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Abstract. The local sum conjecture is a variant of some of Igusa’s questions
on exponential sums put forward by Denef and Sperber in [7]. In a remark-

able paper [6] by Cluckers, Mustata and Nguyen, this conjecture has been

established in all dimensions, using sophisticated, powerful techniques from a
research area blending algebraic geometry with ideas from logic. The purpose

of this paper is to give an elementary proof of this conjecture in two dimensions
which follows Varčenko’s treatment of euclidean oscillatory integrals based on

Newton polyhedra for good coordinate choices. Another elementary proof is

given by Veys [18] from an algebraic geometric perspective.

1. Introduction

In their seminal paper [7], Denef and Sperber formulated the following local sum
conjecture. Let ϕ ∈ Z[X1, . . . , Xn] and consider the local exponential sum

S0 = S0(ϕ, p
s) :=

1

psn

∑︂
x∈[Z/psZ]n
x≡0 (mod p)

e2πiϕ(x)/p
s

,

the local sum being a truncation of the complete exponential sum

S = S(ϕ, ps) :=
1

psn

∑︂
x∈[Z/psZ]n

e2πiϕ(x)/p
s

which selects the terms x = (x1, . . . , xn) where p |xj for all 1 ≤ j ≤ n. The
conjecture postulates that there exists a constant C, independent of p and s, and
a finite set P = Pϕ of primes such that for all p /∈ P,

|S0| ≤ Csn−1p−σcs (1)

where σc = σc(ϕ) is the complex oscillation index1 of ϕ at 0. We will recall the
precise definitions for this and other notions in Section 3. The conjecture (1) is
related to one of the Igusa conjectures on exponential sums which posits similar
uniform bounds for S when ϕ is any homogeneous polynomial.

In [7], Denef and Sperber proved (1) when ϕ is C-nondegenerate and when an
auxilary condition on the vertices of Newton polyhedron holds (in [5], Cluckers
removed this auxiliary condition). The notion of C-nondegenerate was introduced
in [11] and will be defined in Section 3. In this case the complex oscillation index

1In the literature, oscillation indices tend to be defined as negative numbers. We will consider
their absolute values and define them as positive numbers.
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σc(ϕ) = 1/d(ϕ) is the reciprocal of the Newton distance d(ϕ) of ϕ, see [7]. In the
same paper, Denef and Sperber also established the Igusa conjecture under the
same hypotheses; in [4], Cluckers removed the auxiliary condition on the vertices,
establishing the Igusa conjecture when ϕ is C-nondegenerate.

As mentioned in the abstract, Cluckers, Mustata and Nguyen [6] established the
local sum conjecture (1) in all dimensions and much more; they also established the
Igusa conjecture for complete exponential sums S(ϕ, ps) where ϕ is a general homo-
geneous polynomial, where the exponent is replaced by the log-canonical threshold
of ϕ. In two dimensions, this will always be equal to the complex oscillation in-
dex. Earlier, the Igusa conjecture was established in two dimensions [21] by an
elementary argument. Afterwards, Lichtin [12] gave an alternative proof of the two
dimensional Igusa conjecture from a different perspective. Albarracı́n-Mantilla
and León-Cardenal [2] gave a detailed description of the behaviour of the non-
truncated sum S in two dimensions based on the poles of the corresponding local
zeta function under an additional nondegeneracy condition.

One difficulty in higher dimensions is that it is hard to get one’s hands on the oscil-
lation index σc(ϕ) in a precise way for general ϕ. For our arguments, it is essential
that we work with an explicit description of σc. Although such a description is not
available in higher dimensions, we can describe σc explicitly in two dimensions. To
see this, consider the case when ϕ is homogeneous so that it can be factored

ϕ(x, y) = c xαyβ
N∏︂
j=1

(y − ξjx)
nj (2)

for some roots {ξj}Nj=1 lying in Qalg; see (11) in Section 4. It can be shown that
σc(ϕ) = 1/max(mQ, d/2) where d is the degree of the polynomial ϕ and mQ =
max(α, β, {nj : ξj ∈ Q}); see [21] and Section 3.

This gives an explicit description of the oscillation index for general homogeneous
ϕ in two variables. Below we will see that a more involved description can be
made for general polynomials ϕ in two variables. Such a concrete description is not
available in higher dimensions. Furthermore one easily sees that ϕ is C-degenerate
precisely when there is at least one root ξj with multiplicity nj larger than one.
This provides many examples of degenerate homogeneous polynomials.

As mentioned above, when ϕ is C-nondegenerate, the oscillation index σc(ϕ) is
given in terms of the Newton distance d(ϕ), a quantity we can easily compute.
Nevertheless, in two dimensions, we can get our hands on the oscillation index
since it is known2 that σc(ϕ) = 1/h(ϕ) where h(ϕ) := supz dz(ϕ) is the so-called
height of ϕ. Here the supremum is taken over all local coordinate systems z = (x, y)
of the origin (real-analytic coordinate systems if the phase ϕ is real-analytic and
smooth coordinate systems if ϕ is smooth) and dz(ϕ) denotes the Newton distance
of ϕ in the coordinates z.

2This equation is usually stated for the real oscillation index σr. In two dimensions, we have
that σr = σc; see Section 3.
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In two dimemsions, the supremum supz dz(ϕ) = dz0(ϕ) is attained in the definition
of the height h(ϕ); any such coordinate system z0 is called adapted. The height h(ϕ)
gives us the exact decay rate for the corresponding euclidean oscillatory integral

Iψ(ϕ, λ) :=

∫︂
R2

e2πiλϕ(x)ψ(x) dx

where ϕ is a smooth, real-valued function, λ is a large real parameter and ψ ∈ C∞
c .

When ϕ is of finite type, we have for some constant Cϕ depending on ϕ but not on
λ

|Iψ(ϕ, λ)| ≤ Cϕ logν(|λ|)|λ|−1/h(ϕ) (3)

for large λ and all ψ ∈ C∞ supported in a sufficiently small neighbourhood of
0. Here ν(ϕ) ∈ {0, 1} is the so-called Varčenko’s exponent (also known as the
multiplicity of the oscillation index). We emphasise that in higher dimensions the
Varčenko exponent ν(ϕ) lies in {0, 1, . . . , n− 1}. Furthermore,

lim
λ→∞

λ1/h

logν(λ)
Iψ(ϕ, λ) = c ψ(0) (4)

where c = cϕ is nonzero.3 In this generality, the results in (3) and (4) were es-
tablished by Ikromov and Müller in [8] and [9]. Their work was influential in our
analysis establishing the following.

Theorem 1.1. Let ϕ ∈ Z|X,Y ]. Then there exists a finite set P of primes and a
constant C = Cϕ such that for any p /∈ P and s ≥ 1,

|S0(ϕ, p
s)| ≤ C sν(ϕ)p−s/h(ϕ) (5)

holds for all ϕ except for an exceptional class E. For ϕ ∈ E, the estimate (5) holds
with ν = 1; that is |S0(ϕ, p

s)| ≤ Csp−s/h(ϕ) holds for ϕ ∈ E.

The class E consists of those polynomials of the form

ϕ(x, y) = a(by2 + cxy + dx2)m + higher order terms4

where the quadratic polynomial by2 + cxy + dx2 is irreducible over the rationals
Q. For example when ϕ(x, y) = a(x2 + y2)m, we have h(ϕ) = m and ν(ϕ) = 0.
However when m ≥ 2 and p ≡ 1 mod 4, then |S0(ϕ, p

s)| ∼ sp−s/m for infinitely
many s ≥ 1. Furthermore when p ≡ 3 mod 4, then |S0(ϕ, p

s)| ∼ p−s/m for infinitely
many s ≥ 1. These calculations are not difficult; see for example [21] where more
general bounds are derived.

The estimate (5) in Theorem 1.1 is a slight strengthening in the two dimensional
case only in that the exponent ν(ϕ) in (5) is more precise, determining exactly
when it matches the euclidean case. More importantly, we establish (5) using ele-
mentary arguments, only basic p-adic analysis is used. A key step in our argument
will follow ideas from Ikromov and Müller in [8] in the euclidean setting which in
turn were inspired from the arguments developed in [14] which gave an elementary

3The existence of this limit is proved under the additional condition that the principal face of

ϕ in adapted coordinates is compact.
4We will describe this class precisely in section 3.
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treatment of Karpushkin’s work [10] on stability bounds of euclidean oscillatory
integral estimates in two dimensions.

The main effort in this paper is to rework euclidean arguments in the local field
setting. Basic euclidean arguments for estimating oscillatory integrals rely heavily
on the order structure of the reals (in applications of the mean value and interme-
diate value theorems which are implicitly used in integration by parts arguments).
We need to readdress these arguments, relying more on rudimentary sublevel set
estimates (bounds for the number of solutions to polynomial congruences) in place
of integration by parts arguments. These sublevel set bounds will be derived from
a higher order Hensel lemma and so matters are kept on an elementary level.

In our argument, we will decompose the sum S0(ϕ, p
s) in the same manner as Denef

and Sperber [7]. This decomposition partitions the sum S0(ϕ, p
s) into components

corresponding to each compact face of the Newton diagram of ϕ. We will obtain
a bound for each component of the sum. This bound will be sufficient to prove
Theorem 1.1 provided that the coordinate system is chosen appropriately.

Assuming this coordinate change has been applied, we can describe the finite set
P as follows. For each compact face τ of the Newton polyhedron of ϕ, there is a
natural associated part of ϕ, a quasi-homogeneous polynomial ϕτ (see Section 3).
Let A denote the collection of algebraic numbers consisting of the roots ξ as well
as the differences of distinct roots ξj − ξk of each ϕτ . The set P consists of

• prime numbers that are at most deg ϕ
• prime divisors of the coefficients of ϕ
• prime divisors of the coefficients of the minimal polynomials of each ξ ∈ A.

Notation. All constants C, c, c0 > 0 throughout this paper will depend only on
the polynomial ϕ, although the values of these constants may change from line to
line. Often it will be convenient to suppress explicitly mentioning the constants
C or c in these inequalities and we will use the notation A ≲ B between positive
quantities A and B to denote the inequality A ≤ CB (we will also denote this as
A = O(B)). When we want to emphasise the dependence of the implicit constant
in A ≲ B on a parameter k, we write A ≲k B to denote A ≤ CkB. Finally we use
the notation A ∼ B to denote that both inequalities A ≲ B and B ≲ A hold.

Acknowledgements. We would like to thank Allan Greenleaf and Malabika Pra-
manik for informative and enlightening discussions about oscillatory integrals.

We are grateful to the anonymous referee both for their speedy review and for their
very useful comments and suggestions, which greatly improved the final version of
the paper.

We would like to thank Dimitrios Karslidis for providing a translation of Theorem
4.4 of [17].
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2. Outline of the paper

In the next section we will define precisely the various notions introduced above,
including reviewing the Newton polyhedron, diagram and distance of a polynomial.
We will also give a quick review of the required p-adic analysis that we will use and
show how we can lift our exponential sum S0 over Z/psZ to an oscillatory integral
over the p-adic field. This will illustrate the close analogy between these kinds of
exponential sums and euclidean oscillatory integrals. In Sections 4 and 5 we will
derive a basic bound for S0(ϕ, p

s) which will imply (5) in Theorem 1.1 when the
coordinates z = (x, y) of our given polynomial ϕ(x, y) are adapted.

