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In this paper, we introduce new relaxations for the hypograph of composite functions assuming that the outer-
function is supermodular and concave-extendable. Relying on the recently introduced relaxation framework
of [17], we devise a separation algorithm for the graph of the outer-function over P , where P is a special
polytope introduced in [17] to capture the structure of each inner-function using its finitely many bounded
estimators. The separation algorithm takes O(dn logd) time, where d is the number of inner-functions and n
is the number of estimators for each inner-function. Consequently, we derive large classes of inequalities that
tighten prevalent factorable programming relaxations. We also generalize a decomposition result of [26, 6]
and devise techniques to simultaneously separate hypographs of various supermodular, concave-extendable
functions using facet-defining inequalities. Assuming that the outer-function is convex in each argument, we
characterize the limiting relaxation obtained with infinitely many estimators as the solution of an optimal
transport problem. When the outer-function is also supermodular, we obtain an explicit integral formula for
this relaxation.

Key words : Mixed-integer nonlinear programs; Factorable programming; Supermodularity; Staircase
triangulation; Convexification via optimal transport

MSC2000 subject classification : Primary: 90C11, 90C26, 90C30; secondary: 60E15
OR/MS subject classification : Primary: programming: integer: nonlinear; secondary: programming:

nonlinear: theory; programming: integer: cutting plane-facet generation
History :

1. Introduction Mixed-integer nonlinear programs are typically solved using branch-and-
bound (B&B); an algorithm that, in the branching step, refines a partition of the variable domains
and then, in the bounding step, chooses one partition element to construct a relaxation for the
problem. To guarantee that B&B converges, relaxations are constructed so that they approach the
original problem as the partition element shrinks. Such relaxations can be constructed using the
factorable programming (FP) technique, which is currently used by most state-of-the-art solvers
[41, 3, 25, 44]. This technique recursively traverses the expression tree for each nonlinear function
and relaxes each operator over a bounding box that covers the ranges for all the operands. More
specifically, FP treats each function as a recursive sum and/or product of univariate functions.
The technique then relaxes bilinear terms over variable bounds using McCormick envelopes [23]
and relaxes each univariate function using its function-specific structure over the range of the
independent variable. It is widely accepted that B&B convergence improves if, for any given partition
size, a tighter relaxation can be constructed. Although the FP relaxation can be tightened using
relaxation hierarchies [36, 2, 28, 20], doing so increases the relaxation size considerably because
hierarchies introduce new products and variables to linearize the products.
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FP relaxations can be weak because they ignore operand structure while constructing the
relaxation for each operator. Instead, [17] recently proposed a new relaxation, referred to hereafter
as the composite relaxation, that is tighter than the FP relaxation and uses the same set of variables.
The composite relaxation is constructed by relaxing the graph of the outer-function, referred
to as the operator in FP parlance, over a polytope P . Instead of just using the bounds for the
inner-functions/operands, this polytope allows the relaxation constructor to utilize much more of
their structure. This structure is derived from estimators of the inner-functions and their bounds.
The main contribution of [17] is that using an oracle that separates the graph of the outer-function
over a specific well-structured subset of P , which we refer to as Q, the paper constructs a fast
combinatorial algorithm to separate the graph over P . Unfortunately, without any further structure,
even maximizing a general outer-function over Q is NP-Hard. Therefore, to efficiently utilize this
algorithm, there is a need to identify tractable separation problems over Q.

Here, we identify a class of such instances. In particular, we shall explicitly convexify the
outer-function over P and Q, assuming, of course, that the outer-function has some structure.
Specifically, we will assume that the function is supermodular and that its concave envelope
is determined by its value at the extreme points of Q, a property referred to as its concave-
extendability over Q. The polytope Q generalizes the hypercube, a set that arises as the partition
element in rectangular B&B and is used as the function domain in many convexification studies
[1, 27, 30, 35, 40, 4, 30, 24, 7, 38, 39, 6, 10, 15]. Our use of Q provides a concrete illustration that
domains, besides the hypercube, can be used to derive general-purpose cuts for MINLPs.

The sole example of composite relaxations in the literature [17] for which explicit inequalities are
available concerns the product of two bounded functions each furnished with an underestimator.
We now describe ways in which we extend these results beyond the above example setting. First, as
mentioned, we treat a larger class of outer-functions, in particular, those that are supermodular
and concave-extendable over Q. Second, we allow arbitrarily many estimators for each function.
Formally, for a composite function with d inner-functions, each equipped with n estimators, we
devise an algorithm that generates, whenever possible, a facet-defining inequality in O(dn logd)
time to separate a given point from the hypograph of the outer-function over Q. The number of
facet-defining inequalities of this hypograph is

(
dn

n,n,...,n

)
, which, by Stirling’s approximation, grows

asymptotically as fast as d
dn+1

2

(2nπ)
d−1
2

, or exponentially with respect to d and n. Though numerous,

since these inequalities are generated using a fast combinatorial separation algorithm, they can be
derived iteratively, with little computational overhead, to cut off infeasible regions from MINLP
relaxations. The geometric structure of these inequalities relates to a certain triangulation of Q,
which provides many insights. We show that results in [26] and [6] regarding separability of concave
envelopes can be generalized to our setting. We also show that even when additional estimators are
available, any inequalities generated using fewer estimators are still facet-defining. We specialize our
results to the example setting of [17], proving that the inequalities therein yield the convex hull of
the graph of the bilinear product over P ; the polytope which was modeled using one estimator for
each inner function. Third, we extend our algorithm to allow simultaneous separation of a vector of
composite functions, each with an outer-function that is supermodular and concave-extendable over
Q. Fourth, we consider infinitely many estimators for each inner-function, assuming additionally
that the outer-function is convex when all but one of its arguments are fixed. We show that, in
this case, the composite relaxation arises as the solution of an optimal transport problem [45].
The reduction proceeds by expressing each inner-function as the expectation of a random variable
that is completely determined by its estimators. When the outer-function is also supermodular,
we provide an explicit integral formula, whose evaluation gives a closed-form expression for the
composite relaxation.



Author: Tractable relaxations of composite functions
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuccript number!) 3

Notation: Throughout this paper, we shall denote the convex hull of set S by conv(S), the
projection of a set S to the space of x variables by projx(S), the extreme points of S by vert(S),
the dimension of the affine hull of S by dim(S), and the relative interior of S by ri(S). For a
function f : Rn→R, we denote its convex (resp. concave) envelope over a set S by convS(f) (resp.
concS(f)), and its graph by gr(f). In order to make the relationship between variables and functions
transparent, we will use the same name for the variable and the function, when the variable models
the graph of the function. More specifically, when we write f(·) we refer to the the function and
when we write f(x) we refer to the value of f(x) at x. The vector ei will denote the ith standard
basis vector in RN , where we will not specify N when it is apparent from the context.

2. Problem setup and geometric structure Let φ ◦ f : X ⊆ Rm → R be a composite
function denoted as (φ ◦ f)(x) = φ

(
f(x)

)
, where f : X → Rd is a vector of functions defined as

f(x) :=
(
f1(x), . . . , fd(x)

)
for x ∈X, and φ : Rd→ R is a continuous function. We shall refer to

f(·) as inner-functions and φ(·) as the outer-function. Throughout this paper, we assume that
for i ∈ {1, . . . , d} the inner-function f(·) is bounded, that is, for every x ∈X, fLi ≤ fi(x)≤ fUi . It
turns out that we can assume, without loss of generality, that, for every x∈X, f(x)∈ [0,1]d and
φ : [0,1]d→R since otherwise we can define f̃i(x) = (fi(x)− fLi )/(fUi − fLi ) as the ith inner-function
and φ̃(f) = φ

(
(fU1 − fL1 )f1 + fL1 , . . . , (f

U
1 − fLd )fd + fLd

)
as the outer-function. In [17], the authors

proposed a framework to relax the graph of φ ◦ f , that is, gr(φ ◦ f) =
{

(x,φ)
∣∣ φ= φ

(
f(x)

)
, x∈X

}
.

In this section, we review these ideas and relate our setting to some relevant convexification results.

2.1. A relaxation framework for composite functions Let n∈Z. Let u : Rm→Rd×(n+1)

be a vector of bounded functions defined as u(x) =
(
u1(x), . . . , ud(x)

)
for x ∈ Rm and let a =

(a1, . . . , ad) be a vector in Rd×(n+1). For all i and x ∈X, assume that fi(x) ∈ [ai0, ain] and that u
and a satisfy the following inequalities:

0≤ ai0 < · · ·<ain ≤ 1, uij(x)≤min
{
fi(x), aij

}
, ui0(x) = ai0, uin(x) = fi(x). (1)

In other words, each uij(·) underestimates the corresponding inner-function fi(·) and is bounded
from above by a constant aij. In particular, uin(·) (resp. ui0(·)) is a special underestimator that
equals fi(·) (resp. ai0). In [17], the polytope P :=

∏d

i=1Pi, where

Pi =
{
ui ∈Rn+1

∣∣ uij ≤ uin and ai0 ≤ uij ≤ aij for all j ∈ {0, . . . , n}
}
, (2)

was introduced as an abstraction of underestimators for the inner-functions f(·). We review some
basic ideas regarding the structure of P . First, the polytope Pi introduces a variable uij for each
underestimator uij(·). Thus, uij ≤ uin (resp. uij ≤ aij) models that uij(·) underestimates fi(·) (resp.
aij). Since ai0 is a lower bound for fi(·) on X, Proposition 1 in [17] shows that we are allowed
to impose the constraint ai0 ≤ uij. Second, our assumption that each inner function fi(·) has n
underestimators is without loss of generality. Third, if some of the estimators are overestimators,
Proposition 2 in [17] gives an affine transformation to reduce the treatment to one involving
only underestimators. The following result shows how relaxations for composite functions can
be constructed by relaxing the outer-function over P . To this end, we extend the outer-function
φ : Rd→R to define φ̄ : Rd×(n+1)→R as a function so that

φ̄(u1, . . . , ud) = φ(u1n, . . . , udn) for each (u1, . . . , ud)∈ P.

For a subset D of Rd×n, we denote by concD(φ̄)(·) the concave envelope of φ̄(·) over D. Observe that
although the function φ(·) depends only on variables u·n := (u1n, . . . , udn), the envelope concP (φ̄)(·)
depends on all the variables u := (u1, . . . , un).
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Theorem 1 (Theorem 2 in [17]). Let φ : Rd→R be a continuous function and let f : Rm→
Rd be a vector of functions, each of which is bounded over X ⊆Rm. If

(
a,u(·)

)
satisfies (1) then

hyp(φ ◦ f)⊆ proj(x,φ)(R), where hyp(φ ◦ f) is the hypograph of φ ◦ f over X and

R :=
{

(x,u·n, φ)
∣∣ φ≤ concP (φ̄)(u), u(x)≤ u, u·n = f(x), x∈X

}
.

If the graph of f(·), expressed using the constraints u·n = f(x) and x∈X in the definition of R, is
outer-approximated with a convex set, and, for j 6= n, uij(·) is convex, we obtain a convex relaxation
of hyp(φ ◦ f). Moreover, concP (φ̄)(·) is non-increasing in uij, for all i ∈ {1, . . . , d} and j /∈ {0, n}.
Substituting uij(·) for such uij variables and dropping uij ≥ uij(·) projects the uij variables out of
the convex relaxation. �

The idea behind Theorem 1 is that the constraints in P are satisfied by underestimators and, as
such, inequalities valid for the hypograph of concP (φ̄) are also valid for the underestimators. Since
variables uij, for j 6= n, are eventually replaced with their defining function, uij(·), the relaxation,
just like the factorable one, uses the original variables x and an introduced variable uin for each
inner function fi(·).

In this paper, we will solve the facet-generation problem of concP (φ̄), assuming that φ̄(·) is
supermodular and concave-extendable over P . Under these conditions, the hypograph of concP (φ̄)
is a polyhedron. By the facet-generation problem of a full-dimensional polyhedron S, we mean
that, given a vector y, we establish that either y ∈ S or find a facet-defining inequality of S that is
not satisfied by y. The facet-generation problem for concP (φ̄) is, in general, NP-Hard because P
includes, as a special case, the unit hypercube and φ(·) can be any bilinear function. Nonetheless,
on the positive side, [17] showed that the facet-generation problem for concP (φ̄) is tractable if
the facet-generation problem for concQ(φ̄) and some of its faces is tractable. The polytope Q,
which is the domain of the latter function concQ(φ̄), is a subset of P that we will describe shortly.
Simultaneously, we will also review other results relevant to devising separation algorithms for
concP (φ̄).

Let a= (a1, . . . , ad) be a vector in Rd×(n+1) so that each subvector ai is strictly increasing. Then,
Q :=

∏d

i=1Qi, where Qi is the simplex in Rn+1 with extreme points {vij}nj=0 given as follows:

vij := (ai0, . . . , aij, aij, . . . , aij) for j = 0, . . . , n. (3)

Given a point (ū, φ̄)∈Rd×(n+1)+1, the separation algorithm for concP (φ̄) constructs another point
(s̄, φ̄)∈Rd×(n+1)+1. This point is then separated from concQ(φ̄) using the separation oracle for one of
its faces. We first describe how (s̄, φ̄) is obtained from (ū, φ̄). With each point w ∈ Pi, we associate
a discrete univariate function ξi(a;ui) : [ai0, ain]→R defined as follows:

ξi(a;w) =

{
wj a= aij for j ∈ {0, . . . , n}
−∞ otherwise.

Then, s̄= (s̄1, . . . , s̄d), where s̄i =
(
conc(ξi)(ai0; ūi), . . . , conc(ξi)(ain; ūi)

)
and conc(ξi)(·;ui) is the

concave envelope of ξi(·;ui) over [ai0, ain]. See Figure 1, where we illustrate the discrete univariate
function ξi(a; ūi) and the corresponding s̄i derived using the concave envelope construction. So, ūi
(resp. s̄i) is the vector of values of ξi(χ;ui) (resp. conc(ξi)(χ;ui)) generated by sequentially setting
χ to the values in (ai0, . . . , ain). For each ū∈ P , the corresponding s̄ is captured in the set:

PQ′ :=
{

(u, s)
∣∣ (u1, . . . , ud)∈ P, si :=

(
conc(ξi)(ai0;ui), . . . , conc(ξi)(ain;ui)

)
, i= 1, . . . , d

}
. (4)

Since ū and s̄ are related via a concave envelope construction, we can lift ū to its unique lifting
(ū, s̄) ∈ PQ′ using a two-dimensional convex hull algorithm, such as Graham scan [14], that, for
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(ai0, ūi0 = s̄i0)

(ai1, ūi1 = s̄i1)

(ai2, ūi2 = s̄i2)

(ai3, ūi3)

(ai4, ūi4)

(ai5, ūi5 = s̄i5)

(ai6, ūi6 = s̄i6)

(ai3, s̄i3)

(ai4, s̄i4)

ui(si)

a
ai0 ai1 ai2 ai3 ai4 ai5 ai6

Figure 1. Illustration of the map ΓJ .The black dots are the points (aij , ūij), and the red crosses are (aij , s̄ij), where
s̄i = (ΓJ)i(ūi). In this case, Ji = {0,1,2,5,6}. Here, s̄i ∈ conv(vi0, vi1, vi2, vi5, vi6), where vij is as defined in (3).

each of the d discrete univariate functions ξi(a;ui) finds its envelope in O(n) time. Given ū ∈ P ,
we will find a face of Q containing s̄ and, consequently, identify which face of concQ(φ̄) is to be
separated from (s̄, φ̄). Observe that for any ūi /∈Qi, ūi violates certain facet-defining inequalities of
Qi. As the next result shows, these inequalities define facets, whose intersection yields a face of
Qi containing s̄i. Together, for all i, these faces define the face of interest of Q, which is described
using d-tuples of index sets. Consider a collection of d-tuples

J :=
{

(J1, . . . , Jd)
∣∣ {0, n} ⊆ Ji ⊆ {0,1, . . . , n} ∀i∈ {1, . . . , d}}. (5)

Then, we associate with a d-tuple, J = (J1, . . . , Jd)∈J , the face FJ := F1J1 × · · ·×FdJd of Q, where

FiJi := conv
(
{vij | j ∈ Ji}

)
,

and vij is defined as in (3). Clearly, FiJi is a face of Qi because Qi is a simplex whose vertices form
a superset of those of FiJi . With J , we also associate a linear map, ΓJ : Rd×(n+1)→Rd×(n+1) that
maps a u∈ P to ũ∈ P as follows:

ũij = uij for j ∈ Ji and ũij = (1− γij)uil(i,j) + γijuir(i,j) for j /∈ Ji, (6)

where l(i, j) := max{j′ ∈ Ji | j′ ≤ j}, r(i, j) := min{j′ ∈ Ji | j′ ≥ j}, and, for j /∈ Ji, γij = (aij −
ail(i,j))/(air(i,j) − ail(i,j)). In other words, ũij is obtained by restricting the domain of ξi(a;ui), a
function of a, to {aij}j∈Ji and then linearly interpolating the function at aij for j /∈ Ji (see Figure 1
for an illustration of the map ΓJ , where we have chosen Ji as the set of indices for which ūij = s̄ij ,
consistent with the assumption in Proposition 1 below).

Proposition 1 (Proposition 5 in [17]). Let (ū, s̄)∈ PQ′ and J = (J1, . . . , Jd) be defined so
that Ji := {j | ūij = s̄ij}. Then, s̄= ΓJ(ū). The set Q satisfies the inequalities s≥ ΓJ(s). Then FJ is
the face of Q defined by the inequalities s≤ ΓJ(s). Moreover, s̄∈ FJ . �

To separate (s̄, φ̄) from concQ(φ̄), we introduce projections of Q defined using index sets (5). As a
succinct notation, for any y ∈Rd×(n+1) and for J ∈J , we let yJ := (y1J1 , . . . , ydJd), where yiJi consists
of coordinates of yi from the index-set Ji, and let J̄ := (J̄1, . . . , J̄d), where J̄i is the complement of
Ji, i.e., J̄i = {0, . . . , n} \Ji. Using these definitions, we can then write, up to reordering of variables,
that y= (yJ , yJ̄). Now, define

QJ :=Q1J1 × · · ·×QdJd , (7)
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where QiJi is the simplex whose extreme points are defined in (3) with the parameter vector
aiJi ∈R

|Ji| and observe that QJ is a projection of Q to the coordinates contained in the d-tuple
J . Given a point (s̄, φ̄) and J = (J1, . . . , Jd) defined so that Ji := {j | ūij = s̄ij}, we call the facet-
generation oracle of concQJ (φ)(sJ) to generate an inequality φ ≤ 〈αJ , sJ〉+ b of concQJ (φ)(sJ),
which is tight at s̄J , i.e., concQJ (φ)(s̄J) = 〈αJ , s̄J〉+ b. Let α̃ be a vector in Rd×(n+1) such that
α̃J = αJ and α̃J̄ = 0. By Corollary 2 in [17], the inequality φ≤

〈
(αJ ,0), (sJ , sJ̄)

〉
+ b defines a facet

of concP (φ̄) that is tight at ū. We summarize the above discussion for later use.

