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Abstract

This paper develops various optimization techniques to estimate probability of events
where the optimal value of a convex program, satisfying certain structural assumptions,
exceeds a given threshold. First, we relate the search of affine/polynomial policies for
the robust counterpart to existing relaxation hierarchies in MINLP (Lasserre in Pro-
ceedings of the international congress of mathematicians (ICM 2018), 2019; Sherali
and Adams in A reformulation—linearization technique for solving discrete and con-
tinuous nonconvex problems, Springer, Berlin). Second, we leverage recent advances
in Dworkin et al. (in: Kaski, Corander (eds) Proceedings of the seventeenth inter-
national conference on artificial intelligence and statistics, Proceedings of machine
learning research, PMLR, Reykjavik, 2014), Gawrychowski et al. (in: ICALP, LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018) and Rizzi and Tomescu
(Inf Comput 267:135-144, 2019) to develop techniques to approximately compute
the probability binary random variables from Bernoulli distributions belong to a
specially-structured union of sets. Third, we use convexification, robust counterpart,
and chance-constrained optimization techniques to cover the event set of interest with
such set unions. Fourth, we apply our techniques to the network reliability problem,
which quantifies the probability of failure scenarios that cause network utilization to
exceed one. Finally, we provide preliminary computational evaluation of our tech-
niques on test instances for network reliability.
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1 Introduction

This paper focuses on probability quantification (PQ), which is to estimate Pr (d X) =
min, f(X,y) > Q), where X € R™ is a random variable, o € R, y € R", and f :
R™*™ _ R. We begin our analysis with the general problem and successively impose
structural assumptions on X and miny, f(X, y). PQ plays an importantrole in reliability
problems arising in diverse industries. A particular example is the network reliability
problem (NR), which estimates the probability of bad failures, i.e., failures where,
across all links, the maximum ratio of the traffic relative to capacity—referred to as
maximum link utilization (MLU)—exceeds one. A closely related problem, abbreviated
as (RNR), certifies that MLU is below one across all failure states [10, 25, 39]. There
is emerging literature on NR and a rising interest in service-level agreements [2, 9].

The general optimal uncertainty quantification (OUQ) problem allows d(X) to
be any response function [14, 32], while PQ focuses on the case where d(X) is the
value function of a convex program. PQ is hard to solve because RNR is already NP-
Hard for a budgeted uncertainty set [9, 41]. Inequalities due to Markov, Chebysheyv,
and Chernoff are often used to bound probabilities of events, modeled as PQ. More-
over, semidefinite relaxations have been used to derive bounds on probabilities of sets
described using polynomial inequalities [8, 22]. In practice, however, this probabil-
ity is often estimated using Monte Carlo (MC) simulation, which may require many
samples to obtain reliable estimates, if Pr(d(X) > p) is small. Instead, we partition
the uncertainty set and, using an affine policy for y, prune the sampling region.

In Sect. 2, we use moments of the underlying distribution to upper bound
Pr(min, f(X,y) > o). Here, we relate affine and polynomial policies for y to relax-
ation techniques in nonlinear programming. In the rest of the paper, we assume that
X is a binary vector. We show that the m-level relaxation from the reformulation—
linearization technique (RLT) computes the probability exactly and improve the bound
from lower-level relaxations using a concave-envelope construction algorithm. In
Sect. 3 and onwards, we assume that each X; is a Bernoulli random variable. We
partition [0, 1] into finitely many polytopes, referred to as low-weight polytopes
(LWPs), where each defining constraint has small coefficients. We then utilize recent
advances in sparsification [13, 33] to develop techniques that estimate the probabil-
ity that X lies in a sliced low-weight polytope (SLWP), an intersection of an LWP
with a general inequality. Then, we use indicators of SLWPs to improve the bound
from the concave-envelope construction algorithm. In Sect. 4, we outer-approximate
{x € £ :minyey(y) f(x,y) > o}, where £ is an LWP, with a union of SLWPs using
the robust counterpart and chance-constrained optimization techniques. We utilize
approximate sampling techniques from [12] to estimate the probability that X lies in
such a union and devise an approximate sampler for this set. To our knowledge, this
gives the first polynomial-time approximation technique for PQ when y is restricted
to an affine policy. This is useful, for example, in NR where quick network response
dictates that y is anyway restricted to an affine policy and prior probability estimations
still relied on branch-and-bound methods [9]. The NR problem is analyzed in Sect. 5.
Finally, in Sect. 5.1, we evaluate our algorithms on NR instances.
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Probability estimation via optimization and counting 311

Notation: For m € N, we represent {1, ..., m} as [m]; Vert(Z?): vertex set of
a polytope &2; For F C R™, 1£(x) represents the indicator of F; Pr(X € F) is
abbreviated as Pr(F); ZT denotes the set of positive integers.

2 Upper bounding using concave overestimator

In this section, we are interested in the PQ problem, i.e.,we estimate Pr,(d(X) =
min, f(X,y) > @), where y € R",0 € Rand X € R" is a random variable
realizing values from a given polytope & defined as in (1), with any given probability
distribution (denoted by subscript *), supported over Z.

P ={x € R": €x <0}, where ¢ € R and 0 € R. (1)

Ifd : R" — Ris concave, overestimates d (-), and is non negative, we can overestimate
Pr, (d(X) > ) as follows [18]:

E[d(X)] _ dE.[X])

Pr,(d(X) > 0) < Pr,(d(X) > o) < <
o o

@)

for E.[X] = (E, [Xi])l’.”zl, where, the first inequality is because d X) > d(X), the
second inequality is by Markov’s inequality, and the third inequality is by concavity
of c?('). Let F={x € & :d(x) > o} then, Pr,(d(X) > 0) = Pr,(1X) > 1). If
ﬁ(X) is a concave overestimator of 1 £(X), then from (2),

Pr (d(X) > 0) < L(EX]. A3

We next, discuss ways to derive d (-) and fl(-). We argue that convex relaxations of
the robust problem, max,c 5 miny, f(x, y) yield the desired concave overestimators
of miny f(x, y). In PQ, we use X to emphasize that it is random, while in the robust
problem, we use x instead. For the PQ problem defined above, we assume f(x, y)
is linear in (x, y) and that its domain is restricted to {(x,y) | ¥y € Y(x)}, for Y (x)
defined as:

Y(x):{yeR”:Ay+Bx§Kc}, )

where A € RP*", B € RP*™ ¢ € RP, K is a closed convex pointed cone in R”,
and a <g b implies b —a € K. Let K/ = {(x,y,y,A) e R" xR" x R x R |
¥ = b(x, y,N),A >0, Ay + Bx <g cA}, h(x, y,N) = Af(%. %), and h(x, y, 0) =
limy o f (%, %) Our assumption that f(x, y) is linear is without loss of generality
(wlog) whenever K’ is a closed convex pointed cone. Indeed, for f(x, y) whose
epigraph is nonempty, closed, convex and does not contain vertical lines, it follows
easily that K’ is closed and convex (see Theorem 8.2 in [34]). The assumption of
linearity of f(x, y)is wlog because we canrewrite min,, f (x, y) asmin, ,{e'T(y, y') |
(x,y,y,1) =g 0}, where ¢’ = (0,...,0,1) € R""!. Thus, wlog we can assume
f(x,y)=eTyfore e R".
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312 A. Chandra, M. Tawarmalani

We now discuss how convex relaxations for max,e g minycy(y) €Ty assist in con-
structing c?(x), which can be used in (2) to bound Pry(F). Given x € 22, let
CP(x) be the conic program miny{eTy | Ay <g ¢ — Bx} and CD(x) its dual
maxy,{wT(c — Bx) | wTA = T, wT <i 0} for w € R”. Throughout, we assume
that the following holds:

(A1) There is no duality gap between CP(-) and CD(-).

We will make additional assumptions as and when required for deriving our results.
These assumptions are listed in Appendix A for ease of reference.

See Theorem 1.4.2 in [5] for conditions when Assumption (A1) holds. Specifically,
if K= Ri, CP(-) and CD(-) exhibit no duality gap if either of them is feasible.

Using duality, we rewrite d(x) = minyey () eTy, as d(x) = max,{wT(c — Bx) |
wTA = eT, wT <p 0}. Let (R) be any convex relaxation of max,, x{wT(c — Bx) |
wTA = eT,wT <g+ 0,x € £} in an extended space (x, w, W) where, for each
feasible (%, W), there is a (¥, w, W) feasible to (R) such that the objective evaluates
to wT (c — Bx) or higher. By partially maximizing (R) with (w, W), we obtain d (x)
that is concave (see for example, Proposition 2.22(a) in [36]). If o > 0 and d (x) takes
negative values, we instead dualize min, max{0, f(x, y)} to construct d (x). Below
we discuss the construction of one such (R) as obtained in (5) using the reformulation
linearization technique (RLT).

RLT, which is acommonly used relaxation technique for nonlinear programs, can be
used to construct d(-). Affine policies, where y is restricted to PTx 4 ¢, for P € R™*"
and g € R" are used to relax max,c g minyey(y) f(x, y) [4, 7] and their connection
to RLT has been explored in [10, 19, 42]. We review this relation (and extend it to
allow for conic inequalities in (4)) so as to derive d (x) and, thereby, bound Pr, (F).
Let I'* = max,c o minyecy(y) f(x,y) and ¥ be the restriction of this optimization
problem where y(x) = PTx + g. Let ¥| = minp , ¥, then observe that ' < y.
We use RLT to relax max,c g d(x) as follows:

(R): max wTec—Tr(BW) (5a)
w,W,x

WA = xeT (5b)

0wl —&W <+ 0 Vr e[l] (5¢)

wTA =eT (5d)

Cx <0 (5e)

wT <k 0, (5f)

where we have exploited Assumption (A1) to dualize the inner problem as CD(x) :
max,{wT(c — Bx) | wTA = eT, wT <g+ 0} and introduced W to linearize xwT.
Constraints (5d) and (5f) are from CD(x), Constraint (5¢) models &2, Constraint (5b)
is obtained by pre-multiplying wT A = eT with x, and Constraints (5c) are obtained by
post-multiplying €x < d with wT <+ 0. The formulation I"? below is then obtained
by dualizing (R).
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Proposition 1 Let I"C be obtained by dualizing (R) as in (5), then I'© overestimates
Y and thus I'*, where

ro= min eTg+070 (6a)
q,U,.r,0

APT —UT¢ = —B (6b)

UTo+ Aq <k ¢ (60)

—Pe+¢C€TO =0 (6d)

©>0,U >0 vrelll,  (6e)

PeR™" g eR", ©® R, and U € R™*P is such that for all r € (1], U, denotes
its row vector. Moreover, the above problem finds the optimal affine policy when the
uncertainty set & is non empty and K = Ri. O

In general, I'* may be infinite. For example, if there is an x such that ¥ (x) is
empty, then I'* = co. Otherwise, Y (x) is non-empty for all x and I'* < oo. This is
usually referred to as complete recourse [40]. If in addition, there is a (w, X) such
that wTA = €T, wT <+ 0, and ¥ € <, then it follows by weak duality that
I'* > minyey ) eTy > wT(c — BX) > —o0, and so I'* is finite.

In Appendix C, we relate polynomial policies for y to higher levels of RLT hierarchy.
These policies yield better candidates for d (+), when bounding Pr, (d (X)). In Sect. 2.1,
we derive relaxations for 1(-) instead and show that higher levels of the hierarchy yield
better bounds via (3).

2.1 Better bounds by lifting indicator function using functions

We construct a formulation for 1£(x) as follows. Let C(x) = {y € R" : Ty <
0, Ay + Bx =g c}, and define Z(x) = {(y.®) : ® =0,y € C)} U {® =
I,y = 0}, where ® € R. Then, let A(x) = {(y,®) : Ay + Bx(l — &) <g
1—=D)c,eTy <(1—D)o, D > O}, where Z'(x) € A(x) C cl(conv(& (x))), see
Proposition 3.3.5 in [5]. Then, let Z(x) = miny,gb{cb | (v, D) € A(x)}. We show
that Z(x)1 o (x) = 1£(x). First, we show that Z(x) = 1 if C(x) = ¥ and 0 otherwise.
Assume there exists y € C(x). Then, (y,0) € A(x) and Z(x) = 0. Now, assume
that C(x) = @. Then, there does not exist (y, @) € A(x) for @ < 1. Otherwise,
(ﬁ, 0) € A(x), which in turn implies that (l_yfé) € C(x) and contradicts that C(x)
is empty. Since (0, 1) € A(x), it follows that Z(x) = 1. Recall that x € Fif and only
if x € & and d(x) > . The latter condition is equivalent to C(x) = . This shows
that Z(x) 1 o2 (x) = 1£(x).
For the remainder of this paper, we assume that

(A2) The distribution of X is supported on a finite set of points .7 in Z.