This basic bound will employ a useful estimate for exponential sums in one variable
which depends on a generalisation of the classical Hensel lemma. We will outline
the proof of this one dimensional bound in Section 7.

The main effort then will be to find a change of variables to put our polynomial ϕ
into adapted coordinates. In general the change of variables that accomplishes this
will be analytic. Attempting to keep our analysis on an elementary level, we will
find a polynomial change of variables

p(x, y) = (p1(x, y), p2(x, y)) ∈ Q[X,Y ]

so that the new phase ϕ̃(x, y) = ϕ(p(x, y)) will be a polynomial with rational

coefficients. The polynomial ϕ̃(x, y) will not quite be in adapted coordinates but
nevertheless the bound established in Sections 4 and 5 will be sufficient to prove
Theorem 1.1.

To produce this change of variables, we will follow an algorithm due to Ikromov
and Müller [8] in the euclidean setting. They, in turn, blend ideas from two dif-
ferent algorithms due to Varčenko [16] and Phong, Stein and Sturm [14]. This
will be carried out in Section 6. The algorithm producing this change of variables
with rational coefficients is based on the clustering of the roots of ϕ which can be
expressed in terms of Puiseux series.

3. Definitions and preliminaries

A good reference for the following basic results and definitions regarding oscillatory
integrals can be found in [3].

Oscillation indices. Any polynomial ϕ ∈ Z[X1, . . . , Xn] can be viewed as a real-
valued phase and so oscillation indices make sense for ϕ. The complex oscillation
index σc(ϕ) is defined as the supremum of β’s where the bounds |

∫︁
Γ
e2πiλϕ(x)dx| ≤

CΓλ
−β hold for large λ > 1 and all n-dimensional chains Γ in a sufficiently small

neighbourhood of 0 in Cn, such that the imaginary part ϕ is strictly positive on
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the boundary of Γ. The real oscillation index σr(ϕ) is defined as the supremum
of β where the bounds |

∫︁
Rn e

2πiλϕ(x)ψ(x)dx| ≤ Cλ−β hold for large λ > 1 and
all smooth ψ supported in some neighbourhood of 0. In general these indices are
difficult to compute. However when ϕ satisfies a certain nondegeneracy condition,
then these numbers have a simple description.

The Newton polyhedron and diagram. To describe this nondegeneracy con-
dition, we need to recall the definition of the Newton polyhedron of a polyno-
mial ϕ; we will restrict ourselves to two dimensions although these notions make
sense in any dimension. Let N := {0, 1, 2, . . .} include zero. For any polynomial
ϕ(x, y) =

∑︁
j,k cj,kx

jyk, we call the set S(ϕ) := {(j, k) ∈ N2 \ {0} : cj,k ̸= 0}, the
reduced support of ϕ. The Newton polyhedron Γ(ϕ) of ϕ is the convex hull of the
union of all quadrants (j, k)+R2

+ in R2 with (j, k) ∈ S(ϕ). Let ∆(ϕ) be the collec-
tion of compact faces (vertices and edges) of Γ(ϕ). The Newton diagram Nd(ϕ) is
the union of the faces in ∆(ϕ).

For each face γ of Γ(ϕ), we set ϕγ(x, y) =
∑︁

(j,k)∈γ cj,kx
jyk. We say that ϕ is

C-nondegenerate (R-nondegenerate) if for every compact face τ ∈ ∆(ϕ),

∇ϕτ (x, y) = (
∂ϕτ
∂x

(x, y),
∂ϕτ
∂y

(x, y))

never vanishes in (C \ {0})2 ((R \ {0})2).

The Newton distance and the height function. If we use coordinates (t1, t2)
for points in the plane containing the Newton polyhedron, consider the point (d, d)
in this plane where the bisectrix t1 = t2 intersects the boundary of Γ(ϕ). The
coordinate d = d(ϕ) is called the Newton distance of ϕ in the coordinates z = (x, y).
The principal face π(ϕ) is the face of minimal dimension (an edge or vertex) which
contains the point (d, d). Following [8], we call ϕπ(ϕ) the principal part of ϕ and
denote it by ϕpr.

When ϕ is R-nondegenerate, then the real oscillation index is equal to the reciprocal
of the Newton distance;5 σr(ϕ) = 1/d(ϕ). Similarly, when ϕ is C-nondegenerate,
then the complex oscillation index is also equal to 1/d(ϕ) and so the real and
complex indices agree in this case.

In two dimensions, we can still get our hands on the real oscillation index σr(ϕ)
for general ϕ since σr(ϕ) = 1/h(ϕ) is the reciprocal of the height h(ϕ) := supz dz
where dz is the Newton distance of ϕ in the coordinates z = (x, y). Furthermore
the supremum is attained h(ϕ) = dz0 and we call any such coordinate system z0
adapted. This is no longer the case in higher dimensions.

The notions of Newton polyhedron Γ(ϕ), Newton diagram Nd(ϕ), Newton distance
d(ϕ) as well as principal face π(ϕ) and principal part ϕpr easily extend from poly-
nomials to any real-analytic function. This will be useful in Section 6.

5This is true in two dimensions but we need to assume in addition that d(ϕ) > 1 in higher
dimensions.
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The Varčenko exponent. The Varčenko exponent ν(ϕ) was introduced in [16]
and is defined to be zero unless h(ϕ) ≥ 2 and in this case, when the principal face
π(ϕz) of ϕz in an adapted coordinate system z is a vertex, we define ν(ϕ) to be 1.
Otherwise we set ν(ϕ) = 0.

Complex σc versus real σr. The complex oscillation index σc(ϕ) is smaller (and
can be strictly smaller in dimensions three or more) than the real oscillation index
σr(ϕ); see [3], Lemma 13.6. However in two dimensions, they agree. This follows
from Theorem 4.4 in [17], which states that for polynomials in two variables, the
complex oscillation index is given by 1

hc(f)
, where hc(f) is the maximum of dzf

with respect to any complex coordinate transformation z. Combining this with the
observation that the proof of Theorem 3.3 of [8] can be easily modified to give a
condition under which a coordinate system is not C-adapted to f , implying that a
coordinate system in two variables is C-adapted if and only if it is R-adapted, we
observe that σc = σr in two dimensions.

In general, it is the complex oscillation index σc(ϕ) and not the real oscillation index
σr(ϕ) which governs the decay bounds for the exponential sums S0 and S. Many
simple examples show this; for example, consider the homogeneous polynomial
ϕ(x, y, z) = (x2 + y2 + z2)2 which is R-nondegenerate (but C-degenerate) and so
σr(ϕ) = 1/d(ϕ) = 3/4. However a simple computation using Gauss sums shows
that |S(ϕ, pk)| ≤ 10p−k/2 for all k ≥ 1 and when k is even, c0p

−k/2 ≤ |S(ϕ, pk)|
for large primes p. Here σc(ϕ) = 1/2. For lower bounds in great generality, see [6],
Proposition 3.9.

The exceptional class E. With the notions of the Newton diagram and the
principal part of ϕ, we can now describe the exceptional class E precisely. It is the
class of polynomials ϕ whose principal part ϕpr(x, y) = a(bx2 + cxy + dy2)m where
the quadratic polynomial bx2 + cxy + dy2 is irreducible over the rationals Q.

The p-adic number field. We fix a prime p and define the p-adic absolute value6

| · | = | · |p on the field of rationals Q as follows. For integers a ∈ Z, we define
|a| := p−k where k ≥ 0 is the largest power such that pk divides a. This p-adic
absolute value extends to all rationals a/b by |a/b| = |a|/|b| and satisfies the basic
conditions |uv| = |u||v| and |u + v| ≤ |u| + |v| for all rationals u, v ∈ Q, giving
Q a metric space structure d(u, v) = |u − v|. The p-adic absolute value in fact
satisfies a stronger version of triangle inequality called the ultrametric inequality:
|u+ v| ≤ max(|u|, |v|). This implies |u+ v| = |u| if |v| < |u| and so if v ∈ Br(u) :=
{w ∈ Q : |w − u| ≤ r}, then Br(v) = Br(u).

The p-adic field Qp is the completion of the rational field Q with respect to the
metric defined by the p-adic absolute value. The elements in the completed field

6We will also use the notation |z| for the usual absolute value on elements z ∈ C but the
context will make it clear which absolute value is being used.
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x ∈ Qp can be represented by a Laurent series

x =

∞∑︂
j=−N

ajp
j , aj ∈ Z/pZ = {0, 1, · · · , p− 1}, (6)

convergent with respect to |·| = |·|p which extends uniquely to all of Qp by |x| = pN

where a−N ̸= 0 is the first term of the series representation (6). We also define
|0| = 0.

The compact unit ball B1(0) = {x ∈ Qp : |x| ≤ 1} plays a special role as it is a
ring due to the ultrametric inequality. We call this compact ring the ring of p-adic
integers and denote it by Zp. Hence Qp is a locally compact abelian group and
has a unique Haar measure µ which we normalise so that µ(Zp) = 1. To carry out
Fourier analysis on Qp, we fix a non-principal additive character e defined by

e(x) := e2πi[
∑︁−1

j=−N ajp
j ] where x is represented as in (6).

All other characters χ on Qp are given by χ(x) = e(vx) for some v ∈ Qp. Hence
the Fourier dual of Qp is itself.

Hensel’s lemma. The following basic lemma harks back to the origins of p-adic
analysis and it, together with a generalisation described in Section 7, will be useful
for us.

Lemma 3.1. Let g ∈ Z[X] such that g(x0) ≡ 0 mod ps for some integer x0. If
pδ||g′(x0) (or |g′(x0)| = p−δ) for some δ < s/2, then there exists a unique x ∈ Zp
such that g(x) = 0 and x ≡ x0 mod ps−δ.

For a proof of Hensel’s lemma, see [15], Chapter 1.6.

The sum S0(ϕ, p
s) as an oscillatory integral. It is natural to analyse S0(ϕ, p

s)
by lifting this sum to an oscillatory integral defined over the p-adic field Qp.

First let us see how the complete exponential sum S(ϕ, ps) can be written as the
following oscillatory integral; we claim that

S(ϕ, ps) =

∫︂∫︂
Zp×Zp

e(p−sϕ(x, y)) dµ(x)dµ(y) (7)

holds. Consider a pair x0, y0 of integers and note that for any x ∈ Bp−s(x0) and
y ∈ Bp−s(y0), we have e(p−sϕ(x, y)) = e(p−sϕ(x0, y0)). This simply follows from
the definition of the character e. Hence the oscillatory integral in (7) can be written
as ∑︂

(x0,y0)∈[Z/psZ]2

∫︂∫︂
Bp−s (x0)×Bp−s (y0)

e(p−sϕ(x, y)) dµ(x)dµ(y)

=
∑︂

(x0,y0)∈[Z/psZ]2
e(p−sϕ(x0, y0))µ(Bp−s)2 = p−2s

∑︂
(x0,y0)∈[Z/psZ]2

e2πiϕ(x0,y0)/p
s

and this last sum is our complete exponential sum S(ϕ, ps). The last equality
follows since e(p−sϕ(x0, y0)) = e2πiϕ(x0,y0)/p

s

by the definition of e.
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A similar argument shows that our local sum S0(ϕ, p
s) has the following oscillatory

integral representation:

S0(ϕ, p
s) =

∫︂∫︂
|x|,|y|≤p−1

e(p−sϕ(x, y)) dµ(x)dµ(y). (8)

To simplify notation, we will denote the Haar measure dµ(x) by dx and µ(E) by
|E|.