Proposition 2 (Corollary 2 in [17]). Assume that concQ(φ̄)(s) is a polyhedral function.
Given ū∈ P , the unique point (ū, s̄)∈ PQ′ can be found in O(dn) time. Let J = (J1, . . . , Jd), where
Ji := {j | ūij = s̄ij}. Then, s̄∈ FJ and s̄J ∈QJ . If φ≤ 〈αJ , sJ〉+ b is a facet-defining inequality for
concQJ (φ) that is tight at s̄J then the inequality φ≤

〈
(αJ ,0), (uJ , uJ̄)

〉
+ b defines a facet of concP (φ̄)

that is tight at ū. �

2.2. Supermodularity and staircase triangulation This paper considers supermodular
and concave-extendable functions over a Cartesian product of simplices, Q. Such functions have a
concave envelope that is closely related to certain triangulations of Q. In this subsection, we explore
these connections. Before we begin, we formally define concave-extendability of functions [40] and
triangulations of polyhedral domains [9]; both are prevalent notions in convexification literature.
Definition 1 ([39]). A function g : D→ R, where D is a polytope, is said to be concave-

extendable from X ⊆D if the concave envelope of g(x) is determined by X only, that is, the concave
envelope of g and g|X over P are identical, where g|X is the restriction of g to X that is defined as:

g|X =

{
g(x) x∈X
−∞ otherwise.

A function g :D→R is convex extendable from X ⊆D if −g is concave extendable from X. �
Definition 2 (Triangulation [9]). Let D⊆Rn. A set of polyhedra R := {R1, . . . ,Rr} forms

a polyhedral subdivision of D if D=
⋃r

i=1Ri and Ri ∩Rj is a (possibly empty) face of both Ri and
Rj. Moreover, if each Ri is a simplex, then R is a triangulation of D. �

The non-vertical facets of a polyhedral function, when projected, divide the domain into poly-
hedral sets, which form a polyhedral subdivision; a subdivision that can be further refined into a
triangulation. Thus, if the concave envelope concQ(φ̄)(·) is polyhedral over Q, there is a triangulation
R of Q such that the concave envelope affinely interpolates each simplex Ri of this triangulation
(Theorem 2.4 in [39]). By affine interpolation, we mean that the function value at any point s∈Ri
is obtained as the affine combination of function values at vert(Ri). Therefore, concQ(φ̄)(·), when
polyhedral, is uniquely described by the triangulation R of Q.

We will eventually be interested in extending the domain of the concave envelope outside of Q. To
do so, we will use the following construction, which extends the domain of concQ(φ̄) to aff(Q), a set
that contains P . We describe this construction for a generic function χ :D→R, whose domain, D, is
a subset of Rn and is assumed to be endowed with a triangulation R. Define χRi(x) : aff(D)→R as
the unique affine function that satisfies χRi(x) = χ(x) for all x∈ vert(Ri). Moreover, define h(x) so
that, for all x∈Ri ∈R, h(x) = χRi(x) and assume that it is concave. Now, to extend h(x) to aff(D),
we consider another function χR(x) defined as miniχ

Ri(x) and show that it matches h(x) over D.
If not, there exists some (i, j) ∈ {1, . . . , r}2 and an x such that although x ∈Ri, χRi(x)>χRj (x).
Now, pick y ∈ int(Rj) and a sufficiently small ε > 0 so that y+ ε(x− y)∈Rj . Then, as the following
argument shows, h(x) cannot be concave, violating our assumption:

h(y) + ε
(
h(x)−h(y)

)
= χRj (y) + ε

(
χRi(x)−χRj (y)

)
>χRj (y) + ε

(
χRj (x)−χRj (y)

)
= χRj

(
y+ ε(x− y)

)
= h(y+ ε(x− y)

)
,

(8)
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where the first equality is by the definition of h, the first inequality is because χRi(x)>χRj (x) and
ε > 0, the second equality is because χRj is affine, and the last equality is by the definition of h.

We turn our attention now to a specific triangulation of a product of simplices, referred to
as the staircase triangulation. Let Si ⊆ Rn be a simplex so that vert(Si) = {νi0, . . . , νin} and let
S :=

∏d

i=1 Si be the Cartesian product of these simplices. The extreme points of S, which are∏d

i=1{νi0, . . . , νin}, can then be depicted on the grid G given by {0, . . . , n}d. More specifically, the
extreme point (νiji)

d
i=1 will be associated with the grid-point {ji}di=1. The coordinates of the extreme

point are recovered from those of the grid-point using grid-labels, markers that label coordinate j
along direction i as νij . We remark that although grid-labels depend on the specific geometry of S,
the grid only depends on the number of simplices and the dimension of each simplex.

A monotone staircase is a sequence of dn+ 1 points p0, . . . , pdn, where pi ∈ G for all i∈ {0, . . . , dn}
and the sequence satisfies the following properties, (i) p0 = (0, . . . ,0) and (ii) for all i∈ {1, . . . , dn},
pi− pi−1 = ek, where k ∈ {1, . . . , d}. We refer to movement from pi−1 to pi as the ith move. Since
pi ∈ G for all i, by property (ii) there are exactly n moves in each coordinate direction. Moreover,
pdn = (n, . . . , n). Thus, the monotone staircase is a lattice path of monotonically increasing points in
Zn from (0, . . . ,0) to (n, . . . , n), hence resembling a staircase, where each step is of possibly different
height. The staircase can be specified succinctly as a vector π= (π1, . . . , πdn), where πi ∈ {1, . . . , d}
is the coordinate direction of the ith move. Thus, we will refer to such vector π as movement vector
in the grid G. Given a vector π, we will often need to track where the kth move leaves us on the
grid. This is obtained using the transformation Π, which is defined as Π(π,k) := p0 +

∑k

j=1 eπj . The

corresponding staircase can then be recovered as
(
Π(π,k)

)dn
k=0

. In Figure 2, we see the set of all
monotone staircases on the 4× 3 grid.
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Figure 2. Monotone staircases in the 4× 3 grid.

As described before, with each grid point pk = (ji)
d
i=1, we associate the extreme point of S,

(νij1 , . . . , νdjd), which we denote as ext(S,pk). The set of all extreme points associated with the
grid-points along a staircase π describe a simplex Ξπ. In particular, if we let pk = Π(π,k) then
Ξπ := conv

(
{ext(S,p0), ext(S,p1), . . . , ext(S,pdn)}

)
. That this set defines a simplex follows from the

affine independence of ext(S,pk) for k ∈ {0, . . . , dn}, which in turn follows from linear independence
of difference vectors ext

(
S,pk+1

)
− ext

(
S,pk

)
for k = 0, . . . , dn− 1. In particular, the difference

vectors for a move k along ith and another move k′ along i′ coordinate, where i′ 6= i, are linearly
independent because these vectors are non-zero along different variables. On the other hand, the
difference vectors for moves, all of which are along the ith coordinate, are linearly independent
because they are of the form (01, . . . ,0i−1, νij+1 − νij,0i+1, . . . ,0d), where 0i′ is the zero vector in
the subspace of variables defining Si′ and νij+1− νij are the difference vectors between adjacent
extreme points of Si.
Definition 3 (Staircase Triangulation [9]). The set of all monotone staircases in the

grid G defines a staircase triangulation of
∏d

i=1 Si. Each monotone staircase, defined by the movement
vector π, yields a simplex, Ξ(π), in this triangulation. �
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The staircase triangulation, when the simplotope S is a product of standard simplices, is illustrated
in [33]. We argue that the staircase triangulation is a triangulation of S. Observe that the Rn×n

matrix, Mi := (νi1− νi0, . . . , νin− νi0), is invertible because Si is a full-dimensional simplex. Then,
we consider the affine mapping that maps an x ∈ Rn to UM−1

i (x− νi0), where U ∈ Rn×n is an
upper-triangular matrix of all ones. Under this transformation, the simplex Si maps to Λi := {zi ∈
Rn | 0 ≤ zin ≤ · · · ≤ zi1 ≤ 1}. Given a point s = (s1, . . . , sn) ∈ S, we obtain z = (z1, . . . , zn), where
zi =UM−1

i (si−νi0). Then, we sort the coordinates of the vector z in a non-increasing order so that if
zij = zij′ for some i and j′ > j, we place zij ahead of zij′ in the ordering. Now, for any k ∈ {1, . . . , dn},
if zij is the kth order-statistic, we define Θ(k) =

(
Θ1(k),Θ2(k)

)
:= (i, j). Given a movement vector

π, Θ can be recovered using Θ1(k) = πk, and Θ2(k) =
∣∣{j | π(j) = π(k),1≤ j ≤ k}

∣∣. Then, we verify
that z (resp. s) belongs to the simplex whose extreme points form the monotone staircase defined

by the movement vector π′ =
(
Θ1(k)

)dn
k=1

, i.e., conv
({

ext
(
Λ,Π(π′,0)

)
, . . . , ext

(
Λ,Π(π′, dn)

)})
(resp.

conv
({

ext
(
S,Π(π′,0)

)
, . . . , ext

(
S,Π(π′, dn)

)})
). We denote ext

(
Λ,Π(π′, k)

)
as pk. Note that p0 =

(01, . . . ,0d), where 0i is a zero vector in the space of zi variables and pk = pk−1 + eΘ(k), where eΘ(k)

is the standard basis vector in the direction of zΘ(k). Then,

z = (1− zΘ(1))p0 +
dn−1∑
k=1

(
zΘ(k)− zΘ(k+1)

)
pk + zΘ(dn)pdn. (9)

Thus, each point z belongs to some simplex in the staircase triangulation. Moreover, points that
belong to two simplices have at least two consistent orderings of their coordinates, ensuring some
of them are equal, implying that the point belongs to a common face of both simplices. Thus,
monotone staircases triangulate S.

If a function f : [0,1]n→R is supermodular when restricted to {0,1}n and concave extendable from
{0,1}n then conc[0,1]n(f)(x) coincides with the Lovász extension of f [22, 39]. The Lovász extension
interpolates the staircase triangulation of [0,1]n, which can be regarded as a Cartesian product of
simplices. In this setting, the corresponding triangulation is referred to as Kuhn’s triangulation. We
relate the concave envelope over a product of simplices to that over certain subsets of [0,1]n, using
a result in [39].
Definition 4 ([43]). A function η(x) : S ⊆Rn→R is said to be supermodular if η(x′ ∨x′′) +

η(x′ ∧ x′′)≥ η(x′) + η(x′′) for all x′, x′′ ∈ S. Here, x′ ∨ x′′ denotes the component-wise maximum
and x′ ∧x′′ denotes the component-wise minimum of x′ and x′′ and S is assumed to be a lattice,
that is, x′ ∨x′′ and x′ ∧x′′ belong to S whenever x′ and x′′ belong to S. �

Proposition 3. Let ∆i = {zi ∈ Rn+1 | 0 ≤ zin ≤ · · · ≤ zi1 ≤ zi0 = 1} and ∆ =
∏d

i=1 ∆i. Then,
vert(∆) defines a lattice. Consider a function η : ∆→R that is supermodular when restricted to
vert(∆) and is concave-extendable from vert(∆). Then, the concave envelope of η(·) over ∆ is given
by the staircase triangulation of ∆, i.e. conc∆(η)(z) = ηS(z) for every z ∈∆, where S is the staircase
triangulation of ∆.

Proof. See Appendix A.
Although detecting whether a function is supermodular is NP-Hard [8], there are important special
cases where this property can be readily detected [43]. A particularly useful result establishes
supermodularity of a composition of functions.

Lemma 1 (Lemma 2.6.4 in [43]). Consider a lattice X and let K = {1, . . . , k}. For i∈K, let
fi(x) be increasing supermodular (resp. submodular) functions on X and Zi be convex subsets of R.
Assume Zi ⊇ {fi(x) | x∈X}. Let g(z1, . . . , zk, x) be supermodular in (z1, . . . , zk, x) on

∏k

i=1Zi×X.
If for i∈K, z̄i′ ∈Zi′ for i′ ∈K \ {i}, and x̄∈X, g(z̄1, . . . , z̄i−1, zi, z̄i+1, . . . , z̄k, x̄) is increasing (resp.
decreasing) and convex in zi on Zi then g

(
f1(x), . . . , fk(x), x

)
is supermodular on X. �
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By choosing g(z1, . . . , zk, x) appropriately as z1z2 · · · zk or −z1z2 · · · zk, it follows that a product of
nonnegative, increasing (resp. decreasing) supermodular functions is also nonnegative increasing
(resp. decreasing) and supermodular; see Corollary 2.6.3 in [43]. Also, it follows trivially that a
conic combination of supermodular functions is supermodular.

3. On finitely many estimators for inner functions In Section 3.1, we devise a facet
generation algorithm, Algorithm 1, that separates concP (φ̄) assuming the outer-function φ(·) is
concave-extendable and supermodular. As a result, we discover various interesting properties of
the envelope concP (φ̄). In Section 3.2, we develop a decomposition result that applies to a class of
bilinear functions and show that, for a function φ(·) from this class, concQ(φ̄) is obtained by summing
the concave envelopes of each bilinear term. Last, in Section 3.3, we simultaneously convexify
the hypographs of multiple functions whose concave envelopes share the same triangulation. In
particular, we use Algorithm 1 to solve the facet generation problem of a vector of concave-extendable
supermodular functions.

3.1. Tractable concave envelopes In this subsection, we will, under previously stated
technical conditions on the outer-function φ(·), characterize, in closed form, concQ(φ̄) and solve the
facet generation problem of concP (φ̄) in O(dn logd) time. More specifically, given a ū, we will show
that the following algorithm generates a facet-defining inequality for concP (φ̄) that is tight at ū:

• Given ū∈ P , find the s̄ so that (ū, s̄)∈ PQ′, and use the staircase triangulation of Q to generate
a facet-defining inequality φ≤ 〈α,s〉+ b of concQ(φ̄) which is tight at s̄.

• Let J = (J1, . . . , Jd), where Ji = {j | ūij = s̄ij}. Then, we show that the inequality φ ≤〈
α,ΓJ(u)

〉
+ b defines a facet of concQJ (φ̄) and thus, leveraging Proposition 2, a facet of concP (φ̄)

which is tight at ū.
Moreover, specializing to a multilinear function φ(·), we find that concP (φ̄), the envelope over

P , is obtained simply by extending the domain, from Q to P , of certain inequalities that describe
concQ(φ̄), the envelope over Q. As an illustration, we specialize our result to a bilinear term φ(·)
with only one non-trivial underestimator for each inner function, and show that the inequalities
describe both concP (φ̄) and convP (φ̄) in this setting.

We start by presenting an affine transformation between Q and ∆ and its properties. Lemma 2
in [17] shows that for each i= {1, . . . , d}, the simplex Qi can be expressed as:

0≤ sin− sin−1

ain− ain−1

≤ · · · ≤ si1− si0
ai1− ai0

≤ 1, si0 = ai0. (10)

Observe that, because of the last equality, Qi is not full-dimensional. Nevertheless, we can mimic
the construction following Definition 3 using the above representation of Qi. Here, for an si ∈Qi we
define zi ∈∆i := {z | 0≤ zin ≤ · · · ≤ zi1 ≤ zi0 = 1} as follows:

zi0 = 1 and zij =
sij − sij−1

aij − aij−1

for j = 1, . . . , n. (11)

We refer to the above transformation as Zi so that zi =Zi(si). The inverse of Zi is then defined as:

sij = ai0zi0 +

j∑
k=1

(aik− aik−1)zik for j = 0, . . . , n. (12)

The transformation Zi has a few properties that will be useful in our development. First, being an
affine transformation, it maps vertices of Qi to those of ∆i. Recall that vert(Qi) = {vi0, . . . , vin},
where vij = (ai0, . . . , aij−1, aij, . . . , ain). After the transformation, the vertex vij maps to ζij =∑j

j′=0 eij′ . Clearly, vert(∆i) form a chain, where ζi0 ≤ · · · ≤ ζin. Consequently, vert(Qi) also form
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a chain, where the vertices are ordered as vi0 ≤ · · · ≤ vin. This is because (12) is an increasing
mapping. More specifically, if zi, z

′
i ∈∆i such that zi ≥ z′i, then zi0 = 1 and aik − aik−1 > 0 imply

that si =Z−1
i (zi)≥Z−1

i (z′i) = s′i. Then, the definition of ∨ and ∧ as coordinate-wise maximum and
minimum and the observation that vert(Qi) form a chain together imply

Z−1
i (ζij ∨ ζij′) =Z−1

i (ζij)∨Z−1
i (ζij′) Z−1

i (ζij ∧ ζij′) =Z−1
i (ζij)∧Z−1

i (ζij′) (13)
Zi(vij ∨ vij′) =Zi(vij)∨Zivij′ Zi(vij ∧ vij′) =Zi(vij)∧Zivij′ , (14)

In other words, Z−1
i (resp. Zi) distributes over ∨ and ∧ as long as the arguments are vertices of ∆i

(resp. Qi). The vertex (viji)
d
i=1 maps to (ζiji)

d
i=1 under Zi and, graphically, will be represented by

the same grid-point (ji)
d
i=1 on G. Consider two sets defined as the Cartesian product of simplices,

Q :=
∏d

i=1Qi and ∆ :=
∏d

i=1 ∆i. It follows that we may define a lattices over vert(Q) and vert(∆),
i.e., Cartesian products of d chains each with n+ 1 elements. Moreover, observe that the affine
transformation Z(s) =

(
Z1(s1), . . . ,Zn(sn)

)
, which maps from Q to ∆, is a lattice isomorphism from

vert(Q) to vert(∆). The lattice isomorphism plays an important role in relating the concave envelope
of the supermodular function, φ(·), over Q to the concave envelope of a function over ∆. The latter
function is also supermodular because vert(∆) is obtained from vert(Q) via a lattice isomorphism.
The envelopes are transformed from one set to another because convexification commutes with affine
transformations. What remains is the characterization of the concave envelope of the latter function,
which is given by the staircase triangulation of ∆ as described in Proposition 3. We summarize this
construction in the next lemma, which will apply to our context simply by replacing Ri with Qi.

Lemma 2. Let R =
∏d

i=1Ri ⊆ Rd×(n+1), where Ri is a simplex in Rn+1 whose vertices
{ῡi0, . . . , ῡin} form a chain, i.e., ῡi0 ≤ ῡi1 ≤ · · · ≤ ῡin and ῡij0 = ai0 for all j ∈ {0, . . . , n}. Let ψ :
R→R be a function which is concave-extendable from vert(R) and is supermodular over the lattice
defined over R. Then, concR(ψ)(r) =ψS(r) for every r ∈R, where S is the staircase triangulation
of R.

