cx®y” vazl (y?—
&a™)™ of f. We have f,, € Q[X,Y] is a quasi-homogeneous polynomial with
rational coefficients and we apply Lemma with K = Q to conclude that if
n;, = mp:(f) > d(f), then the principal root §;, € Q of f is a rational number.

We will adopt the following terminology from [8]. If a pair of dilation parameters
k = (k1,k2) is chosen so that L, = {(t1,t2) : K1t1 + Kate = 1} is a supporting
line of the Newton polygon (that is, it contains a face 7 = 7, of the Newton
diagram Ny(f)), then we call fr(z1,22) = 2 Gkyer ¢ k7l x5 the -principal part of
f. Abusing notation, we will sometimes denote this by f.. Note that fi(x1,22) is
a quasi-homogeneous polynomial such that f.(r*zq,r"2xe) = rfi(z1, 22).
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6.4. Prerequisites to the Algorithm. The Weierstrass preparation theorem
holds for the ring Q{z1,z2} of convergent power series with rational coefficients.
This can be seen by either modifying the proof of the Weierstrass preparation
theorem for real coefficients given in [I3] or observing that the Weierstrass prepa-
ration theorem holds for both R{z1,z2} (see [13]) and for the rings Q[[z1,x2]] of
formal power series over Q and R[[x1,x2]] of formal power series over R (see [I]),
and observing that the uniqueness of the factorisation in R[[z1, z2]] given by the
Weierstrass preparation theorem implies that the factorisation over Q[[x1, z2]] and
R{x1,z2} are the same.

This means that given an analytic function f € Q{x, y}, convergent in a neighbour-
hood of the origin (with the real topology on Q), where f(0,z2) = z7*z52 f'(z1, x2),
and where f/(0,z2) = 25'g(x2), g(0) # 0, we can write f in the form

f(x1,20) = Uz, w2)2y 257 F (11, 22)
where
F(zy,22) = 25" + g1 (1) 2y 4+ g (21)

where U(0,0) # 0 and g;(0) = 0 for all j. Furthermore g¢1,...,gm € Q{z:1} are
uniquely determined, not just in Q{x; }, but also as formal power series in the larger
rings Q[[x1]] and R[[z1]]. The unit U is also uniquely defined as a power series in
R[[.’L‘l 5 l‘g]] .

We may assume that g, is not zero. Then the roots r(x1) of F(z1,x2) have a
Puiseux series expansion

r(z) = caf +cz] + -

where, importantly for us, the nonzero coefficients ¢;’s lie in Q28 the algebraic
closure of Q and the exponents 0 < a < b < --- are a strictly increasing sequence of
rational numbers. A reference showing the existence of a formal Puiseux expansion
of this form is Abhyankar’s book [I]. Combining this with the usual Puiseux theo-
rem for real power series as we did for the Weierstrass preparation theorem shows
that the series describing each root is convergent.

The Puiseux expansion of two or more distinct roots r of F' may agree for the first
few terms and it will be important for us to quantify this.

We introduce the following notation from [8]. Let a; < --+ < a,, be the distinct
leading exponents of the roots of F so that each root r(x) = cz{' + O(z{') for
some ¢ # 0,1 <1 < n and for some A > a;. For each ] € {1,2,...,n}, we denote
by [;] the collection of roots with leading exponent a;. Next, for every 1 <[ < n,

let {cl(a)} denote the collection of distinct, leading nonzero coefficients appearing in
the expansion of a root with leading exponent a; and let [¢] denote the collection

of roots with leading exponent a; and leading coefficient cl(a).

We continue to the second exponent in the expansion; for every I3 and oy, we let

{al(f‘j) : 1 > 1} denote the collection of distinct exponents appearing in the second

term of the Puiseux expansion of the roots in [ﬁl } . Proceeding in this way, we can
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express each root r as

a1) (@1, ap_1)

(a1) a ( ) ajy ( ) Mt
o 1 g ,o ap Q1 yeeny0tp)  Ylq,a,
7“(:131)——0111%11—1—011’}22 B to pxll P + -

where the nonzero coefficients ¢; lie in Q?8 and

(a1,...,ap—1,8) (a1yey0p—1,7)
Cly sl F C,.

whenever 3 # v. Also
(a1yeeyap—1) S a(alsuwapr)
L1, lp liyeeslp—1

so that the terms in r have increasing exponents. Furthermore the exponents are
positive rational numbers.