4. A reduction of Theorem 1.1 to a basic bound for S0(ϕ, p
s)

In this section we will give a basic bound on the oscillatory integral in (8) which
represents our local sum S0(ϕ, p

s). This bound by itself will fall short in proving
the desired bound (5) in Theorem 1.1 and so one of our main tasks will be to find
a change of variables in (8) so that the bound formulated in this section, with the
transformed phase under this change of variables, is sufficient to establish Theorem
1.1.

First though, we observe that we may assume that ∇ϕ(0, 0) = 0. If ∇ϕ(0, 0) ̸= 0,
say ∂xϕ(0, 0) = c ̸= 0 and since c is a coefficient of ϕ, we have p ̸ | c whenever p /∈ P.
Then for any integer y ≡ 0 mod p, consider the polynomial g ∈ Z[X] defined by
g(x) = ϕ(x, y) and note that p ̸ | g′(x) for every x ≡ 0 mod p. Hence by Hensel’s
lemma, the map x→ g(x) defines a bijection on {x ∈ Z/psZ : x ≡ 0mod p} so that∑︂

x∈Z/psZ
x≡0 (mod p)

e2πig(x)/p
s

=

ps−1∑︂
u=0
p |u

e2πiu/p
s

which is equal to zero when s ≥ 2, and equal to 1 when s = 1. Hence

S0(ϕ, p
s) =

1

p2s

∑︂
(x,y)∈[Z/psZ]2
x,y≡0 (mod p)

e2πiϕ(x,y)/p
s

= 0 (9)

when s ≥ 2 and equal to p−2 when s = 1.

A key result in this paper is the following.

Theorem 4.1. For any ϕ ∈ Z[X,Y ] with ∇ϕ(0, 0) = 0, we can find a polynomial

ψ ∈ Q[X] such that if ϕ̃(x, y) = ϕ(x, y + ψ(x)), then h(ϕ) = h(ϕ̃) = h(ϕ̃pr).

This result was established in the euclidean setting by Ikromov and Müller, [8]. We
follow their argument closely but with an extra effort to ensure that the polynomial
ψ we end up with has rational coefficients. We postpone the proof until Section 6.

Theorem 4.1 is useful because there is a convenient expression for the height of
the principal part of a polynomial. This characterisation will be given later in
Proposition 4.4.

This change of variables (x, y) → (x, y + ψ(x)) depends only on ϕ. As described
in the introduction, the exceptional set of primes P include the prime divisors
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of the coefficients of the transformed phase ϕ̃(x, y) = ϕ(x, y + ψ(x)) ∈ Q[X,Y ].

Hence for p /∈ P, ϕ̃ will not only be a polynomial with rational coefficients, these
coefficients will be units (their p-adic absolute values are equal to 1) in the ring of
p-adic integers Zp. Hence implementing this change of variables in (8) shows that

S0(ϕ, p
s) = S0(ϕ̃, p

s).

Therefore in order to prove Theorem 1.1, according to Theorem 4.1, it suffices to
assume that the phase ϕ in the oscillatory integral (8) representing the local sum
S0 is a polynomial with rational coefficients lying in Zp and h(ϕ) = h(ϕpr).

We begin with the decomposition

S0(ϕ, p
s) =

∑︂
τ∈∆(ϕ)

∑︂
l⃗∈N2

F (⃗l)=τ

∫︂∫︂
|x|=p−l1 ,|y|=p−l2

e(p−sϕ(x, y)) dxdy (10)

introduced in [7]. Here, for each l⃗ = (l1, l2) ∈ N2, F (⃗l) is the face of Γ(ϕ) of largest

dimension which is contained in the supporting line of Γ(ϕ) perpendicular to l⃗. In
other words,

F (⃗l) = {t⃗ ∈ Γ(ϕ) : t⃗ · l⃗ = N (⃗l)} where N (⃗l) := min
t⃗∈Γ(ϕ)

t⃗ · l⃗.

Note that F (⃗l) is a compact face of Γ(ϕ) if and only if l1l2 ̸= 0 which explains why
only compact faces ∆(ϕ) enter into the decomposition of S0 above.

For each compact face τ ∈ ∆(ϕ) and each l⃗ such that τ = F (⃗l), write ϕ(x, y) =
ϕτ (x, y) + ητ (x, y). Then

ϕτ (p
l1x, pl2y) =

∑︂
(j,k)∈τ

p(j,k)·⃗l cj,kx
jyk = pN (⃗l)ϕτ (x, y)

and

ητ (p
l1x, pl2y) =

∑︂
(j,k)∈Γ(ϕ)\τ

p(j,k)·⃗l cj,kx
jyk = pN (⃗l) p gτ (x, y)

for some polynomial g ∈ Zp[X,Y ].

Changing variables to normalise the region of integration, we have

S0(ϕ, p
s) =

∑︂
τ∈∆(ϕ)

∑︂
l⃗∈N2

F (⃗l)=τ

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−s+N (⃗l)(ϕτ (x, y) + pgτ (x, y))) dxdy.

Now let us fix a compact face τ ∈ ∆(ϕ). If τ = {(α, β)} is a vertex, then ϕτ (x, y) =
cxαyβ is a monomial where c is a rational number with |c| = 1. If τ is a compact
edge, then

τ ⊂ {(t1, t2) : qt1 +mt2 = n}

for some integers (m, q, n) = (mτ , qτ , nτ ) with gcd(m, q) = 1 and ϕτ is a quasi-
homogeneous polynomial, ϕτ (r

κ1x, rκ2y) = rϕτ (x, y) for r > 0 where κ1 = q/n and
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κ2 = m/n. The polynomial ϕτ consists of at least two terms and so by homogeneity,
we can factor7

ϕτ (x, y) = c xαyβ
N∏︂
j=1

(yq − ξjx
m)nj (11)

for some roots {ξj}Nj=1 lying in Qalg. It will be convenient for us to think of the
roots {ξj} as lying in some finite field extension of Qp. Again c is a rational with
|c| = 1.

Assume, without loss of generality, that 1 ≤ q ≤ m. We define the homogeneous
distance8 dτ = dτ (ϕ) of ϕτ as

dτ :=
1

κ1 + κ2
=

n

m+ q
=

qα+mβ + qmM

m+ q
(12)

where M :=
∑︁N
j=1 nj . The point (dτ , dτ ) on the bisectrix lies on the line {(t1, t2) :

qt1+mt2 = n} containing τ . Hence dτ (ϕ) ≤ d(ϕ) for every compact edge τ ∈ ∆(ϕ).
If τ is the principal face, then dτ (ϕ) = d(ϕ) is the Newton distance of ϕ.

We will use the notationmpr(ϕ) to denote the maximal multiplicity among the roots
{ξj}Nj=1 appearing in the factorisation (11) of the principal part ϕpr of ϕ when π(ϕ)
is a compact edge.

The following simple lemma will be useful.

Lemma 4.2. Let τ ∈ ∆(ϕ) be a compact edge.

(a) If τ is not the principal face, then M =
∑︁N
j=1 nj ≤ dτ . Furthermore strict

inequality M < dτ holds unless an endpoint of τ lies on the bisectrix.

(b) Suppose that τ = π(ϕ) is the principal face, mpr(ϕ) > d(ϕ), and j∗ is such that
nj∗ := mpr(ϕ). Then nj < d(ϕ) for all j ̸= j∗ and ξj∗ ∈ Q.

(c) Again suppose that τ = π(ϕ) but now nj∗ = mpr(ϕ) = d(ϕ). Then either
ϕpr(x, y) = c(y2 + bxy + dx2)n is a power of a quadratic form or

ϕpr(x, y) = c xαyβ
N∏︂
j=1

(y − ξjx
m)nj , (13)

nj < nj∗ for all j ̸= j∗ and ξj∗ ∈ Q.

Proof. To prove (a), let us suppose that τ lies below the bisectrix so that the left
endpoint (α, β + qM) of τ satisfies α ≥ β + qM . Hence by (12),

dτ ≥ q(β + qM) + qmM

q +m
≥ (β + qM) +mM

q +m
≥ M

7See [8] for details.
8We are borrowing terminology from [8].
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since q ≥ 1. If the left endpoint (α, β + qM) does not lie on the bisectrix, then
we have the strict inequality α > β + qM which in turn implies that the strict
inequality dτ > M holds.

To prove (b), suppose that nj∗ > d(ϕ) and that there exists a 1 ≤ j ≤ N with
j ̸= j∗ such that d(ϕ) ≤ nj . Then M > 2d(ϕ) and so by (12),

d(ϕ) ≥ qmM

m+ q
>

2qm

m+ q
d(ϕ) ≥ d(ϕ)

which is a contradiction. Hence nj < d(ϕ) for all j ̸= j∗. To show that ξj∗ ∈ Q,
we argue by contradiction once again and suppose that the degree of ξj∗ over the
rationals is at least 2. Since the conjugates of ξj∗ all lie among the roots {ξj}Nj=1,
we would be able to find a conjugate ξj with j ̸= j∗. As all conjugates must have
the same multiplicity, we see that nj = nj∗ which we have just seen is impossible.

Finally to prove (c), suppose that nj∗ = d(ϕ) and that there is a 1 ≤ j ≤ N with
j ̸= j∗ and nj = nj∗ . Hence M ≥ 2nj∗ = 2d(ϕ) and so

d(ϕ) ≥ qmM

m+ q
≥ 2qm

m+ q
d(ϕ),

implying 2qm/(m+ q) ≤ 1 and hence q = m = 1. Plugging this back into (12), we
have

2d(ϕ) = α+ β +M

and since M ≥ 2d(ϕ), this gives a contradiction unless α = β = 0 and M = 2d(ϕ).
Hence d(ϕ) = nj∗ = nj and

ϕpr(x, y) = c(y − ξ1x)
n(y − ξ2x)

n = c(y2 + bxy + dx2)n

is a power of a quadratic form with n = nj . Otherwise we have nj < nj∗ = d(ϕ)
for all j ̸= j∗ and reasoning as part (b), we also conclude that ξj∗ ∈ Q.

□

The following theorem contains our basic estimate for S0 which will imply Theorem
1.1 via Theorem 4.1.

Theorem 4.3. Suppose that the coefficients of ϕ ∈ Q[X,Y ] are units in Zp.