Proof. By translating R if necessary, we may assume without loss of generality that ai0 6= 0. Since
{ῡi0, . . . , ῡin} are the vertices of a simplex, they are affinely independent and Vi =

[
ῡi0 . . . ῡin

]
, is an

invertible (n+ 1)× (n+ 1) matrix. Let U ∈R(n+1)×(n+1) be the upper triangular matrix of all ones.
It follows that Ai(ri) := (U ◦V −1

i )(rij) maps ῡij to ζij , and its inverse A−1
i (zi) := (Vi ◦U−1)(zi) maps

ζij to ῡij, for every j ∈ {0, . . . , n}. Therefore, the affine transformation A(r1, . . . , rd) =
(
Ai(ri)

)d
i=1

induces a lattice isomorphism from vert(R) to vert(∆), that is, (13) and (14) are satisfied if Z
replaced by A and vij with ῡij . The lattice isomorphism implies that the function η(z) := ψ

(
A−1(z)

)
is supermodular over the induced lattice on vert(∆). Since A is affine, η(·) is concave extendable
over vert(∆) and concR(ψ)(r) = conv∆(η)(A(r)). Since, by Proposition 3, the concave envelope of
η(·) over ∆ is determined by the staircase triangulation, the concave envelope of ψ is given by a
triangulation of R, obtained by affinely transforming each simplex in the staircase triangulation of
∆ using A−1. This yields the staircase triangulation of R, where ζij is mapped to the vertex ῡij . �

In particular, we will use the following form of Lemma 2.

Proposition 4. Consider an outer-function φ :Rd→R, and let φ̄ :Rd×(n+1)→R be its exten-
sion defined as φ̄(s) = φ(s1n, . . . , sdn) for s∈Rd×(n+1). Assume that φ̄(·) is concave-extendable from
vert(Q) and is supermodular when restricted to the lattice set vert(Q). Let S be the staircase
triangulation of Q. Then, for each s∈Q, concQ(φ̄)(s) = φ̄S(s). �

Remark 1. Suppose that φ(·) is shown to be supermodular over
∏d

i=1[ai0, ain], we show that

φ̄(·) is supermodular over vert(Q). Since
∏d

i=1{ai0, . . . , ain} ⊆
∏d

i=1[ai0, ain], it follows readily that
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φ(·) is supermodular over
∏d

i=1{ai0, . . . , ain}. Then, the supermodularity of φ̄(·) over the lattice set
vert(Q) follows since for two extreme points v′ := (v1j′1

, . . . , vdj′
d
) and v′′ := (v1j′′1

, . . . , vdj′′
d
) of Q

φ̄(v′ ∧ v′′) + φ̄(v′ ∨ v′′) = φ(a1j′1
∧ a1j′′1

, . . . , adj′
d
∧ adj′′

d
) +φ(a1j′1

∨ a1j′′1
, . . . , adj′

d
∨ adj′′

d
)

≥ φ(a1j′1
, . . . , adj′

d
) +φ(a1j′′1

, . . . , adj′′
d
)

= φ̄(v′) + φ̄(v′′),

where the inequality follows from the supermodularity of φ(·) over
∏d

i=1{ai0, . . . , ain}. �
Next, we explicitly derive the inequalities that interpolate the function φ̄(·) over the extreme

points of each simplex in the staircase triangulation. We first recall the connections between
monotone staircases in the grid and simplices of the triangulation as it applies in this context.
Let Ω be the set of movement vectors that define monotone staircases over the grid G given by
{0,1, . . . , n}d. For π ∈ Ω, the kth extreme point ext(Q,Π(π,k)) will be denoted as V(π,k). The
corresponding simplex conv

(
V(π,0), . . . ,V(π,dn)

)
will be denoted as Υπ and the triangulation

{Υπ}π∈Ω as Υ. In addition, we define m(i, j) = k if π(k) = i and j =
∑

k′≤k 1
(
π(k′) = π(k)

)
, i.e., for

a pair (i, j), m(i, j) returns k if the kth movement is the jth step in coordinate direction i. Observe
that V

(
π,m(i, j)

)
−V

(
π,m(i, j)− 1

)
= (01, . . . ,0i−1, vij − vij−1,0i+1, . . . ,0d), where 0k is the zero

vector in the space of sk variables. If V(π,k) = (s1, . . . , sd), we denote (s1n, . . . , sdn) by V·n(π,k).
Let 〈απ, s〉+βπ be the unique affine function so that, for all i, απi0 = 0 and φ̄(s) = 〈απ, s〉+βπ for
s∈ vert(Υπ). Then, to derive expressions for απ, βπ observe that:

φ
(
V·n
(
π,m(i, j)

))
−φ
(
V·n
(
π,m(i, j)− 1

))
=
〈
απ,V·n

(
π,m(i, j)

)
−V·n

(
π,m(i, j)− 1

)〉
= 〈απi , vij − vij−1〉= (aij − aij−1)

n∑
j′=j

απij′ .

Let ϑ(π, i, j) = φ(V·n(π,m(i,j)))−φ(V·n(π,m(i,j)−1))

aij−aij−1
. Then, by differencing the equations and fitting the

equation at V(π,0), we obtain the following explicit formulae:

απij =

 0 j = 0
ϑ(π, i, j)−ϑ(π, i, j+ 1) 1≤ j < n
ϑ(π, i,n) j = n

bπ = φ
(
V·n(π,0)

)
−
〈
απ,V(π,0)

〉
.

(15)

In the next example, we illustrate how Proposition 4 and (15) yield tighter convex relaxations than
ones obtained using techniques in [23, 39].

Example 1. Consider a nonlinear function
√
x1 +x2

2 over [0,5]× [0,2]. Let s1(x) := (0, x1),
and s2(x) :=

(
0, max{ 3

4
x2

2,2x2− 1}, x2
2

)
. It turns out a1 = (0,5) and a2 = (a20, a21, a22) = (0,3,4)

is a vector of upper bounds for s1(x) and s2(x) over [0,5]× [0,2], respectively. Moreover, it can
be verified that, for each x ∈ [0,5]× [0,2], the point si(x) satisfies (10), that is si(x) ∈Qi, where
Qi is the simplex whose extreme points are defined as in (3). Clearly,

√
s11 + s22 is submodular

over [0,5] × [0,4] and is convex-extendable from extreme points of Q1 ×Q2. By Proposition 4
and (15) and after substitution, we obtain that max

{
ψ1(x),ψ2(x),ψ3(x)

}
underestimates

√
x1 +x2

2

for x∈ [0,5]× [0,2], where

ψ1(x) :=

√
5

5
x1 +

(√
8−
√

5

3
−
√

9−
√

8

1

)
max

{
3

4
x2

2,2x2− 1

}
+

√
9−
√

8

1
x2

2

ψ2(x) :=

√
8−
√

3

5
x1 +

(√3

3
−
√

9−
√

8

1

)
max

{
3

4
x2

2,2x2− 1

}
+

√
9−
√

8

1
x2

2

ψ3(x) :=

√
9−
√

4

5
x1 +

(√
3

3
−
√

4−
√

3

1

)
max

{
3

4
x2

2,2x2− 1

}
+

√
4−
√

3

1
x2

2,
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whose convexity can be verified easily.
The standard factorable relaxation introduces f = x2

2, g = x1 + f , and h =
√
g to represent√

x1 +x2
2. Then,

√
g is relaxed to 1

3
g over [0,9], yielding a convex underestimator 1

3
(x1 + x2

2)

for
√
x1 +x2

2 over [0,5] × [0,2]. The technique in [39] relaxes
√
x1 + f , convex-extendable and

submodular over {0,5}×{0,4}, to max
{
x1
5

+ f
2
,
√

5
5
x1 + 3−

√
5

4
f
}

, yielding a convex underestimator

max
{
x1
5

+
x22
2
,
√

5
5
x1 + 3−

√
5

4
x2

2

}
. It turns out that max

{
x1
5

+
x22
2
,
√

5
5
x1 + 3−

√
5

4
x2

2

}
≥ 1

2

(
x1
5

+
x22
2

)
+

1
2

(√
5

5
x1 + 3−

√
5

4
x2

2

)
≥ 1

3
(x1 +x2

2). Moreover, ψ1(x)≥
√

5
5
x1 + 3−

√
5

4
x2

2 and ψ3(x)≥ x1
5

+ 1
2
x2

2. �
By construction, the inequality φ≤ 〈απ, s〉+ bπ is tight over Υπ := conv

(
V(π,0), . . . ,V(π,dn)

)
,

where, by tight, we mean that, for s ∈Υπ, concQ(φ̄)(s) = 〈απ, s〉+ bπ. More generally, the tight
set for a valid inequality f ≤ 〈α,x〉+ b of a function f : X → R will represent the set {x ∈X |
concX(f)(x) = 〈α,x〉+ b}, and will be denoted as T

(α,b)
f (X). So, we can succinctly express our

conclusion regarding the tight set of φ≤ 〈απ, s〉+ bπ as Υπ ⊆ T (απ ,bπ)

φ̄
(Q). Although (15) describes

the coefficients of the interpolating inequalities in the general case, we remark the following special
case, where the coefficient απij becomes zero.

Remark 2. Let φ :Rd→R be a multilinear function and consider a movement vector π such
that the jth move along coordinate i is adjacent to the j + 1th move along this coordinate, i.e.,
m(i, j+ 1) =m(i, j) + 1. Then, because the function φ(s1n, . . . , sdn) is affine when all but sin is fixed,
it follows that ϑ(π, i, j) = ϑ(π, i, j+ 1), which implies by (15) that απij = 0. �

Algorithm 1 Facet-Generation over Q

1: procedure Facet-Generation(s̄)
2: z̄←Z(s̄);
3: BeginSort
4: sort z̄ to find a movement vector π so that s̄∈Υπ;
5: z̄i0 are sorted before z̄ij for j 6= 0;
6: if, for any j ≥ 1, zij = zij+1 then they are adjacent in the sorted order;
7: EndSort
8: compute an affine function φΥπ(s) = 〈απ, s〉+ bπ by using equation (15);
9: return (απ, bπ).

10: end procedure

Now, we use Proposition 4 to compute, at a given point s̄ ∈ Q, a non-vertical facet-defining
inequality of the hypograph of concQ(φ̄)(s). To this end, it suffices to find a movement vector π so
that s̄ belongs to the corresponding simplex Υπ and then to compute the function φΥπ(s) using (15),
where φΥπ(s) is the affine interpolating function tight at V(π,0), . . . ,V(π,dn). As shown, in our
discussion following Definition 3, that a simple sorting of the coordinates of z̄ :=Z(s̄) reveals this
staircase. In our context, z̄i0 = 1 for all i and recall that to derive π we ignore the ordering of these
coordinates assuming they are placed first in the sorted order. Then, if the d+ k largest coordinate
of z̄ is z̄ij, we let Θ(k) = (i, j) and define π =

(
Θ1(1), . . . ,Θ1(dn)

)
. Slightly adjusting (9), we can

express s̄ as a convex combination of V(π,0), . . . ,V(π,dn) as follows:

s̄=
(
1− zΘ(1)

)
V(π,0) +

dn−1∑
k=1

(
zΘ(k)− zΘ(k+1)

)
V(π,k) + zΘ(dn)V(π,dn).

Corollary 1. Assume that φ̄(·) is concave-extendable from vert(Q) and is supermodular when
restricted to the vertices of Q. Given a point s̄∈Q, Algorithm 1 takes O(dn logd) operations to find
a non-vertical facet-defining inequality of concQ(φ̄)(·) which is tight at s̄.
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Proof. The correctness of Algorithm 1 is due to Proposition 4 and because Algorithm 1 identifies
a π such that s̄∈Υπ. The time complexity is O(dn logd) because the computation of Z takes O(dn)
time and d sorted lists, each of size n, can be merged in O(dn logd) time using the d-way merge
sort algorithm (see 5.4.1 in [19]). �

The inequality obtained using Algorithm 1 is facet-defining for concQ(φ̄) since it interpolates
the extension φ̄(·) over the extreme points of a simplex Υπ. Moreover, when s̄ belongs to a face
of Q, this inequality describes a facet for the concave envelope of φ̄(·) over this face, a property
that can be exploited, as shown in [17], to develop facet-defining inequalities over P . Recall that for
J = (J1, . . . , Jd)∈J , where J is a collection of d-tuples defined as in (5), we defined FJ :=

∏d

i=1FiJi
as a face of Q, where FiJi is defined as the convex hull of {vij | j ∈ Ji}. We can also describe the
face FiJi as the set of points of Qi which satisfy the following facet-defining constraints of Qi at
equality:

sij+1− sij
aij+1− aij

≤ sij − sij−1

aij − aij−1

for j /∈ Ji. (16)

The face FJ can also be visualized as Z−1(F ′J), where F ′J is a face of ∆ defined as:

F ′J =
{
z ∈∆ | zij = zi,j−1 for i∈ {1,2, . . . , d}, j ∈ {0,1, . . . , n} \Ji

}
.

Corollary 2. Assume s̄ ∈ FJ , and, when s̄ is input, let (απ, bπ) be the pair generated by
Algorithm 1. If φ̄(·) is supermodular when restricted to the vertices of Q and concave-extendable from
vert(Q) then (απ, bπ) defines a non-vertical facet of concFJ (φ)(s) and the corresponding inequality
is tight at s̄. Moreover, if φ(·) is a multilinear function then, for all j /∈ Ji, απij = 0.

Proof. As s̄ ∈ FJ it follows from (16) that z̄ij+1 =
s̄ij+1−s̄ij
aij+1−aij

=
s̄ij−s̄ij−1

aij−aij−1
= z̄ij for all i and j /∈ Ji.

Therefore, the sorting in Algorithm 1 guarantees that the movement vector π is such that for all i
and j /∈ Ji, the j+ 1st move along coordinate i follows immediately after the jth move. This implies
that for i∈ {1, . . . , d} and j /∈ Ji

m(i, j) + 1 =m(i, j+ 1). (17)

Therefore, when φ(·) is multilinear, the last statement in the result follows from Remark 2.
Under the assumption on φ̄(·), it follows from Corollary 1 that the inequality φ≤ 〈απ, s〉+ bπ

is valid for concQ(φ̄), and, thus, also valid for concFJ (φ). We will show that dim
(
T

(απ ,bπ)

φ̄
(FJ)

)
=

dim(FJ). Clearly, we have dim
(
T

(απ ,bπ)

φ̄
(FJ)

)
≤ dim(FJ). Now, consider the simplex Υπ defined by the

movement vector π. It follows readily that Υπ ∩FJ ⊆ T (απ ,bπ)

φ̄
(FJ) since concQ(φ̄)(s) = concFJ (φ̄)(s)

for every s ∈ FJ . Thus, the proof is complete if we can show that dim(FJ)≤ dim
(
vert(Υπ)∩FJ

)
,

where vert(Υπ) = {V(π,0), . . . ,V(π,dn)}. Since V(π,k− 1)≤V(π,k) for all k= 1, . . . , dn, it follows
from (17) that for all i and j /∈ Ji, the only grid point where the grid-label along ith coordinate
is vij is Π

(
π,m(i, j)

)
with the corresponding point V(π,m(i, j)). In other words, for all i and

j /∈ Ji, vert(Υπ) ∩ {s | si = vij}= V
(
π,m(i, j)

)
and V

(
π,m(i, j)

)
∈ FJ if j ∈ Ji because, for i′ 6= i,

Π(π,m(i, j))i′ ∈ Ji′ . This implies that
∣∣vert(Υπ) ∩ FJ | ≥ dn+ 1−

∑d

i=1

∣∣J̄i∣∣= dim(FJ) + 1, where
J̄i = {0, . . . , n} \Ji. Since points in vert(Υπ) are affinely independent, we conclude that dim(FJ)≤
dim

(
vert(Υπ)∩FJ

)
. �

This additional property of facet-defining inequalities for concQ(φ̄) allows us to show that the
facet generation problem of concP (φ̄) can be solved in O(dn logd). To prove this result, we need the
following result shown in [17] which relates the concave envelope over the face FJ to the envelope
over the projection QJ , where QJ is defined in (7). Recall that two sets C ⊆Rc and D ⊆Rd are
affinely isomorphic if there is an affine map f : Rc→Rd that is a bijection between the points of
the two sets. Consider an affine map A : sJ → s̃ defined as

s̃ij = sij for j ∈ Ji and s̃ij = (1− γij)sil(i,j) + γijsir(i,j) for j /∈ Ji, (18)
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where l(i, j) = max{j′ ∈ Ji | j′ ≤ j}, r(i, j) = min{j′ ∈ Ji | j′ ≥ j}, and γij =
aij−ail(i,j)

air(i,j)−ail(i,j)
. The inverse

of A is defined as a map which transforms s to sJ .

Lemma 3 (Lemma 8 in [17]). Assume that concQ(φ̄) is a polyhedral function. Let J =
(J1, . . . , Jd)∈J . Then, concFJ (φ̄)(s) = concQJ (φ̄)(sJ) for every s∈ FJ . Let φ≤ 〈α,s〉+ b be a valid

inequality of concQ(φ̄)(·) so that αJ̄ = 0. Then, the two tight sets, T
(α,b)

φ̄
(FJ) and T

(αJ ,b)

φ̄
(QJ) are

affinely isomorphic under the affine map A defined in (18). �

Theorem 2. Assume that φ̄(·) is concave-extendable from vert(Q) and is supermodular when
restricted to the vertices of Q. Let ū ∈ P . Then, a facet-defining inequality of concP (φ̄) which is
tight at ū can be found in O(dn logd) operations.

Proof. Let ū∈ P and let s̄ be the unique point so that (ū, s̄)∈ PQ′, which can be found in O(nd)
and where PQ′ is defined as in (4). Define J = (J1, . . . , Jd), where Ji := {j | ūij = s̄ij}. It follows from
Proposition 1 that s̄∈ FJ . Given s̄ as input, let (απ, bπ) denote the pair generated by Algorithm 1.
Now, we derive an inequality φ≤ 〈α′, s〉+ b′ defined so that 〈α′, s〉+ b′ = 〈απ,ΓJ(s)〉+ bπ, where
ΓJ : s∈Rd(n+1)→ s̃∈Rd(n+1) is a linear map defined in (6). We will show that φ≤ 〈α′, s〉+ b′ defines
a facet of concFJ (φ̄)(s) which is tight at s̄. Then, since α′

J̄
= 0, it follows from Lemma 3 that (α′J , b

′)
defines a non-vertical facet of concQJ (φ̄)(·) which is tight at s̄J . Therefore, by Proposition 2, (α′, b′)
defines a non-vertical facet of concP (φ̄)(·) which is tight at ū.