The root cluster | . ?:} denotes the collection of roots whose first p leading
terms are indexed by Iy, o, 12, aa, ..., 1y, ap. We will also introduce clusters where
the last exponent has been picked but not the last coefficient. These are denoted
T Qp—1 Qp

. The

o1 o ) o
[ ! ot ] and equal the union over ay, of the clusters [111 Ly 1

[
notation N[cluster] will denote the number of roots in a cluster.

Since each a; corresponds to the cluster [;], the collection of roots of F' can be
expressed as the union over all [ of these clusters. Then we can write

f(z1,22) = Uz, z2) a:'flxlz’QH@ (21, 22)

where
o[ )(x1,22) = [] (w2 —r(21)).

refi

The advantage of this decomposition is that it allows us to read off the vertices of
the Newton polygon.

Lemma 6.5. The points (A;, B;) where
A = V1+ZauN[,;] and B, = vy + Z N[,]
pn<l p>l+1

are the vertices of the Newton polygon of f.

Here | ranges between 0 and n. When [ = 0, we set ag = 0 so that Ay = v; and
By = vo +m where m is the degree of F(x1,x2) as a polynomial in x; that is, the
sum of the multiplicities of the roots of F. When | = n, B,, = vs.

Proof. The Newton polygon of f is the same as the Newton polygon of 7' 52 F'(z1, x2).

Consider any x > 0 not among the exponents {a1, as, ..., a,} and choose 0 < [, <n
so that a;, < k < a; 41 (if an < K, choose 1,). Let L, = {(t1,t2) : t1 + kta = ¢}
be a supporting line of the Newton polygon of f. It either intersects the Newton
diagram in a vertex or a compact edge as k is a positive, finite number. In fact we
will see that L, intersects the Newton diagram in a vertex.
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We say that a monomial z§xd in the Puiseux expansion of F has degree ¢ + xd
with respect to the weight (1, k). A necessary and sufficient condition for a point
(co,dp) to lie on L, is that it has minimal (1, x)-degree among all the pairs (¢, d)
arising as a monomial z$z¢ in the Puiseux expansion of F.

For each factor xo — r(zy) arising in F' with the root r(z1) belonging to [;], the
term x2 has (1, k)-degree equal to x and the minimal (1, k)-degree among the terms
in the Puiseux expansion of r(x1) is a;. Hence the lowest-degree (1, x)-monomial
appearing in F'is z] ' 22" since we take the 2% term for | < I, and the 5 term for
I > l,;. This shows that L, intersects the Newton diagram at the vertex (A4;, , Bi,).

Note that each A; must be an integer (it is obvious that B; is an integer) since the
vertices of the Newton diagram are lattice points. O

Now, notice that A; — Aj_1 = —a;(B; — Bj_1), since N|;] is equal to B; — Bj_;.
From this it immediately follows that the slope of the line connecting (A;—1, B;—1)
to (A, By) is —1/a;. Therefore the line connecting (A;_1, B;—1) to (A, B;) is given
by y = —(1/a)(x — A) + B

This line intersects the bisectrix at (d;,d;) where d; = —(1/a;)(d; — A;) + By, so
d; = ’4114;7‘2‘131. If we index this line L1 = {(t1,%2) : ki t; + khta = 1} by the dilation
parameters k' = (!, x5), then

1 a L

1 ! 1

kK = ——, and kK, = ———— sothatq, = —.
1 A+ a,l317 2 A+ aB; ! lﬁ:ll

The vertical edge, which passes through (v1,v2 + m) (here m is the sum of the
multiplicities of all the roots r(x1) in F), intersects the bisectrix at (v1,v4), and
the horizontal edge, passing through (A,,, 12), is contained in a line intersecting the
bisectrix at (v2,v2). So the distance d(f) is given by max(vy, ve, max; d;).

Finally, we observe that the s!-principal part of f is the same as the s!-principal
part of

cafay [[(ez - faf) N
J,a
where ¢ = U(0,0). Since the x!-principal part of x5 — cé.a)mi” equals c;a)x‘l” if j <1
and equals x5 if | < j, we have
Faan,ee) = aayag [ (@a - ain Vil (28)

[e%

In view of we say that the edge [(A;—1, Bi—1), (A1, B;)] is associated to the
cluster of roots [;].