(a) If π(ϕ) is a compact edge, then

|S0(ϕ, p
s)| ≲deg ϕ

⎧⎪⎨⎪⎩
p−s/d(ϕ) if mpr(ϕ) < d(ϕ)

sp−s/d(ϕ) if mpr(ϕ) = d(ϕ)

p−s/mpr if mpr(ϕ) > d(ϕ)

. (14)

(b) If π(ϕ) is a vertex, then

|S0(ϕ, p
s)| ≲deg ϕ sp−s/d(ϕ) (15)

and this improves to |S0(ϕ, p
s)|≲deg ϕ p

−s/d(ϕ) when the vertex π(ϕ) = (1, 1).
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(c) If π(ϕ) is an unbounded edge, then

|S0(ϕ, p
s)| ≲deg ϕ p−s/d(ϕ). (16)

To see how Theorem 4.3 implies Theorem 1.1 under the assumption h(ϕ) = h(ϕpr)
(which we can make by Theorem 4.1), we need the following characterisation of
h(ϕpr).

Proposition 4.4. Suppose that the principal face π(ϕ) of ϕ ∈ Q[X,Y ] is a compact
edge. Then

h(ϕpr) = max(d(ϕ),mpr(ϕ)).

Proof. In [21] it was shown that when ψ(x, y) = c xαyβ
∏︁N
j=1(y

q−ξjxm)nj is a quasi-

homogeneous polynomial with rational coefficients, then h(ψ) = max(dh(ψ),mQ(ψ))
where

mQ(ψ) := max(α, β, nj : ξj ∈ Q)

and dh(ψ) is the homogeneous distance given in (12). This result in [21] is a minor
adjustment of the corresponding euclidean result found in [8].

Note that if the principal face π(ϕ) is a compact edge, then the left endpoint
(α, β + qM) lies above the bisectrix (so that α < β + qM) and the right endpoint
(α+mM,β) lies below the bisectrix (so that β < α+mM). Hence by (12) we see
that max(α, β) < d(ϕ) and so by Lemma 4.2 part (b), we see that

h(ϕpr) = max(dh(ϕpr),mQ(ϕpr)) = max(d(ϕ),mpr(ϕ)). (17)

□

Recall that the Varčenko exponent ν(ϕ) = 1 if and only if h(ϕ) ≥ 2 and there is
an adapted coordinate system in which the principal face is a vertex. According to
Ikromov and Müller in [8] (Corollaries 2.3 and 4.3), a coordinate system z = (x, y)
is adapted to ϕ(x, y) if and only if one of the following conditions is satisfied:

(a) π(ϕ) is a compact edge and mpr(ϕ) ≤ d(ϕ);

(b) π(ϕ) is a vertex; or

(c) π(ϕ) is an unbounded edge.

Hence if the principal face π(ϕ) of our polynomial ϕ(x, y) is a vertex (d, d) (where
necessarily d = d(ϕ)), then the coordinates z = (x, y) are adapted and so ν(ϕ) = 1
when d = h(ϕ) ≥ 2 and ν(ϕ) = 0 when d = 1. In this case the bound in (15)
implies |S0(ϕ, p

s)| ≤ Csν(ϕ)p−s/h(ϕ), establishing Theorem 1.1 in this case. When
π(ϕ) is an unbounded edge, the coordinates are adapted and hence d(ϕ) = h(ϕ).
Thus (16) establishes Theorem 1.1.

Next suppose that π(ϕ) is a compact edge andmpr(ϕ) ̸= d(ϕ). Then by Proposition

4.4, the bound (14) implies |S0(ϕ, p
s)| ≤ Cp−s/h(ϕ) since we are assuming h(ϕ) =

h(ϕpr). This establishes Theorem 1.1 in this case. Finally suppose that π(ϕ) is a
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compact edge and mpr(ϕ) = d(ϕ). Then h(ϕ) = d(ϕ) by Proposition 4.4. If ϕ ∈ E ,
then (14) establishes Theorem 1.1 in this case.

Hence we may suppose that ϕ /∈ E . In this case, we claim that there is a coordinate
system in which the principal face is a vertex so that (15) can be used to show that
Theorem 1.1 holds in this case as well. Lemma 4.2 part (c) implies that

ϕpr(x, y) = c xαyβ
N∏︂
j=1

(y − ξjx
m)nj (18)

with ξj∗ ∈ Q. Recall that when ϕpr(x, y) = c(y2 + bxy + dx2)n is a power of a
quadratic, then ϕpr(x, y) = c (y − ξ1x)

n(y − ξ2)
n where ξ1, ξ2 ∈ Q since ϕ /∈ E .

This is of the form (18). It is simple matter to see that the change of variables
(x, y) → (x, y + ξmj∗) transforms our polynomial to one whose principal part is a
vertex.

Therefore Theorem 1.1 follows from Theorems 4.1 and 4.3.

5. Proof of Theorem 4.3

A key step in the proof of the bounds for the local sum S0(ϕ, p
s) in Theorem 4.3

will be to freeze one of the variables and estimate a sum in the other variable.
Equivalently, we will reduce to bounding a one dimensional oscillatory integral and
for this, we will employ the following useful bound.

Proposition 5.1. Let ψ ∈ Zp[X] and suppose there is an n ≥ 1 such that ψ(n)(x)/n! ̸≡
0 mod p for all x lying in some subset S ⊆ Z/pZ. Then there exists a constant C,
depending on the degree of ψ (and not on S or p) such that⃓⃓⃓ ∑︂

x0∈S

∫︂
Bp−1 (x0)

e(p−sψ(x)) dx
⃓⃓⃓
≤ Cp−s/n (19)

holds for all s ≥ 2. Furthermore when n = 1, the sum in (19) vanishes.

When S = Z/pZ, Proposition 5.1 was proved in [20] using a higher order Hensel
lemma. However the proof given in [20] also gives the strengthening stated here
where we consider a truncated integral (or sum) on which we know some derivative
of ψ is non-degenerate. We will outline the proof of Proposition 5.1 in Section 7.

Now let us recall the decomposition (10) of the oscillatory integral representation
of S0(ϕ, p

s) and write S0(ϕ, p
s) =

∑︁
τ∈∆(ϕ) Iτ where

Iτ :=
∑︂
l⃗∈N2

F (⃗l)=τ

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−s+N (⃗l)(ϕτ (x, y) + pgτ (x, y))) dxdy.

We will provide a bound for each Iτ with τ ∈ ∆(ϕ). We split into two cases: the
case in which τ is a compact edge and the case in which τ is a vertex.
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When τ is a compact edge. In this case, ϕτ is a quasi-homogeneous polynomial
which can be factored

ϕτ (x, y) = c xαyβ
N∏︂
j=1

(yq − ξjx
m)nj ;

see (11). If l⃗ is such that F (⃗l) = τ , then the vector l⃗ is perpendicular to the line

{(t1, t2) : qt1 +mt2 = n} containing τ if and only if l⃗ = l(q,m) for some integer

l ≥ 1. Hence N (⃗l) = ln and so

Iτ =
∑︂
l≥1

p−l(m+q)

∫︂∫︂
|x|,|y|=1

e(p−s+ln(ϕτ (x, y) + pgτ (x, y))) dxdy. (20)

Set κ =
⌈︁
s
n

⌉︁
− 1 so that s = κn+ r where 1 ≤ r ≤ n and split Iτ = I1τ + I

2
τ into two

parts where I1τ =
∑︁
l≥κ+1 Iτ,l and I

2
τ =

∑︁
l≤κ Iτ,l; here Iτ,l denotes the integral in

(20). Note that l ≥ κ+1 precisely when s− ln ≤ 0 and hence the integrand in Iτ,l
is identically equal to 1. Thus Iτ,l = (1− p−1)2 for such l and so

I1τ = (1− p−1)2
∑︂
l≥κ+1

p−l(m+q) ≲ p−(κ+1)(m+q) ≤ p−s(m+q)/n = p−s/dτ .

Since dτ ≤ d(ϕ), we have

|I1τ | ≲ p−s/d(ϕ) (21)

which is smaller than the bounds (14), (15), (16) in the statement of Theorem 4.3.
Hence (21) gives an acceptable contribution for Theorem 4.3.

Let us now concentrate on bounding each integral Iτ,l arising in I2τ when L :=
s− nl ≥ 2. In this case we will use Proposition 5.1 to bound

Iτ,L :=

∫︂∫︂
|x|,|y|=1

e(p−L(ϕτ (x, y) + pgτ (x, y))) dxdy.

Set
X = {(x0, y0) ∈ [Z/pZ]2 : x0y0 ̸= 0}

and note that the region of integration in the integral Iτ,L is precisely the set of
(x, y) ∈ Z2

p such that (x, y) is congruent mod p to an element of X.

We will split X = Z0 ∪ Z1 ∪ · · · ∪ ZN according to roots {ξj} of ϕτ . All the roots
arising from the quasi-homogeneous polynomials ϕτ with τ ∈ ∆(ϕ) are algebraic
numbers lying in our set A defining the exceptional primes P and hence lie in a
finite field extension of Qp. Therefore each p-adic absolute value | · | = | · |p extends
uniquely to these elements. Elementary considerations (see [21]) show that for
p /∈ P, |ξj |p = 1 and |ξj − ξk|p = 1 whenever j ̸= k.

We define

Z0 := {(x0, y0) ∈ X : ϕτ (x0, y0) ̸≡ 0 mod p} and

Zj := {(x0, y0) ∈ X : |yq0 − ξjx
m
0 | < 1} for 1 ≤ j ≤ N.

Note that Zj may be empty if there are no ordered pairs of elements of (x0, y0) ∈
(Z/pZ)2 for which the inequality defining Zj holds. Furthermore, the Zj are dis-
joint: if |yq0 − ξjx

m
0 | < 1 and j ̸= j′ then the ultrametric inequality shows that
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|yq0 − ξj′x
m
0 | = |yq0 − ξjx

m
0 + ξjx

m
0 − ξj′x

m
0 | = 1, since |ξjxm0 − ξj′x

m
0 | = 1 by the

separation of the roots.

This gives us a disjoint decomposition of X. Accordingly, we split Iτ,L =
∑︁N
j=0 Ij

where

Ij :=
∑︂

(x0,y0)∈Zj

∫︂∫︂
Bp−1 (x0,y0)

e(p−L(ϕτ (x, y) + pgτ (x, y))) dxdy.

Here Bp−1(x0, y0) = {(x, y) ∈ Z2
p : max(|x − x0|, |y − y0|) ≤ p−1} consists of those

elements of Z2
p that are congruent to (x0, y0) modulo p.

First we claim that I0 = 0. In fact, each integral appearing in the sum defining
I0 vanishes. Fix (x0, y0) ∈ Z0 and let Ix0,y0 denote the corresponding integral in
I0. By a simple extension of Euler’s homogeneous function theorem to the quasi-
homogeneous case, we have (qx,my) ·∇ϕτ (x, y) = nϕτ (x, y) and so ∇ϕτ (x0, y0) ̸≡ 0
mod p. Set φ(x, y) = ϕτ (x, y) + pgτ (x, y) and note that ∇φ(x0, y0) ̸≡ 0 mod p.
Hence the argument establishing (9) shows I(x0, y0) = 0 and thus I0 = 0.