We now show that φ≤ 〈α′, s〉+ b′ defines a facet of concFJ (φ̄)(·) tight at s̄. The validity of the
inequality for concFJ (φ̄)(·) follows because for every s∈ FJ

concFJ (φ̄)(s)≤ 〈απ, s〉+ bπ = 〈απ,ΓJ(s)〉+ bπ = 〈α′, s〉+ b′, (19)

where the first inequality holds by the validity of φ≤ 〈απ, s〉+bπ for concFJ (φ̄)(·), first equality holds
because, by Proposition 1, s∈ FJ implies s= ΓJ(s), and the second equality is by the definition of
(α′, b′). Now, the proof is complete because, by Corollary 2, the first inequality in (19) is satisfied at
equality for dim(FJ) + 1 affinely independent points in FJ , and, in particular, for the point s̄. �

We briefly summarize the algorithmic construction of the facet-defining inequalities for the concave
envelope derived in Theorem 2. The construction uses three sets. The first set, ∆ =

∏d

i=1 ∆i, is defined
in Proposition 3 and used to construct the concave envelope of concave-extendable supermodular
functions. The second set, P =

∏d

i=1Pi, is defined in (2) and abstracts the composite function
structure. Inequalities obtained over P , upon substitution of underestimators, allow derivation of
inequalities, in the space of original problem variables, that are valid for the hypograph of the
original composite function. The third set is Q=

∏d

i=1Qi, whose vertex representation is given in
(3) and its hyperplane representation is given in (10), and this set serves as a bridge for connecting
the results on ∆ with those for P . In particular, given a ū∈ P , we obtain s̄∈Q using the concave
envelope construction given in (4). Then, we transform s̄ to z̄ ∈∆ using the affine isomorphism Z
defined in (11). The construction of the inequality proceeds in the opposite order. The inequality
constructed for z̄ ∈∆ is transformed into one for s̄∈Q simply using the inverse affine isomorphism,
Z−1. To derive the inequality for P , we revert the concave envelope construction, using the fact that,
for j 6∈ Ji, each s̄ij is obtained as a convex combination of ūil(i,j) and ūir(i,j), described in (6). The
set J = (J1, . . . , Jd) is derived during the concave envelope construction, where Ji = {j | ūij = s̄ij},
as defined in the proof of Theorem 2. This definition guarantees, by Proposition 1, that s̄ belongs
to the face FJ of Q as given in (16) and this face is used to describe, in the proof of Proposition 2
(see [17]), the set of points tight on the generated inequality. This tight set consists of dim(FJ) + 1
vertices of FJ and the points {u | ūij ≤ uij ≤ s̄ij∀(i, j)}.

Next, we specialize our study to the case when the outer-function is multilinear. Let S be
the staircase triangulation of Q. Recall that φ̄S : aff(Q)→R is obtained by extending the affine
interpolation function of φ̄(·) over the affine hull of Q. In Proposition 4, we argued that, under the
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assumed conditions on φ̄(·), concQ(φ̄)(s) = φS(s) for every s∈Q. Next, we show that if a multilinear
function φ̄(·) is supermodular over vert(Q) then, for every u∈ P , φ̄S(u) = concP (φ̄)(u). The point to
note here is that, for the multilinear case, the concave envelope over P requires no other non-vertical
inequalities beyond those needed to describe the concave envelope over Q, a result that does not
hold in general for concave-extendable, supermodular functions.

Corollary 3. Assume that the outer-function φ(·) is multilinear and the extension φ̄(·) is
supermodular when restricted to vertices of Q. Let S be the staircase triangulation of Q. Then, for
every u∈ P , concP (φ̄)(u) = φ̄S(u).

Proof. Let ū ∈ P . Then, as in Proposition 2, compute (ū, s̄) ∈ PQ′ and define J = (J1, . . . , Jd)
so that Ji = {j | ūij = s̄ij}. Since φ(·) is multilinear, its extension φ̄(·) is concave-extendable from
vert(Q). Moreover, φ̄(·) is supermodular when restricted to vert(Q). Therefore, we may construct
a facet-defining inequality using Algorithm 1, whose output will be denoted as the pair (απ, bπ).
Then, by Proposition 2, s̄∈ FJ and, by Corollary 2, the inequality φ≤ 〈απ, s〉+ bπ defines a facet of
concFJ (φ̄) such that for all i and j /∈ Ji, απij = 0. Moreover, by Corollary 1, this inequality is tight at
s̄. Then, it follows from Lemma 3 that φ≤ 〈απJ , sJ〉+ bπ is a facet-defining inequality of concQJ (φ̄)
that is tight at s̄J . Thus, by Proposition 2, φ≤ 〈απ, u〉+ bπ is a facet-defining inequality of concP (φ̄)
that is tight at ū. �

We have described a way to develop inequalities for composite functions as long as the outer-
function is supermodular and concave-extendable. To extend the applicability of this result, we
now turn our attention to a particular linear transformation that can be used to convert some
functions that are not ordinarily supermodular into supermodular functions. This transformation
is well-studied when the domain of the function is {0,1}d, a special case of vert(Q). In this case,
the transformation, often referred to as switching, chooses a set D⊆ {1, . . . , d} and considers a new
function φ′(x1, . . . , xd) defined as φ(y1, . . . , yd), where yi = (1− xi) if i ∈D and yi = xi otherwise.
We will now generalize this switching operation to Q. To do so, we will need permutations σi of
{0, . . . , n} for each i∈ {1, . . . , d}. We use the permutation σi to define an affine transformation that
maps vij to viσi(j). Let P σi be a permutation matrix in R(n+1)×(n+1) such that, for all (i′, j′), P σi

i′j′ = 1
when i′ = σ(j′) and zero otherwise. Then, the affine transformation associated with σi is given by
Aσi =Z−1

i ◦UP σiU−1 ◦Zi, where ◦ denotes the composition operator and U is an upper triangular
matrix of all ones. We let Aσ(s) :=

(
Aσ1(s1), . . . ,Aσd(sd)

)
. We will particularly be interested in the

case where σi = (n, . . . ,0) for i∈ T and σi = (0, . . . , n) otherwise. In this case, we denote Aσ(s) by
s(T ). Clearly, for i /∈ T , s(T )i = si. To compute s(T )i where i∈ T , we use the following expression

s(T )ij = ai0 +

j∑
k=1

(aik− aik−1)(1− zin+1−k) for j = 0, . . . , n, (20)

where z denotes Z(s). Then, we associate the outer-function φ(·) with a function φ(T ) : Rd×(n+1)→R
defined as φ(T )(s1, . . . , sd) = φ

(
s(T )1n, . . . , s(T )dn

)
and we say that φ(T ) is obtained from φ(·) by

switching T . It follows easily that concQ(φ̄)(s) = concQ
(
φ(T )

)(
s(T )

)
(Similar conclusions can be

easily drawn for switching with arbitrary permutations σ, where φ(σ)(s1, . . . , sd) is defined as
φ
(
Aσ(s)1n, . . . ,A

σ(s)dn
)
. In this case, concQ(φ̄)(s) = concQ

(
φ(σ)

)(
(Aσ)−1(s)

)
.). More specifically, if

the switched function φ(T ) is supermodular when restricted to the vertices of Q then concQ(φ̄) is
determined by the switched staircase triangulation specified by T , whose grid-labels are obtained by
labelling coordinates directions, for i∈ T , as they were, and, for i /∈ T , in a reversed order vin, . . . , vi0.
Then, for any movement vector π in the grid given by {0, . . . , n}d, the corresponding simplex is defined
as the convex hull of ext

(
Q(T ),Π(π,0)

)
, . . . , ext

(
Q(T ),Π(π,dn)

)
, where Q(T ) := {s(T ) | s ∈ Q}.

The following result records the above construction for later use.
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Corollary 4. Assume function φ̄(·) is concave-extendable from vert(Q). Let T be a subset of
{1, . . . , d}. If φ(T )(·) is supermodular when restricted to vert(Q) then concQ(φ̄)(·) is determined by
the switched staircase triangulation specified by T . �

To illustrate inequalities in Corollary 4, we now consider a special case that was studied in [17]
and used to improve factorable programming. The case setting requires that the outer-function
φ(·) is a bilinear term and each inner function has only one non-trivial underestimator. Note that
the validity of the following inequalities was established in [17]. Here, we apply Corollary 4 to
additionally show that these inequalities are facet-defining and that they describe the convex hull of
the outer-function over P . This result also serves as an example of showing how (switched) staircase
triangulation yields the convex hull over Q, and therefore, by Corollary 3, generates the convex hull
over P .

Corollary 5. Let ai0 ≤ ai1 ≤ ai2 for i = 1,2, and define P :=
{

(u, f) | ai0 ≤ ui ≤
min{fi, ai1}, fi ≤ ai2, i= 1,2

}
. Then, non-vertical facet-defining inequalities of the convex hull of{

(u, f) | φ= f1f2, (u, f)∈ P
}

are given as follows:

φ≥ e1 := a22f1 + a12f2− a12a22,
φ≥ e2 := (a22− a21)u1 + (a12− a11)u2 + a21f1 + a11f2 + a11a21− a11a22− a12a21,
φ≥ e3 := (a22− a20)u1 + a20f1 + a11f2− a11a22,
φ≥ e4 := (a12− a10)u2 + a21f1 + a10f2− a12a21,
φ≥ e5 := (a21− a20)u1 + (a11− a10)u2 + a20f1 + a10f2− a11a21,
φ≥ e6 := a10f2 + a20f1− a10a20,
φ≤ r1 := a20f1 + a12f2− a12a20,
φ≤ r2 := (a20− a21)u1 + (a11− a12)u2 + a21f1 + a12f2− a11a20,
φ≤ r3 := (a20− a22)u1 + a11f2 + a22f1− a11a20,
φ≤ r4 := (a10− a12)u2 + a21f1 + a12f2− a10a21,
φ≤ r5 := (a21− a22)u1 + (a10− a11)u2 + a22f1 + a11f2− a10a21,
φ≤ r6 := f1a22 + a10f2− a10a22.

Proof. Let φ : R2→R be the bilinear function φ(f1, f2) = f1f2. We verify that the set of inequalities,
φ≥ ei, i= 1, . . . ,6, defines the set of non-vertical facets of the epigraph of convP (φ)

(
(u1, f1), (u2, f2)

)
.

Let vi0 = (ai0, ai0), vi1 = (ai1, ai1), vi2 = (ai1, ai2), and define Qi := conv({vi0, vi1, vi2}) for i= 1,2.
For T = {2}, we have

φ(T )
(
(u1, f1), (u2, f2)

)
:= f1

(
a20 + (a21− a20)

(
1− f2−u2

a22− a21

)
+ (a22− a21)

(
1− u2− a20

a21− a20

))
,

where we have used (20) to derive the term after f1 on the right hand side of the above expression.
Using the above expression, φ(T )(v1j1 , v2j2) = a1j1a2(2−j2) for j1, j2 ∈ {0,1,2}. It follows that φ(T )
is submodular when restricted to vertices of Q since ai0 ≤ ai1 ≤ ai2 for i= 1,2. Let {π1, . . . , π6} be
the set of movement sequences in Z2 from (0,0) to (2,2), where π1 := (1,1,2,2), π2 := (1,2,1,2),
π3 := (1,2,2,1), π4 := (2,1,1,2), π5 := (2,1,2,1), and π6 := (2,2,1,1). The set of movement sequences
defines the switched staircase triangulation

{
Υπ1(T ), . . . ,Υπ6(T )

}
, where

Υπi(T ) = conv

({
(v1j1 , v2(2−j2))

∣∣∣ (j1, j2) = (0,0) +
k∑
p=1

eπip , k= 0, . . . ,4
})

for i= 1, . . . ,6,

(see Figure 3 for the grid representation of the triangulation). Since the bilinear term is obviously
convex-extendable from vert(Q), it follows from Corollary 4 that the convex envelope of φ over Q is
determined by the switched staircase triangulation

{
Υπ1(T ), . . . ,Υπ6(T )

}
. Moreover, each function
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Figure 3. grid representation of switched staircase triangulation {Υπ1(T ), . . . ,Υπ6(T )}

ei affinely interpolates f1f2 over the extreme points of simplex Υπi(T )
)
. As such, each inequality

φ≥ ei, where i∈ {1, . . . ,6}, describes a non-vertical facet of the epigraph of convQ(φ)(s), and the
result follows from Corollary 3.

A similar argument can be used to show that, for each i∈ {1, . . . ,6}, φ≤ ri defines a non-vertical
facet-defining of the hypograph of concP (φ̄)(u). This case does not require switching since the
bilinear term is already supermodular. �
In the next example, we illustrate how Corollaries 3 and 4 can be used to derive tighter convex
relaxations than the one in Corollary 5 by using additional underestimators.

Example 2. Consider the function x2
1x

2
2 over [0,2]2. Here, we treat the bilinear term φ(f1, f2) =

f1f2 as the outer-function and x2
1 and x2

2 as inner-functions. For i = 1,2, let ui(x) =
(
0, 2(2−√

3)xi− (2−
√

3)2, 2xi− 1, x2
i

)
and ai = (0,1,3,4). Notice that, using one single estimator 2xi− 1

of x2
i , [17] derived the following convex underestimator for x2

1x
2
2

max

{
4x2

1 + 4x2
2− 16, 2x1 + 2x2 + 3x2

1 + 3x2
2− 17, 8x1 + 3x2

2− 16
3x2

1 + 8x2− 16, 6x1 + 6x2− 15, 0

}
, (21)

which is obtained by substituting 2xi− 1 and x2
i with their defining relation in inequalities from

Corollary 5. Next, we illustrate how estimators ui(·) and their bounds ai are simultaneously
exploited to relax x2

1x
2
2 over [0,2]2. Let T = {2}. By Corollaries 3 and 4, the supermodularity

v10 v11 v12 v13

v23

v22
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v20

Figure 4. the switched simplex associated with (1,2,1,2,1,2)

of φ(T )(·) over vertices of Q implies that interpolating φ̄(·) over the switched simplex given by
(1,2,1,2,1,2) (see Figure 4) yields φ̄(u)≥w14 = u11 + 2u12 + u13 + u21 + 2u22 + u23− 11 for u ∈ P .
After substitution, we obtain that x2

1x
2
2 ≥ x2

1 + (8− 2
√

3)x1 + x2
2 + (8− 2

√
3)x2− 15− 2(2−

√
3)2

for x∈ [0,2]2, which utilizes all available underestimators ui(·) of inner-functions and their upper
bounds on [0,2]2. The underestimator w14 is not dominated by (21) because it evaluates to a higher
value at (x1, x2) = (1.63,1.4) than any underestimator in (21). For completeness, we include the full
description of the convex and concave envelope of φ̄(·) over P in Appendix B. �

Observe that (21) is equivalent after substitution to underestimators w1, w11, w15, w16, w19, and
w20 from Appendix B, and these are precisely the inequalities that depend only on ui2 and ui3. In fact,
all the inequalities except w7, w8, w9, w12, w13, and w14 can be obtained using one underestimator
each for x2

1 and x2
2. Interestingly, every inequality obtained by choosing such an underestimator

is still facet-defining for the set with two underestimators, as can be checked using the listing in
Appendix B. Next, we formalize and generalize this observation. Recall that P is defined as the
product of polytopes defined in (2), each of which depends on underestimators for an inner-function.
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Assume that we construct another polytope P ′ using a subset of the underestimators used to define
P . Then, since P ′ is a projection of P and projection commutes with convexification, it follows
readily that that concP (φ̄) projects to concP ′(φ̄). Therefore, any inequalities valid for concP ′(φ̄) are
also valid for concP (φ̄). However, we will show that a stronger property holds. The facet-defining
inequalities for concP ′(φ) also define facets of concP (φ̄). Towards this end, we introduce some
notation to describe a projection of P obtained by selecting a subset of underestimators. This
subset is specified using a d-tuple J = (J1, . . . , Jd) ∈ J , where J is defined as in (5). Here, each
tuple specifies which underestimators are selected. We denote the corresponding projection of P as
PJ which is now the Cartesian product P1J1 × · · ·×PdJd , where PiJi is the polytope defined in (2)
using underestimators uiJi with a vector of bounds aiJi .

Proposition 5. Assume concP (φ̄) is a polyhedral function and φ ≤ 〈αJ , uJ〉+ b is a facet-
defining inequality of concPJ (φ̄)(uJ). Then, φ≤ 〈α,u〉+b is a facet-defining inequality of concP (φ̄)(·),
where α := (αJ ,0).

Proof. Since φ≤ 〈αJ , uJ〉+ b is a facet-defining inequality of concPJ (φ̄)(·) and ai0 <ain, there is
a point ūJ ∈ PJ with concPJ (φ̄)(ūJ) = 〈αJ , ūJ〉+ b such that, for i∈ {1, . . . , d} and j 6= 0, ai0 < ūij.
Let ū=A(ūJ), where A is the affine transformation defined in (18). Then,

〈α, ū〉+ b≤ convP (φ̄)(ū)≤ concA(PJ )(φ̄)(ū) = concPJ (φ̄)(ūJ) = 〈α, ū〉+ b,

where the first inequality holds by the validity of 〈α,u〉+ b and ū∈ P , the second inequality follows
from A(PJ)⊆ P , the first equality holds because affine maps commute with convexification, and
the last equality follows by the choice of ūJ and the definition of α. Therefore, equalities hold
throughout and, in particular, 〈α, ū〉+b= concP (φ̄)(ū), that is, ū∈ T (α,b)

φ (P ). Now, let i′ ∈ {1, . . . , d}
and j′ /∈ Ji′ , and consider the face P ′ := {u∈ P | ui′j′ = ai0}. By definition, ūi′j′ 6= ai0. Thus, we can
construct û∈ P ′ that matches ū except that ûi′j′ 6= ūi′j′ . Such a û can be obtained using the same
argument as above where û=B(ūJ) and B is defined similarly to A, except that ûi′j′ = ai′0. It

follows that û∈ T (α,b)

φ̄
(P ) and, therefore, ei′j′ is in the affine hull of T

(α,b)

φ̄
(P ). Then,

dim(P )≥ dim
(
T

(α,b)

φ̄
(P )
)
≥ dim

(
T

(αJ ,b)

φ̄
(PJ)

)
+

d∑
i=1

(
n− |Ji|

)
= dim(PJ) +

d∑
i=1

(
n− |Ji|

)
= dim(P ),

where the first inequality is because T
(α,b)

φ̄
(P )⊆ P , second inequality is because in our argument

above the choice of ūJ was arbitrary in T
(αJ ,b)

φ̄
(PJ) and the choice of (i′, j′) was arbitrary except

that j′ /∈ Ji′ , the first equality is because (αJ , b) defines a facet of concPJ (φ̄), and the second equality
is by the definition of P . Therefore, equalities holds throughout and, in particular, dim(P ) =
dim

(
T

(α,b)

φ̄
(P )
)
. �

3.2. On the strength of termwise relaxation of bilinear functions In this subsection,
we consider a weighted graph G= (V,E) with node set V = {1, . . . , d} and edge set E. With this
graph, we associate a bilinear function φ : Rd→ R defined as φ(s1n, . . . , sdn) =

∑
e∈E ce

∏
i∈e sin,

where, by i∈ e, we mean that edge e is incident with node i. We assume that an edge exists only
if the corresponding weight ce 6= 0. We call an edge positive if ce > 0 and negative if ce < 0. Let
φQ :=

{
(s,φ)

∣∣ φ= φ̄(s1, . . . , sd), s∈Q
}

, and we will study whether its convex hull

conv
(
φQ
)

=
{

(s,φ)
∣∣ convQ(φ̄)(s)≤ φ≤ concQ(φ̄)(s), s∈Q

}
is obtained by a simple relaxation, one obtained by convexifying each bilinear term separately.
To formally define the latter relaxation, we associate with an edge e ∈ E a bilinear function
φe : Rd→R defined as φe(s1n, . . . , sdn) = ce

∏
i∈e sin. Then, we construct the termwise-relaxation of
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φQ by underestimating φ̄(·) with
∑

e∈E convQ(φ̄e)(·) and overestimating it with
∑

e∈E concQ(φ̄e)(·),
where each term in the summation could be obtained by using Corollary 4, or more specifically,
when there is one non-trivial underestimator for each inner function, using Corollary 5. Succinctly,
the termwise relaxation is defined as follow:

Ψ :=
{

(s,φ)
∣∣∣∑
e∈E

convQ(φ̄e)(s)≤ φ≤
∑
e∈E

concQ(φ̄e)(s), s∈Q
}
.