To improve the probability bound, we use the concave envelope of 1 r(x) restricted
to .7 over conv(.7), which we denote as 1 £(+). In doing so, we utilize that for
computing Pr, (F), we can limit attention to F N 7 exploiting that the distribution is
supported only on 7. For xy € conv(.7), 1g(xo) = ming p{aTxg +b | aTx’ +b >
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314 A. Chandra, M. Tawarmalani

T(x") Vx' € .7}, where a, xo, x' € R™,and b € R [38]. Unfortunately, the number of
constraints depends on the cardinality of the support set |.77|, which can be large. For
example, if 7 = {0, 1}™, there are 2™ constraints. Regardless, numerical experiments
show that this bound can still be weak. It can, however, be improved by lifting .7 to a
higher dimensional space. Additional variables improve the bound in (3) since more
information about the probability distribution is captured in E.[X]. In particular, if .7
are the vertices of the simplex, (3) is tight.

Proposition 2 If 7 are the vertices of a simplex, fLE(IE* [X] = Pr(F). O

Assume we have available expected values of a set of functions {f, (X) fora € I" C

N™}. Then, we determine a € R and b € R so that FX)=b+ ) e dafo (X) =
17(X). Clearly, Pry(F) = Ex[17(X)] < D, aaEslf (X)] + b, and the best such
estimate is:

min { 37 agE.[f, (X)) + b b+ Yaf @z 1@V T ()

ael’ ael’

Here onwards, we limit our consideration to the case where Y (x) is defined using
linear inequalities. In particular, we assume that:

(A3) K=R".

We define DZ(x) by dualizing the formulation for Z(x), and observe that, for all x,
DI(x) = Z(x) since (w, v, ¢) = (0, 0, 0) is feasible in the following:

DI(x) = glg@{w | wTA+veT =0, g <wT(c—Bx)+vo <1, w,v=<0}, (8

where w € R?” and v € R. Let r(x, w, v) = min{wT(¢c — Bx) + vo, 1}if (x, w, v) €
T x S, where § = {(w,v) € R” x R_ : wTA + veT = 0}, and —oo otherwise. Let
& be the problem maxy, g vuw{@ | ¢ < h(x,w,v), (x,w,v) € conv(.7) x S}, where
h(x, w,v) is the concave envelope of r(x, w, v) over conv(7) x S. Let ﬁ(x) =
maxy,we{@ | ¢ < h(x, w,v), (x,w,v) € conv(F) x S} i.e,L(x) is obtained by
partially maximizing & w.r.t (w, v, g). We show next that ﬁ(E*[X]) is the bound in
(3), obtained by using the concave envelope of 1 744 (-) over conv(.7).
Proposition 3 Let 1(x) be the Sfunction obtained by partial maximization of & w.r.t
variables (w, v, g) and 1g(x) be the concave envelope of 1 rn7(-) over conv(T).
Then, for all x € conv(T), 1(x) = 1£(x). O
As before, 1z (x) = ming p{aTx +b | aTx’ +b > I(x') = DI(x'),Vx’ € T}.
We briefly describe below a column generation algorithm that computes 1 g (x) [3, 38].
LetJ = {J : x) € 7}. For J C J, consider the relaxation where .7 = Ujeﬁ{xj}.
Then, the corresponding dual is: -

J J _ _ ~
max § YA/ Le(x XA =Y A=A 200 el O
Jed Jegy Jey
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To compute 1 g(x), let (a, b) be optimal dual solution to (9). Then, we finda J € J\J,
such that the reduced cost 1 7(x?) — (aTx” + b) of A is positive and add J to J. We
use this algorithm in Sect. 3.1 to compute 1£(x). As in (3), we will use ﬁE(E* (X))
to overestimate Pr,(F). However, inspired by Proposition 2, we will instead use (7)
to compute a tighter bound by first lifting x to {f,(x) : « € I'}, which requires the
choice of functions f,. We will, here onwards, make the following assumption.

(A4) 7 C {0, 1} and an inequality description of conv(.7) is available.

For f,, we will use multilinear functions next and indicator functions of certain
polytopes in Sect. 3.1. The bound in (7) requires E,[f, (X)]. Unfortunately, a naive
computation is expensive since |7 | may be exponential in the size of the problem.
For example, [0, 1] has 2" extreme points. However, in Sect. 3, we will approximate
E«[f,(X)] in polynomial time for certain distributions .

Now, we describe how to use multilinear functions as f, so as to lift 7 into a
higher-dimensional space. This idea is related to the use of moments to compute
bounds on probability [23], where, invoking Putinar’s Positivstellensatz [24], sum-of-
squares of polynomials are used overestimate the indicator function. Instead, we use
multilinear functions, exploiting that .7 C {0, 1}". Let .7 = {x/} jels]- It is easy to
see that an arbitrary function over .7 can be written as a multilinear function. For
J C [m], let X’ € {0, 1}, be such that X = 1ifi € J and O otherwise. We
associate with J a multilinear function, 9ty (x) = [[;c; xi [[;c,c(1 — x;), where
JC€ = [m]\J. Then, M, (x) = O forall x € {0, 1} \ {¥’} and M ; (X’) = 1. There-
fore, 1r(x) = M(x):=3_ ./ .9y (x), a multilinear representation of the indicator
function. If M(x) = 3", c(0.1ym 8ax*, we have Eg[1#(X)] = >, (0.1 aba- Now,
let x € 7. It follows from DZ(x) that x € F if and only if there exists (wsx, vz)
feasible to (8) such that w; (c — Bx) +vzo > 0. We write Prg (F) = Eg[1x(X)] =
Y ics Lr(x)Pro(X = x') or

i
_ i

Pro(7) = (i) ; v (10

¢ <w'T(c—Bx)+vio <Pre(X=x') Viels] (10b)

(WHTA+v'eT =0 Vi e [s] (10c)

wi vt <0 Vi € [s], (10d)

where w’ € R” and v’ € RVi € [s]. For J; C [m]:

Pro(X =2 =Eo | [T} [T -xp|= > DY bugusm. (D

jedi  jeJt J'cIf
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316 A. Chandra, M. Tawarmalani

where «(J) is the indicator vector of J C [m].Conversely, given ©, Eg[X*] can be
computed as ng{j:a,:l} Pro(X = %J). Therefore, we write (10) as:

— J
Pro(F) = max > ¢ (12a)
J<[m]
¢! <@)T(c—BX)+vio<p, VIC[m]  (12b)
wHTA+v/eT =0 VJ C [m] (12¢)
w’, v/ <0 VJ C [m] (12d)
> ps N = by Vo € {0, 1), (12¢)
J<[m]

where (12e) constrains p ; to be Prg (X = x7)for J C [m].Infact, (12)is related to
the m™ level RLT relaxation of max < 7 DZ(x), where the latter expands and linearizes
the following formulation after substituting xl.2 = X;:

max 1) (13a)

w,v,X,¢

My (x) <My (x)(wT(c — Bx) +vo) <My(x) VJ S [m] (13b)

My (x)(wTA +veT) =0 VJ C [m] (13¢)
NMy(x)w, My(x)v <0 VJ C [m] (13d)
My (x)x € My (x) conv(T) YJ C [m]. (13e)

Theorem 1 Let ¢® be the m" level RLT relaxation obtained by expanding expressions
in (13), substituting xiz with x; for all i € [m], and linearizing the monomials x*, for
o € {0, 1} as xq. Let R (by) be the maximum value of the RLT relaxation when xq
are fixed to b, and optimization is performed with respect to the remaining variables.
Then, pR(by) = Pre (F). O

3 Probability estimation via weighted counting

Here, we develop techniques to compute Eg[f, (X)], where f, could be a multilinear
function or the indicator of a special polytope, which we define below.

Definition 1 A polytope £ = {x € [0,1]" : Ax < b} for A € Z""", b € 7' is
a low weight polytope (LWP), if t is a constant, and entries in A, b are bounded
by polynomials in m. We refer to the constraints given by Ax < b as low-weight
constraints.

Definition 2 Given a general inequality ) ;- wix; > C, for C, {w;}/*, € Z, and
a LWP, £ C R™, we define a Sliced low weight polytope (SLWP) as {x € R™ :
Z;"z L wix; > C, x € L}, where L is referred to as the underlying LWP.

Here onwards, we will assume that:
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(AS5) & = conv(Z) = [0,11" and X € {0, 1}", with distribution ® =
®;-"=1 Bernoulli(p;) (tensor product of m independent Bernoulli distributions).
Moreover, we assume that p; = Z—i, where a;, n; € N, and GCF(a;, n;) = 1.

In fact, we will study Prg (F) by first partitioning [0, 1]™ into LWPs, {£b}£=1 .Then, we
will obtain Prg (F) indirectly by quantifying Prg (F N L) instead. For concreteness,
forb = 1,..., F, consider £ = {x € [0,17" : Z?:] xj = b} as the LWPs that
partition [0, 1]”*. Then, we write Prg (F) = 25:1 Pro (F N LY. In this section, we
will develop techniques to approximate each term on the right-hand-side of the above
expression. We will also use overestimates of Prg (F N L") to overestimate Prg (F).
To do so, we outer-approximate F N £° using Proposition 1 to derive an affine policy
y = P*Tx 4 ¢* where x is restricted to £°. Such a policy overestimates d(x) by
f(x, P*Tx + g*) for each x such that P*Tx + ¢* € Y (x). This implies that we can
outer-approximate F N £° by a union of SLWPs, derived from (since SLWPs do not
allow strict inequalities) Dy, ..., D, where Dy = {x € LY f(x, P*Tx +¢%) > o}
and, for all » € [p], D, = {x € L® : A,(P*Tx + ¢*) + B,x > ¢,}. We will explore
this in more detail in Sect. 4.

We will compute Prg (FN L), where £ is a LWP as in Definition 1. In particular, we
will be interested in a deterministic algorithm, that given €; > 0, overestimates (resp.
underestimates) Pro (3} /L, w;X; = C,X € L) for {w;}!",, C € Z with a relative
error of (1+€;) (resp. (1 —€s)) in time, that is polynomial in the size of input data and
Eis. Such an algorithm is a fully polynomial time approximation scheme (FPTAS) for
the computation of this probability [16]. We remark that the special case that counts
{0, 1}™ solutions to an inequality Z’}’Zl wixj < C, with {; AN C > 0 is known
to be #P-complete. To see that this counting problem is a special case, let p; = %,

L=1[011" w; = —zi)j, and C = —C. We leverage recent developments in knapsack
counting and counting paths in a directed acyclic graph (DAG) to develop an FPTAS
[13, 29, 33]. For any given SLWP, S, we let | S| represent the cardinality of its {0, 1}
solutions where, in agreement with @, there are a; ways in which x; can be one, and
n; —a; ways in which itis zero. Then, |S|g = erSﬂ{O,l}’" Hi:x,—:l a; l_[i:x,-:O(ni_ai)’
and Prg (S) = ]l‘[S_‘(n)’ where a; and n; are as in (AS).

(A6) The weights of the general inequality defining each SLWP are non-negative

e fwill | € Zxo.