6.6. The Algorithm. We are now ready to describe the algorithm. Suppose that
f(x1,x2) is a real-analytic function near (0,0) with rational coefficients. Further-
more suppose that the coordinates (z1,z2) are not adapted (otherwise there is
nothing to do).
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We apply Theorem [6.3|part (a) to conclude that the principal face 7(f) is a compact
edge which lies on a uniquely determined line L,, = {(t1,t2) : k1t1 + kato = 1} with
k1, ke > 0. The principal part fy, is just the s-principal part of f. By Lemma
the compact edges of NVy(f) are given by [(A;_1, Bi—1), (A, By)] with 1 <[ < n.
Choose A so that the principal face 7(f) of f is 7n := [(Ax—1, Ba—1), (Ax, By)].
Therefore by (28], we have

for(ar,@2) = (o, az) = ca> " al [[(az — PtV (29)

e

The slope of 7y is —1/ay so that ay = k2/k1. By Theorempart (b), ax € N.
Furthermore by part (c), there exists an index 8 such that

Ay +a)B
mpr(f) = N[{] > d(f) = 2222 and 7 € Q. (30)
+ ax
The root cg\m is the principal root of f,.
The first step is to apply = = o(y) where y; := x1 and yo := z2 — cg\ﬁ)m‘f* and put

f=foo. Then f(yi,y2) is equal to f(y1,y2 + cg\ﬁ)y‘f*). Since a) is an integer, this

is a polynomial change of variables.

We want to see what happens to the Newton diagram from this change of variables.

We will use the ™ notation to denote quantities in the variables (y1, y2); for example

ﬁ(ylayZ) =U(y1,y2 + C&ﬁ)yf*). Hence

Fon ) = Ol m)n? (s + 0y [[ (2 — (o) — Pye)) M)

Lo
and so each root 7(y;) of f has the form

(a1), a _ C&B)y?‘

y) = ¢ "yl + higher order terms.

For | < A, the lowest degree term in the root is left unchanged, so we have a; = a;.

Furthermore the multiplicities N[;] are the same as the corresponding multiplicities

for f.

For [ > A, any root r in any cluster [;] (including the z5? term) is transformed into
a root with leading exponent ay. The same happens for roots in [ 4] that are not

in [f] Finally if r € [f], then the leading exponent of 7 is of the form a&ﬁl)z > ay.

Following Tkromov and Miiller [§], we separately consider two cases depending on
whether or not there is a root that maps to a root with leading exponent aj.

Case 1: This is the case where there is at least one root that maps to a root
with leading exponent ay. This implies that ay = a). We have By = N[f]
since the roots 7 with leading exponent greater than a, are precisely those roots

corresponding to r € [m
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We then see that Ay = Ay_1 + a\By — a,\N[f] so that

(Ay, By) = (Ax—1 +axBy — aAN[’f],N[f]) .

The inequality in is equivalent to the statement that Ay < By. Therefore the
edge [(Ax—1,Bx-1), (AxB))] lies entirely above the bisectrix and is thus not the

principal face. Hence the principal face is associated to some subcluster {f )\2} in

the original coordinates (or is a horizontal edge in which case the new coordinates
are adapted).

Case 2: This is the other case. Now there is no root with leading exponent ay in
the new coordinates and again the principal face corresponds to a subcluster of the
same form (or is an unbounded edge in which case we are done).

If f is not yet expressed in an adapted coordinate system (so that the conditions
(1)-(3) in Theorems still hold), we continue the procedure. Now, the later
steps are similar. If the conditions (1)-(3) are satisfied, we again take the principal
root, which is known to exist and is a rational number. In terms of the original
coordinates, we now have a change of coordinates x = 0(2)(y) of the form
ol®)
Y11= 215 Yo = T — (Cf\ﬁ)x(fA + CE\[,%,’\%)%AM)

where the coeflicients are, once again, rational, and the exponents are integers, and
now the new principal face will be a compact edge associated to a further subcluster
of the original root cluster, or it will be an unbounded edge, in which case the new
coordinates are adapted.

We iterate this procedure. If this procedure terminates after finitely many steps,
then we have arrived at a polynomial shear transformation that converts the coor-
dinates into adapted coordinates. The conclusion of Theorem [£.1] therefore follows.

On the other hand, it is possible that this procedure does not terminate after finitely
many steps. In this case, the multiplicities

L B - .
Nk = N[f )\2 )\kJrl}

are a nonincreasing sequence of positive integers and hence eventually constant.