Clearly, Ψ is convex superset of φQ and therefore also a superset of conv
(
φQ
)
. We show that, if

the graph G satisfies some conditions, conv(φQ) coincides with Ψ. Since the sign for all ce can be
reversed, it suffices to consider the equivalence

∑
e∈E concQ(φ̄e)(s) = concQ(φ̄)(s).

We call an edge e∈E is positive if ce > 0 and negative otherwise. A (signed) graph is said to be
balanced if every cycle has an even number of negative edges (see [16]). It is shown in Theorem 3
of [16] that a graph is balanced if and only if the vertex set V (G) can be partitioned into subsets
T1 and T2 so that each positive edge of G connects two nodes from the same subset and each
negative edge connects two nodes from different subsets. We will argue, by switching the variables
which correspond to one of the partitioned subsets, that we can transform φ(·) into a supermodular
function.

Lemma 4. Consider a graph G and let φ(·) be a bilinear function defined by the graph G.
There exists a subset T of V so that, for s(T ) as defined in (20), the function φ(T )(s1, . . . , sd) =
φ(s(T )1n, . . . , s(T )dn) is supermodular when restricted to vert(Q) if and only if graph G is balanced.

Proof. Assume G= (V,E) is a balanced graph. Then, using Theorem 3 in [16], we partition V
into subsets T1 and T2 such that positively signed edges connect nodes of the same subset and
the negatively signed edges connect nodes of the different subsets. Then, to show that φ(T1)(·) is
supermodular over vert(Q), it suffices to show that, for each edge e, φe(T1)(·) is supermodular over
vert(Q). By (20) it follows that, for i∈ T1, si ≥ s′i and s(T1)i ≤ s′(T1)i whenever zi ≥ z′i. Since φe(·)
is supermodular when e∈ T1 or e∈ T2, and submodular otherwise, it follows that, for each edge e,
φe(T1)(·) is supermodular.

We now show the converse, i.e., there does not exist a T such that φ(T )(·) is supermodular when
restricted to vert(Q). Since the graph is not balanced, there exists a cycle that contains an odd
number of negative edges. Since this cycle leaves and enters T an even number of times, it follows
that there is a negative edge either contained in T or in its complement. Let this edge be e := (k, l).
Assume without loss of generality that k, l ∈ T as the other case is similar. Consider vertices v′ and
v′′ corresponding to grid points (j′i)

d
i=1 and (j′′i )di=1, where we assume that j′k = j′′l = 1, j′l = j′′k = 2,

and j′i = j′′i otherwise. Then, it follows that

φ(T )(v′ ∨ v′′) +φ(T )(v′ ∧ v′′)−φ(T )(v′)−φ(T )(v′′)
= ce

(
akn−2aln−2 + akn−1aln−1− akn−2aln−1 + akn−1aln−2

)
< 0,

where the inequality follows from the supermodularity of the bilinear product and ce < 0. Therefore,
it follows φ(T )(·) is not supermodular. �

In Theorem 3, we show that the balanced graphs are exactly the ones for which the termwise
relaxation Ψ coincides with conv(φQ). To prove this result, we need the following lemma. Recall that
we say that the concave envelope of a function f is determined by a triangulation K= {K1, . . . ,Kr} if
the concave envelope of f over

⋃r

i=1Ki is minri=1χ
Ki(s), where χKi is the affine function interpolating(

v, f(v)
)

for all v ∈ vert(Ki).

Lemma 5. Consider a function f : vert(D)→R so that f(s) =
∑m

j=1 fj(s), where D is a polytope.
If concave envelopes of fj(s), j = 1, . . . ,m, are determined by the same triangulation K of D then
concD(f)(s) =

∑m

j=1 concD(fj)(s) for every s ∈ D. Moreover, if there does not exist a common
triangulation which generates concave envelopes of fj for all j, then there exists s ∈D such that
concD(f)(s)<

∑m

j=1 concD(fj)(s).
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Lemma 5 follows as a special case from the proof of Corollary 3.9 in [38]. We include a direct proof
of Lemma 5 in Appendix C for completeness. We remark that this result is also related to prior
results on sum-decomposability of (concave) envelopes in [30, 37].

Theorem 3. Consider a graph G and a bilinear function φ(·) defined on G. Then,∑
e∈E concQ(φ̄e)(s) = concQ(φ̄)(s) for every point s∈Q if and only if G is balanced.

Proof. Suppose that graph G is balanced. Then, we show that
∑

e∈E concQ(φ̄e)(s) = concQ(φ̄)(s).
By Lemma 4, there exists a subset T of V such that, for all e∈E, φe(T )(s1, . . . , sd) is supermodular
when restricted to vert(Q). By Theorem 1.2 in [30], for all e∈E, φ̄e(·) is concave-extendable from
vert(Q). By Corollary 4, concQ(φ̄e)(·) is determined by the same switched staircase triangulation
for all e∈E. So, by Lemma 5, we conclude that

∑
e∈E concQ(φ̄e)(s) = concQ(φ̄)(s).

Now, suppose that G is not balanced. We construct a point s ∈ Q so that concQ(φ̄)(s) <∑
e∈E concQ(φ̄e)(s). Let s̄i = 1

2
(0, ai1, . . . , ain−1,1) for all i= 1, . . . , d. Then, we obtain

concQ(φ̄)(s̄1, . . . , s̄d) = conc[0,1]d(φ)
(1

2
, . . . ,

1

2

)
<
∑
e∈E

conc[0,1]2(φe)
(1

2
,
1

2

)
=
∑
e∈E

concQ(φ̄e)(s̄),

where first and last equality hold by Lemma 3 and strict inequality follows from Theorem 4 in [6].
(Alternately, the existence of a point that satisfies the strict inequality follows from Lemma 5, and

that
(

1
2
, . . . , 1

2

)
is such a point is a consequence of strict supermodularity of the bilinear term). �

The hypercube [0,1]d arises as a special case of Q where n= 1 and the variables (s10, . . . , sd0) are
projected out. In this case, Theorem 3 recovers the results of [6] and [26] regarding when McCormick
envelopes [23] applied termwise suffice to obtain the concave envelope of a bilinear function φ over
[0,1]d.

Corollary 6 (Theorem 3.10 in [26] and Theorem 4 in [6]). Consider the graph G asso-
ciated with a bilinear function φ : [0,1]d→R. Then, the termwise relaxation of the hypograph of φ(·)
over [0,1]d coincides with the hypograph of conc[0,1]d(φ)(·) if and only if every cycle in G has an
even number of negative edges.

3.3. Tractable simultaneous convex hull We now extend our results to simultaneous
convexification of a vector of functions θ : Rd→Rκ. Consider the hypograph of θ : Rd→Rκ over a
polytope P := P1× · · ·×Pd defined as

ΘP :=
{

(u, θ)∈Rd×(n+1)×Rκ
∣∣ θ≤ θ(u1n, . . . , udn), u∈ P

}
,

where Pi is the polytope defined in (2). For k ∈ {1, . . . , κ}, let ΘP
k :=

{
(u, θ)

∣∣ θk ≤ θk(u1n, . . . , udn), u∈
P
}

be the hypograph of θk(·) over P . Since ΘP ⊆
⋂κ

k=1 conv(ΘP
k ), it follows that conv(ΘP ) is a

subset of
⋂κ

k=1 conv(ΘP
k ), where the former will be referred to as the simultaneous convex hull

of ΘP , while the latter as the individual convex hull of ΘP . Clearly, it is often the case that
conv(ΘP ) (

⋂κ

k=1 conv(ΘP
k ). Nevertheless, we will characterize conditions for which the simultaneous

hull of ΘP coincides with the individual hull of ΘP .

Theorem 4. If concave envelopes of θk, k = 1, . . . , κ, over Q are determined by the same
triangulation K then conv(ΘP ) =

⋂κ

k=1 conv(ΘP
k ).

Proof. Clearly, conv
(
ΘP
)
⊆
⋂κ

k=1 conv
(
ΘP
k

)
because ΘP ⊆

⋂κ

k=1 conv
(
ΘP
k

)
and the latter set is

convex. To show
⋂κ

k=1 conv
(
ΘP
k

)
⊆ conv

(
ΘP
)
, we consider a point (ū, θ̄) ∈

⋂κ

k=1 conv
(
ΘP
k

)
, i.e.,

(θ̄1, . . . , θ̄d)≤
(
concP (θ1)(ū), . . . , concP (θd)(ū)

)
. Then, we lift ū to the unique point s̄ so that (ū, s̄)∈

PQ′, and define J = (J1, . . . , Jd), where Ji := {j | ūij = s̄ij}. Let D= (D1, . . . ,Dd) so that Di ⊆ J̄i :=
{0, . . . , n} \ Ji. Let ūD be a point of P so that, for i ∈ {1, . . . , d}, ūDij = s̄ij if j /∈Di and ūDij = ūij
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otherwise. Since ūJ̄ = ū where J̄ denotes (J̄1, . . . , J̄d), the proof is complete if we show by induction
on |D| :=

∑d

i=1 |Di| that there is a set MD ⊆ vert(P ) and λv, for v ∈MD, that are independent of k
and satisfy

for k ∈ {1, . . . , κ},
(
ūD, concP (θk)(ū

D)
)

=
∑
v∈MD

λv
(
v, θk(v·n)

)
,

∑
v∈MD

λv = 1, λ≥ 0, (22)

where v·n denotes (v1n, . . . , vdn). For the base case with |D| = 0, we have ūD = s̄ ∈ Q. Since K
is assumed to be the common triangulation that determines concQ(θk) for every k ∈ {1, . . . , κ},
there exists K ∈K and convex multipliers λv such that, for k ∈ {1, . . . , κ},

(
ūD, concQ(θk)(ū

D)
)

=∑
v∈vert(K) λv

(
v, θk(v·n)

)
. Therefore, the base case is established because vert(K) ⊆ vert(Q) ⊆

vert(P ), and, by Corollary 1 in [17], we have that, for every k ∈ {1, . . . , κ}, concP (θk)(ū
D) =

concQ(θk)(ū
D). For the inductive step, consider D= (D1, . . . ,Dd) so that Di ⊆ J̄i and assume that

the result holds for any tuple D′ such that |D′|< |D|. Since |D| 6= 0, there is a pair (i′, j′) so that
j′ ∈Di′ . Let D′ := (D′1, . . . ,D

′
d) so that D′i =Di if i 6= i′ and D′i′ =Di′ \ {j′}. Note that from the

induction hypothesis there exists a set MD′ ⊆ vert(P ) and convex multipliers λv, one for each
v ∈MD′ , so that, for k ∈ {1, . . . , κ},

(
ūD
′
, concP (θk)(ū

D′)
)

=
∑

v∈MD′ λv
(
v, θk(v·n)

)
. Consider an

affine mapping A so that, for i 6= i′ and j 6= j′, A(u)ij = uij while A(u)i′j′ = ai′0. Define γ :=
ui′j′−ai′0
si′j′−ai′0

..

Then, for k ∈ {1, . . . , κ},(
ūD, concP (θk)(ū

D)
)

= γ
(
ūD
′
, concP (θk)(ū

D′)
)

+ (1− γ)
(
A(ūD

′
), concP (θk)(ū

D′)
)

= γ

( ∑
v∈MD′

λv
(
v, θk(v·n)

))
+ (1− γ)

( ∑
v∈MD′

λv
(
A(v), θk(v·n)

))
= γ

( ∑
v∈MD′

λv
(
v, θk(v·n)

))
+ (1− γ)

( ∑
v∈MD′

λv

(
A(v), θk

(
A(v)·n

)))
,

where the first equality holds because, by Corollary 1 in [17], concP (θk)(ū
D) = concP (θk)(ū

D′),
the second equality follows from the induction hypothesis because |D′| < |D| and exploits that
convexification commutes with affine transformation, and the last equality is because j′ 6= n. The
induction step is established by observing that, for any u∈ vert(P ), A(u)∈ vert(P ). �

Corollary 7. Assume that, for every k ∈ {1, . . . , κ}, the extension θ̄k(·) of θk(·) is concave-
extendable from vert(Q) and is supermodular when restricted to the vertices of Q. Then, conv

(
ΘP
)

=⋂κ

k=1 conv
(
ΘP
k

)
. Moreover, the facet generation problem of conv(ΘP ) can be solved in O(κdn logd).

Proof. It follows from Theorem 4 that conv
(
ΘP
)

=
⋂κ

k=1 conv
(
ΘP
k

)
because, by Proposition 4,

concave envelopes of θk, k = 1, . . . , κ, are determined by a triangulation of Q, that does not
depend on k. Now, we argue that the facet generation problem of conv(ΘP ) can be solved by
separating conv(ΘP

k ) individually. Let (ū, θ̄) ∈ Rd×(n+1)×Rκ. Then, for each k ∈ {1, . . . , κ}, we
call the procedure in Theorem 2 to solve the facet generation problem of conv(ΘP

k ). If (ū, θ̄) ∈⋂κ

k=1 conv(ΘP
k ) then, as shown above, (ū, θ̄) ∈ conv(ΘP ). Otherwise, without loss of generality,

we assume that (ū, θ̄) /∈ conv(ΘP
1 ) and the procedure outputs a facet-defining inequality θ1 ≤

〈α,u〉+ b of concP (θ1) that is violated by (ū, θ̄). As conv(ΘP ) ⊆
⋂κ

k=1 conv(ΘP
k ), this inequality

is valid for conv(ΘP ). To complete the proof, we will show that it defines a facet of conv(ΘP ).
Let T :=

{
(u, θ) ∈ conv(ΘP )

∣∣ θ1 = 〈α,u〉 + b
}

and let M :=
{
u ∈ vert(P )

∣∣ 〈α,u〉 + b = θ1(u·n)
}

.
Observe that

{
(u, θ)

∣∣ u∈M, θ1 = θ1(u·n), θk ≥ θk(u·n) for k= 2, . . . , κ
}

is a subset of T . Therefore,
dim

(
aff(T )

)
≥ dim(M) +κ− 1 = dim(P ) +κ− 1≥ dim(ΘP )− 1, where the equality holds because

θ1 ≤ 〈α,u〉+ b defines a facet of Θ1. Thus, T is a facet of conv(ΘP ). �
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4. Infinitely many estimators for inner functions Sections 2 to 3 considered composite
functions and described a way to relax them while exploiting finitely many estimators for each
inner-function. A natural follow-up question is to understand the limiting relaxation, one obtained
using infinitely many estimators for each inner-function. We will explore the structure of this
relaxation in Section 4. To begin, we review some basic concepts from probability theory, optimal
transport, and stochastic order that we later use to characterize the structure of the limiting
relaxation.

4.1. Probability, optimal transport, and stochastic orders Each real-valued random
variable Ai induces a probability measure on the real line (−∞,∞) which can be described by
its (cumulative) distribution function Fi, that is, Fi(ai) = Pr{Ai ≤ ai} for ai ∈ (−∞,∞). The
expectation of random variable Ai is

E[Ai] =

∫ ∞
−∞

aidFi(ai).

Any distribution function Fi has three properties; it is non-decreasing, right-continuous, and ranges
from 0 to 1 with limai→−∞Fi(ai) = 0 and limai→∞Fi(ai) = 1. Conversely, any function satisfying
these three properties is a distribution function for some random variable. The right-continuity
of a non-decreasing function implies that the function is continuous except possibly at a finite or
countable set of points where the graph of the distribution function has a vertical gap. Due to the
vertical gaps, a distribution function Fi does not always have an inverse. To circumvent this issue,
a generalized inverse is used instead that is defined for any λ∈ [0,1] as follows:

F−1
i (λ) := min

{
ai
∣∣ Fi(ai)≥ λ} .

The generalized inverse, F−1
i (λ), is non-decreasing and left-continuous on [0,1]. Like the distribution

function Fi, the generalized inverse function, F−1
i , can have at most countably many jumps where

if it fails to be continuous. Observe that F−1
i (λ)≤ ai if and only if λ≤ Fi(ai). This is because for

any (ai, λ) so that F (ai)≥ λ, it follows by minimization and feasibility of ai in the definition of
F−1
i (λ) that F−1

i (λ)≤ ai. Then, if a′i := F−1
i (λ)≤ ai, it follows that Fi(ai)≥ Fi(a′i)≥ λ, where the

first inequality is because ai ≥ a′i and the second is because Fi is right-continuous. In particular,
we will consider real-valued random variables with support in a measurable subset of [0,1]. Let
F be the set of all distribution functions with support in [0,1]. Then, F is a convex subset of B,
where the latter set denotes the convex cone whose elements are all bounded nonnegative univariate
functions on R. The convexity of F follows because the three properties characterizing functions in
F are closed under convex combinations and any function satisfying these properties belongs to F .
The extreme set of F , denoted as ext(F), is the set of distribution functions with Dirac measures
over [0,1], i.e., ext(F) :=

{
Hδ(a)

∣∣ a∈ [0,1]
}

, where δ(a) denotes the Dirac measure at point a and
Hδ(a) denotes the corresponding distribution function, i.e., Hδ(a)(x) = 0 for x< a and Hδ(a)(x) = 1
for x≥ a.

For distribution functions F1, . . . ,Fd, we define Π(F1, . . . ,Fd) as the set of all joint distribution
functions on Rd whose marginals are F1, . . . ,Fd. Therefore, a distribution function F belongs to
Π(F1, . . . ,Fd) if and only if it satisfies the following properties. First, F is non-decreasing in each
variable. Second, F is right-continuous in the sense that limδ→0+ F (a1 +δ, . . . , ad+δ) = F (a1, . . . , ad).
Third, F (a1, . . . , ad)→ 0 if ai→−∞ for some i, and F (a1, . . . , ad) = 1 if ai→∞ for all i. Finally, for
each i and ai ∈ (−∞,∞), F (∞, . . . , ai, . . . ,∞) = Fi(ai). Let Bd denote the convex cone of bounded
nonnegative functions on Rd. Then, Π(F1, . . . ,Fd) is a convex subset of Bd because the above
properties are closed under taking convex combinations and any functions satisfying these properties
belong to Π(F1, . . . ,Fd). To clarify the joint distribution function, we add it as a subscript to
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the expectation operator so that, for a continuous function φ : Rd → R, its expectation under
F ∈Π(F1, . . . ,Fd) is denoted as

EF
[
φ(A1, . . . ,Ad)

]
:=

∫
Rd
φ(a1, . . . , ad)dF (a1, . . . , ad),

where (A1, . . . ,Ad) follows F , which will be denoted as (A1, . . . ,Ad)∼ F . If the distribution functions
F1, . . . ,Fd are assumed to have supports in [0,1] and φ(·) is continuous on [0,1]d, it follows that, for
all F ∈Π(F1, . . . ,Fd), the expectation EF

[
φ(A1, . . . ,Ad)

]
is finite.