This assumption is without loss of generality (wlog) since if (A6) does not hold,
then we may create another instance that satisfies the above conditions by defining
X! =1-X;if w; <0and X] = X otherwise. Moreover, with this assumption, we
can assume that C € Z*. Otherwise, the inequality Yo, wiX; > C is redundant. To
keep notation simpler and to fix ideas, we will, at the outset, consider the SLWP, S;
as in (14),

m Ky K
Sy = X:ijijC,xeﬁ , where £ = x:in—ZxK2+,-=b , (14)
Jj=1 i=1 i=1
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K1+ K> = m and b > 0. In order to approximate |Sg|o, we construct a DAG in
72, where, Y@, j) € [m]?, there is a vertex associated with each lattice point (i, j).
There are arcs that connect (i — 1, j) to (i, j) fori < m, (@ —1,j — 1) to (i, j)
wheni < Kp,and (i — 1, j + 1) to (i, j) when i > K5. The arcs from (i — 1, j) to
(i, j) are associated with a tuple (0, n; — a;) while the remaining arcs are associated
with (w;, ;). Given a function, f : ZT — Z7, Gawrychowski et al. [13] construct a
1 + €, function approximation of f=(-), where f=(x) = }_,_, f(y). We adapt their
definitions and properties [13] to our setting.

Definition 3 Given f : Z* — Z™ and an approximation parameter €; > 0, a function
F : 77 — Z%isal+e function approximation of f if: f(x) < F(x) < (1+€;) f(x)
for all x. A function F : Z* — ZT is a 1 + €, sum-approximation of f if, for all
X, fZ(x) < FZ(x) < (1 + &) fZ(x), where f=(x) (resp. FZ(x)) is defined as
Doyox J() (resp. 3o F(V)).

Definition 4 Given f(-), and a shifting parameter 2 > 0, the shifting of f(-) by & is
defined as fj;(x), where f|,(x) = f(x — h) if x > h and 0 otherwise.

Lemma 1 [13] Given €, > 0, let F and G be a (1 + €5) sum-approximations of f
and g respectively, then (i) A (1 + ;) sum-approximation of F is a (1 4+ 85)(1 + €;)
sum-approximation of f, (ii) F + G is a (1 4 €5) sum-approximation of f + g, (iii)
Fy is a (1 4 ;) sum-approximation of fj,, for any w > 0, (iv) aF is a (1 + €)
sum-approximation of o f . O

Definition 5 The number of pairs (x, f(x)) in the function representation of f is
defined as the size of f(-)i.e. |f(-)].

Function sparsification to obtain F>: Given a function f(-) : Z* — Z%, and a
sparsification parameter §; > 0, we construct F, a 1 4 85 sum-approximation function
of f. We partition the values of f= into segments [r;, r;1+1), where rog = 0, iy =
max{r; + 1, |[(1 + 8,)r;|} forall i > 0. Let ¢; = max.{c | f=(c) > r;}. For any c,
we define pred(c) = max;{c; | ¢; < ¢} and define FZ(c) = f=(pred(c) + 1), where
FZ(c) = limy_, _o f=(x) if pred(c) = —

Lemma 2 [13] Given a sparsification parameter 8; > 0, FZ constructed by the above
procedure is a (1 + 85) function approximation of f=. O

Since the sequence of values in r grows by a factor 1+ 8 each time, it follows that | F|
is no more thanlog, s M, where M is the largest value of f = In order to approximate
|Ss]e, for all (i, j), we store a sparsified version of s((i, j), *) defined below. Given
a non negative integer, ¢ and (i, j), s((i, j), ¢) is the total number of directed acyclic
paths (DAPs) from (0, 0) to (i, j) of total path weight equal to ¢. Then, s((i, j), ¢)
satisfies the recursion:

K> i
‘ (x)l 1 wlxl—c Sx— Y xl:j} i > Ky
s((i ). &) = PR o (15)
(x), 1 Zwlxz—c, ngsz@ i <K».
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Moreover, for any (i, j) and ¢, we define s=((i, j),¢) = szg s((, j),y). Given
s > 0, _leveraging the sparsification procedure above, we obtain §=((i, j), -), as a
(1 4+ 85)"~! function approximation of s=((i, j), -).

Theorem2 Given S;, ® as in (14), (AS) respectively, and an error parameter
€s € (0,1), we can deterministically compute a (1 + €;) relative error approx-
imation of |Sgle, in time 0(6;1Qm2(5 In(m/&) + mIn T)), where T > max; n;,

&€ =min{K,, K| + b, 2} and ©® = min{K, — b, K| + b}. o

Similar techniques yield a (1 — €;) relative error approximation of |Ss|@; see
Appendix I. We extend Theorem 2 to SLWP, S;11 = {x : ZTZI wix; > C,x € L},

where £;, is the underlying LWP is described by ¢ equality constraints, with {wg};”:l
denoting the weights of the 1™ (I € [t]) constraint.

Theorem 3 Consider the SLWP, S, described above. Let the first t constraints
describing S;1| correspond to L;, and the (t + 1)% be a general inequality. Given
an error parameter €5 € (0, 1), and © as in (AS), there exists an FPTAS which
deterministically computes a (1 + €;) relative error approximation of |S;+1|e- O

Let y be as defined in the proof of Theorem 3 so that y > maxy wf{ — ming w,’{

for all / € [¢]. Then, we can relax the requirement that the constraints defining £; are
equality constraints. This is because, there are at most (my )’ possible nodes in the last
slice of the graph constructed in the proof of Theorem 3. Since, w,l( for k € [m] and
[ € [t] were assumed to be polynomial in m and ¢ is a constant, the number of nodes is
polynomial in the problem input. Therefore, we can run the algorithm of Theorem 3
on each of these nodes which satisfy £;. In other words, we can extend Theorem 3 to
handle inequality constraints. Here onwards, whenever we create sparsified function
approximations, we will refer to Theorem 3, although a better time complexity can be
obtained for this construction using Theorem 2, when the underlying SLWP is of the
form (14).

We now describe an algorithm to approximately sample {0, 1} solutions according
to distribution @, from a given SLWP, Sg = {x : >/ wix; > C, x € Lg}, where
the underlying LWP, Lo = {x : 2x < Cgo} for 2 € Z"™ and C, € Z'. Later, we
will leverage this algorithm in Sect. 4.1 to obtain a randomized approximation scheme
for computing the probability of a union of SLWPs, which in turn will be constructed
to overapproximate Prg (FN L), where L is the underlying LWP of the SLWPs in the
union.

Since, we are interested in {0, 1} solutions of Sg, we write the solution set as
U, S(J), where S(J) = {x € {0, 1}" : "/, wix; > C, 2x = J}. The algorithm
first uses Theorem 3 for setting up §=((-, -), -) with a chosen parameter ;. Then, for
each generation, it requires m steps. We denote the generated random variable as X. We

begin by choosing J with probability %

the values (§§k)k”‘:m_tJr2 are fixed. Then, leti = m—t+1,c(t) = C =Y}, wi Xy,

. At iteration ¢ of the algorithm,
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J16) =J — 2 i 1mX it 1m» and

= (- 1.7 ), e0) i — ap)
52((1' - 1.j’m), c(t))(n,- —a;) +§Z((i — 1,76 = 2.4, c(t) — wi)ai.

~J

Py =

At each iteration, the algorithm generates a uniform random variable U; in [0, 1] and,
if U; > ﬁtj , it sets X; = 1. Otherwise, it sets X; = 0.

Theorem 4 Consider the {0, 1} solutions of Sg; as defined above with the underlying
distribution © as in (AS). Let {wf }i2| denote the weights of the | th constraint defining
Lg, and assume that an error parameter €; € (0, 1) is given. Then, after initial setup
that requires O (e; Um!*+4y! InT) time, we can generate a {0, 1} solution from Sg
with a probability which is different from the true probability by a relative factor of
(1 £ €y) in time O(m + (my)’), where T > max; n; and y > maxy w,lC — miny w,l(for
alll e [t]. O

Asremarked earlier, Theorems 3 and 4 will be used to estimate Prg (). In particular,
they are the key ingredients of the algorithm that estimates the probability of a union
of SLWPs that cover F. Moreover, after Proposition 3, we discussed the need to
compute Eg[f, (X)]. Theorem 3 provides a (1 + €;) relative approximation for this
quantity when f, = x® for ¢ € {0, 1}"". These functions are especially useful, as
shown in Theorem 1 to develop tight approximations for Prg (F), and, similarly in
approximating Prg (FN Eb), where Eb, forb € {1, ..., F},isapartitioning of {0, 1}"".
In fact, Theorem 3 can be used to approximate Pre (X% = 1, X € U) for any SLWP
U. Indeed, x* = 1 if and only if x; = 1 whenever «; = 1. Therefore, the set
{x : x* =1, x € U} is itself an SLWP and amenable to probability estimation.

3.1 Indicators of SLWPs to improve concave envelope bound

For any SLWP, U, we can use Theorem 3 to overestimate, to any accuracy, Eg[1y (X)].
So, we may use Ly (x) as f(x) in (7) to improve the bound for Pre (F) as obtained in
(3). In this section, we describe Algorithm 1, which derives this improved bound and
uses the following subroutines.

(1.) FIND- VIOLATE((a, b),V): Given a linear function aTx + b andaset V C 7,
FIND- VIOLATE returns an optimal solution to: max,cy {DZ(x) —aTx — b} where
DI(x) is as in (8), if bounds on v, w are available so that this optimization
problem can be solved as an integer program. Otherwise, FIND- VIOLATE returns
an optimal solution to max,ey{DZ(x) | aTx + b < 1}, where we additionally
impose that || (v, w)|| < 1 for some norm | - ||.

2. OVERESTIMATOR(Eg[X], {E[1y, (X)]}le,{Ui}le): Let conv(.7) be {x
C% > d°}, and consider its [ non empty subsets U; = {x : Cix > d'},
where C' € R¥ and d € RF Vi = {0,...,1}. Let E[1y, (X)] overesti-
mate Eg[1y,(X)] for all i € [/]. Then, consider min, j {aTE@ [X]+ b +
Y B[y, (X)] | aTx +b > 0Vx € conv(T); aTx +b+m > 1Vx €
U;, Vi €[l]; m; = 0Vi € [l]},andusedualitytowriteaTx—i—b—i—m > 1Vx e U;
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Algorithm 1 Bound Prg (F) using indicators of SLWPs

1:
2
3
4:
5:
6.
7
8
9

Initialize: V} = conv(7) 1a =0,b = 0;k = |
Input: Input ©.

Output: A bound on Prg (F)

procedure BOUND

(w*, v*, x*) < FIND- VIOLATE((a, b), V,’§)

while w*T (¢ — Bx*) +v*0 > 0 do
(Uk. E[1y, (X)]) < SOLUTION- COUNTER(V* = (w*, v*), V§)
(@*, b*, %) < OVERESTIMATOR(E@ [X], {E[1, CON_, (U5 ))
k<—k+1
VE < VETLn (x| w*T(c — Bx) +v*0 < 0)
(w*, v*, x*) < FIND- VIOLATE((a*, b*), V&)

return a*TEg[X] + 6% + Y 5_| B[1y, (X)]

as: Max,i gk {u)HTd +b+m;—1 | u)TC! = aT} > 0. Thus, OVERESTIMATOR
solves:

!
min aTEe[X]+b+ Y mB[1y,(X)]

w,a,b,u i3
wHTC? =aT, W7’ +b>0
WHTC =aT, W)H)Td +b+m; > 1 Vi € [1]
u', 7 =0 Vi
Setting r; = O for all i € [/], it follows that the optimal value of the above
problem is no more than the concave envelope bound in Sect. 2.1. Moreover,

since (a,b, ) = (0,0, 1;), where 1; is an l-dimensiopal vector of ones, is
feasible, it follows that the bound is no more than ZL] E[ly, X)].

. SOLUTION- COUNTER(v = (v, w’), V): Given (v/, w’) € argmax DZ(x’) and

V C 7, where x’ € V is such that DZ(x’) > 0. Let V; = {x € V :
w'T(c — Bx) + v'¢ > 0}, then from (8), Vy; C F, and Prg(Vy) contributes to
Pro (F). SOLUTION- COUNTER uses the algorithm in Theorem 3 to overestimate
Eolly, (X)]as E[1y, (X)]. Since, it can only handle one general inequality, V is
first transformed to a LWP, making Vi a SLWP, and then I@[IL v, (X)]is computed.

It returns V; and E[IL v, X)].

We mention that Algorithm 1 does not rely on Assumption (AS5) except when we

use Theorem 3 to estimate Eg [1y; (X)] or Eg[X].