Let us now examine the other terms Ij , 1 ≤ j ≤ N . We have

Ij =
∑︂

(x0,y0)∈Zj

∫︂∫︂
Bp−1 (x0,y0)

e(p−Lφ(x, y)) dxdy

=
∑︂

x0∈Z/pZ\{0}

∑︂
y0∈Zj,x0

∫︂∫︂
Bp−1 (x0,y0)

e(p−Lφ(x, y)) dxdy

where Zj,x0
= {y0 ∈ Z/pZ \ {0} : (x0, y0) ∈ Zj}.

Interchanging the sum in y0 and the x integration, we have

Ij =
∑︂

x0∈Z/pZ\{0}

∫︂
Bp−1 (x0)

(︂ ∑︂
y0∈Zj,x0

∫︂
Bp−1 (y0)

e(p−Lφ(x, y)) dy
)︂
dx.

Denoting Innerx0
(x) as the sum in y0, we have

Ij =
∑︂

x0∈Z/pZ\{0}

∫︂
Bp−1 (x0)

Innerx0
(x) dx.

For any fixed x0 ∈ Z/pZ \ {0} and x such that |x − x0| ≤ p−1, define ψx(y) to be
the function φ(x, y). Thus we have

Innerx0(x) =
∑︂

y0∈Zj,x0

∫︂
Bp−1(y0)

e(p−Lψx(y)) dy,

putting us in a position to employ our bound (19) since it is straightforward to

check that ψ
(nj)
x (y0)/nj ! ̸≡ 0 mod p for every y0 ∈ Zj,x0

. Hence the uniform bound

|Innerx0
(x)| ≤ Cdeg ϕ p

−L/nj

holds and when nj = 1, we have in fact Innerx0(x) = 0. This implies that

|Ij | ≤ Cdeg ϕ p
−L/nj but when nj = 1, Ij = 0. (22)
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Therefore |Iτ,L| ≤ Cdeg ϕ p
−L/mτ , where mτ is the maximal multiplicity of the

roots {ξj} of ϕτ . This gives us a bound on the sum of those terms in I2τ where
L = s− ln ≥ 2; write I2τ = I2,1τ + I2,2τ where I2,1τ :=

∑︁
1≤l≤κ
s−ln≥2

Iτ,l so that

|I2,1τ | ≤ C
(︂ ∑︂
1≤l≤κ

p−l(m+q)pln/mτ

)︂
p−s/mτ =

(︂ ∑︂
1≤l≤κ

p−ln[
1
dτ

− 1
mτ

]
)︂
p−s/mτ .

Hence

|I2,1τ | ≲deg ϕ

⎧⎪⎨⎪⎩
p−s/dτ if mτ < dτ

sp−s/dτ if mτ = dτ

p−s/mτ if mτ > dτ

. (23)

If τ = π(ϕ) is the principal face, then dτ = d(ϕ) andmτ = mpr(ϕ) so that (23) gives
an acceptable contribution to the bound (14) in Theorem 4.3. Now suppose that
the compact edge τ is not the principal face. By Lemma 4.2 part (a), we conclude
that mτ ≤ dτ . Furthermore, if the endpoint of τ does not lie on the bisectrix,
then in fact mτ < dτ and so (23) implies |I2,1τ | ≲ p−s/dτ ≲ p−s/d(ϕ) and this is an
acceptable bound as before.

Finally suppose that an endpoint of τ lies on the bisectrix. Then the principal face
π(ϕ) is a vertex and dτ = d(ϕ). The bound (23) gives an acceptable contribution
to the bound (15) in Theorem 4.3 unless the vertex π(ϕ) is (1, 1). In this case
mτ = dτ = d(ϕ) = 1 and the formula (12) for dτ shows two possible outcomes: (1)
either q =M = α = 1 and β = 0 in which case ϕτ = ax(y−ξxm) for some ξ ∈ Q or
(2) q =M = m = β = 1 and α = 0 in which case ϕτ = ay(y − ξx) for some ξ ∈ Q.
In either case, Iτ,L = I0 + Ij where nj = 1. Hence by (22) we see that Iτ,L = 0
implying in turn I2,1τ = 0 in this case.

It remains to treat I2,2τ where we are summing the integrals Iτ,l for 1 ≤ l ≤ κ and
s − ln = 1. The condition s − ln = 1 can only occur if l = κ and s ≡ 1 mod n.
Hence I2,2τ = Iτ,κ and s− κn = 1 so that

I2,2τ = p−κ(m+q)

∫︂∫︂
|x|,|y|=1

e(p−1(ϕτ (x, y))) dxdy

which is an exponential sum over a finite field. We claim that the bound

|I2,2τ | ≲ϕ p−s/d(ϕ) (24)

holds and as we have seen before, this is an acceptable bound.

First we can apply the Weil bound [19] for finite field sums (say to the y integral)
to see that

|I2,2τ | ≲ϕ p−( 1
2−

1
dτ

)p−s/dτ ;

here we used the identity κ(m+ q) = (s− 1)(m+ q)/n = (s− 1)/dτ . Therefore if
dτ ≥ 2, we obtain the bound (24). We now treat the case when dτ < 2.

First suppose that τ is not the principal face. Then mτ ≤ dτ by Lemma 4.2
which implies mτ = 1 (and hence dτ ≥ 1) so that ϕτ (x, y) = axαyβ(yq − ξxm)
for some ξ ∈ Q. If τ lies below the bisectrix, then the second coordinate of the
left endpoint must be equal to 1. Hence β + q = 1 implying q = 1, β = 0 and so
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ϕτ (x, y) = axα(y− ξxm). Similarly if τ lies above the bisectrix, then α = 0, m = 1
and so ϕτ (x, y) = ayβ(y − ξx). In either case ϕτ is either linear in y or linear in x
which implies that one of the integrals∫︂

|y|≤1

e(p−1(ϕτ (x, y))) dy,

∫︂
|x|≤1

e(p−1(ϕτ (x, y))) dx

is equal to 0. Hence ⃓⃓⃓∫︂∫︂
|x|,|y|=1

e(p−1(ϕτ (x, y))) dxdy
⃓⃓⃓
≲ p−1

which in turn implies

|I2,2τ | ≤ Cϕ p
−(1− 1

dτ
)p−s/dτ ≤ Cϕ p

−s/d(ϕ),

establishing (24) in this case.

Now suppose that τ is the principal face. Then dτ = d(ϕ). If dτ < 1, then τ
cannot contain any lattice points away from the coordinate axes. Hence α = β = 0,
M = 1 and so ϕτ (x, y) = a(yq − ξxm) for some ξ ∈ Q. Using the formula (12),
dτ = qm/(m+ q) and the restriction dτ < 1 shows q = 1. Therefore∫︂∫︂

|x|,|y|=1

e(p−1(ϕτ (x, y))) dxdy = −p−1

∫︂
|x|=1

e(p−1axm) dx (25)

and if m = 1, the above integral is O(p−2) leading to the bound

|I2,2τ | ≤ Cϕ p
−(2− 1

dτ
)p−s/dτ ≤ Cϕ p

−s/d(ϕ)

which proves (24). When m ≥ 2, we are stuck with the bound O(p−3/2) arising
from a character sum estimate for the integral in (25) but in this case, we have
dτ = m/(m+ 1) ≥ 2/3 and so

|I2,2τ | ≤ Cϕ p
−( 3

2−
1
dτ

)p−s/dτ ≤ Cϕ p
−s/d(ϕ)

which once again proves (24).

Finally suppose that τ is the principal face but dτ ≥ 1. Since∫︂∫︂
|x|,|y|=1

e(p−1(ϕτ (x, y))) dxdy =

∫︂∫︂
Z2
p

e(p−1(ϕτ (x, y))) dxdy + O(p−1),

we can use Cluckers’s bound [5, Theorem 3.2.1] to conclude that⃓⃓⃓∫︂∫︂
|x|,|y|=1

e(p−1(ϕτ (x, y))) dxdy
⃓⃓⃓
≲ p−1/dτ

which implies

|I2,2τ | ≤ Cϕ p
−s/dτ ≤ Cϕ p

−s/d(ϕ),

establishing (24) in all cases.
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When τ is a vertex. We will now consider the case where τ = (α, β) is a vertex.

This means that ϕτ (x, y) = cxαyβ a monomial. However, the sum over l⃗ will consist
of more than just integer multiples of a fixed vector.

Assume that τ is the endpoint of two edges e1 and e2, where e2 lies below (to the
right of) τ and e1 lies above (to the left of) τ . Hence if the edges are compact,

e1 ⊂ {(t1, t2) : q1t1 +m1t2 = n1} and e2 ⊂ {(t1, t2) : q2t1 +m2t2 = n2}

for some positive integers (qj ,mj), j = 1, 2 with gcd(qj ,mj) = 1. If the e2 is
unbounded (that is, it is a horizontal line), then e2 ⊂ {(t1, t2) : t2 = β}. Likewise
if e1 is unbounded (vertical), then e1 ⊂ {(t1, t2) : t1 = α}.

If both edges e1 and e2 are compact, then F (⃗l) = τ if and only if l⃗ = (l1, l2) satisfies

m1

q1
<
l2
l1
<
m2

q2
.

If one of the edges is unbounded, the corresponding upper or lower restriction of
the ratio l2/l1 is removed; for example, if e2 is an infinite horizontal edge and e1
is compact, then F (⃗l) = τ if and only if m1/q1 < l2/l1. We will, without loss of
generality, assume that α ≤ β.

Then N (⃗l) = l1α+ l2β and our integral Iτ to bound is

Iτ =
∑︂
l⃗∈N2

F (⃗l)=τ

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−s+N (⃗l)(cxαyβ + pgτ (x, y))) dxdy

=
∑︂

l1,l2≥1
l1

r1
t1
<l2<l1

r2
q2

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−s+N (⃗l)(cxαyβ + pgτ (x, y))) dxdy

with the understanding that if one of edges e1 and/or e2 is unbounded, then the
corresponding restriction on the ratio l2/l1 does not appear.

We decompose Iτ = I1τ + I2τ + I3τ into three pieces according to whether N (⃗l) ≥ s,

N (⃗l) = s − 1 and N (⃗l) ≤ s − 2, respectively. When N (⃗l) ≥ s, the integrand is
identically equal to 1 and so

I1τ ≤ (1− p−1)2
∑︂

l1,l2≥1

N (⃗l)≥s
l2/l1<r2/q2

p−l1−l2

if the edge e2 is compact. When e2 is unbounded, the only restriction on the sum

over l⃗ = (l1, l2) with l1, l2 ≥ 1 is N (⃗l) = l1α + l2β ≥ s. This is a geometric series,
and a straightforward argument shows

|I1τ | ≲

{︄
p−s/de2 if α ̸= β

sp−s/de2 if α = β
. (26)
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Next let us turn our attention to

I3τ =
∑︂

l1,l2≥1

s−N (⃗l)≥2
m1/q1<l2/l1<m2/q2

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−s+N (⃗l)φτ (x, y)) dxdy

where φτ (x, y) = cxαyβ + pgτ (x, y). Since ∇φτ (x, y) ̸≡ 0 mod p for any (x, y) ∈ Z2
p

satisfying |x| = |y| = 1, the same argument above showing that I0 = 0 shows that
I3τ = 0.