The limiting relaxation arises as the solution of an optimal transport problem. For distribution
functions F1, . . . ,Fd on the real line, the multivariate Monge-Kantorovich problem on the real line
(Section 2 in [29]) is defined as the following optimization problem

sup
{
EF
[
φ(A1, . . . ,Ad)

] ∣∣∣ F ∈Π(F1, . . . ,Fd)
}
. (23)

To express the limiting relaxation in an explicit form, we need to solve the multivariate Monge-
Kantorovich problem.

Theorem 5 ([21] and Theorem 5 in [42]). Let F1, . . . ,Fd be d probability distribution func-
tions on the real line and let F ∗(a) = miniFi(ai). Then, for any continuous supermodular function
φ : Rd→R,

sup
F∈Π(F1,...,Fd)

∫
φdF =

∫
φdF ∗

if φ ≤ ϕ for some continuous function ϕ such that
∫
ϕdF is finite and constant for all F ∈

Π(F1, . . . ,Fd). �

To establish the convexity of the limiting relaxation in the space of (x, f) variables, we will
need to show that the optimal value of (23) changes monotonically as the univariate distribution
functions F1, . . . ,Fd vary in a specific manner. To this end, we review order relations over distribution
functions. Let Ai and Bi two univariate random variables with distribution functions Fi and Gi,
respectively. Then, Ai is said to be smaller than Bi in the concave order (denoted as Fi �Gi) if
EFi [ψ(Ai)]≤EGi [ψ(Bi)] for all concave functions ψ :R→R, provided the expectations exist. The
following two alternative characterizations from Theorem 3.A.1 and Theorem 3.A.5 in [34] will be
useful in our context, that is, Fi �Gi if and only if

EFi
[
min{Ai, ai}

]
≤EGi

[
min{Bi, ai}

]
for ai ∈R and EFi [Ai] = EGi [Bi], (24)

or ∫ p

0

F−1
i (λ)dλ≤

∫ p

0

G−1
i (λ)dλ for p∈ [0,1] and EFi [Ai] = EGi [Bi]. (25)

Next, we consider another order which is defined by dropping the second requirement in (24).
Namely, we say Fi ≺Gi if

EFi
[
min{Ai, ai}

]
≤EGi

[
min{Bi, ai}

]
for ai ∈R, (26)

This order is the increasing concave order of two random variables Ai and Bi, and is equivalently
defined by requiring, EFi [ψ(Ai)]≤ EGi [ψ(Bi)] for all increasing concave function ψ : R→ R (see
Theorem 4.A.2 in [34]). Moreover, Theorem 4.A.5 and (1.A.2) in [34] provide a useful alternative
characterization, that is Fi ≺Gi if and only if there exists a distribution function Hi such that

F−1
i (λ)≤H−1

i (λ) for λ∈ [0,1] and Hi �Gi. (27)

To study how the optimal value of (23) changes as distribution functions F1, . . . ,Fd change in
(increasing) concave order, we need an integral inequality given in the following technical lemma.
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Lemma 6 (Theorem 1 in [12]). Let ψ(λ,u1, . . . , ud) be a continuous function mapping from
[0,1]×Rd to R. Then, we have∫ 1

0

ψ(λ,η1, . . . , ηd)dλ≤
∫ 1

0

ψ(λ,γ1, . . . , γd)dλ

for each system of non-decreasing bounded univariate functions ηi, γi, i= 1, . . . , d, such that∫ p

0

ηi(λ)dλ≥
∫ p

0

γi(λ)dλ 0≤ p≤ 1 and

∫ 1

0

ηi(λ)dλ=

∫ 1

0

γi(λ)dλ, (28)

if and only if the function ψ is convex in ui when the other arguments are fixed, supermodular over
Rd when λ is fixed, and∫ δ

0

(
ψ(p+ δ+λ,u)−ψ(p+ δ+λ,u−hei) +ψ(p+λ,u−hei)−ψ(p+λ,u)

)
dλ≥ 0 (29)

for all 0≤ p≤ 1− 2δ, δ > 0, h≥ 0, i= 1, . . . , d, where ei is the ith standard basis vector in Rd. �

4.2. Envelope characterization via optimal transport Consider a composite function
φ ◦ f : X ⊆ Rm→ R defined as (φ ◦ f)(x) = φ(f(x)), where f : Rm→ Rd is a vector of bounded
functions over X and φ : Rd→ R is a continuous function. For each point (x, f), where x ∈ X
and f = f(x), in Section 4.3 we will use underestimating functions of fi(x) to derive a marginal
distribution function Fi ∈ F . This marginal distribution will be such that the expected value of
the corresponding random variable Ai, denoted as EFi [Ai], equals fi. Consequently, to relax the
hypograph of the composite function φ ◦ f , it will suffice to over-estimate φ

(
EF1(A1), . . . ,EFd(Ad)

)
.

We now briefly discuss how this will be achieved. For notational brevity, we extend the outer-function
φ(·) to define φ̃(·) so that, for any (F1, . . . ,Fd)∈Fd :=F × · · · ×F ,

φ̃(F1, . . . ,Fd) = φ
(
EF1 [A1], . . . ,EFd [Ad]

)
,

where Ai ∼ Fi. To see the functional φ̃(·) as an extension of φ(·) from [0,1]d to Fd, we map an
f ∈ [0,1]d into Fd as

(
Hδ(f1), . . . ,Hδ(fd)

)
, where Hδ(fi), as defined before, is the distribution function

with its mass concentrated at the point fi. In this subsection, we will derive the concave envelope of
φ̃(·) over its domain Fd, that is the lowest concave overestimator of the extension φ̃(·) over Fd. This
envelope will be denoted as concFd(φ̃). More specifically, we show that when the outer-function φ(·)
satisfies certain conditions, concFd(φ̃) is the solution to an optimal transport problem [45]. This
solution can be derived explicitly when φ(·) satisfies some additional requirements.

Before characterizing the concave envelope of φ̃(·) over Fd, we discuss how this setting relates to
the discrete case. In Section 2 and 3, we introduced a sequence of mappings (x, f)→ u→ s→ z, where
the first map evaluated underestimators, second map was defined by constructing two-dimensional
concave envelopes, and the third map was via an affine transformation Z. It is the z-space that is
intimately related to Fd. More specifically, let z = (z1, . . . , zd), where zi = (zi0, . . . , zin)∈∆i. Let Fi
be defined as 1 at ain and above, 1− zik in [aik−1, aik) for k ∈ {1, . . . , n}, and 0 below ai0. Since the
mapping from z to (F1, . . . ,Fd) is affine, results regarding the concave envelope over ∆ translate to
those about concFd(φ̃)(F1, . . . ,Fd). The following treatments will generalize the above discussion,
allowing for more general distributions that are not necessarily supported at a finite set of discrete
points.

If φ(·) is a univariate convex function, by Jensen’s inequality, φ̃(F1) = φ
(
EF1 [A1]

)
≤EF1

[
φ(A1)

]
.

We now extend this idea to the multidimensional case. We will show in Lemma 7 that, as long as,
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φ(·) is convex in each argument when other arguments are fixed, there exists a joint distribution
F ∈Π(F1, . . . ,Fd) so that

φ̃(F1, . . . ,Fd)≤EF [φ(A1, . . . ,Ad)]. (30)

The above inequality immediately implies that

concFd
(
φ̃
)
(F1, . . . ,Fd) = concFd

(
φ̃|ext(Fd)

)
(F1, . . . ,Fd), (31)

i.e., it suffices to restrict φ̃(·) to the extreme points for Fd for the purpose of constructing concFd
(
φ̃
)
.

To see this, observe that the left hand side in (31) is at least as large as the right hand side. We
now argue the converse relationship. Observe that

φ̃(F1, . . . ,Fd)≤EF
[
φ(A1, . . . ,Ad)

]
=

∫
φ̃(Hδ(a1), . . . ,Hδ(ad))dF (a)

≤ concFd
(
φ̃|ext(Fd)

)
(F1, . . . ,Fd),

(32)

where the first inequality holds by the hypothesis (30), and the equality is by definition of φ̃(·).
The last inequality holds by the concavity of concFd(φ̃|ext(Fd)) and that Hδ(ai) are the extreme
points of F , since, for each i ∈ {1, . . . , d}, Fi(ai) =

∫
Hδ(bi)(ai)dFi(bi). Then, it follows that the

converse concFd(φ̃)(F1, . . . ,Fd)≤ concFd(φ̃|ext(Fd))(F1, . . . ,Fd) holds. The relation (31) shows that

concFd(φ̃) is the lowest concave extension of φ̃(·) restricted to ext(Fd). We now establish that the
inequality (30) holds under certain hypothesis on the structure of φ.

Lemma 7. Let A1, . . . ,Ad be independent random variables and F1, . . . ,Fd be the corresponding
distribution functions. If φ : Rd→ R is a continuous function which is convex in each argument
when other arguments are fixed then φ̃(F1, . . . ,Fd)≤E

[
φ(A1, . . . ,Ad)

]
, where the equality is attained

when the function φ(·) is multilinear.

Proof. For any index set I, we will denote the joint distribution of {Ai | i∈ I} as FI . The set of
integers {i, . . . , j} will be denoted [i, j] so that the joint distribution of {Ai, . . . ,Ad} will be written
as F[i,j]. We prove the inequality in the statement of the result by induction on d. The base case
d= 1 follows from Jensen’s inequality as was remarked earlier. For the inductive step, we have:

φ̃(F1, . . . ,Fd)≤EF[1,d−1]

[
φ
(
A1, . . . ,Ad−1,EFd

[
Ad
])]

= EF[1,d−1]

[
φ
(
A1, . . . ,Ad−1,EFd

[
Ad
∣∣A1, . . . ,Ad−1

])]
= EF[1,d−1]

[
φ
(
EFd
[
A1, . . . ,Ad−1,Ad

∣∣A1, . . . ,Ad−1

])]
≤EF[1,d−1]

[
EFd
[
φ
(
A1, . . . ,Ad

) ∣∣∣A1, . . . ,Ad−1

]]
= EF[1,d]

[
φ
(
A1, . . . ,Ad

)]
,

where the first inequality is by induction hypothesis, the first equality is by the independence of Ai,
the second equality is because E[Ai |Ai] =Ai, the second inequality is due to Jensen’s inequality,
and the last equality holds because of the law of iterated expectations. The proof is complete by
observing that each inequality becomes an equality if φ is linear when all but one of its arguments
are fixed. �

Next, we relate the right hand side of (31) to the Monge-Kantorovich problem. Consider a
functional φ̂ :Fd→R defined as follows:

φ̂(F1, . . . ,Fd) := sup
{
EF
[
φ(A1, . . . ,Ad)

] ∣∣∣ F ∈Π(F1, . . . ,Fd)
}

for (F1, . . . ,Fd)∈Fd, (33)
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where we recall that Π(F1, . . . ,Fd) denotes the set of joint distributions with F1, . . . ,Fd as marginals.
Since φ(·) is assumed to be continuous, it follows from Theorem 2.3.10 in [29] that there exists an
optimal solution to (33). Now, we argue that (33) is a reformulation for the right hand side of (31).

Proposition 6. For (F1, . . . ,Fd)∈Fd, φ̂(F1, . . . ,Fd) = concFd
(
φ̃|ext(Fd)

)
(F1, . . . ,Fd). Moreover,

if φ(·) is continuous and convex in each argument when other arguments are fixed, for (F1, . . . ,Fd)∈
Fd, φ̂(F1, . . . ,Fd) = concFd

(
φ̃
)
(F1, . . . ,Fd).

Proof. Let (F1, . . . ,Fd) ∈ Fd. It follows trivially that φ̂(F1, . . . ,Fd)≤ conc
(
φ̃|ext(Fd)

)
(F1, . . . ,Fd)

because, as we argued in (32), for F ∈Π(F1, . . . ,Fd), EF [φ(A1, . . . ,Ad)]≤ conc
(
φ̃|ext(Fd)

)
(F1, . . . ,Fd).

To prove the converse, it suffices to show that φ̂(·) is concave in Fd because, for (F1, . . . ,Fd) ∈
ext(Fd), each Fi =Hδ(ai) for some ai ∈ [0,1] and it follows by considering the multidimensional

Dirac distribution at (a1, . . . , ad) that φ̂(F1, . . . ,Fd)≥ φ̃(F1, . . . ,Fd). To see that φ̂(·) is concave, let
(F1, . . . ,Fd) and (G1, . . . ,Gd) be two points in Fd and let α be chosen to satisfy 0≤ α≤ 1. Then, for
any F ∈Π(F1, . . . ,Fd) and G∈Π(G1, . . . ,Gd), let A∼ F , B ∼G, and C ∼ αF + (1−α)G. We have,

φ̂
(
α(F1, . . . ,Fd) + (1−α)(G1, . . . ,Gd)

)
≥E(αF+(1−α)G)

[
φ(C1, . . . ,Cd)

]
= αEF

[
φ(A1, . . . ,Ad)

]
+ (1−α)EG

[
φ(B1, . . . ,Bd)

]
,

where the inequality holds because αF + (1−α)G is a feasible solution to (33) at α(F1, . . . ,Fd) +
(1− α)(G1, . . . ,Gd), and the equality holds because expectation of a mixture distribution is the
mixture of the expectations under distributions being mixed. Since the inequality holds for every
(F,G) in Π(F1, . . . ,Fd)×Π(G1, . . . ,Gd), it also holds for the supremum of αEF

[
φ(A1, . . . ,Ad)

]
+

(1 − α)EG
[
φ(B1, . . . ,Bd)

]
over Π(F1, . . . ,Fd) × Π(G1, . . . ,Gd). Therefore, φ̂

(
α(F1, . . . ,Fd) + (1 −

α)(G1, . . . ,Gd)
)
≥ αφ̂(F1, . . . ,Fd) + (1−α)φ̂(G1, . . . ,Gd), showing the concavity of φ̂(·).

The second statement in the result follows from the first statement because Lemma 7
implies (31). �

As a result, when the inequality in (30) is satisfied, the functional φ̂(·) coincides with the lowest
concave overestimator of φ̃(·) over Fd. Then, to compute φ̂(·) at a given (F1, . . . ,Fd) in Fd, we need
to solve the multivariate Monge-Kantorovich problem. By Theorem 5, the latter problem has an
explicit solution under certain conditions. We apply this result in our setting to obtain an explicit
integral representation of the functional φ̂(·).

Theorem 6. If φ : [0,1]d→R is a continuous supermodular function then for (F1, . . . ,Fd)∈Fd

φ̂(F1, . . . ,Fd) = EF∗
[
φ(A1, . . . ,Ad)

]
=

∫ 1

0

φ
(
F−1

1 (λ), . . . ,F−1
n (λ)

)
dλ,

where F ∗(a) = min
{
F1(a1), . . . ,Fd(ad)

}
.

Proof. Let (F1, . . . ,Fd) ∈ Fd. Since A1, . . . ,Ad have supports in [0,1] and the function φ(·) is
continuous, EF

[
φ(A1, . . . ,Ad)

]
is finite for all F ∈Π(F1, . . . ,Fd). We choose ϕ(a) to be a constant c

defined as maxa′∈[0,1]d

∣∣φ(a′)
∣∣. By definition, φ(f)≤ c and

∫
cdF = c is finite for all F ∈Π(F1, . . . ,Fd).

It follows from Theorem 5 that we have φ̂(F1, . . . ,Fd) = EF∗ [φ(A1, . . . ,Ad)]. Now, consider a random
variable U that is uniformly distributed over [0,1] and observe that, for all (a1, . . . , ad)∈Rd,

Pr
(
F−1

1 (U)≤ a1, . . . ,F
−1
d (U)≤ ad

)
= Pr

(
U ≤ F1(a1), . . . ,U ≤ Fd(ad)

)
= min

{
F1(a1), . . . ,Fd(ad)

}
,

where the first equality is because F−1
i (U)≤ ai if and only if U ≤ Fi(ai) and the second equality is

because U is uniformly distributed. In other words, the distribution function of the random vector
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F−1

1 (U), . . . ,F−1
d (U)

)
is F ∗(a). We can assume that the range of φ is [0,1] since it is bounded. Let

A∗ = (A∗1, . . . ,A
∗
d)∼ F ∗, and, for δ= 2−m and for k= 0, . . . ,2m− 1, define

Mk = Pr
{

(A∗1, . . . ,A
∗
d)
∣∣∣ kδ≤ φ(A∗1, . . . ,A

∗
d)< (k+ 1)δ

}
= Pr

{(
F−1

1 (U), . . . ,F−1
d (U)

) ∣∣∣ kδ ≤ φ(F−1
1 (U), . . . ,F−1

d (U)
)
< (k+ 1)δ

}
.

Then, it follows that∫
φdF ∗ = lim

m→∞

2m−1∑
k=0

kδMk = EU
[
φ
(
F−1

1 (U), . . . ,F−1
d (U)

)]
,

where both equalities follow from the piecewise approximations of φ(·) where it is replaced with
kδ whenever it evaluates to a value in the range

[
kδ, (k+ 1)δ

)
and the Dominated Convergence

Theorem (see Theorem 16.4 in [5]), which applies because of the existence of ϕ(·). �
Similar to Corollary 4, Theorem 6 can be used to characterize φ̂(·) for functions φ(·) that become

supermodular when their domain is transformed affinely, by using an operation such as the switching
operation. Recall that the function φ(T ), obtained by switching the domain of φ : [0,1]d→R, is
described using a set T ⊆ {1, . . . , d} so that φ(T )(f) = φ

(
f(T )

)
, where f(T )i = 1− fi if i∈ T and

f(T )i = fi otherwise. We define a marginal distribution Fi(T ) so that

Fi(T )(b) = Pr{1−Ai ≤ b} for i∈ T and Fi(T )(b) = Pr{Ai ≤ b} otherwise. (34)

Then, it follows that for i∈ T

Fi(T )−1(λ) = min
{
b∈ [0,1]

∣∣ Fi(T )(b)≥ λ
}

= min
{
b∈ [0,1]

∣∣∣ 1− sup
a<1−b

Fi(a)≥ λ
}

= 1−max
{
d∈ [0,1]

∣∣∣ sup
a<d

Fi(a)≤ 1−λ
}

= 1− sup
{
a∈ [0,1]

∣∣ Fi(a)≤ 1−λ
}
.

The following result explicitly characterizes φ̂(·) when φ(T ), instead of φ, is supermodular.

Corollary 8. If φ : [0,1]d→R is a continuous function and there exists a T ⊆ {1, . . . , d} so
that φ(T ) is supermodular then

φ̂(F1, . . . ,Fd) =

∫ 1

0

φ(T )
(
F1(T )−1(λ), . . . ,Fd(T )−1(λ)

)
dλ.