Remark 1 To use a strict inequality, such as aTx + b < 1 in FIND- VIOLATE (resp.
—wT(c— Bx)—vo < 0in SOLUTION- COUNTER, with ¢, B, and g integer), we utilize
that (a, b) (resp. (w, v)) are rational numbers, being optimal solutions to a linear
program. We can, therefore, scale (a, b) (resp. (w, v)) so that they are integer and then
increment b (resp. decrement v) by one and enforce the weak inequality. O

Remark 2 If max,cy{DZ(x) — aTx — b} is solved, for V C .7, then FIND-
VIOLATE finds an x € F, such that aTx + b has the lowest value. Instead,
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max,cy{DZ(x) | aTx + b < 1} finds an x € V where aTx + b evaluates to
a value less than one. For practical reasons, we can replace aTx + b < 1 with
aTx + b < 1 — e. If FIND- VIOLATE does not find a violating (w*, v*, x*), then
Pro(F) < ﬁaT]E@[X] + & + Zﬁ:l n,-fE[IlUi (X)]. OVERESTIMATOR can also
be adapted to account for the relative approximation error in the computation of
Eo[X] using Theorem 3. In particular, assume that y;, i € [m] are available such
that #’ey < EolXi] < yi(1 + €). Since a;Ep[X;] < max{%,aiyi(l + &)}, we

introduce variables z;, i = 1, ..., m, require that z; > l‘ljrye’ and z; > a;yi(1 + €).
Then, we minimize Y 1" z; + b + Zi:l mIAE[]lU[ (X)] instead. O

Remark 3 Algorithm 1 terminates in at most |.7| iterations of the loop starting at
Step 3. This is because, at Step 7, |V£| is strictly decreasing in k. The finiteness can
also be shown as follows. For a fixed x*, FIND- VIOLATE solves a linear program to
determine (w*, v*). We may, therefore, assume that (w*, v*) € Vert(S,, ,(x*)), where
Swpx®) ={wTA+veT =0, wT(c — Bx™) +vo < 1, v, w < 0} because Sy, ,(x™)
does not contain lines and the optimal value is finite. Moreover, the vertices of Sy,
are extreme rays of Py, ,, where Py, , = {wTA + veT = 0, w, v < 0}. Therefore, it
follows that the number of iterations of the loop is bounded by the number of extreme
rays of Py y. O

As presented, in Algorithm 1, FIND- VIOLATE solves an integer program (or MINLP)
at each iteration to find an x € F. As an alternative, we bypass OVERESTIMATOR
so that it returns (a, b, m) = (0, 0, 1;) and combine the search in a single branch &
bound tree in Gurobi [17]. Whenever an integer feasible solution (w*, v*, x*) is found
at Step 2 or Step 8 of Algorithm 1, we use the lazy-constraint callback function and
add a cut (w*)T(c — Bx) 4+ v*o < 0 which eliminates x* in Step 7 of Algorithm 1
and continue to find next violation.

Remark 4 1If (w, vf, x;) is obtained at the k™ iteration of Algorithm 1, using FIND-
VIOLATE((0,0),VE), then F = | Ji_, U, where Uy = {x € VK : (w})T(c — Bx) +
v,fg > 0}, and L is the number of iterations until the algorithm terminates. After
any intermediate iteration + < L, we obtain {Uk};c] , such that Ui: Uk € F. We
use this to obtain a lower estimate for Prg (F). To do so, we may first transform the
constraints defining Vﬁ for all k € [t], to low weight constraints and obtain K’; as
an inner-approximation to Vk, ie., X’;, C Vg. Then, each Uy, for k € [¢] is a SLWP.
For ¢, € (0, 1), we may use Appendix I to obtain a (1 — €;) relative approximation
of Prg(Uy) for all k e [f]. Given an ¢, this assists in deriving a 1 — €, relative
approximation confidence estimate of Prg (Uli: 1Uk) (see Sect. 4.1), a lower bound for
Pro (F). O

Clearly, a drawback of this approach is that at each iteration, FIND- VIOLATE solves
an integer program (or MINLP) which is NP-hard. Moreover, a cover for F or an
overestimate for Prg () is obtained only at the termination of the algorithm. As such,
this approach is not well-suited for obtaining an overestimate to Prg (F) when L is
large (see for instance our computational experience on network routing for D(3) -
Deltacom b = 3 in Table 1). Next, we propose a scheme which derives an overestimate
for Prg (F) in polynomial time.
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4 Policy restrictions to outer-approximate F by a union of SLWPs

In Sect. 2, we discussed how a candidate d (x) in (2) is constructed by restricting
y to be an affine function of x and related this construction to RLT relaxations for
the corresponding nonlinear formulation. Now, we will elaborate on our discussion
following Assumption (AS5) to show that such affine policy restrictions naturally lend
themselves to an outer-approximation of F via a union of SLWPs. Assume y € Y (x)
as defined in (4), is restricted to be an affine function, §(X), of X. Then, for an LWP
L,FNLCS =DyUUL, Dy, where D, = {x € L : A:8(x) + Byx > ¢} for
allr € [pland Dg = {x € L : eTé(x) > p}. Clearly, Prg(F) < f:o Pro (D,).
Here, we discuss how this estimate can be improved. To do so, we may project out a
few y variables, thereby removing the restriction that they are affine in X. Second, we
bound Pre (S) = Y-F_ Pro (D, ﬂﬂ;;é D]C) <>’ ,Pro(D, N jey, D/f), where
J- € {0,...,r — 1}, |J+| < « for some constant «, and D; C D,. For tractability,
we choose D’ rC as an approximation of DrC defined using low-weight constraints. For
example, let Drc ={xel: ZT:I wjx; < C}.Then, we use standard approximation
techniques to define D’rc. For a given €, and for ¢ = max’/_, |wj|, we replace w;
with w, = [Z22] and C with €’ = min{m[2], [S2]}. This way, |w}| < [2],
for all j, i.e.,all coefficients are bounded by a polynomial in m and % and we can use

Theorem 3 to approximate Prg (Dr NN el D’?). Thus, we can outer-approximate F

with Uf:o D, N B,, where, for each r, B, = mjej, D’jc isaLWP, D, is equivalently
written as a SLWP (since SLWPs do not allow strict inequality) and, so, D, N B, is a
SLWP. Later in Sect. 4.2, we discuss various ways to derive such an affine policy to

cover the set of interest using a union of SLWPs.

4.1 Randomized approximation scheme for probability of union of SLWPs

We discussed in Sects. 3 and 4 that affine policies can be used to outer-approximate
FN LY forb e [F], and thereby F via a union of SLWPs. Similar SLWPs also arise
in Algorithm 1, as stated in Remark 4. Assume S:= Uszl S 2 FnN L% is such an
outer-approximation. By Assumption (AS5), the support of @ is restricted to binary
points, {0, 1}"". Moreover, any point generated by Theorem 4 belongs to {0, 1}". In
this section, whenever we say that x € Sy, it should be understood that x € {0, 1}"" N S;
since these are the only vectors generated by our algorithm and Prg (x) = O forall x ¢
{0, 1}". In this section, we will use sampling to obtain a 1 + €, relative approximation
confidence estimate of Prg (S). To this end, we adapt the algorithm of [12, 20] to our
setting and present it as Algorithm 2. This algorithm requires three input parameters,
where a, and €, specify the accuracy of the approximation, and &, specifies the
significance level. It also assumes the existence of the following polynomial time
subroutines.
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Algorithm 2 Generalized KLM [12] to estimate Prg (S) for S = IL: 1S
Input parameters: o, € and 5.
Output: Pr(S) such that with probalgjlity (1 —3g),
(I —ag)(1 —€g)Pro(S) < Pr(S) < (1 +ag)(1 + €g) Pro(S)

1: procedure GENERALIZED- KLM
2 T < 3%n(d)
ag 8
3 Pr(S;) < SLWP- PROB(eg, Sj, @) VI € [L]
4 fort =1to T do N
S: Choose i € [L] with probability Pl
' T YL Brcs))
6 Xe S,»O) < SAMPLE- ASSIGN(€g, Sl-o, ®)
7 forj=1toLdo _
8 if SATISFACTION(X, §) is True then
9: X)) « j
10: break
11: if #(X) = i then
12: Zy <1
13: else
14: Z; <0

Return Pr(5) = + Y1, 2, Yk Pr(s))

(1.) SLWP-PROB(¢,, S;, ©@): This procedure computes l/’\r(Sl) which is a (1 £ €g)
relative error approximation of Prg (S;). Using Theorem 3, we compute:

mmm§ﬁ6050+%ﬁ@m> (16)

(2.) SAMPLE- ASSIGN(€g, S, @): This procedure generates §§1 € S so that:
(1 - €g) Pro(X = %) < Pr(X; = HPr(S) < (1 + €) Pro(X =7),  (17)

for every X € ;.

We show that the sampling algorithm of Theorem 4 with €, = %g meets this
condition. If X ¢ S, then, by (J.3) and Pro (X = X|X € §;) = 0, it follows that
Pr(X; =X) = 0. For X € S;, (17) holds because

(I—e)Pro(X =% = (I —e) Pro(X = Dl — pr(E, = HPH(S)
Pro (S1)
. Prs)
< (I +e)ProX = x)—Pr@(Sl)

< (14 3¢) Pro(X = %), (18)

where the first and last inequality are by (16) and (1 + €,)> < 1 + 3¢, for
€5 € (0, 1). The second and third inequalities are by (J.3).

(3.) SATISFACTION(x, S7): Given a x and S;, this subroutine trivially checks if x € §;
by using the inequalities that define ;.
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Then, Theorem 1 in [12] shows that for any oy, €g, §,, Algorithm 2 computes
Pr(S) = L 3T Z ok Pr(8)) such that, with probability (1 — 8),

(1 — ag)(1 = €) Prop($) < Pr(S) < (1 + a)(1 + €) Pro (S). 19)

We show that the sampling algorithm yields a fully polynomial almost uniform sampler
(FPAUS) for § = UiL=1 Si. A FPAUS for a set S is a randomized algorithm that takes
asinput a tolerance 8, and generates a random variable G € S sothatdry < §,,intime
polynomial in the problem size (m) and log(i), where dry = % Y oies | ProX =
x|X € §) —Pr(G = x)]| is the total variation distance between the true distribution and
the sampling distribution. Wlog we assume S; # @ and, in particular, x’ € S;N{0, 1}"".
We run Algorithm 2, and terminate with X the first time it encounters Z; = 1 if this
occurs in no more than 7/ = 2L ln(%) iterations. Otherwise, we return x’. We
denote the random vector generated by this procedure as G. For any x € S, let
t(x) = min;{i | x € S;}, i.e,among {Sy, ..., Sr}, the first set that x belongs to has
index #(x). Observe that, for

> ces Pr&icr) = 0Pr(Sicx)
S Pr(s)
B (1 —€g) Y (esProX=1x)
(I+e) L Pro(S)
lmax,eL]PrO(S) 1_L

Pr(Z,=0)=1-Pr(Z;=1)=1—

T 2 xhPes) 2L
The first inequality follows from (16) and (18), the second inequality because, for
€ e (0, 1/3), 4 TFe = % and ) ¢Pro(X = x) = Pro(S) > Pre(S;) for all i. Let

=0iff Z, = 0forall t' € [T']. Then,

1\" 25
Pr(Z/:O):Pr(Z,/:O,/:l,...,T’)f(1——) 5?”. (20)

Now,

Pr(Xt(x) = X)PF(St(x)) Pr(Z 0)
E | | =
=1 Z =1 Pr(S,) 1<t

T’ -~
-y Pr(Xi(x) = 0)Pr(Si(x)
- 7es PrXim = DPr(Siw)

Pr(G=xand Z' =1) =

Pr(Zy =1) [ | Pr(Zy = o))
"<t
Prin = OPH(Si) o 21

wes @ = DPr(Siw)

where the first equality follows by observing that the process stops at ¢’ iteration with
G=xand Z' = 1,if Zyw = 0 fort” < t', Zy = 1, and x is generated at ¢’. This
happens if S;(y) is chosen at Step 5 of Algorithm 2 and x is generated at Step 6 of
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Algorithm 2 by sampling S;(y). The second equality uses

Pz — 1) — XL: Pr(S) s PrKs = ) _y Pr(X, ) = HPI(Si )
= = =
p YF Pr(s) P B8 7))

and the third equality follows from the independence of Z,» with Z,» for t”" < ¢’ and
Pr(Z =1)=Y"_,Pr(Zy = )]s, Pr(Zy» = 0). It follows from (J.3) and (16)
that:

(1— 3€g)Pr@(X =X) - Pr(X,()L) = x)Pi(é‘i(x)) <+ 4€g)Pr@(X = x)’
Pro(S) ves PrXs ) = X)Pr(S:x)) Pro (S)
(22)
where we used that (1+€g)2 > 1—3e€;, and a +jg) < (1+4¢,) fore, € (0, 5) Choose

€g = % Therefore, by (21), (20), and, (22), it follows that if x # x':

(1 _ §5u) Pro@ =% _piGorx.z=1 < (1 n §5u> Pro® =2 = 23
5 Pre(S) 5 Pro(S)

where we used 1 — 36, < (1 — 88,)(1 — Z+) and 1 + 4¢, = 1 + 35,. Thus,
drv = 1Y s IPro(X = x|[X € §) — Pr(G = x)| < 2Z)C€S|1>r0(x =xX e
$)—Pr(G=ux,Z =)+ TZ=0 < By pro(X=x|XeS§)+%=
Assume we have § = Ul-:] S such that N £ € S, where £ is a LWP. The
FPAUS for § can be used to estimate Prg (F) using rejection sampling. Let 07 and S

be given parameters that will be used in the specification of the accuracy of estimation

and the confidence level respectively. Werun 7”7 = 2%95 In 2 Br iterations of the FPAUS

described above. For each ’ € [T"], let Z], = 0 if Z’ =0o0r G ¢ FN L. Otherwise,
we define Z;, = 1. Therefore, it follows that E[Z,] = p =Pr(G € FN L, Z' = 1),
which by (23) yields:

Pro(FN L) ~ Pro(FN L)
(1—614)T(5,)5P§(1+60T(S), (24)

where we have used €, = %6,,. Let 2" = ZIT,; Z;, and p = %- Leter = 97?-
By the 2- sided Chernoff bound, we have Pr(|Z” — p| > 0F) = Pr(|Z" — p| > €rp)

2exp< e pT”) < 2exp< 2—+9&T”) = Bx. Therefore, Pr(Z”" — 0 < p

Z"+07) > (1—B). Combining with (24) and (19), we have Pr(ﬁ%

IATA

IA

(2" +05)Pr(S)
Pro(FN L) < - EHal® ) > (1 - 5,)(1 - Bp).
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4.2 Deriving affine policies to cover 7N £ with a union of SLWPs

Earlier in Sect. 4, we discussed how the affine policy §(x) assists in outer-
approximating F with a union of SLWPs. In this section, we discuss two ways of
obtaining affine policies that utilize chance-constrained programming techniques [26].
Let V be a discrete random variable such that Pr(V = ;) = p' forz e{l,...,5}.Con-
sider the problem max{-v Z,_l it | Yo'z < £,0<z < pi}. Let T = max{z; |

Pr(V > 1) > L}. Clearly, an optimal solution sets z; = pi ift, >7,z; = %

if 7; = 7, and z; = 0 otherwise. This models expected value of the largest supports of
V with a cumulative probability of £, which is typically referred to as the conditional
value-at-risk (CVaR). Then as is standard, this quantity is computed by solving the
dual Cp: miny, u,{l+ Zl (P lvi = 0Vi e [5],1+v; > 1 Vi € [5]}[5]. So, for

a sample, {x? }iels), we use Cp to minimize CVaR [35]:

1< S
P-CVaR: min {1+ = Y p'v; | Vi € [5], f(x', 8(x")) < o + Titbo,
vt L P

AS(XDY + Bx' <c+nw,t > vi+1, v > 0}, (25)

where we have scaled 7; in the constraints usmg w € R?, avector of arbltrary positive
weights, and a positive wo € R. As before, p' is the probability of scenario x’ and s is
the number of sampled scenarios. The variables v; fori € [5] and [ are used to model
Cp as above.

In contrast, Bernstein approximation does not require explicit enumeration of sce-
narios [6, 31]. Recall that x is not in 7N L if the affine policy satisfies all the constraints
and evaluates to an objective no larger than o. We previously outer-approximated FN.L
as a union of sets, each one obtained when one of these conditions is violated. Say,
this violated inequality is given by wTx > C where w; and C depend, possibly,
on the affine coefficients used to derive §(x). Then, under various technical condi-
tions, when the cumulant generating function of > ;" ; w;X; over L is known, we
can use Bernstein approximation to derive §(x). Observe that if £ = [0, 1] then
Pro (3L, wiX; > C) < €if there is a ¢’ > 0 such that (', w) satisfy the following
convex constraint [4]:

m
’ n; —a;
_C+Zt log( .
i=1

a; Vi , _
+ 4, ) < 7' log(@). (26)
n;

We derive a similar approximation for a specially structured @, where each set in
the outer-approximation is of the form S,

(A7) 8" ={ ¥ wixi = C, X" x; = b, where w; > 0Vi} and Pro(X; = 1) =
p foralli.
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Although classical Bernstein approximation does not allow side constraints, we
use the recent analysis of 1-negatively correlated random variables in [11] to derive
this extension. To do so, we upper bound Eg[exp(tY) | Z:”zl X; = b], where
Y = Y, wiX;. Assume, for all i € [m], X; are independent random variables
such that Pr(X; = 1) = b/m and Y’ = }"7" | w;X}. Then, for [ € [m], if |I| < b,

m—|I|
we have Pro(Vi € [LX; = 1| YL, X; = b) = (b( ‘g') (%)Ill' Instead, if
1] > b, ProVi € 1,X; = 1 | Y% = b) = 0 < ()] This implies
that: Bo[Y' | Y71, X = bl = B[ iy [Toy wi, Xy, | Y X = b] <
1 I 1

Zie[m]l Hj:l wy; Hie{il ..... mPr(X; =1 = E[Zie[m]l Hj:l win{,-] = E[Y"],
where the first inequality uses that ]_[lj:1 wi, is non-negative. Therefore, for all 7 > 0,
Eolexp(tY) | Y it X; = b] < E[exp(Y")] and

Eo[exp(tY) | Y1, X; = b]
exp(tC)

Pro(S) < < exp(—tC)E[exp(1Y')]. (27)

Then, with ¢’ = %, Pro(S’) < € if there exists ¢’ > 0 such that
b , _
—C+Zt log(1— —+—ew < ' log (). (28)

Now, with p; = Z_I, (resp. pi = %), the following formulation can be used to model
(26) (resp. (28)), where Keyxp denotes the exponential cone:

m
{(u, v,0): —C+ ZG,' <i'loge, (1— piu;
i=1

+pivi <1t'(ui,t',—6;), (vi, 1", wi —6;) € Kexp fori € [m] ¢ . (29)

5 Case study: network reliability problem

Consider a graph, G(V, E), where V and E are the set of nodes and edges in G. Let
d : V x V — R be the traffic between node-pairs and ¢ : E — R the link capacities.
For link (i, j) € E, x;; = 1if (i, j) fails and O otherwise. Given x, the network routes
traffic by solving a multicommodity flow problem as in (30) that minimizes maximum
link utilization, MLU (x), where MLU(x) = max; j)eg U;; and Uj;; is the ratio of the
traffic on (i, j) to ¢;;.

MLU(x) = mi(}l U (30a)
s
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> yije < Ucij(1 = xij) Vi, j) € E (30b)
teV
Z Yijt — Z Yjir = dit — Zdjta(,':,) Vi,t eV (30c)
jev jev jev

U=>0 V<i’j)eE(sod)
Yij Y= VteV,

where, for all (i, j) € E and t € V, y;j; is the flow destined to node ¢ on link
(i, j), and 8(j= is 1 if i = ¢ and O otherwise. Constraints (30b) and (30c) model
capacity and flow balance constraints respectively. We will consider the uncertainty
set of b simultaneous link failures 2% = {x € {0, }IF - 37, - x;; = b}, which
is of interest to network architects [9, 10, 25, 39]. Further, consistent with network
failure measurements [15, 27], we assume that links fail independently of one another,
i.e, if X is a |E|-dimensional binary random vector representing the state of the
links then X ~ ®1i‘ Bernoulli(p;). We are then interested in computing Prg (FnRr),
where Fngr = {x € Zp : MLU(x) > 1}, a set we often refer to as set of “bad
failures”. Clearly, this is a special case of the PQ problem introduced in Sect. 2,
where & = {x : Z<i’j>eEx,~j = b}, dx) = MLU®x), o = land X ~ ® =

®El Bernoulli(p;) is binary random vector. Itis easy to check that this setting satisfies
our assumptions (A2)—(A6). Here, for the results in Sect. 3, we treat & = [0, 1] and
interpret FnR as the intersection of the set of interest with 2y, an LWP. The related
robust network reliability problem (RNR) computes max,¢ ; MLU(x) and can be
written by dualizing MLU(x) as follows:

(RNR):  max D vidi =Y v | D dp (3la)

sU, X

i,teV teV JjeVv
it
Vir — vjr < Ajj Y(i,j)e E,Nt eV (31b)
Z Aijeij(1 —xij) <1 (3lc)
(i.j)eE
Aij >0 Vi,j) € E 31d)
x e 2. Gle)

Moreover, Assumption (A1) is satisfied because, for any x, (A, v) = (0, 0) is a feasible
solution. Consider arelaxation of RNR, obtained using RLT, where, as in Proposition 1,
(31b) and (31d) are multiplied with constraints defining 2. This relaxation produces
a weak bound [10, 28]. However, this can be remedied (see [10]) by first lifting (30)
to an equivalent higher-dimensional formulation, Slack-MLU (x), before performing
RLT. Slack-MLU(x) is obtained from (30) by (i) introducing additional new variables
aij > 0V(i, j) € E, (ii) replacing d with d’ where, for all (i, j) € V x V, d[j =
dij+aijd;, j)eE, (iii) replacing (30b) with ZteV Vijr < Ucij(1=xi;)+a;j Vi, j) € E.
For completeness, we prove the validity in Appendix K.
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Proposition 4 For a given x = {x;;}, j)eE, consider the multi-commodity flow prob-
lem in (30) and its lifted version described above as Slack-MLU(x). Then, given a
feasible solution to either of the formulations, a feasible solution to the other can be
constructed that has the same utilization. m|

So, it follows from Proposition 4 that Prg (FNr) can be expressed as Prg ({x €
25 1 Py, a) feasible to Slack-MLU (x) with U = 1}). Let g(x) represent the indica-
tor function of {x € % : Slack-MLU(x) > 1}. Then,

8(x) =max 3\ v, x) (32a)
v

—Aij+vip—vj; <0 V(i,j)e E, VteV (32b)

Aij —vij+v; <0 Vi, j)e E (32¢)

3N v,x) <1 (32d)

Aij >0 V(i, j) € E, (32e)

where3(A, v, x) = Z(i,j)eE Aijcij (xij_l)“‘Zi,zev:i;ér ditVit =) ey U”(Zje\/ djt)'

Proposition 5 Given x € 2y, we may equivalently require that v;; = N;; for all
(i, j) € Eandvy =0 forallt € V in (32). O

5.1 Computational evaluation on network reliability test instances

We estimate Prg (FnRr) on three network topologies (i) Geant (|V| = 32, m = 100),
(i1) Highwind (|V| = 16, m = 58), and (iii) Deltacom (|V| = 103, m = 302), taken
from the topology zoo [21]. We abbreviate them as G, H and D respectively. As in
[9], we recursively removed one-degree nodes in the original topologies and used
the gravity model [43] to generate traffic matrices with MLU in [0.6, 0.67]. Geant
has ¢;; € [1, 100] Gbps, whereas ¢;; = 1 for the other topologies. Undirected links
(i, j) were replaced with two directed links i — j and j — i of the same capacity.
Unless mentioned otherwise, we report the probability ANr(b):=Pre{Fnr | X €
Zyp} instead of Prg (Fnr). This is obtained from Prg (FnRr) by estimating Pro (X €
Zp) using Theorem 2 (resp. Corollary 1) when an overestimate (resp. underestimate)
is needed.