We can therefore find a polynomial g € Q[X] such that the function fo(z1,z2) :=
f(z1, 22 + o(x2)) has an analytic root

plaer) = e + -

where each coefficient of this root is rational and where p is not a polynomial.
Furthermore, 19 can be chosen so that p(z1) is the only root with leading exponent
A, but the root p may have higher multiplicity.

Now if we take f(y1,y2) := foly1,y2 + cg\ﬁ)yi“), the previous arguments imply that
the principal face of f must be the final non-horizontal edge in the Newton diagram.
Furthermore f does not have a vanishing root because this would imply that fy has
a root cg\’@ ):1:‘1“, which cannot exist because that would contradict the multiplicity
assumption on f and the particular choice of 1.
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We claim that f satisfies the conclusion of Theorem We will do this by making
a further, non-polynomial change of variables that yields an adapted coordinate
system.

By the construction of f , the vertices of the Newton polyhedron of f are given by
(Ao, Bo), - - ., (AxBy) where By = 0 and the principal edge is [(Ax—1, Ba—1), (4Ax, Bx)],
where Ay_1 < Bx_1. From , we see that the principal part of f is

- A "

For(w1,22) = e (wa — )™

where N = By_1 > 4.

We will now apply Propositionto show that the height of fpr is equal to N. Since
the principal face of f is the compact edge [(Ax_1,Bx_1), (Ax, Bx)] and Ay_; <
By_1 = N, we see that d(f,-) < N. But the root cg\ﬁ) has multiplicity N as a root
in the sense of the factorisation , so this must be the principal root of pr and
thus the height of f;r is N by Proposition

We now consider the function f*(yi,y2) given by f(yl,yz + p(y1)). The nonzero
roots 7 are given by r — p with r € [;] for some | < X\ and they have the same
multiplicities and leading exponents as r. This change of variables deletes the last
vertex of the Newton polygon since the last factor changes into ¢4 and the principal
face is now an unbounded horizontal edge. Therefore the Newton distance is NV,
the multiplicity of the vanishing root and so the height of f, the height of f*, the
height of f, and the height of f;,,« are all equal to N.

The completes the proof of Proposition [41]

7. HENSEL’S LEMMA AND THE PROOF OF PROPOSITION [5.1]

A weaker version of Proposition [5.1| was established in [20] but the argument given
in [20] readily extends to give a proof of Proposition Here we give an outline
of the proof which relies on a generalisation of the classical Hensel lemma. The
following result was established in [20].

Lemma 7.1. Let g € Z,[X] with p > deg(g). Suppose there exists an integer L > 1
such that for any xo € Z,,

1. g%t (o) g(wo)|l < 9™ (w0)g (wo), forall 1 <k<L—1, and
2. |g(zo)| < 19" (z0)g'(x0)].

Then there exists a unique x € Z, such that g(z) = 0 and |z—=zo| < |g(z0)g’ (z0)7!|.

Remarks:

1. The lemma is valid for all primes p but then the derivatives g(*) (x) appearing
in the statement of the lemma need to be replaced by ¢*)(z)/k!.
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2. The L = 1 case is the classical statement of Hensel’s lemma. In this case,
condition 1 is vacuous and 2 reduces to the usual hypothesis |g(zo)| < |¢’(x0)|?. In
particular if g(z¢) = 0 mod p® and p°||¢’ (zo) where § < s/2, then |g(z0)| < |g'(x0)|?.
The conclusion implies that there exists a unique x € Z, with * = 9 mod p°~
and g(z) = 0.

3. The lemma holds in any field K, complete with respect to any nontrivial nonar-
chimedean absolute value |- | and g € o[X] where 0 = {z € K : |z] <1}.

4. The proof is a small variant of the usual proof of Hensel’s lemma using the
Newton formula to produce an approximating sequence to a solution of a polynomial
equation.

We now turn to the proof of Proposition where we seek to prove the following:
suppose 1 € Z,[X] and that for some n > 1, 1" (x0)/n! # 0 mod p for all x5 € S
in some set S C Z/pZ. Then for

- X / L

we have |I| < Cp~*/" for all s > 2 with a constant C' depending only on 7 and the
degree of 1. This is the bound .