Finally, the treatment of

I2τ =
∑︂

l1,l2≥1

N (⃗l)=s−1
r1/t1<l2/l1<r2/q2

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−1cxαyβ) dxdy

follows along the same lines for I1τ , showing that (26) holds for I2τ as well. Hence
we have established Theorem 4.3 except in the solitary case that the principal face
of ϕ is (1, 1) where we need to improve the bound for Iτ to |Iτ | ≲ p−s in order to
finish the proof of Theorem 4.3.

The last step. When the vertex τ = (1, 1), then τ = π(ϕ) and d(ϕ) = 1. Here we
will show the improved bound |Iτ | ≲ p−s which will conclude the proof of Theorem
4.3.

Recall the decomposition Iτ = I1τ + I2τ + I3τ above where I3τ = 0 and in this case,

I1τ = (1− p−1)2
∑︂

l⃗:N (⃗l)≥s
m1/q1<l2/l1<m2/q2

p−l1−l2 (27)

with the understanding that l1, l2 ≥ 1 and if one of edges e1 and/or e2 is unbounded,
then the corresponding restriction on the ratio l2/l1 does not appear. Also

I2τ =
∑︂

l1,l2≥1

N (⃗l)=s−1
r1/t1<l2/l1<r2/q2

p−l1−l2
∫︂∫︂

|x|,|y|=1

e(p−1cxy) dxdy

so that we can write

I2τ = −(1− p−1)p−1
∑︂

l⃗:N (⃗l)=s−1
r1/t1<l2/l1<r2/q2

p−l1−l2 .

Thus we see that in this case (when τ = (1, 1)), Iτ is a difference of two explicit
sums of positive terms. A careful examination of this difference will exhibit the
additional cancellation we seek.

We will show this when the edges e1 and 2 are both infinite so the restrictions on

l⃗ = (l1, l2) are l1, l2 ≥ 1 and either N (⃗l) ≥ s or N (⃗l) = s − 1. The case when one
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edge (or both) is compact is similar. In this case, N (⃗l) = l1 + l2 and so

I1τ = (1− p−1)2
∑︂

l1,l2≥1
l1+l2≥s

p−l1−l2 = (1− p−1)2
∑︂
N≥s

(N − 1)p−N

and by the geometric series formula,

I1τ = (s− 1)p−s + −(s− 2)p−s−1.

In a similar but easy manner,

I2τ = −(1− p−1)p−1
∑︂

l1,l2≥1
l1+l2=s−1

p−l1−l2 = −(1− p−1)(s− 2)p−s

and so Iτ = I1τ + I2τ = p−s which shows the desired cancellation between the two
terms I1τ and I2τ .

This completes the proof of Theorem 4.3.

6. Proof of Theorem 4.1

Here we give the proof of Theorem 4.1 by developing an appropriate variant of an
algorithm due Ikromov and Müller in [8] which produces an adapted coordinate sys-
tem for any real-analytic function f . This algorithm constructs a series of changes
of variables, and except for the final one, all are given by a simple polynomial map.
The goal will be to show that the polynomial change of variables reached by the
penultimate stage satisfies the conclusion of Theorem 4.1.

6.1. Conditions for Adapted Coordinate Systems. For this section we will
work entirely with real-analytic functions f . We will observe what happens when
we apply the algorithm from [8] to a polynomial with rational coefficients.

The key observation is the one made in [21]: Corollary 2.3 from [8] is valid in any
perfect field K; in particular, it is valid over Q. The content of this corollary is to
relate the roots of a quasi-homogeneous polynomial f to its homogeneous distance
d(f). A polynomial f ∈ K[X,Y ] being quasi-homogeneous makes sense in any field
K and can be factored as

f(x, y) = c xαyβ
N∏︂
j=1

(yq − ξjx
m)nj

where c ∈ K and the roots {ξj}Nj=1 lie in some finite field extension of K. Here
gcd(m, q) = 1 and κ1 := q/n, κ2 := m/n are the dilation parameters so that
f(rκ1x, rκ2y) = rf(x, y) for r > 0. Recall that the homogeneous distance of f is
defined as

d(f) =
1

κ1 + κ2
=

qα+mβ + qmM

q +m

where M :=
∑︁N
j=1 nj . Finally set n0 = α and nN+1 = β.

We now reproduce the version Corollary 2.3 from [8] as it appeared in [21].
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Lemma 6.2 ([8], [21]). Let K be a perfect field and f ∈ K[X,Y ] be a quasi-
homogeneous polynomial as above. Without loss of generality suppose that κ2 ≥ κ1
or 1 ≤ q ≤ m.

(1) If there is a multiplicity nj∗ > d(f) for some 0 ≤ j∗ ≤ N + 1, then all the
other multiplicities must be strictly less than d(f); that is, nj < d(f) for
all 0 ≤ j ̸= j∗ ≤ N + 1. In particular, there is at most one multiplicity nj,
0 ≤ j ≤ N + 1 with nj > d(f).

(2) If κ2/κ1 /∈ N, then M =
∑︁N
j=1 nj < d(f).

(3) If κ2/κ1 ∈ N, then nj ≤ d(f) for any 1 ≤ j ≤ N such that ξj /∈ K.

The corollary says that the multiplicity of every root ξj , 1 ≤ j ≤ N, is bounded by
d(f) unless κ2/κ1 ∈ N, in which case there is at most one root ξj , 1 ≤ j ≤ N with
multiplicity exceeding d(f). If such a root exists, it necessarily lies in K and we
shall call it the principal root of f .

We will need the following theorem in [8].

Theorem 6.3 (Ikromov-Müller). Let f be a real-analytic function near the origin
with f(0, 0) = 0 and ∇f(0, 0) = 0. Then the given coordinates are not adapted to
f if and only if the following hold true:

(1) The principal face π(f) of the Newton polyhedron is a compact edge. It
thus lies on a uniquely determined line κ1t1 + κ2t2 = 1 with κ1, κ2 > 0.
Swapping coordinates if necessary, we may assume κ2 ≥ κ1.

(2) κ2

κ1
∈ N. Note that this implies that q = 1 in (11).

(3) The inequality mpr(f) > d(f) holds.

Moreover, in this case, an adapted coordinate system for fpr is given by y1 := x1,
y2 := x2 − axm1 , where a is the root of fpr in the sense of (11) with the maximum
multiplicity. The height of fpr is then given by h(fpr) = mpr(f).

We will apply Theorem 6.3 in the case when f has rational coefficients. In this case,
when the principal face is a compact edge, mpr(f) = max1≤j≤N nj where the {nj}
are the multiplicities of the roots of the principal part fpr(x, y) = cxαyβ

∏︁N
j=1(y

q−
ξjx

m)nj of f . We have fpr ∈ Q[X,Y ] is a quasi-homogeneous polynomial with
rational coefficients and we apply Lemma 6.2 with K = Q to conclude that if
nj∗ = mpr(f) > d(f), then the principal root ξj∗ ∈ Q of f is a rational number.

We will adopt the following terminology from [8]. If a pair of dilation parameters
κ = (κ1, κ2) is chosen so that Lκ = {(t1, t2) : κ1t1 + κ2t2 = 1} is a supporting
line of the Newton polygon (that is, it contains a face τ = τκ of the Newton

diagram Nd(f)), then we call fτ (x1, x2) =
∑︁

(j,k)∈τ cj,kx
j
1x
k
2 the κ-principal part of

f . Abusing notation, we will sometimes denote this by fκ. Note that fκ(x1, x2) is
a quasi-homogeneous polynomial such that fκ(r

κ1x1, r
κ2x2) = rfκ(x1, x2).
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6.4. Prerequisites to the Algorithm. The Weierstrass preparation theorem
holds for the ring Q{x1, x2} of convergent power series with rational coefficients.
This can be seen by either modifying the proof of the Weierstrass preparation
theorem for real coefficients given in [13] or observing that the Weierstrass prepa-
ration theorem holds for both R{x1, x2} (see [13]) and for the rings Q[[x1, x2]] of
formal power series over Q and R[[x1, x2]] of formal power series over R (see [1]),
and observing that the uniqueness of the factorisation in R[[x1, x2]] given by the
Weierstrass preparation theorem implies that the factorisation over Q[[x1, x2]] and
R{x1, x2} are the same.

This means that given an analytic function f ∈ Q{x, y}, convergent in a neighbour-
hood of the origin (with the real topology on Q), where f(0, x2) = xν11 x

ν2
2 f

′(x1, x2),
and where f ′(0, x2) = xm2 g(x2), g(0) ̸= 0, we can write f in the form

f(x1, x2) = U(x1, x2)x
ν1
1 x

ν2
2 F (x1, x2)

where

F (x1, x2) = xm2 + g1(x1)x
m−1
2 + · · ·+ gm(x1)

where U(0, 0) ̸= 0 and gj(0) = 0 for all j. Furthermore g1, . . . , gm ∈ Q{x1} are
uniquely determined, not just in Q{x1}, but also as formal power series in the larger
rings Q[[x1]] and R[[x1]]. The unit U is also uniquely defined as a power series in
R[[x1, x2]].

We may assume that gm is not zero. Then the roots r(x1) of F (x1, x2) have a
Puiseux series expansion

r(x1) = c1x
a
1 + c2x

b
1 + · · ·

where, importantly for us, the nonzero coefficients cl’s lie in Qalg, the algebraic
closure of Q and the exponents 0 < a < b < · · · are a strictly increasing sequence of
rational numbers. A reference showing the existence of a formal Puiseux expansion
of this form is Abhyankar’s book [1]. Combining this with the usual Puiseux theo-
rem for real power series as we did for the Weierstrass preparation theorem shows
that the series describing each root is convergent.

The Puiseux expansion of two or more distinct roots r of F may agree for the first
few terms and it will be important for us to quantify this.

We introduce the following notation from [8]. Let a1 < · · · < an be the distinct
leading exponents of the roots of F so that each root r(x1) = cxal1 + O(xA1 ) for
some c ̸= 0, 1 ≤ l ≤ n and for some A > al. For each l ∈ {1, 2, . . . , n}, we denote
by [ ·l ] the collection of roots with leading exponent al. Next, for every 1 ≤ l ≤ n,

let {c(α)l } denote the collection of distinct, leading nonzero coefficients appearing in
the expansion of a root with leading exponent al and let [ αl ] denote the collection

of roots with leading exponent al and leading coefficient c
(α)
l .

We continue to the second exponent in the expansion; for every l1 and α1, we let

{a(α1)
l1,l

: l ≥ 1} denote the collection of distinct exponents appearing in the second

term of the Puiseux expansion of the roots in
[︁ α1

l1

]︁
. Proceeding in this way, we can
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express each root r as

r(x1) = c
(α1)
l1

x
al1
1 + c

(α1,α2)
l1,l2

x
a
(α1)

l1,l2
1 + · · ·+ c

(α1,...,αp)
l1,...,lp

x
a
(α1,...,αp−1)

l1,...,lp

1 + · · ·

where the nonzero coefficients cl lie in Qalg and

c
(α1,...,αp−1,β)
l1,...,lp

̸= c
(α1,...,αp−1,γ)
l1,...,lp

whenever β ̸= γ. Also

a
(α1,...,αp−1)
l1,...,lp

> a
(α1,...,αp−2)
l1,...,lp−1

so that the terms in r have increasing exponents. Furthermore the exponents are
positive rational numbers.