Our algorithms were implemented in Python, the LPs and IPs were solved using
Gurobi 8.0 [17], while formulations using Bernstein approximation (29) were solved
using MOSEK 9.1 [1]. The CPU used was Intel Xeon E5-2623 @3.00 GHz. We assume
that all b-simultaneous link failure scenarios (b failures) occur with equal probability
and report conditional probabilities, which are much higher than the unconditional
ones. We only report bounds that use our algorithms from Sects. 3 and 4.1. This is
because bounds from relaxation of RNR using Proposition 4 or using the concave
envelope building algorithm of Sect. 2.1 are not tight enough to be useful for our NR
instances.

We denote a problem instance as T(b), where T abbreviates the topology and b is
the number of failures. In Table 1, column labeled True reports the ground truth values
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Table 1 Deterministic Bonferroni estimates to ANR(b) = Prg (FNRr | X € 2p)

T(b) True >"-Counting (V, G, C, B, W) >"-Bernstein (V, G, C, B, W)

H(1) 0.035 (0.035, 0.793, 0.035, 0.069, 0.035) (0.052, 4.276, 1.310, 0.345, 1.741)
H(2) 0.075 (0.075, 1.653,0.175, 0.179, 0.174) (0.140, 8.119, 3.345, 1.590, 3.817)
H(@3) 0.122 (0.123, 2.563,0.412, 0.351, 0.410) (0.234, 11.255, 5.224, 3.400, 5.680)
G(1) 0.040 (0.040, 1.050, 0.040, 0.090, 0.040) (0.060, 2.130, 1.320, 0.360, 2.780)
G(2) 0.088 (0.089, 1.252, 0.140, 0.204, 0.145) (0.166, 3.829, 2.834, 1.488, 4.272)
G(@3) 0.142 (0.146, 1.665, 0.295, 0.391, 0.311) (0.273, 5.325, 4.220, 3.174, 5.599)
D(1) 0.017 (0.020, 0.858, 0.364, 0.083, 0.017) (0.030, 14.417, 3.755,0.715,3.911)
D(2) 0.037 (0.057, 4.848, 0.775, 0.205+, 0.084) (0.114, 28.345, 8.147, 2.248, 7.206)
D@3) - (-, 10.690, 1.231, 0.4191, 0.202) (-, 39.669, 12.165, 4.397, 10.171)

T estimates are obtained by sparsifying with §g = 0.005
I respresent the 65 = 0.05

of ANr(b) obtained by enumeration. Since we report probabilities when network per-
formance is unacceptable, a lower value corresponds to better network performance.
For D(3), enumeration was not possible in a reasonable time. We consider 5 types of
approximations of the failure set, and report rigorous upper bounds on Angr(b) using
these approximations.

For the first approximation, called the V-cut approximation (abbreviated as V), we
use the constraints referred to as V-cuts that are identified by FIND- VIOLATE, and
obtained as in Step 3 of Algorithm 1. For all the other approximations we derive
policies to upper bound Angr (b).

Our second approximation, the G-cut approximation (abbreviated as G) uses Propo-
sitions 6 (in Appendix C), 4, and 5 to derive a restricted version of the affine policy.
Numerical computations have shown that this formulation (detailed in Appendix L)
results in good bounds for RNR [9, 10]. The corresponding formulation is referred
to as Gen-R3. To derive this policy, we set b = 1 in Gen-R3. Then, we fix U to 1 in
Constraint (L.1b) and negate the constraint to obtain Constraint (L.2), which we refer
to as G-cut. Using this constraint, we identify scenarios where the Constraint (L.1b)
can only be satisfied with U > 1. Since these scenarios cover all the scenarios where
MLU exceeds 1, we overestimate the probability of a bad failure by the probability
that a failure scenario violates (L.1b). Similarly, the cuts we describe next are also
used to overestimate the probability of bad failures.

Next, we describe the C-cut approximation (abbreviated as C). This approximation
uses the affine policy obtained by solving the following problem, which is derived by
specializing (25) to NR:

. Ay
min [+ rd Z p'u; (33a)

v,l,r,p,a
P i—1

D re+ Y paxi < Uice(l = x}) + aex}
teV leE

Ve € E,i € [s] (33b)
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U —-1>vi+1L,vi>0 Vi € [5]
(L.1c), (L.1d), (L.1e), (33c¢)

where § is the number of sampled scenarios and p' is the probability of scenario
x' € 2. Variables r,;, Del are as degined for (L.1), and variables v; for i € [s] and
[ are as defined for (25). We choose £ = 5 and use the resulting policy in Constraint
(L.2) to obtain a cut, which we refer to as the C-cut.

Our fourth approximation (abbreviated as B) uses a B-cut. This cut uses the affine
policy obtained by solving the Bernstein approximation described in Sect. 4.2. This
approximation requires that Assumption (A7) is satisfied, or that the failure probability
of each link is the same. For the B-cut approximation, we solve (29) iteratively choosing
€ so that MLU is below 1.

The last approximation, W-cut approximation (abbreviated as W) uses the policy
obtained by solving Gen-R3, but by restricting failure scenarios to those single-failures
where MLU is below 1 (see [9]). The cut obtained using this policy is referred to as W-
cut. The C- and W-cut approximations can be improved by adding other good failure
(failures x” with MLU(x") < 1) scenarios, an extension we do not implement. These
cuts suffice to show that our framework is flexible enough so that it can be used to
estimate AnNg(b) in a variety of ways. In the column labeled ) -Counting of Table
1, we use the counting algorithm of Theorem 2, to obtain a rigorous upper bound
for ANr(b) by summing up the probabilities for each of the SLWPs in the union.
For V-cuts, we do not report the bound for D(3), since Algorithm 1 did not terminate
within 36 hours of CPU time. In column labeled ) -Bernstein, we report a similar
bound, but compute the probability of each SLWP by optimizing (28), after replacing
" with % Note that the bounds in ) _-Bernstein are much weaker than those obtained
in ) -Counting using Theorem 2. Also, this bound can only be obtained when the
probability of link failures is the same. We remark that we did not use a sparsifier for
computing entries in Y_-Counting except those marked with 1 and %, where we chose
85 as 0.005 and 0.05 respectively. This is because, unlike other cuts, the B-cuts are
dense, and thus the approximation benefits, in terms of computational time, from the
use of sparsifier. To illustrate, for G(3), the Bonferroni estimate without the sparsifier
takes 521 CPU seconds, while it takes 150 s (resp. 12 s) with §; = 0.005 (resp.
8s = 0.05).

The rigorous bounds in Table 1 are conservative. Recall that each of the cuts, G, C,
B, and W, is associated with a policy. Theorem 4 gives an algorithm to sample scenarios
where an edge in the network violates the capacity constraint. This algorithm is then
used as the SAMPLE- ASSIGN subroutine within Algorithm 2 to sample scenarios where
at least one edge violates the capacity constraint. Such a sampling algorithm only
samples scenarios where the corresponding policy does not perform well. Using this
algorithm, we improve the Bonferroni estimate given in Table 1 by directly estimating
the probability of the union of scenarios where at least one edge exceeds capacity. These
improved estimates are given in Table 2, where we generated 100,000 samples with
Z; = 1 for each problem instance and each cut. Recall that V-cuts do not correspond to
a specific policy. Rather, each V-cut is obtained by solving a nonlinear integer program
that gives a dual solution to MLU(x) described in (30). When we report the results for
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these cuts, we also report the number of V-cuts along with the probability of union of
V-cuts.

As mentioned above, for G, C, B, and W cuts, the reported probabilities in Table 2
are estimates of the probability that a network using a certain routing policy does
not perform well. On the other hand, with V-cuts, whenever Algorithm 1 terminates,
Table 2 estimates a lower bound on the probability that no routing policy can achieve
an MLU of less than one. Therefore, when Algorithm 1 terminates, the probability
associated with V-cuts in Table 2 is expected to be close to the ground truth as is indeed
the case. However, when Algorithm 1 does not terminate, as in the case of D(3), the
reported probability in Table 2 is a lower estimate of the probability of bad failures.
We mention that rejection sampling, as described at the end of Sect. 4.1, can be used
to estimate the fraction of bad failures discovered using the V-cuts. In particular, we
recognize that the policy corresponding to any of the cuts is more restrictive than a fully
flexible network response. Although our discussion below applies to any of the cuts, we
use W-cuts to illustrate the usage of rejection sampling. In particular, there may be an
alternate routing strategy that allows the network to perform well even when the policy
associated with W-cut fails to achieve the desired performance. Using Algorithm 2,
we sample failures where the policy associated with W-cut fails, and run MLU(x) as in
(30), on each of these failure scenarios to estimate the probability of such failures where
an alternate routing recovers the network performance. Rejecting these scenarios, we
are left with the sampled scenarios where the network does not perform well. Consider
D(3). We generated 10,000 scenarios using Algorithm 2 where the policy associated
with W-cuts does not perform well. Among these, the network can handle 40.5% of the
scenarios using a different routing strategy. As a result, our estimate for the probability
of scenarios that this network cannot handle is 0.405 x 0.15 & 0.061 which is also the
estimate obtained using the V-cuts. This suggests that the 432 V-cuts that we derived
using Algorithm 1 are able to identify almost all scenarios where the network does
not perform well.

Although, we have reported conditional failure probabilities throughout, uncon-
ditional probabilities over [0, 1]" are obtained either by dropping the constraint
YL, xi = b or by aggregating the results by varying b. As mentioned above, the
estimates of these unconditional probabilities can be further improved using rejection
sampling on the samples generated by Algorithm 2. For instance, consider p = 0.001
as the probability of each link failure for Geant. Using B-cuts, we generated 10,000
samples via Algorithm 2, to find that 79.49% of the sampled scenarios were bad. In
contrast, only 0.40% of all scenarios are bad. Our computations show that our algo-
rithms prune the sample space significantly and the probability estimates we obtain
are reasonably close to the ground truth values.

6 Conclusions

In this paper, we developed methods to estimate the probability that the optimal value
of a convex program, satisfying certain structural assumptions, exceeds a given thresh-
old. We used convexification, robust counterpart, and chance-constrained optimization
techniques to cover the event set of interest by a union of sets and devised new approx-
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Table 2 Estimates for ANR (b) via Algorithm 2

T(b) True Union Pr.: \% G C B w

H(1) 0.035 (0.035, 1) 0.328 0.035 0.035 0.035
H(2) 0.075 (0.075, 12) 0.593 0.147 0.093 0.153
H®3) 0.122 (0.122, 33) 0.778 0.311 0.185 0.326
G(1) 0.040 (0.040, 2) 1 0.040 0.050 0.040
G(2) 0.088 (0.088, 50) 0.999 0.121 0.113 0.127
G(3) 0.142 (0.142,71) 1 0.232 0.228 0.248
D(1) 0.017 (0.017, 3) 0.480 0.192 0.066 0.017
D(2) 0.037 (0.037, 179) 0.998 0.366 0.156" 0.068
D(@3) - (0.061, 432) 0.997 0.514 0.295% 0.150

T estimates are obtained by sparsifying with 6 = 0.005 # respresent the 85 = 0.05)

imate sampling and counting techniques to estimate the probability of this union. Our
techniques effectively prune uninteresting scenarios from the sample space. To our
knowledge, this is the first work to use affine policies with approximate counting tech-
niques to derive bounds on probability quantification problems. We considered the
network reliability (NR) problem which determines the probability of failures where
network utilization exceeds one. Our computational results on NR are encouraging
and, to our knowledge, the first non-trivial bounds obtained in polynomial time on the
probability of bad failure scenarios.
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A List of assumptions

Here, we will briefly describe the assumptions we make in different parts of the paper.
1. In Sect. 2, for relating RLT to affine and polynomial policies, we assume:
— There is no duality gap between CP(-) and CD(-) (A1).

2. For deriving the column generation algorithm and to show convergence of RLT at
the m'® level in Theorem 1, we assume in Sect. 2.1 that:

— The distribution of X is supported on a finite set of points .7 in &7 (A2).
- K= Ri (A3).
— .7 C {0, 1} and an inequality description of conv(.7) is available (A4).

Additionally, when .7 consists of the vertices of a simplex, we show in Proposi-
tion 2 that the concave envelope of the indicator function can be used to compute
Pr,(F). The column generation algorithm also assumes that expectations of a set
of functions of the random variable X, denoted as {f,(X), ¢ € I’ € N™}, are
known.
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3. In Sects. 3 and 4 we devise counting and sampling algorithms by assuming that:

- Z = conv(J) = [0,11" and X € {0, 1}™, with distribution ® =
&', Bernoulli(p;) (tensor product of m independent Bernoulli distributions).
Moreover, we assume that p; = Z—; where a;,n; € N, and GCF(a;, n;) = 1
(AS).