Proof. We will show that φ̂(F1, . . . ,Fd) equals φ̂(T )
(
F1(T ), . . . ,Fd(T )

)
and then, the result

follows directly from Theorem 6 using supermodularity of φ(T ). To show φ̂(F1, . . . ,Fd) ≤
φ̂(T )

(
F1(T ), . . . ,Fd(T )

)
, consider F ∈ Π(F1, . . . ,Fd), and let A ∼ F . Define a random vector A′

so that, for S ⊆ [0,1]d, Pr{A′ ∈ S} := Pr
{
A ∈ {a(T ) | a ∈ S}

}
. Then, let F ′ be the cumulative

distribution function of A′, i.e., F ′(b) = Pr
{
A∈ {a(T ) | a∈ [0, b]}

}
. Assuming wlog that the range

of φ is [0,1], for δ= 2−m, let Sk :=
{
a∈ [0,1]d

∣∣ kδ ≤ φ(a)< (k+ 1)δ
}

, and thus,

Mk := Pr
{
A∈ Sk

}
= Pr

{
A′ ∈

{
a(T )

∣∣ a∈ Sk}}
= Pr

{
A′
∣∣∣ kδ≤ φ(T )(A′)< (k+ 1)δ

}
,

(35)

where the second equality holds by the definition of A′, and the third equality holds because
φ(T )

(
a(T )

)
= φ(a). Therefore,∫

φdF = lim
m→∞

2m−1∑
k=0

kδMk =

∫
φ(T )dF ′ ≤ φ̂(T )

(
F1(T ), . . . ,Fd(T )

)
,
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where the two equalities follow from the Dominated Convergence Theorem (see Theorem 16.4 in [5])
and the first and last equalities in (35), and the inequality holds because, using (34), the marginal

distribution A′i is given by Pr{A′i ≤ ai}= Fi(T )(ai). Hence, φ̂(F1, . . . ,Fd)≤ φ̂(T )
(
F1(T ), . . . ,Fd(T )

)
.

Since the reverse inequality follows by a similar argument, the proof is complete. �

4.3. Composite relaxations via random variables In this subsection, we will assume that,
for each inner function, an underestimator, parametrized by its real-valued upper bound ai, is
available. For a given x∈X, the underestimator will vary with bound ai and will be used to derive
the marginal cumulative distribution function Fi used in Section 4.2. Then, we will use Theorem 6
to construct the composite relaxation. To relate the marginal distributions to the underestimating
functions, we will find it useful to work with an alternate characterization of a distribution function
with support over [0,1] in terms of a concave function on the real line. To derive this function, we
truncate the associated random variable to lie below a bound and study how the expectation varies
with this bound. Formally, we define E : R×F as:

E(ai,Fi) = EFi
[
min{Ai, ai}

]
for ai ∈R and Fi ∈F , (36)

where Ai ∼ Fi. We will write EFi(ai) (resp. Eai(Fi)) when we wish to convey that Fi (resp. ai) is
fixed. It is the right derivative of EFi(ai) that relates to the cumulative distribution Fi. Recall that
the left and right derivative of a univariate function c(a) are defined as c′−(a) = limδ↗0

c(a+δ)−c(a)

δ

and c′+(a) = limδ↘0
c(a+δ)−c(a)

δ
. We adapt Theorem 1 in [32] for our purpose.

Lemma 8. For a distribution function Fi ∈F , the univariate function EFi(ai) is non-decreasing
concave such that

EFi(0) = 0, EFi(1) = E[Ai], (EFi)
′
−(ai) = 1 for ai ≤ 0, (EFi)

′
+(ai) = 0 for ai ≥ 1, (37)

and the distribution function Fi can be recovered from EFi using Fi(ai) = 1− (EFi)
′
+(ai). On the

other hand, any concave function ci(ai) on R with the properties that

ci(0) = 0, ci(1) = a finite value, (ci)
′
−(ai) = 1 for ai ≤ 0, (ci)

′
+(ai) = 0 for ai ≥ 1 (38)

is EFi(ai) for some distribution function Fi ∈F .

Proof. For a distribution function Fi ∈F , the univariate function EFi(ai) is clearly non-decreasing.
It is concave because, for a′i, a

′′
i ∈R and α∈ [0,1], EFi [min{Ai, αa′i+(1−α)a′′i }]≤ αEFi [min{Ai, a′i}]+

(1−α)EFi [min{Ai, a′′i }], where the inequality holds by the concavity of min{ai, a′i} in a′i. Moreover,
EFi(0) =

∫
min{ai,0}dFi(ai) = 0 and EFi(1) =

∫
min{ai,1}dFi(ai) = EFi [Ai]. In addition, for ai ≤ 0

lim
δ↘0

EFi(ai)−EFi(ai− δ)
δ

= lim
δ↘0

ai− (ai− δ)
δ

= 1;

and for ai ≥ 1

lim
δ↘0

EFi(ai + δ)−EFi(ai)
δ

= lim
δ↘0

E[Ai]−E[Ai]

δ
= 0.

Last, it follows from Theorem 1 in [32] that Fi(ai) can be recovered using 1− (EFi)
′
+(ai).

Now, let ci(ai) be a concave function satisfying (38). It follows from (ci)
′
−(0) = 1, the concavity

of ci, and c(0) = 0 that ci(ai) ≤ ai. Similarly, it follows from ci(1) = M for some constant M ,
(ci)

′
+(1) = 0, and the concavity of ci that ci(ai)≤M for all ai. Finally, since (ci)

′
−(ai) = 1 for ai ≤ 0, it

follows that, for bi < 0, ci(bi) = ci(bi)−ci(0) =
∫ bi

0
(ci)

′
−(ai) = bi. Therefore, limai→−∞

(
ai−ci(ai)

)
= 0.

Thus, by Theorem 1 in [32], there exists a distribution function Fi with support over R such that
EFi(ai) = ci(ai). The proof is complete if we show that Fi(bi) = 0 for bi < 0 and Fi(bi) = 1 for
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bi > 1. Assume that there exists bi < 0 such that Fi(bi)> 0. Then, ci(0) =
∫

min{ai,0}dFi < 0, a
contradiction. Similarly, suppose that Fi(1)< 1. This case also leads to a contradiction as follows,
limai→∞ ci(ai) =

∫
aidFi >

∫
min{ai,1}dFi =M ≥ limai→∞ ci(ai), where the last inequality follows

because ci(ai)≤M for all ai. �
Lemma 8 establishes a connection between certain univariate concave functions and distribution

functions. We now relate these univariate functions with certain underestimators of the inner
functions. Formally, we consider a function si :W ×R→R such that, for (x, f, ai)∈W ×R,

si(x, f, ai)∈
[
min

{
ai, fi1ai≥1

}
, min

{
ai, fi

}]
, (39)

where W outer-approximates the graph of inner function f(x), and 1clause is one if the clause is
true and 0 otherwise. For any (x, f, ai), the range of values for si(x, f, ai) is non-empty because
fi1ai≥1 ≤ fi. In other words, (39) requires that, for ai ∈ [0,1], si(x, f, ai) underestimates min{fi, ai}
over W , for ai ≤ 0, si(x, f, ai) is ai, and, for ai ≥ 1, the function coincides with fi. We construct
one such function in the following remark.
Remark 3. Let Wi be a convex outerapproximation of the graph of inner function fi(x). With

each constant ai ∈ R, associate a set Si(ai) :=
{

(x, fi, ρi)
∣∣ ρi ≥min{ai, fi}, (x, fi) ∈Wi

}
. Define

si :Wi×R→R so that, for any ai ∈R,

si
(
x, fi, ai

)
:= inf

{
ρi

∣∣∣ (x, fi, ρi)∈ conv
(
Si(ai)

)}
. (40)

To see that the function si satisfies the requirements in (39), consider a constant ai ∈R. If ai ≤ 0 then
min{ai, fi} equals ai, the set Si(ai) is convex, and si(x, fi, ai) = ai. Similarly, if ai ≥ 1, min{ai, fi}
equals fi, Si(ai) is convex, and si(x, fi, ai) = fi. If 0≤ ai ≤ 1 then 0≤ si(x, fi, ai)≤min{ai, fi}, where
the first inequality holds because, for each (x, fi, ρi)∈ Si(ai), 0≤min{ai, fi} ≤ ρi, and the second
inequality holds because, for every (x, fi) ∈Wi,

(
x, fi,min{ai, fi}

)
∈ conv

(
Si(ai)

)
. Furthermore,

si(x, fi, ai) is a convex function over Wi; see Theorem 5.3 in [31]. In fact, for any fixed ai ∈ R,
si(x, fi, ai) is the convex envelope of the function min{ai, fi} over Wi. In contrast, for any fixed
(x, fi)∈Wi, si(x, fi, ai) is a concave function in ai. To see this, consider two distinct points a′i, a

′′
i in

R, and define ãi := λa′i + (1−λ)a′′i for some λ∈ (0,1). Since λsi(x, fi, a
′
i) + (1−λ)si(x, fi, a

′′
i ) (resp.

si(x, fi, ãi)) is a convex underestimator (resp. convex envelope) of min{fi, ãi} over Wi, it follows
that λsi(x, fi, a

′
i) + (1−λ)si(x, fi, a

′′
i )≤ si(x, fi, ãi). �

In the following example, we consider the quadratic term, derive the underestimator (40) explic-
itly, and illustrate that this underestimator, treated as a function of ai, is concave and, via the
transformation discussed in Lemma 8, yields a distribution function.
Example 3. Consider the quadratic term x2

1 over the interval [0,2]. Here, the quadratic term
varies over [0,4], while in our formal treatment, we have assumed that fi ∈ [0,1]. However, as we
discussed before, this does not pose any issues since an affine transformation of the function can
be used to normalize any bounded range to [0,1]. In our current setting, we could use 1

4
x2

1 as the
inner function instead of x2

1. The function s1(x1, x
2
1, a1) defined in (40) can be computed explicitly

as follows

s1(x1, x
2
1, a1) =


a1 a1 ≤ 0(
−4 + 2

√
−a1 + 4

)
(2−x1) + a1 0≤ 2−

√
−a1 + 4≤ x1 ≤ 2

x2
1 otherwise.

(41)

Figure 5a illustrates the function at a1 = 3, where we see that this function is the largest convex
underestimator of x2

1 over [0,2] bounded by 3. In contrast, Figure 5b depicts s1(x1, x
2
1, a1) as a

function of a1 at x1 = 1 and it is easily verified that this function is concave and satisfies the
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requirements in (38). For general a1, the right derivative of s1(x1, x
2
1, a1) with respect to a1 is as

follows:

(s1)′+(x1, x
2
1, a1) =


1 a1 < 0,

1− 2−x1√
−a1+4

0≤ 2−
√
−a1 + 4<x1 ≤ 2,

0 otherwise.

(42)

By Lemma 8, (s1)′+(1,1, a1) is a survival function (1− distribution function) for a random variable
with support in [0,4] and is depicted in Figure 5c. �

0 1 2
0

1

2

3

4

s1(x1, x2
1,3)

x1

x2
1

(a)

0 1 2 3 4
0

1

2

3

4

s1(1,1, a1)

a1

a1

(b)

0 1 2 3 4
0

0.5

1

(s1)′+(1,1, a1)

a1

(c)

Figure 5. (a) the largest convex underestimator of x2
1 over [0,2] that is bounded from above by 3. (b) a concave

function which satisfies (38). (c) the right derivative of s1(1,1, a1) is a survival function.

In the following result, we formally relate the underestimator si(x, f, ai) with a distribution func-
tion. Assume that we are given a function si(x, f, ai) that satisfies (39). We denote by (si)

′
+(x, f, ai)

the right derivative of si(x, f, ai) with respect to ai. We will fix (x, f) ∈ W and characterize
1− (si)

′
+(x, f, ai) as a distribution function, which, for notational brevity, we denote as Sx,fi (ai).

Proposition 7. Let si : W × R be a function satisfying (39), and define Sx,fi (ai) := 1 −
(si)

′
+(x, f, ai). If, for any given (x, f) ∈W , si(x, f, ai) is concave in ai then Sx,fi is a distribution

function so that
∫
aidS

x,f
i (ai) = fi. Moreover, si(x, f, ai) =E

S
x,f
i

(ai).

Proof. It is easy to verify that function si(x, f, ai) that is concave in ai and satisfies the requirement
in (39) also satisfies the four conditions in (38). In particular, since si(x, f, ai) equals ai (resp.
fi) when ai ≤ 0 (resp. ai ≥ 1), it follows that (si)

′
−(x, f, ai) (resp. (si)

′
+(x, f, ai)) equals 1 (resp.

0). Then, by the second part of Lemma 8, there exists a distribution function Fi ∈ F such that
si(x, f, ai) =EFi(ai). By the first part of Lemma 8, Fi(ai) = 1− (EFi)

′
+(ai) = 1− (si)

′
+(x, f, ai) =

Sx,fi (ai). Moreover,
∫
aidS

x,f
i (ai) = limai→+∞ si(x, f, ai) = fi, where the first equality is because

s(x, f, ai) equals E
S
x,f
i

(ai), which in turn approaches the right hand side as ai→∞, and the second

equality follows directly from (39). �
Equipped with Proposition 6 and Proposition 7, we are ready to derive the limiting relaxation

for the hypograph of φ ◦ f as follows. For each i∈ {1, . . . , d}, let Sx,fi (ai) be a function defined as in
Proposition 7. Then, if the outer-function φ(·) satisfies (30), for example, as in Lemma 7, if φ(·) is
continuous and convex in each argument when other arguments are fixed, we obtain that, for every
(x, f)∈W ,

φ(f) = φ̃(Sx,f1 , . . . , Sx,fd )≤ φ̂
(
Sx,f1 , . . . , Sx,fd

)
,

where the first equality holds by Proposition 7 and the definition of φ̃(·), and the inequality holds
because, by Proposition 6, φ̂(·) is the lowest concave overestimator of φ̃(·) over Fd. We will show
that the limiting relaxation φ̂(Sx,f1 , . . . , Sx,fd ) has a convex representation in the space of variables
(x, f). Before providing a formal discussion, we illustrate the ideas on an example.
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Example 4. Consider x2
1x

2
2 over the rectangle [0,2]2. We use Proposition 7 to derive distribution

functions from underestimators of x2
i . For underestimator si(x,x

2
i , ai) given in (41), 1−(si)

′
+(x,x2

i , ai)
is easily computed using the right derivative in (42). For notational brevity, let Sxii (ai) denote
1− (si)

′
+(x,x2

i , ai) since it depends only on the ith coordinate of x. For any xi ∈ [0,2], it follows from
Proposition 7 that Sxii is a distribution function of a random variable Axii such that E[Axii ] = x2

i . Let
D(a1, a2) := Sx11 (a1)Sx22 (a2) and G∗(a1, a2) := max

{
0, Sx11 (a1) +Sx22 (a2)− 1

}
. Then, in this example

setting, our construction is essentially derived from the following argument:

x2
1x

2
2 = E[Ax11 ]E[Ax22 ] = ED[Ax11 A

x2
2 ]≥ inf

G

{
EG[Ax11 A

x2
2 ]
∣∣G∈Π(Sx11 , Sx22 )

}
= EG∗ [Ax11 A

x2
2 ] = EU

[
(Sx11 )−1(U)(Sx22 )−1(1−U)

]
,

(43)

where the first equality is because E[Axii ] = x2
i , the second equality holds since D is constructed by

coupling Ax11 and Ax22 independently, and the first inequality holds because the product distribution
D has Sx11 and Sx22 as marginals. The third equality holds because G∗ is feasible to the optimization
problem on the left hand side, and because, for two marginals Sx11 , Sx22 ∈F , Pr{(Ax11 >a1)∪ (Ax22 >
a2)} ≤Pr{Ax11 >a1}+ Pr{Ax22 >a2}. This implies that, for G∈Π(Sx11 , Sx22 ), G(a1, a2)≥G∗(a1, a2),
where the right hand side is known as Hoeffding-Fréchet lower bound [18, 13], and, thus, by [11]
EG[Ax11 A

x2
2 ]≥EG∗ [Ax11 A

x2
2 ] since the bilinear term is a correlation affine function. The third equality

also follows from the more general result in Corollary 8 choosing either T = {1} or T = {2}. The last
equality holds because the distribution function of the random vector

(
(Sx11 )−1(U), (Sx22 )−1(1−U)

)
is G∗. We depict in Figure 6a the marginal distributions S1.2

1 and S1.5
2 . For a given U = λ, we

compute their inverse values to locate a point on the curve that is the locus of support points for
G∗; see Figure 6b. We evaluate the last term in (43) by integrating the function value at points on
this curve to derive the following limiting composite relaxation:

x2
1x

2
2 ≥max

{
0,

∫ x2
2

1−x12

(4λ2− 4 + 4x1−x2
1

λ2

)(4λ2− 8λ+ 4x2−x2
2

(1−λ)2

)
dλ

}
= max

{
0,−2 ln(2−x2)(−2 +x2)2(−2 +x1)2 + 2 ln(−x2)(−2 +x2)2(−2 +x1)2

− 2 ln(−2 +x1)(−2 +x2)2(−2 +x1)2 + 2 ln(x1)(−2 +x2)2(−2 +x1)2

− 4x2
1x2− 4x1x

2
2 + 12x2

1 + 32x1x2− 48x1 + 12x2
2− 48x2 + 48

}
whose convexity, although not directly apparent from the resulting formula, is a consequence of
Corollary 9 proved later. �

S1.2
1 (a1)

a1

0 4
0

1

λ

(S1.2
1 )−1(λ)

S1.5
2 (a2)

a2

0

4
0

1

1−λ

(S1.5
2 )−1(1−λ)

(a) marginal distributions

a2

a1

0 1 2 3 4
0

1

2

3

4

(
(S1.2

1 )−1(λ), (S1.5
2 )−1(1−λ)

)

(b) support of optimal plan

Figure 6. Underestimating x2
1x

2
2 at the point x = (1.2,1.5) via optimal transport
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To show that the the limiting relaxation is convex in (x, f), we will need certain monotonicity
properties of the optimal functional φ̂(·). Given two tuples of distribution functions (F1, . . . ,Fd)
and (G1, . . . ,Gd), we say (F1, . . . ,Fd)� (G1, . . . ,Gd) (resp. (F1, . . . ,Fd)≺ (G1, . . . ,Gd)) if, for each
i∈ {1, . . . , d}, Fi �Gi (resp. Fi ≺Gi), which is defined as in (24) (resp. in (26)).

Proposition 8. Let φ : [0,1]d → R be a continuous function which is convex in each argu-
ment when the other arguments are fixed, and assume that there exists a T ⊆ {1, . . . , d} so that
φ(T ) is supermodular. If (F1, . . . ,Fd)� (G1, . . . ,Gd) then φ̂(F1, . . . ,Fd)≥ φ̂(G1, . . . ,Gd). The weaker
condition (F1, . . . ,Fd)≺ (G1, . . . ,Gd) suffices to show φ̂(F1, . . . ,Fd)≥ φ̂(G1, . . . ,Gd) if φ(T ) is also
non-increasing in each argument.