When n = 1 then each integral in the above sum over S vanishes. This follows in
the same way we showed Zy = 0 in the proof of Theorem

Suppose now n > 2, and, to simplify matters, we will assume that s = 0 mod n.
The other cases are slightly more involved, especially the case s = 1 mod n but
here we just want to give a general outline how to prove . When s = 0 mod n,
then s = tn for some t > 1. We write

-y ¥ / (" (a)) do =

T0€ES  woeZ/p'Z Pt "0)
ug=xo mod p

DD DI R S TELTED DD R ()

T0€ES ugEZ/ptZ €S uOEZ/ptZ

up=xo mod p up=xo mod p
where
n—1 1
Tzo,uo = / e(p_("_l)t Z f'/(p(T) (Uo)pt(r_l)uT)du.
Jul<1 — r!

‘We break up the sum over
R := {(x0,u0) € S X Z/p'Z : 19 = upmodp} = Ry U---UR,
into n disjoint sets where
Ry = {(z0,u0) € R: [V (ug)| <p~*},
Ry = {(wo,u0) € R: [V (ug)| > p~" and [ (ug)| < p~* "V (uo) }
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R, = {(xo,uQ) cR: |w”(u0)| > p_t‘¢”/(u0)| S>> p—("—Q)t

and [/ (wo)| < P~ o)},

and

Ry = {(20,u0) € R [t/ (uo)| > p™" [0/ ()| > -+ > p~ "D s D g)| > p~ =

We make the following claim:

o #R; <deg(y), 1 <j<n-—1;and
o Ty =0 for every (zo,up) € Ry,

For j = 1, we apply the classical Hensel lemma (the L = 1 case in Lemma
to g(x) = ¥ Y (z) to deduce that for every (zo,ug) € Ry, there exists a unique
x € Zy such that (=1 (z) = 0 and z = ug mod p'. Hence #R; < deg(g) < deg(v)).

Next for (20, up) € Ry, consider g(x) = ¥("~2)(z) so that |g(ug)| < p~*|g(uo)| and
|9 (ug)| > p~t. Once again the classical version of Hensel implies that there exists
a unique = € Z, such that g(z) = 0 and = = up mod p'. Hence #Ry < deg(g) <
deg(v)).

Now for (z9,u9) € R; with 3 < j < n — 1, consider g(z) = () (z) so that
lg(uo)| < p~tlg (uo)| and |g' (uo)| > p~tlg" (uo)| > --- > p~ U~V Applying Lemma
with L = j — 1 shows that there exists a unique « € Z, with g(z) = 0 and
z = up mod p'. Hence #R; < deg(g) < deg(v)).

Finally for (z9,ug) € R,, we define o = t(n — 1) — ¢t — v where p™" := [¢" (ug)]|.
Note that (zq,uo) € R, implies that [¢" (ug)| > p~ @~V and so t +v < (n— 1)t,
implying o > 1. Hence, setting

n—1

1 — s
W(u) = D o)V,

r=1 "

we have

Teouoy = / e(p™ "V (u))du = / e(p™ "V (u))du
lul<1 B,—o (w)

wEZL/p° L
= X v e ) dy.
wEL/p° L lyl<1
Now observe that ¥(w + p7y) = ¥(w) + p?¢’ (uo)y +
1 — n— o, \n— n—
§¢//(U0)pt((w+pgy)2—w2) Batie m¢(n 1)(Uo)pt( 2)((w+p y)" T -w 1)~

However since (xg,up) € Ry,

1

511[)//(u())pt((w +p0y)2 - w2) _ pftfafl/ — pft(nfl)
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and, by comparing ¥ (ug) to 1" (uo) and using the fact that o > 1, we have for
3<j<n—-1:

This means that the j > 2 terms in the sum defining ¥ are divisible by p

1 . - o ,
‘j,w(”(uO)pt“ D ((w +p7y)? —w)

< p(j—Q)t

W (ug)pti D ((w+py) — wj)‘

< |1/)"(uo)ptpa|
_ pft(nfl)

t(n—1) .

Hence

Toouo =y, p 7e(p” " VU(w)) / e(p~"TVETY (ug)y) dy

wEL/p° L ly|<1

and this last integral is equal to zero since (zg,up) € R, implies

[ (uo)| > p 0" (uo)| = p~ " = paft(n—l)

and so p!=D= ¥y)/(ug).

This establishes the claim which implies

|7

n—1
| < ’p’tz D el (o) Tague| < (n—1)deg(y)p™" = Cp~*/",

J=1 (wo,u0)ER,;

giving us .
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