— Without loss of generality, the weights of the general inequality defining each
Sliced low weight polytope (SLWP) are non-negative i.e.,w; € Zxq for all
i € [m] (AG).

4. We derive the Bernstein approximation by assuming in Sect. 4.2 that:

-8 =Y wx = C, Y xi = b, wherew; > 0Vi € [m]} and
Pro(X; = 1) = pforalli € [m] (A7).

B Proof of Proposition 1

Let y = PTx 4+ g. For y to be feasible, (APT + B)x + Aq <k c for all x satisfying
¢x <0.Then, (APT+B)x+Ag—c <g UT&x—UTd = UT(Cx—0) <k 0, where the
first inequality follows from (6b) and (6¢) and the last inequality because U T (€x —0),
by (6e) is a non-positive conic combination of vectors in K. Moreover, the objective,
eT(PTx+q) = OTCx+eTqg < OTo+eTq, where the first equality is from (6d) and the
second inequality is because ® > 0 and €x < 0. This shows that the feasible solutions
in (6) describe an affine policy and the objective function value overestimates that of
the corresponding affine policy. We now show that relaxation is exact when K = Ri
and & # (. For an affine policy to be feasible, (Ax PT+ By)x+ Axg —cx < Oforall x
satisfying €x < 0 and forall k € [p], where A,I e R", BkT € R represent the kM row
of A and B respectively, and c; € R represents the k™ entry of ¢. In other words, for
am = —(ArPT + By) and b = Apq — cy, it follows that {x | aTx < b, Cx <0} = 0.
By Farkas’ Lemma, one of .#] and .% is therefore feasible, where

Ar={A w) e Ry x R | AaT 4+ uT€ =0, b+ uTo < 0}
Sri={A ) e Ry x R | AaT + puT€ = 0,Ab + pTo < 0}.

In .1, to see the equivalence scale A to 1 and set © = (7k, the k™ column of U. In .%5,
we assume A = 0, otherwise we obtain a solution to .¥]. Therefore, there is a non-
negative u such that uT¢ = 0 and 70 < 0, which, by Farkas’ Lemma contradicts
that &2 # (. O

C Extension of Proposition 1 to consider polynomial policies

The design of such polynomial policies relates to the use of polynomial chaos expan-
sion for structured representation of uncertainty in chance-constrained optimization;
see [30] for its use in optimal power flow. Suppose y; = Zaeyj g‘]’.‘x"‘ for j € [n],
where @ = (a1,...,0,) € y; € N, g‘}‘ € R, and x“ represents the monomial
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xtex Let Y(x) = {y € R" : A(x)y + 2 (x) <k c}, where A(x)isap xn
matrix of polynomial functions, 2 (x) is a p sized vector of polynomials, such that
A = Zﬁesk,- a,’fjxﬁ and 2 (x); = Zﬂesko a,’fox/3 for some sets Sx; and So.
Let S:={o’ : 3(j, k) suchthate’ = a + B, € y;, B € S;}. Assume that & =
{x" : &x" < 0’} is a linear relaxation of {x" : x/, = x*Vo' € §,€x < ). Let
¢ = MaX,cg Minyey(y) €Ty and restrict y to a polynomial policy to define:

Y[ :=min &

5.8
E>eT ) gix, Vi e {(€x <)
aegy;
Vk € [p]
B a s B
Do D D STt D do¥p Sk € (@x <)
J€Eln] BeSy; ®€Yj BESKko -

Then, assuming {x’ : @x’ < 9’} is not empty and K = R” , dualization allows us
to succinctly express the constraints for all x’ so that ¥j = ¥*, where:

¥ ook ' @ o0

153 —g{l;)l}'lU Z 0.0, + Z €jg; (C.2a)
rell] J:0€gy;
D UnCu=30 3 doaysi+aly  Vkelplaey
rell] Jjenla—a'eSy; o'y

(C.2b)

DUsv+ Y alid)+ ) ay < Vkel[p] (C.2¢)
refl] Jj:0€Sk ; 0eSko
Z 6,¢,, = Z gie; Yo € y; (C.2d)
rell] Jia€y;
©>0, Ug>0 Vke[pl. (C.2e)

Proposition 6 Assume that x € &2, and there exists a w € —K* such that wTA(x) =
eT, and that strong duality holds for the inner problem, i.e.,

min eTy = CD(x)::max{wT(c — %(x)) | wTA(x) =eT, w <g 0},
yeY(x) w

where Y (x) = {y € R" : A(x)y + & (x) <k c}, such that A(x); and Z (x) for
k € [p]l and j € [n], are as discussed above. Then, if K = Rf_, there is an RLT
relaxation of ¢ = max,cp Minyeyx)eTy which dualizes (C.2) and has the same
optimal value.

Proof By strong duality, ¢ = max,cg CD(x). We obtain the following constraints
by taking products of equality constraints in CD(x) with x* and inequalities with
¢’x’ < ¥’ that relax the monomial definitions:

Z Z wkafjx"”rﬂ =x%jVYa € yj,Vj€[n]l; and (0, — CxHwT <+ 0.
kelpl BeSk;
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Upon linearization, we obtain:

A:= max wT(c — B'x)) (C.3a)
w,x,w ,w’

wA =M (C.3b)

VwT —Cw” <g= 0 Vr e [l] (C.3¢)

¢x < (C.3d)

w <g+ 0, (C.3¢)

where: (i) wz/a 1 linearizes x*wT and x,wT, (i) whenever o’ + 8’ = «, j € [n], o €

yj.and B’ € Si;, wzj’a,)’(ﬁ,’k) = wz/a,k), (iii) for all k € [p], j € [n], Azﬁ,k),j = afj

if B € Sk; and 0 otherwise, (iv) for all @ € y; and j € [n], MEj @ = x%ej, and (v)
for all k € [pl. B) 5 = aly if B € Sko and 0 otherwise. Let P', {U/},eq, and @’
be the dual variables to the equations (C.3b), (C.3c) and (C.3d) respectively. Given
that (w, x) is feasible for max,c g2 CD(x), its relaxation (C.3) used to compute A is
also feasible. When K = Rﬁ, (C.3) is a linear program and so has no duality gap. In

general, its dual is:

Jmin > Plej+ ) 0, (C.4a)
j:0ey; rell]
—UT¢ +F +B =0 (C.4b)
UTY + L <gc (C.4c)
h+¢TO' =0 (C.4d)
®' >0,U >k 0 vr e [, (C.4e)

’

where, for k € [p] and @ € y;, Fo/(’k = Zj Za,eyj Zﬁ’:a—a’eskj a,’fj Po’l,j, and,
for k € [pl. Lk = X jein) Xoey, Lroes, 4 Foj- Finally, for @ € yj, hy =
=2 jaey; Pajej- When K = R”, we obtain (C.2) by replacing (©’, U’, P’) in (C.4)
with (©, U, g). O

The equivalence in Propositions 1 and 6 holds when K has a tractable linear inequality
representation. To reduce the more general case to that for R, we write U € K as
GU > 0 for some G and replace Ay + Bx <y ¢ with GAy + GBx < Gc.

D Proof of Proposition 2

By definition, 1z(E.[X]) = maxa]Y ;7 Mlr(x)| Y erhix’ = EJXL A >

0, ;e Ai = 1}, where A = {A;}ier and {x'};c7 are the extreme points in .7. There

is a unique feasible solution with A\; = Pr,(X = x). So, 1 e(ELX]) = Z Pr.(X =
i€l

) 1F(x") = Ef[1£X)]. mi
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E Proof of Proposition 3

We first write ﬁ(x) as maxy,v)es h(x, w, v). Then, for any ¥ € 7, max(y, y)es
r(x,w,v) = lgpg((x) > 0. Since maxy,yesh(x, w,v) is concave and, for
x € conv(T),is larger than 1 4 7 (x), it follows that 1(x) > 1g(x). For the converse,
observe that, for all (X, w,v) € conv(.7) x S, r(x, w, v) < lpakx) < ILE(x)
Since ]lE(x) is concave, it follows that h(x, w,v) < 1g(x) and, so, ]l(x) =
maxy,v)es h(x, w,v) < ]lE(x). O

F Proof of Theorem 1

We prove the result by showing that ¢®(b,) computes the optimal value in (12).
Let #;(x):=]];c;xj. Let & be defined so a; = 1if j € J and O other-
wise. Then, .#;(x) = x“. Clearly, for any variable z, the functions z.#(x) and
My (x) for J € [m] form bases of the same vector space of functions. Indeed,
My(x) = Z‘//:Jgj/glm](_1)|J/\‘”Z%j’(.x). Conversely, we have z.Z;(x) =
Yo rrcrcim @9y (x). Therefore, we write the RLT relaxation obtained from (13)
equivalently without expanding the multilinear terms, instead linearizing @917 (x),
w7 (x), vy (x), and My (x) directly using ¢/, w’, v/, and p, respectively. Since
the former basis includes 1, we must also require that ) ;. J'<[m] zZMy(x) = z for
each z € {p, w, v, 1}. When z is ¢, this shows that the objective (12a) matches that in
(13a). The substitution xi2 = x; replaces x; 0y (x) with %IJ My (x). This is linearized
as X/p in (13e) while M, (x)wT Bx in (13b) is replaced with (w’)TBX’. The con-
straints (12b), (12c), and (12d) now follow easily from the linearizations of (13b),
(13c) and (13d).

We show that the set defined by the linearization of (13e), denoted as X’ is: X =
{Gpscm = by = 0.7 S [ml; Y ycpmbs = 1ipy = 0if X/ ¢ T} Note
that X models the probability distributions with support on 7. Because x; 0y (x)
linearizes to %lj ps, X' has the same variables as X. We first show that X’ C X.
Observe that ) ;1. i, MMy (x) = 1, linearizes to Y ;. yic(, Py = 1. Moreover, for
any j € J, (resp. j € J©), xj = 0 (resp. 1 —x; > 0) is implied by conv(.7). Thus,
the linearization of x;9;(x) > 0 (resp. (1 — x;)M,(x) > 0) is implied by (13e)
and yields p; > 0. Now, consider any X7 ¢ conv(.7). Then, if p; > 0, we obtain
a contradiction since (13e) requires that p J%J € pyconv(.7). Therefore, p; = 0
whenever X’ ¢ 7. Now, we show that X’ O X. Since X' is convex, it suffices to
show that the extreme points of X are contained in X’. It can be verified thatif ¥/ € .7
then the solution p; = 1 and p; = 0 for J' # J is feasible to X’.

