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Abstract
This paper develops various optimization techniques to estimate probability of events
where the optimal value of a convex program, satisfying certain structural assumptions,
exceeds a given threshold. First, we relate the search of affine/polynomial policies for
the robust counterpart to existing relaxation hierarchies in MINLP (Lasserre in Pro-
ceedings of the international congress of mathematicians (ICM 2018), 2019; Sherali
and Adams in A reformulation–linearization technique for solving discrete and con-
tinuous nonconvex problems, Springer, Berlin). Second, we leverage recent advances
in Dworkin et al. (in: Kaski, Corander (eds) Proceedings of the seventeenth inter-
national conference on artificial intelligence and statistics, Proceedings of machine
learning research, PMLR, Reykjavik, 2014), Gawrychowski et al. (in: ICALP, LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018) and Rizzi and Tomescu
(Inf Comput 267:135–144, 2019) to develop techniques to approximately compute
the probability binary random variables from Bernoulli distributions belong to a
specially-structured union of sets. Third, we use convexification, robust counterpart,
and chance-constrained optimization techniques to cover the event set of interest with
such set unions. Fourth, we apply our techniques to the network reliability problem,
which quantifies the probability of failure scenarios that cause network utilization to
exceed one. Finally, we provide preliminary computational evaluation of our tech-
niques on test instances for network reliability.
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310 A. Chandra, M. Tawarmalani

1 Introduction

This paper focuses on probability quantification (PQ), which is to estimate Pr
(
d(X) =

miny f (X, y) > �
)
, where X ∈ R

m is a random variable, � ∈ R, y ∈ R
n , and f :

R
n+m → R. We begin our analysis with the general problem and successively impose

structural assumptions onX andminy f (X, y). PQplays an important role in reliability
problems arising in diverse industries. A particular example is the network reliability
problem (NR), which estimates the probability of bad failures, i.e., failures where,
across all links, the maximum ratio of the traffic relative to capacity–referred to as
maximum link utilization (MLU)–exceeds one. A closely related problem, abbreviated
as (RNR), certifies that MLU is below one across all failure states [10, 25, 39]. There
is emerging literature on NR and a rising interest in service-level agreements [2, 9].

The general optimal uncertainty quantification (OUQ) problem allows d(X) to
be any response function [14, 32], while PQ focuses on the case where d(X) is the
value function of a convex program. PQ is hard to solve because RNR is already NP-
Hard for a budgeted uncertainty set [9, 41]. Inequalities due to Markov, Chebyshev,
and Chernoff are often used to bound probabilities of events, modeled as PQ. More-
over, semidefinite relaxations have been used to derive bounds on probabilities of sets
described using polynomial inequalities [8, 22]. In practice, however, this probabil-
ity is often estimated using Monte Carlo (MC) simulation, which may require many
samples to obtain reliable estimates, if Pr(d(X) > �) is small. Instead, we partition
the uncertainty set and, using an affine policy for y, prune the sampling region.

In Sect. 2, we use moments of the underlying distribution to upper bound
Pr(miny f (X, y) > �). Here, we relate affine and polynomial policies for y to relax-
ation techniques in nonlinear programming. In the rest of the paper, we assume that
X is a binary vector. We show that the m-level relaxation from the reformulation–
linearization technique (RLT) computes the probability exactly and improve the bound
from lower-level relaxations using a concave-envelope construction algorithm. In
Sect. 3 and onwards, we assume that each Xi is a Bernoulli random variable. We
partition [0, 1]m into finitely many polytopes, referred to as low-weight polytopes
(LWPs), where each defining constraint has small coefficients. We then utilize recent
advances in sparsification [13, 33] to develop techniques that estimate the probabil-
ity that X lies in a sliced low-weight polytope (SLWP), an intersection of an LWP
with a general inequality. Then, we use indicators of SLWPs to improve the bound
from the concave-envelope construction algorithm. In Sect. 4, we outer-approximate
{x ∈ L : miny∈Y (x) f (x, y) > �}, where L is an LWP, with a union of SLWPs using
the robust counterpart and chance-constrained optimization techniques. We utilize
approximate sampling techniques from [12] to estimate the probability that X lies in
such a union and devise an approximate sampler for this set. To our knowledge, this
gives the first polynomial-time approximation technique for PQ when y is restricted
to an affine policy. This is useful, for example, in NR where quick network response
dictates that y is anyway restricted to an affine policy and prior probability estimations
still relied on branch-and-bound methods [9]. The NR problem is analyzed in Sect. 5.
Finally, in Sect. 5.1, we evaluate our algorithms on NR instances.
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Probability estimation via optimization and counting 311