Proof. Assume that (F1, . . . ,Fd) � (G1, . . . ,Gd). We will invoke Lemma 6 to show that
φ̂(F1, . . . ,Fd)≥ φ̂(G1, . . . ,Gd). Let ηi(λ) := Fi(T )−1(λ) and define ψ(λ,η1, . . . , ηd) = φ(T )(η1, . . . , ηd).
Observe that the hypothesis on ψ(·) in Lemma 6 is satisfied by this definition since φ(T ) is inde-
pendent of λ and is assumed to be supermodular and convex in each argument when the others
are fixed. Moreover, since the first argument of ψ(·) is ignored, the condition (29) holds trivially.
Now, we show that (28) is satisfied with our definition. Since, for any concave univariate function
ψ(·), Fi �Gi implies that E[ψ(1−Ai)]≤ E[ψ(1−Bi)] where Ai ∼ Fi and Bi ∼Gi, it follows that
Fi(T )�Gi(T ), where Fi(T ) and Gi(T ) are defined as in (34). It follows from (25) (see Theorem
3.A.5 in [34]) that Fi(T )�Gi(T ) if and only if∫ p

0

Fi(T )−1(λ)dλ≤
∫ p

0

Gi(T )−1(λ)dλ for p∈ [0,1],

with equality achieved at p= 1. Last, observe that Fi(T )−1(λ) and Gi(T )−1(λ) are non-decreasing.
Therefore, it follows from Lemma 6 that∫ 1

0

φ(T )
(
F1(T )−1(λ), . . . ,Fd(T )−1(λ)

)
dλ≥

∫ 1

0

φ(T )
(
G1(T )−1(λ), . . . ,Gd(T )−1(λ)

)
dλ.

Hence, by Corollary 8, we conclude that φ̂(F1, . . . ,Fd)≥ φ̂(G1, . . . ,Gd).
Assume now that φ(·) is non-increasing. We prove that φ̂(F1, . . . ,Fd)≥ φ̂(G1, . . . ,Gd) under the

weaker condition (F1, . . . ,Fd)≺ (G1, . . . ,Gd). Clearly, Fi ≺Gi implies Fi(T )≺Gi(T ). Then, it follows
from 27 (see Theorem 4.A.6 in [34]) that Fi(T )≺Gi(T ) if and only if there exists a distribution
function Di ∈F such that Fi(T )−1(λ)≤D−1

i (λ) for all λ∈ [0,1] and Di �Gi(T ). Therefore,∫ 1

0

φ(T )
(
F1(T )−1(λ), . . . ,Fd(T )−1(λ)

)
dλ≥

∫ 1

0

φ(T )
(
D−1

1 (λ), . . . ,D−1
d (λ)

)
dλ

≥
∫ 1

0

φ(T )
(
G1(T )−1(λ), . . . ,Gd(T )−1(λ)

)
dλ,

where the first inequality holds because φ(T ) is non-increasing and, for every i ∈ {1, . . . , d} and
λ ∈ [0,1], Fi(T )−1(λ) ≤ D−1

i (λ), and second inequality was established above. Thus, the result
follows from Corollary 8. �

Now, we derive the limiting composite relaxation. Our construction will be based on three key
ideas: (a) for each (x, f), the underestimator will be used as in Proposition 7 to derive marginal
distributions Sx,f1 , . . . , Sx,fd ; (b) under the technical condition (30), Proposition 6 will be used to
relax φ(f) by φ̂(Sx,f1 , . . . , Sx,fd ); (c) φ̂(Sx,f1 , . . . , Sx,fd ) will be further relaxed to φ̂(F1, . . . ,Fd), where
(F1, . . . ,Fd)� (Sx,f1 , . . . , Sx,fd ) using Proposition 8 without sacrificing the quality of the relaxation.
We present these ideas formally in the next result and establish the convexity of the resulting
relaxation.
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Theorem 7. Let φ ◦ f be a composite function, where φ : [0,1]d→R is a continuous function
which is convex in each argument when other arguments are fixed, and f :Rm→ [0,1]d is a vector
of functions over a subset X of Rm. For each i∈ {1, . . . , d}, let si :W ×R→R be a function which
satisfies (39) and is concave in ai. Define Sx,fi (ai) := 1− (si)

′
+(x, f, ai). Then, proj(x,φ)(R) is a

relaxation of hypograph of φ ◦ f , where:

R :=
{

(x, f,φ,F1, . . . ,Fd)
∣∣∣ φ≤ φ̂(F1, . . . ,Fd), (x, f)∈W, Fi ∈F , Sx,fi � Fi, i= 1, . . . , d

}
, (44)

Moreover,
1. if, for each fixed ai, si(x, f, ai) is convex in (x, f) and W is convex then R is convex;
2. if φ(·) is a supermodular function then

proj(x,f,φ)(R) =

{
(x, f,φ)

∣∣∣∣ (x, f)∈W, φ≤
∫ 1

0

φ
(

(Sx,f1 )
−1

(λ), . . . , (Sx,fd )
−1

(λ)
)

dλ

}
; (45)

3. if φ(·) is supermodular and non-increasing in each argument and, for fixed ai ∈R, si(x, f(x), ai)
is convex in X then we obtain a convex relaxation of the hypograph of φ ◦ f :{

(x,φ)

∣∣∣∣ x∈X, φ≤ ∫ 1

0

φ
((
S
x,f(x)
1

)−1
(λ), . . . ,

(
S
x,f(x)
d

)−1
(λ)
)

dλ

}
. (46)

Proof. We first prove that hyp(φ ◦ f)⊆ proj(x,φ)(R), where hyp(φ ◦ f) denotes the hypograph of
φ◦f . Let (x,φ)∈ hyp(φ◦f). Define f := f(x) and observe that (x, f)∈W because W is a relaxation
of gr(f). Moreover, let Fi := Sx,fi . By Proposition 7, Fi is the distribution function of a random
variable Ai such that E[Ai] = fi. By (x,φ) ∈ hyp(φ ◦ f), f = f(x), Fi = Sx,fi , and Proposition 6,
we obtain φ ≤ φ

(
f(x)

)
= φ(f) = φ̃(Sx,f1 , . . . , Sx,fd ) = φ̃(F1, . . . ,Fd) ≤ φ̂(F1, . . . ,Fd). Therefore, we

conclude that (x, f,φ,F1, . . . ,Fd)∈R. In other words, hyp(φ ◦ f)⊆ proj(x,φ)(R).
We now show that under the three conditions in the statement the claimed structure for the

relaxation holds. We begin with Condition 1. Assume that, for each ai, si(x, f, ai) is convex in (x, f)
and W is convex. To show that R is convex, it suffices to argue that constraint Sx,fii � Fi defines a
convex set because W is assumed to be convex and, by Proposition 6, the functional φ̂(·) is concave
over Fd. It follows from (24) that Sx,fi � Fi is equivalent to

Eai
(
Sx,fi

)
≤Eai(Fi) ∀ai ∈R and

∫
aidS

x,f
i (ai) =

∫
aidFi(ai). (47)

For each ai ∈ R, by Proposition 7, we have Eai(S
x,f
i )−Eai(Fi) = si(x, f, ai)−Eai(Fi). Since we

assumed that, for each ai, si(x, f, ai) is a convex function, the convexity of the inequality in (47)
follows if Eai(Fi) is a concave function for each ai. The latter follows because, for α ∈ [0,1] and
Fi,Gi ∈F , Eai

(
αF +(1−α)G

)
=
∫

min{a′i, ai}d
(
αFi(a

′
i)+(1−α)Gi(a

′
i)
)

= αEai(F )+(1−α)Eai(G).

The second equation in (47) defines a convex set because, by Proposition 7,
∫
aidS

x,f
i (ai) = fi, and,

for Fi,Gi ∈F so that
∫
aidFi =

∫
aidGi = fi,

∫
aid
(
αFi(ai) + (1−α)Gi(ai)

)
= α

∫
aidFi(ai) + (1−

α)
∫
aidGi(ai) = fi. It follows that the set described in (47) is convex in the space of (x, f,F1, . . . ,Fd)

variables.
Next, we prove Condition 2. Let R′ :=

{
(x, f,φ)

∣∣ (x, f) ∈W, φ≤ φ̂(Sx,f1 , . . . , Sx,f1 )
}

, which, by
Theorem 6, is the set in the right hand side of (45). To show R′ ⊆ proj(x,f,φ)(R), we consider

a point (x, f,φ) ∈ R′ and define (F1, . . . ,Fd) = (Sx,f1 , . . . , Sx,fd ). Then, by Proposition 7, we have∫
aidFi(ai) = fi. Since Sx,fi � Fi holds trivially, it follows that (x, f,φ,F1, . . . ,Fd)∈R, showing that

R′ ⊆ proj(x,f,φ)(R). To prove that proj(x,f,φ)(R)⊆R′, we consider a point (x, f,φ,F1, . . . ,Fd) of R

and show that (x, f,φ) ∈ R′. It follows readily that φ ≤ φ̂(F1, . . . ,Fd) ≤ φ̂
(
Sx,f1 , . . . , Sx,fd

)
, where

second inequality holds because
(
Sx,f1 , . . . , Sx,fd

)
� (F1, . . . ,Fd) and, by Proposition 8, the functional
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φ̂(·) is non-increasing under the order �. Since (x, f) ∈W , we conclude that (x, f,φ) ∈ R′ and
proj(x,f,φ)(R)⊆R′.

Last, we prove Condition 3. Assume that si(x, f(x), ai) is convex in x. We start by showing
proj(x,φ)(R̃) is a convex relaxation of the hypograph of φ ◦ f , where

R̃ :=
{

(x,φ,F1, . . . ,Fd)
∣∣ φ≤ φ̂(F1, . . . ,Fd), (F1, . . . ,Fd)∈Fd, Sx,f(x)

i ≺ Fi, i= 1, . . . , d
}
. (48)

Then, we observe that hyp(φ ◦ f) ⊆ proj(x,φ)(R) ⊆ proj(x,φ)(R̃), where the first containment was
shown above and the second containment holds because, by the definition in (24), the constraint
S
x,f(x)
i � Fi imposes an additional condition on S

x,f(x)
i ≺ Fi. The convexity of R̃ follows because

φ̂(·) is concave over Fd, and the constraint S
x,f(x)
i ≺ Fi is convex because, by the alternative

characterization of increasing concave order in (26), it can be imposed using si
(
x, f(x), ai

)
≤Eai(Fi)

for every ai ∈ R. This defines a convex set because, for every ai ∈ R, si
(
x, f(x), ai

)
is convex

and Eai(Fi) was shown to be linear in the proof of Condition 1. Now, let R′′ be the set defined
by (46). We will show proj(x,φ)(R̃) =R′′. We have R′′ = proj(x,φ)(R)⊆ proj(x,φ)(R̃), where the first

equality holds by Condition 2 and W := gr(f), and the second equality holds because R⊆ R̃. Now,
to prove proj(x,φ)(R̃) ⊆ R′′, we consider a point (x,φ,F1, . . . ,Fd) of R̃ and show (x,φ) ∈ R′′. It

follows readily that φ≤ φ̂(F1, . . . ,Fd)≤ φ̂
(
S
x,f(x)
1 , . . . , S

x,f(x)
d

)
, where the second inequality holds

by
(
S
x,f(x)
1 , . . . , S

x,f(x)
d

)
≺ (F1, . . . ,Fd) and because Proposition 8 shows that φ̂(·) is non-increasing

in ≺ under the assumed properties of φ(·). Thus, by Theorem 6, (x,φ) ∈ R′′ and, therefore,
proj(x,φ)(R̃)⊆R′′. �

Remark 4. We remark that φ̂
(
Sx,f1 , . . . , Sx,fd

)
coincides with the composite function φ◦ f when

the underestimating function si(x, f, ai) equals min{fi(x), ai}. To see this, consider an x∈X and
let f = f(x). It follows that, for i= 1, . . . , d, si(x, f, ai) = ai if ai ≤ fi and si(x, f, ai) = fi otherwise.
Therefore, Sx,fi (ai) = 0 if ai ≤ fi and 1 otherwise. In other words, Sx,fi corresponds to the distribution
function of a Dirac measure with all its mass at fi. Therefore, the only joint distribution, feasible
in the optimal transport formulation (33), is the distribution of a Dirac measure with all its mass
at (f1, . . . , fd). In other words, φ̂(Sx,f1 , . . . , Sx,fd ) = φ(f). �

Observe that since the locus of points over which the integral (45) or (46) is taken is independent
of the function φ(·), (45) or (46) can be used to simultaneously treat a vector of functions θk,
k ∈ {1, . . . , κ}. Using arguments similar to those in Conditions 2 and 3 of Theorem 7, we can extend
the result to treat functions that become supermodular after switching. We record this result for its
use in applications such as Example 4.

Corollary 9. Let R be the set defined in (44). Assume the same setup as Theorem 7 except
that the assumed properties on φ(·) apply to φ(T ), where T is some subset of {1, . . . , d}. Then,
Condition 2 applies with the definition of proj(x,f,φ)(R) replaced with:

proj(x,f,φ)(R) =

{
(x, f,φ)

∣∣∣∣ (x, f)∈W, φ≤
∫ 1

0

φ(T )
((
Sx,f1

)
(T )−1(λ), . . . ,

(
Sx,fd

)
(T )−1(λ)

)
dλ

}
.

Similarly, Condition 3 applies, where the relaxation is replaced with:{
(x,φ)

∣∣∣∣ x∈X, φ≤ ∫ 1

0

φ(T )
((
S
x,f(x)
1

)
(T )−1(λ), . . . ,

(
S
x,f(x)
d

)
(T )−1(λ)

)
dλ

}
. �

5. Conclusions In this paper, we developed new tractable relaxations for composite functions.
Our relaxations leverage the composite relaxation framework recently proposed in [17] that involves
convexifying the outer-function over a polytope P . The polytope P encodes the structure of
inner-functions using n estimators for each function. The structure of P generalizes that of a
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hypercube; the set used in factorable relaxations for a similar purpose and derived using bounds on
the inner-function. Although convexifying general outer-functions over P is NP-Hard, we showed
that when the outer-function is supermodular and concave-extendable, its concave envelope over
P is determined by the staircase triangulation of a subset Q of P . Using this result, we found
exponentially many inequalities describing the concave envelope of the outer-function over P .
Since the polyhedral subdivision of P is invariant with the outer-function, we could convexify
simultaneously the hypograph of a vector of composite functions. We also derived various inequalities
regarding the structure of inequalities for the special case where the outer-function is multilinear.

We extended our results to the case with infinitely many estimators for each inner-function, by
assuming that the outer-function is convex in each argument. For this extension, we described a
marginal distribution for each inner-function by considering how underestimating function varies
as a function of its upper bound. We then reformulated the concave envelope construction to
an optimal transport problem and showed that the problem has an explicit solution when the
outer-function is supermodular. Moreover, when the outer-function is non-decreasing, we exploited
monotonicity properties of the explicit solution for the optimal transport problem with respect to a
certain stochastic order to show that, as long as the underestimating functions were convex, we can
derive a convex relaxation for the composite function in the space of the original problem variables.

Appendix A: Proof of Proposition 3 Clearly, vert(∆i) = {ζij}nj=0, where ζij =
∑j

j′=0 eij′ ,
where eij′ is the j′-th standard basis vector in the space spanned by variables (zi0, . . . , zin). Then,
vert(∆) forms a lattice. Let z̄ ∈∆. We require the first d entries, when z̄ is sorted in non-increasing
order, to be z̄i0, i= 1, . . . , d. Then, if the (d+k)th variable in this order is z̄ij , we associate with πk = i,
that is a movement which steps from j− 1 to j along the ith direction. Thus, movement vector π
describes a simplex S of the staircase triangulation of ∆ that contains z̄. Using Corollary 3.4 in [39],
conc∆(η)(z̄) can be obtained as an affine interpolation of η(·) over S, that is, concΛ(η)(z̄) = ηS(z̄). �

Appendix B: The explicit description of envelopes in Example 2 The concave enve-
lope over P is given by

max



w1 := 0
w2 := u11 +u21− 1
w3 := u12 + 3u21− 3
w4 := 3u11 +u22− 3
w5 := 4u11 +u23− 4
w6 := u13 + 4u21− 4
w7 := 2u11 +u12 + 2u21 +u22− 5
w8 := 3u11 +u12 + 2u21 +u23− 6
w9 := 2u11 +u13 + 3u21 +u22− 6
w10 := 3u11 +u13 + 3u21 +u23− 7
w11 := 3u12 + 3u22− 9
w12 := u11 + 3u12 + 2u22 +u23− 10
w13 := 2u12 +u13 +u21 + 3u22− 10
w14 := u11 + 2u12 +u13 +u21 + 2u22 +u23− 11
w15 := 4u12 + 3u23− 12
w16 := 3u13 + 4u22− 12
w17 := 3u12 +u13 +u21 + 3u23− 13
w18 := u11 + 3u13 + 3u22 +u23− 13
w19 := u12 + 3u13 +u22 + 3u23− 15
w20 := 4u13 + 4u23− 16
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Appendix C: Proof of Lemma 5 Let K= {K1, . . . ,Kr}. Define fK(s) := minri=1χ
Ki(s) (resp.

fKj (s) := minri=1χ
Ki
j (s)), where χKi (resp. χKij ) affinely interpolates

(
v, f(v)

)
(resp.

(
v, fj(v)

)
for all

v ∈ vert(Ki). Let s∈Ki. Since K is the triangulation of D, it follows that for some λ≥ 0 such that∑
v λv = 1

m∑
j=1

concD(fj)(s)≥ concD(f)(s)≥ χKi(s) =
∑

v∈vert(Ki)

λvχ
Ki(v) =

∑
v∈vert(Ki)

λvf(v)

=
∑

v∈vert(Ki)

λv

( m∑
j=1

fj(v)
)

=
m∑
j=1

∑
v∈vert(Ki)

λvfj(v) =
m∑
j=1

χKij (s)≥
m∑
j=1

concD(fj)(s),

where the first inequality is because
∑m

j=1 concD(fj) is a concave overestimator of f , the second
inequality is because of Jensen’s inequality and concD(f) is a concave function, the first equality
is by definition of χKi(s), the second equality is because χKi(v) = f(v) for all v ∈ vert(Ki), the
third equality is because of definition of fj, the fourth equality is by interchanging the order of
summation, the last equality is by the definition of χKij (s) and fj(v) = χKij (v), and the last inequality

is because conc(fj)(x) = minri=1χ
Ki
j (s). Therefore, equality holds throughout and concD(f)(s) =

χKi(s) =
∑m

j=1 concD(fj)(s).
Now, we consider the case when a common triangulation does not exist. Let K= {K1, . . . ,Kr}

be the triangulation associated with the concave envelope of f and let j be such that the concave
envelope of fj is not associated with K. Clearly, concD(fj)(s)≥ χKij (s) for all s∈Ki. But, there must

exist an i and an s∈Ki such that concD(fj)(s)>χ
Ki
j (s). Otherwise, as shown in (8) concD(fj)(s) =

minri=1χ
Ki
j (s), which contradicts the assertion that the concave envelope of fj is not associated

with the triangulation K. Let s=
∑

v∈vert(Ki)
vλv express s as a convex combination of vertices of

Ki. It follows that

concD(f)(s) =
∑

v∈vert(Ki)

f(v)λv =
∑

v∈vert(Ki)

m∑
j′=1

fj′(v)λv

=
m∑
j′=1

∑
v∈vert(Ki)

fj′(v)λv =
m∑
j′=1

χKij′ (s)<
m∑
j′=1

concD(fj′)(s),

where the first equality is because K is the triangulation associated with concD(f), the second equality
is by definition of f , the third equality is by interchanging the summations, the fourth equality
is by the definition of χKij (s) and the strict inequality is because for j′ 6= j, concD(fj′)(s)≥ χKij′ (s)

and we have chosen s so that concD(fj)(s)>χ
Ki
j (s). �
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