Finally, we show that x, = b, is feasible to the linearization of (13e). Let
p; = ZJ/CJC(—I)Wba(JUJ/) for all J C [m]. Then, since b, is the moment of

o

x% with support on .7, it follows that p; € X. Let x, linearize .#;(x), where

aj =1 if j € J and O otherwise. Observe that, with this linearization, (13e)
yields an affine transform of X, say 7(X), in the space of x, variables. Then,
Xe = )_ynjcycim Py is feasible to T(X). However, it can be easily verified

that 3 ;. ycpcpm Prr = 2 rcim) p,/(X7)% = by. The first equality is because
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(%J )* = 1if J € J' and 0 otherwise, while the second equality follows since p
is the probability distribution corresponding to the moments by. Thus, x, = by is
feasible to 7' (X). Then, it follows that (pR (by) computes Prg (F) as in (12). O

G Proof of Theorem 2

We denote the maximum value of s=((i, j),*) by M;, where s=((i, j),c) =
ZE>CS((i, j),¢). For any i, range(j); is the range of possible values of j. For
i < Ky M; < (;’.)T’, j € [max{0,i + b — K>}, min{K>, Ki + b,i}], and
range(j); = min{K,i + b — 2K»>, K1 + b,m — i}. For i > Kj, there is a
l e [0, min{K, — j,i — Kz}] so that we select j + [ (resp. i — K> — [) vari-
ables from {1, ..., Ko} (resp. {Kz + 1,...,i}) to set to 1 (resp. 0). It follows that
M; < (j+iLK2)T,j € [b,min{Kz,m—i+b}],andrange(j),~ =min{K, —b, m —i}.
We choose a sparsification parameter, ds, to perform (1 + &) sparsification of each

s((i, j). €). Observe that log; 5 (;) < min{%, j}log, s %(1)} Since the time-

s min{5,

complexity of summing, shifting, and querying function lists is b?)linded by their size,
the time complexity is O (m 1°) (E logy s, (m/§)+mlog s T)) The time complexity
in Theorem 2, follows by choosing 6 = (1 + es)l/’" — 1, and using In(1 + €5) > €;/2
for e; € (0, 1). O

H Proof of Theorem 3

Consider a ¢t + 1 dimensional DAG, where the (I + 1) dimension corresponds
to the I™ low weight constraint. Let s((i, ji, ..., ji),*) be the list of all pairs
(c,s(G, j1, ..., ji),c)). For T > max; n;, if M is the maximum value of s=((i, ji,
..., ji), %), then M < (27)' as there are 2 solutions, each of which occurs at most
T times. Moreover, let y be such that y > maxy w,l( — miny w,l( for all [ € [t]. Thus,
the /™ low weight constraint at the i™ slice has at most iy values. Since there are
t low weight constraints, the number of nodes with first coordinate i is bounded by
(my)'. Then, after a 1 + §; sparsification the cumulative length of lists is bounded by
m(my)'log, 5 (2T)™. For a 1 + €, approximation, with 1 + 8 = (1 + €,)!/™, the
time complexity is O[e; 'm'*3y! In7]. O

I A lower estimate for probability of 0-1 solutions to a SLWP

Given a function f : Z* — Z% and an approximation parameter €, > 0, we say
F : 7Y — Z* (resp. F : Z+ — Z%)is a (1 — ¢) function approximation (resp.
sum-approximation) of f if, for all x, (1 — €) f(x) < F(x) < f(x) (resp. (I —
€) fZ(x) < FZ(x) < fZ(x)). The properties in Lemma 2 follow easily for (1 — €;)
sum-approximation of functions. The sparsifier takes as input a function f and a
parameter 8§, > 0. We partition values of = into [r;y1, ;), where ryg = max. f=(c)
and if r; > 0, then r;;1 = min{r; — 1, [(1 — 85)r;1}. Let ¢; = ming{c | f=(c) < r;}.
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For any ¢, we define [(c) = min;{c; | ¢; > c}. If [(c) is finite, F=(c) = f=(l(c) —1).
Otherwise, F=(c) = limy_ o f=(x). Then, F=(x) is a (1 — §5) approximation of
f=(x). As a consequence of the Theorem 2, we obtain the time complexity to compute
|Ssle such that for any given €5 € (0, 1), (1 — €5)|Ssle < [Ssle < |Sslo-

Corollary 1 Given Sg, © as in (14), (AS) respectively, and an error parameter €; €
(0, 1), we can deterministically compute a 1 — €5 relative error approximation of | Ss|o
in time given as in Theorem 2.

Proof When we use a (1 — &) sparsifier, the time to compute [Si|g is
0(moO[& log(l L (%) + mlog . 7]). To control the approximation error, we set

1-=68)"=( — ). Then, we obtain the same time-complexity as in Theorem 2
using In(1 — €)1 > €. O

J Proof of Theorem 4

We write the solution set of S as |J; S(J), where each S(J) = {x € {0, 1} :
Y wixi > C,2x = J}. For a given X € {0, 1}, we first compute Pro(X =
XX € Sg). To do so, we will compute Pro(X =X | X € §(J)). Lets;(j, ¢) = {x :
Z;;:l wiXe = ¢, 2.1ix1 = j}and s/(j,¢) = si(j.o) N {x : xx = XVk > i)
Define c(i) = C — Y pt, wiXx and j7 (i) = J — 2. i1 1:mXi+1:m. Clearly, if ¥ €
S(J), j7(0) =0, c(0) <0, and s4(0, c(0)) = {X}. Observe that s,.(j” (r), c(r)) <
s, 1 (j7(r+ 1), c(r + 1)) because if x € 5/.(j7 (r), c(r)), we have x; = X fork > r,
Yt Wik = c(r) = c(r + 1) — w1 %41, and 2. ppxy = 7)) = j(r 4+ 1) —
2., 41511, showing that x € 5, (j/(r + 1), c(r 4+ 1)). Then, s(j”(0), c(0)) <
81 (j](l), c(l)) c... C s;n(jj(m), c(m)) = S(J), and we have

Pre (x —Fx e sg)

- (Pr@ (X eS| X eSe) [TPro(Xesi_ (7= D.c = D)X e 57, c(i)))) :
J

i=1

J.1)

Further, forall J and i € [m], Pro (X € s/_, (j7 (=1, e = D)[X € 5/ (). ¢(0)))
is:

Pro(X € 5] (j/ (i — 1), c(i — 1))
Pro (X € 5/(j7 (i), c(i)))
_ Pro(Xesini( G — 1), el — 1))
T Pro(Xesi(i(). c(i))
_ lsic1(G7 G = 1), ci —1)]o
15i (7 (D), c(i)le

Pro (X; = %))

Pro(X; = %) = p! 8z—0 + (1 — p!)8z,=1,
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Isi—1G7 ().c)le
Isi (7 ().c()]e
equality is because the event X € s;(j, ¢) is independent of {X;/}77_. 41 and, therefore,
Pr@(X € si(] @), c(z))) = Pr@(X e si(j7 @), c(z))) [17—is Pro(Xy = Xi). The
second equality follows since |s; (j/ (i), ¢(i))|e = Pro (X € 5; (j (i), c(i))) Mh_, niv
and the last equality is because |s;_1 (j’ (i), c(i))|o (nj—ai)+|si— 1(1J(z) 2 i,c0)—
wi)|ea; = |s; (]J(l) c(i)]e. Now we compute Pr(X = X), where Xi is the generated

random variable. We write Pr(X = %) = ZJ Pr(X e S(WH) [T, Pr(X =% | X =

X Vk > i and §§,~ € S(J)). Let 131.1 = Pr(X = OIXk =X Vk > i andX e S(J)). At
the ;m +1—1i )th iteration, the algorithm chooses the value for X,-. Assume that §~§k
was chosen to be Xy for k > i. Then,

where ptj = (n; —a;) and 83— is 1 if X = a and O otherwise. The first

§2(G — 1, j7 (), c)(ni — a;)
52— 1, j1 (), ci) (i —a) +52(( — 1, j7 () — 2.1, c(i) — wa;

~J
p;i =

Since 5= ((i, j7 (1)), c(i)) is a (1 4 85)' ! approximation of |s; (j’ (i), c(i))|e:

17 i
W = p, <1 +38) 2195] (J.2a)
l_plj i—2
Aroi—2 = <1-p/ =(+8)20 = p)). (J.2b)

where the left hand side inequality in (J.2a) (respectively (J.2b)) is obtained by realizing
that 3= (i — 1, j7 (1)), ¢())) = Isi—1(j7 (), c(D))]o and5= (G — 1, j7 (i) —=$2.4), c(i) —
wi) < (148" 2[si—1(j7 () — 2.1, c(i) — wi)|e, (respectively 5= (i — 1, j/ (i) —
2.0),cli) —wi) = si-1G7 () — 2.5, (i) — wi)lo and 57 ((0 — 1, j7 (i), c(i) <
A+8)2|s;_1(j” (i), c(i))]|). The right hand side of (J.2a), (J.2b) can be obtained in
a similar way. For §; € (0, 1), we have 1/(1+8,)" > (1—8,)". Thus, (1—8,)"2p/ <

1711 <1+ (Ss)i_zpij. We let Pr(§§ € S(J)) = %, and observe that:
PriXe S(J) | X e Sp)

A Pr(X e S(J)) < (1+8)" ' Pr(X € S(J) | X € Sq).

Therefore, each term in the summation on the right hand side of (J.1) is approximated
within a relative error of (1 4 ;)" where n = m(m — 1) /2. It follows that

(1 —8,)"Pro(X =%X € Sg) < PrX = %) < (1 +8,)" Pro(X = XX € Sg).
1.3)

Now, we obtain a (1 :I: €5) approximation if 6 < 1 — (1 — e, )1/’" and §; < (1 +
€ )1/'" —1. Smce()m is concave, it follows that 2(1+6s)1/m + 5 (1 —€ )1/’” < 1.

Therefore, it suffices to choose 8; = (1 + €,)!/ " _ 1in J.3. The desired complexity
follows from Theorem 3. O
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K Proof of Proposition 4

We assume wlog that x;; = O for all (i, j) € E and U = 1. Given a solution to
Slack-MLU (x), we construct a feasible solution to MLU(x). If y is a solution to
MLU(x) with demand d and d = d’ + d” where d’, d” > 0, then, using augmenting
paths, y can be decomposed into y’, " > 0, where y’ services d’, y” services d” and
y” does not contain cycles. Now, let (y?, a), be the given solution to Slack-MLU (x)
where, y¢, is a routing of d’. Then, we decompose y“ into y! and y2, where y' routes
d, y* routes a, and y? does not contain cycles. Assume wlog that the support of a is
a pair (i, j), and, so:

D Vi + Yy < e+ @b =k (K.
teV

where 8 jy=w,1)) = 1if (i, j) = (k, ) and O otherwise. Clearly, a;; > yl.2jj because
y? does not contain cycles. We define

1
Yijt
2
Zl‘ = Cij"!‘aij_yijj
0 otherwise.

ifcij+aij—yi2jj>0 (K2)

1
Since 0 < >,y yiljt <cjj+aij— yizjj, we get 0 < % = evZi < 1.We
i Yijj
argue that the flow y”, defined as
Wie = Yhu + Ziviy — ZeaijSi =tk (K.3)

is feasible to MLU (x). First, we show feasibility to the capacity constraint.

C.1 Consider (i, j) = (k,[) and observe that: Y ,_, Z;cij — > ,cy y;}t =
Zzev(ztcij + Zsaij — Ztyizjj - yiljt) = 0, where the first equality is by (K.3). If
cijtaij— yl.zj P> 0, the second equality is from (K.2). Otherwise, it follows from
0= Yev Viji < Liev Zilcij +aij — yi;;) = 0. Then, 37,y ¥/}, < cij because
0 <Y ,cv Zicij < cij, where the second inequality holds because ),y Z; < 1.
C.2 Now, consider (k,l) # (i, j). We have 0 < Y,y (), = ey Oy, +
Z,y,flj) < Yy + y,%l/. < cu, where, the first equality is from (K.3), the
first inequality is because Z,, y!, and y? are non-negative, the second inequality
is because y,fl ; > (0 and ZteV Z; < 1, and the last inequality follows from (K.1).

Finally, y” satisfies flow balance equations in MLU(x) because it is defined in (K.3)
by adding a circulation to y! which services d. O
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L Formulation of Gen-R3

For a directed arc e from i to j, we write tail(e) to represent i and head(e) to represent
Jj.Foranode j and commodity ¢, we write ex’(r, j, t) to represent ZeeE:taﬂ(e):j Fet —
ZeeE:head(e):j rer. Then Gen-R3 is: [9]:

Gen-R3: min U (L.1a)

r.,p.a

Zret + Zpem <Ucc(1 —x¢) +acx, VeeE,Vxe 2y

teV leE
(L.1b)
ex'(r j.t) =dji =Y dibj= Vj,teV (Llc)
ieV
ex'(p, j, 1) = a18uii)=i — @18head()=) jeV,leE
(L.1d)
Yet, Pel =0 e,leE,teV.
(L.1¢)

Here, r,; is the traffic on link e destined to ¢ and p,; is the the amount of traffic on link
[ that is bypassed on e when / fails, and a, is the reservation to bypass traffic on link
e.

We solve Gen-R3 with b = 1 in 2}, i.e.,for 27 in (L.1b). Then using the obtained
(r*, p*, a*), the G-cuts are the negation of constraint (L.1b) with U fixed to one i.e.,

Zr:, + ijlxl > co(1 —x,) +a)x. fore € E and x € 2. (L.2)
teVv leE

Constraint (L..2) can be used to outer-approximate the set of scenarios in 2 where
MLU exceeds 1.
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