The root cluster
[︂
α1 ··· αp

l1 ··· lp

]︂
denotes the collection of roots whose first p leading

terms are indexed by l1, α1, l2, α2, . . . , lp, αp. We will also introduce clusters where
the last exponent has been picked but not the last coefficient. These are denoted[︂
α1 ··· αp−1 ·
l1 ··· lp−1 lp

]︂
and equal the union over αp of the clusters

[︂
α1 ··· αp−1 αp

l1 ··· lp−1 lp

]︂
. The

notation N [cluster] will denote the number of roots in a cluster.

Since each al corresponds to the cluster [ ·l ], the collection of roots of F can be
expressed as the union over all l of these clusters. Then we can write

f(x1, x2) = U(x1, x2)x
ν1
1 x

ν2
2

n∏︂
l=1

Φ[ ·l ](x1, x2)

where
Φ[ ·l ](x1, x2) :=

∏︂
r∈[ ·l ]

(x2 − r(x1)).

The advantage of this decomposition is that it allows us to read off the vertices of
the Newton polygon.

Lemma 6.5. The points (Al, Bl) where

Al = ν1 +
∑︂
µ≤l

aµN [ ·
µ ] and Bl = ν2 +

∑︂
µ≥l+1

N [ ·
µ ]

are the vertices of the Newton polygon of f .

Here l ranges between 0 and n. When l = 0, we set a0 = 0 so that A0 = ν1 and
B0 = ν2 +m where m is the degree of F (x1, x2) as a polynomial in x2; that is, the
sum of the multiplicities of the roots of F . When l = n, Bn = ν2.

Proof. The Newton polygon of f is the same as the Newton polygon of xν11 x
ν2
2 F (x1, x2).

Consider any κ > 0 not among the exponents {a1, a2, . . . , an} and choose 0 ≤ lκ ≤ n
so that alκ < κ < alκ+1 (if an < κ, choose ln). Let Lκ = {(t1, t2) : t1 + κt2 = cκ}
be a supporting line of the Newton polygon of f . It either intersects the Newton
diagram in a vertex or a compact edge as κ is a positive, finite number. In fact we
will see that Lκ intersects the Newton diagram in a vertex.
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We say that a monomial xc1x
d
2 in the Puiseux expansion of F has degree c + κd

with respect to the weight (1, κ). A necessary and sufficient condition for a point
(c0, d0) to lie on Lκ is that it has minimal (1, κ)-degree among all the pairs (c, d)
arising as a monomial xc1x

d
2 in the Puiseux expansion of F .

For each factor x2 − r(x1) arising in F with the root r(x1) belonging to [ ·l ], the
term x2 has (1, κ)-degree equal to κ and the minimal (1, κ)-degree among the terms
in the Puiseux expansion of r(x1) is al. Hence the lowest-degree (1, κ)-monomial

appearing in F is x
Alκ
1 x

Blκ
2 since we take the xal1 term for l ≤ lκ and the x2 term for

l > lκ. This shows that Lκ intersects the Newton diagram at the vertex (Alκ , Blκ).

Note that each Al must be an integer (it is obvious that Bl is an integer) since the
vertices of the Newton diagram are lattice points. □

Now, notice that Al − Al−1 = −al(Bl − Bl−1), since N [ ·l ] is equal to Bl − Bl−1.
From this it immediately follows that the slope of the line connecting (Al−1, Bl−1)
to (Al, Bl) is −1/al. Therefore the line connecting (Al−1, Bl−1) to (Al, Bl) is given
by y = −(1/al)(x−Al) +Bl.

This line intersects the bisectrix at (dl, dl) where dl = −(1/al)(dl − Al) + Bl, so
dl =

Al+alBl

1+al
. If we index this line Lκl = {(t1, t2) : κl1t1 + κl2t2 = 1} by the dilation

parameters κl = (κl1, κ
l
2), then

κl1 =
1

Al + alBl
, and κl2 =

al
Al + alBl

so that al =
κl2
κl1
.

The vertical edge, which passes through (ν1, ν2 + m) (here m is the sum of the
multiplicities of all the roots r(x1) in F ), intersects the bisectrix at (ν1, ν1), and
the horizontal edge, passing through (An, ν2), is contained in a line intersecting the
bisectrix at (ν2, ν2). So the distance d(f) is given by max(ν1, ν2,maxl dl).

Finally, we observe that the κl-principal part of f is the same as the κl-principal
part of

c xν11 x
ν2
2

∏︂
j,α

(x2 − c
(α)
j x

aj
1 )N[

α
j ]

where c = U(0, 0). Since the κl-principal part of x2− c(α)j x
aj
1 equals c

(α)
j x

aj
1 if j < l

and equals x2 if l < j, we have

fκl(x1, x2) = clx
Al−1

1 xBl
2

∏︂
α

(x2 − c
(α)
l xal1 )N[

α
l ]. (28)

In view of (28) we say that the edge [(Al−1, Bl−1), (Al, Bl)] is associated to the
cluster of roots [ ·l ].

6.6. The Algorithm. We are now ready to describe the algorithm. Suppose that
f(x1, x2) is a real-analytic function near (0, 0) with rational coefficients. Further-
more suppose that the coordinates (x1, x2) are not adapted (otherwise there is
nothing to do).
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We apply Theorem 6.3 part (a) to conclude that the principal face π(f) is a compact
edge which lies on a uniquely determined line Lκ = {(t1, t2) : κ1t1+κ2t2 = 1} with
κ1, κ2 > 0. The principal part fpr is just the κ-principal part of f . By Lemma 6.5
the compact edges of Nd(f) are given by [(Al−1, Bl−1), (Al, Bl)] with 1 ≤ l ≤ n.
Choose λ so that the principal face π(f) of f is τλ := [(Aλ−1, Bλ−1), (Aλ, Bλ)].
Therefore by (28), we have

fpr(x1, x2) = fκλ(x1, x2) = c x
Aλ−1

1 xBλ
2

∏︂
α

(x2 − c
(α)
λ xaλ1 )N[

α
l ]. (29)

The slope of τλ is −1/aλ so that aλ = κ2/κ1. By Theorem 6.3 part (b), aλ ∈ N.
Furthermore by part (c), there exists an index β such that

mpr(f) = N
[︁
β
λ

]︁
> d(f) =

Aλ + aλBλ
1 + aλ

, and c
(β)
λ ∈ Q. (30)

The root c
(β)
λ is the principal root of fpr.

The first step is to apply x = σ(y) where y1 := x1 and y2 := x2 − c
(β)
λ xaλ1 and put

f̃ = f ◦σ. Then f̃(y1, y2) is equal to f(y1, y2+ c(β)λ yaλ1 ). Since aλ is an integer, this
is a polynomial change of variables.

We want to see what happens to the Newton diagram from this change of variables.
We will use the ˜︁ notation to denote quantities in the variables (y1, y2); for example

Ũ(y1, y2) = U(y1, y2 + c
(β)
λ yaλ1 ). Hence

f̃(y1, y2) = Ũ(y1, y2)y
ν1
1 (y2 + c

(β)
λ yaλ1 )ν2

∏︂
l,α

(︁
y2 − (r(y1)− c

(β)
λ yaλ1 )

)︁N[αl ]
and so each root r̃(y1) of f̃ has the form

r̃(y1) = c
(α1)
l yal1 − c

(β)
λ yaλ1 + higher order terms.

For l < λ, the lowest degree term in the root is left unchanged, so we have ãl = al.

Furthermore the multiplicities N˜︂[ ·l ] are the same as the corresponding multiplicities
for f .

For l > λ, any root r in any cluster [ ·l ] (including the xν22 term) is transformed into
a root with leading exponent aλ. The same happens for roots in [ ·λ ] that are not

in
[︁
β
λ

]︁
. Finally if r ∈

[︁
β
λ

]︁
, then the leading exponent of r̃ is of the form a

(β)
λ,l2

> aλ.

Following Ikromov and Müller [8], we separately consider two cases depending on
whether or not there is a root that maps to a root with leading exponent aλ.

Case 1: This is the case where there is at least one root that maps to a root
with leading exponent aλ. This implies that ãλ = aλ. We have B̃λ = N

[︁
β
λ

]︁
since the roots r̃ with leading exponent greater than aλ are precisely those roots
corresponding to r ∈

[︁
β
λ

]︁
.
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We then see that Ãλ = Ãλ−1 + aλBλ − aλN
[︁
β
λ

]︁
so that

(Ãλ, B̃λ) =
(︁
Aλ−1 + aλBλ − aλN

[︁
β
λ

]︁
, N

[︁
β
λ

]︁)︁
.

The inequality in (30) is equivalent to the statement that Ãλ < B̃λ. Therefore the

edge [(Ãλ−1, B̃λ−1), (ÃλB̃λ)] lies entirely above the bisectrix and is thus not the

principal face. Hence the principal face is associated to some subcluster
[︂
β ·
λ λ2

]︂
in

the original coordinates (or is a horizontal edge in which case the new coordinates
are adapted).

Case 2: This is the other case. Now there is no root with leading exponent aλ in
the new coordinates and again the principal face corresponds to a subcluster of the
same form (or is an unbounded edge in which case we are done).

If f̃ is not yet expressed in an adapted coordinate system (so that the conditions
(1)-(3) in Theorems 6.3 still hold), we continue the procedure. Now, the later
steps are similar. If the conditions (1)-(3) are satisfied, we again take the principal
root, which is known to exist and is a rational number. In terms of the original
coordinates, we now have a change of coordinates x = σ(2)(y) of the form

y1 := x1; y2 := x2 − (c
(β)
λ xaλ1 + c

(β,β2)
λ,λ2

x
a
(β)
λ,λ2

1 )

where the coefficients are, once again, rational, and the exponents are integers, and
now the new principal face will be a compact edge associated to a further subcluster
of the original root cluster, or it will be an unbounded edge, in which case the new
coordinates are adapted.

We iterate this procedure. If this procedure terminates after finitely many steps,
then we have arrived at a polynomial shear transformation that converts the coor-
dinates into adapted coordinates. The conclusion of Theorem 4.1 therefore follows.

On the other hand, it is possible that this procedure does not terminate after finitely
many steps. In this case, the multiplicities

Nk := N
[︂
β β2 ··· ·
λ λ2 ··· λk+1

]︂
are a nonincreasing sequence of positive integers and hence eventually constant.
We can therefore find a polynomial ψ0 ∈ Q[X] such that the function f0(x1, x2) :=
f(x1, x2 + ψ0(x2)) has an analytic root

ρ(x1) := c
(β)
λ xaλ1 + · · ·

where each coefficient of this root is rational and where ρ is not a polynomial.
Furthermore, ψ0 can be chosen so that ρ(x1) is the only root with leading exponent
λ, but the root ρ may have higher multiplicity.

Now if we take f̃(y1, y2) := f0(y1, y2 + c
(β)
λ yaλ1 ), the previous arguments imply that

the principal face of f̃ must be the final non-horizontal edge in the Newton diagram.
Furthermore f̃ does not have a vanishing root because this would imply that f0 has

a root c
(β)
λ xaλ1 , which cannot exist because that would contradict the multiplicity

assumption on f and the particular choice of ψ0.
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We claim that f̃ satisfies the conclusion of Theorem 4.1. We will do this by making
a further, non-polynomial change of variables that yields an adapted coordinate
system.

By the construction of f̃ , the vertices of the Newton polyhedron of f̃ are given by
(A0, B0), . . . , (AλBλ) whereBλ = 0 and the principal edge is [(Aλ−1, Bλ−1), (Aλ, Bλ)],

where Aλ−1 < Bλ−1. From (29), we see that the principal part of f̃ is

f̃pr(x1, x2) = cx
Aλ−1

1 (x2 − c
(β)
λ xaλ1 )N

where N = Bλ−1 > ν1.

We will now apply Proposition 4.4 to show that the height of f̃pr is equal toN . Since

the principal face of f̃ is the compact edge [(Aλ−1, Bλ−1), (Aλ, Bλ)] and Aλ−1 <

Bλ−1 = N , we see that d(fpr) < N . But the root c
(β)
λ has multiplicity N as a root

in the sense of the factorisation (11), so this must be the principal root of f̃pr and

thus the height of ̃fpr is N by Proposition 4.4.

We now consider the function f∗(y1, y2) given by f̃(y1, y2 + ρ(y1)). The nonzero
roots r̃ are given by r − ρ with r ∈ [ ·l ] for some l < λ and they have the same
multiplicities and leading exponents as r. This change of variables deletes the last
vertex of the Newton polygon since the last factor changes into yN2 and the principal
face is now an unbounded horizontal edge. Therefore the Newton distance is N ,
the multiplicity of the vanishing root and so the height of f , the height of f∗, the
height of f̃ , and the height of ̃fpr are all equal to N .

The completes the proof of Proposition 4.1.

7. Hensel’s lemma and the proof of Proposition 5.1

A weaker version of Proposition 5.1 was established in [20] but the argument given
in [20] readily extends to give a proof of Proposition 5.1. Here we give an outline
of the proof which relies on a generalisation of the classical Hensel lemma. The
following result was established in [20].

Lemma 7.1. Let g ∈ Zp[X] with p > deg(g). Suppose there exists an integer L ≥ 1
such that for any x0 ∈ Zp,

1. |g(k+1)(x0)g(x0)| < |g(k)(x0)g′(x0)|, for all 1 ≤ k ≤ L− 1, and

2. |g(x0)| < |g(L)(x0)g′(x0)|.

Then there exists a unique x ∈ Zp such that g(x) = 0 and |x−x0| ≤ |g(x0)g′(x0)−1|.

Remarks:

1. The lemma is valid for all primes p but then the derivatives g(k)(x) appearing
in the statement of the lemma need to be replaced by g(k)(x)/k!.
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2. The L = 1 case is the classical statement of Hensel’s lemma. In this case,
condition 1 is vacuous and 2 reduces to the usual hypothesis |g(x0)| < |g′(x0)|2. In
particular if g(x0) ≡ 0 mod ps and pδ||g′(x0) where δ < s/2, then |g(x0)| < |g′(x0)|2.
The conclusion implies that there exists a unique x ∈ Zp with x ≡ x0 mod ps−δ

and g(x) = 0.

3. The lemma holds in any field K, complete with respect to any nontrivial nonar-
chimedean absolute value | · | and g ∈ o[X] where o = {x ∈ K : |x| ≤ 1}.

4. The proof is a small variant of the usual proof of Hensel’s lemma using the
Newton formula to produce an approximating sequence to a solution of a polynomial
equation.

We now turn to the proof of Proposition 5.1 where we seek to prove the following:
suppose ψ ∈ Zp[X] and that for some n ≥ 1, ψ(n)(x0)/n! ̸≡ 0 mod p for all x0 ∈ S
in some set S ⊆ Z/pZ. Then for

I :=
∑︂
x0∈S

∫︂
Bp−1 (x0)

e(p−sψ(x)) dx,

we have |I| ≤ Cp−s/n for all s ≥ 2 with a constant C depending only on n and the
degree of ψ. This is the bound (19).

When n = 1 then each integral in the above sum over S vanishes. This follows in
the same way we showed I0 = 0 in the proof of Theorem 4.3.

Suppose now n ≥ 2, and, to simplify matters, we will assume that s ≡ 0 mod n.
The other cases are slightly more involved, especially the case s ≡ 1 mod n but
here we just want to give a general outline how to prove (19). When s ≡ 0 mod n,
then s = tn for some t ≥ 1. We write

I =
∑︂
x0∈S

∑︂
u0∈Z/ptZ

u0≡x0 mod p

∫︂
Bp−t (u0)

e(p−ntψ(x)) dx =

∑︂
x0∈S

∑︂
u0∈Z/ptZ

u0≡x0 mod p

p−t
∫︂
|u|≤1

e(p−ntψ(u0+p
tu)) du =

∑︂
x0∈S

∑︂
u0∈Z/ptZ

u0≡x0 mod p

p−te(p−ntψ(u0))Tx0,u0

where

Tx0,u0 :=

∫︂
|u|≤1

e
(︁
p−(n−1)t

n−1∑︂
r=1

1

r!
ψ(r)(u0)p

t(r−1)ur
)︁
du.

We break up the sum over

R := {(x0, u0) ∈ S × Z/ptZ : x0 ≡ u0 mod p} = R1 ∪ · · · ∪Rn
into n disjoint sets where

R1 = {(x0, u0) ∈ R : |ψ(n−1)(u0)| ≤ p−t},

R2 = {(x0, u0) ∈ R : |ψ(n−1)(u0)| > p−t and |ψ(n−2)(u0)| ≤ p−t|ψ(n−1)(u0)|}
...
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Rn−1 =
{︂
(x0, u0) ∈ R : |ψ′′(u0)| > p−t|ψ′′′(u0)| > · · · > p−(n−2)t

and |ψ′(u0)| ≤ p−t|ψ′′(u0)|
}︂
,

and

Rn =
{︂
(x0, u0) ∈ R : |ψ′(u0)| > p−t|ψ′′(u0)| > · · · > p−(n−2)t|ψ(n−1)(u0)| > p−(n−1)t

}︂
.

We make the following claim:

• #Rj ≤ deg(ψ), 1 ≤ j ≤ n− 1; and
• Tx0,u0

= 0 for every (x0, u0) ∈ Rn.

For j = 1, we apply the classical Hensel lemma (the L = 1 case in Lemma 7.1)
to g(x) = ψ(n−1)(x) to deduce that for every (x0, u0) ∈ R1, there exists a unique
x ∈ Zp such that ψ(n−1)(x) = 0 and x ≡ u0 mod pt. Hence #R1 ≤ deg(g) ≤ deg(ψ).

Next for (x0, u0) ∈ R2, consider g(x) = ψ(n−2)(x) so that |g(u0)| ≤ p−t|g′(u0)| and
|g′(u0)| > p−t. Once again the classical version of Hensel implies that there exists
a unique x ∈ Zp such that g(x) = 0 and x ≡ u0 mod pt. Hence #R2 ≤ deg(g) ≤
deg(ψ).

Now for (x0, u0) ∈ Rj with 3 ≤ j ≤ n − 1, consider g(x) = ψ(n−j)(x) so that

|g(u0)| ≤ p−t|g′(u0)| and |g′(u0)| > p−t|g′′(u0)| > · · · > p−(j−1)t. Applying Lemma
7.1 with L = j − 1 shows that there exists a unique x ∈ Zp with g(x) = 0 and
x ≡ u0 mod pt. Hence #Rj ≤ deg(g) ≤ deg(ψ).

Finally for (x0, u0) ∈ Rn, we define σ = t(n − 1) − t − ν where p−ν := |ψ′′(u0)|.
Note that (x0, u0) ∈ Rn implies that |ψ′′(u0)| > p−(n−1)t+t and so t+ ν < (n− 1)t,
implying σ ≥ 1. Hence, setting

Ψ(u) :=

n−1∑︂
r=1

1

r!
ψ(r)(u0)p

t(r−1)ur,

we have

Tx0,u0
=

∫︂
|u|≤1

e(p−(n−1)tΨ(u))du =
∑︂

w∈Z/pσZ

∫︂
Bp−σ (w)

e(p−(n−1)tΨ(u))du

=
∑︂

w∈Z/pσZ

p−σ
∫︂
|y|≤1

e(p−(n−1)tΨ(w + pσy)) dy.

Now observe that Ψ(w + pσy) = Ψ(w) + pσψ′(u0)y +

1

2
ψ′′(u0)p

t
(︁
(w+pσy)2−w2

)︁
+· · ·+ 1

(n− 1)!
ψ(n−1)(u0)p

t(n−2)
(︁
(w+pσy)n−1−wn−1

)︁
.

However since (x0, u0) ∈ Rn,⃓⃓⃓⃓
1

2
ψ′′(u0)p

t
(︁
(w + pσy)2 − w2

)︁⃓⃓⃓⃓
= p−t−σ−ν = p−t(n−1)
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and, by comparing ψ(j)(u0) to ψ′′(u0) and using the fact that σ > 1, we have for
3 ≤ j ≤ n− 1: ⃓⃓⃓⃓

1

j!
ψ(j)(u0)p

t(j−1)
(︁
(w + pσy)j − wj

)︁⃓⃓⃓⃓
≤ p(j−2)t

⃓⃓⃓
ψ′′(u0)p

t(j−1)
(︁
(w + pσy)j − wj

)︁⃓⃓⃓
≤

⃓⃓
ψ′′(u0)p

tpσ
⃓⃓

= p−t(n−1).

This means that the j ≥ 2 terms in the sum defining Ψ are divisible by pt(n−1).
Hence

Tx0,u0
=

∑︂
w∈Z/pσZ

p−σe(p−(n−1)tΨ(w))

∫︂
|y|≤1

e(p−(n−1)t+σψ′(u0)y) dy

and this last integral is equal to zero since (x0, u0) ∈ Rn implies

|ψ′(u0)| > p−t|ψ′′(u0)| = p−t−ν = pσ−t(n−1)

and so pt(n−1)−σ ̸ |ψ′(u0).

This establishes the claim which implies

|I| ≤
⃓⃓⃓
p−t

n−1∑︂
j=1

∑︂
(x0,u0)∈Rj

e(p−ntψ(u0))Tx0,u0

⃓⃓⃓
≤ (n− 1)deg(ψ)p−t = C p−s/n,

giving us (19).

References

[1] S. S. Abhyankar. Algebraic geometry for scientists and engineers, volume 35 of Mathematical

Surveys and Monographs. American Mathematical Society, Providence, RI, 1990.

[2] A. A. Albarracı́n-Mantilla and E. León-Cardenal. Igusa’s local zeta functions and exponential
sums of arithmetically non degenerate polynomials. J. Théor. Nombres Bordeaux, 30(1):331–
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