Notation: For m ∈ N, we represent {1, . . . ,m} as [m]; Vert(P): vertex set of
a polytope P; For F ⊆ R

m , 1F(x) represents the indicator of F; Pr(X ∈ F) is
abbreviated as Pr(F); Z

+ denotes the set of positive integers.

2 Upper bounding using concave overestimator

In this section, we are interested in the PQ problem, i.e.,we estimate Pr∗(d(X) =
miny f (X, y) > �), where y ∈ R

n, � ∈ R and X ∈ R
m is a random variable

realizing values from a given polytopeP defined as in (1), with any given probability
distribution (denoted by subscript ∗), supported over P .

P = {x ∈ R
m : Cx ≤ d}, where C ∈ R

l×m and d ∈ R
l . (1)

If d̂ : R
m → R is concave, overestimatesd(·), and is nonnegative,we canoverestimate

Pr∗
(
d(X) > �

)
as follows [18]:

Pr∗(d(X) > �) ≤ Pr∗(d̂(X) ≥ �) ≤ E∗[d̂(X)]
�

≤ d̂(E∗[X])
�

(2)

for E∗[X] = (E∗[Xi ])mi=1, where, the first inequality is because d̂(X) ≥ d(X), the
second inequality is by Markov’s inequality, and the third inequality is by concavity
of d̂(·). Let F = {x ∈ P : d(x) > �} then, Pr∗(d(X) > �) = Pr∗(1F(X) ≥ 1). If
1̂(X) is a concave overestimator of 1F(X), then from (2),

Pr∗(d(X) > �) ≤ 1̂(E∗[X]). (3)

We next, discuss ways to derive d̂(·) and 1̂(·). We argue that convex relaxations of
the robust problem, maxx∈P miny f (x, y) yield the desired concave overestimators
of miny f (x, y). In PQ, we use X to emphasize that it is random, while in the robust
problem, we use x instead. For the PQ problem defined above, we assume f (x, y)
is linear in (x, y) and that its domain is restricted to {(x, y) | y ∈ Y (x)}, for Y (x)
defined as:

Y (x) = {
y ∈ R

n : Ay + Bx ≤K c
}
, (4)

where A ∈ R
p×n, B ∈ R

p×m, c ∈ R
p, K is a closed convex pointed cone in R

p,
and a ≤K b implies b − a ∈ K. Let K ′ = {(x, y, y′, λ) ∈ R

m × R
n × R × R |

y′ ≥ h(x, y, λ), λ ≥ 0, Ay + Bx ≤K cλ}, h(x, y, λ) = λ f
( x

λ ,
y
λ

)
, and h(x, y, 0) =

limλ↓0 f
( x

λ ,
y
λ

)
. Our assumption that f (x, y) is linear is without loss of generality

(wlog) whenever K ′ is a closed convex pointed cone. Indeed, for f (x, y) whose
epigraph is nonempty, closed, convex and does not contain vertical lines, it follows
easily that K ′ is closed and convex (see Theorem 8.2 in [34]). The assumption of
linearity of f (x, y) iswlog becausewe can rewriteminy f (x, y) asminy,y′ {e′ᵀ(y, y′) |
(x, y, y′, 1) ≥K ′ 0}, where e′ = (0, . . . , 0, 1) ∈ R

n+1. Thus, wlog we can assume
f (x, y) = eᵀy for e ∈ R

n .
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312 A. Chandra, M. Tawarmalani

We now discuss how convex relaxations for maxx∈P miny∈Y (x) eᵀy assist in con-
structing d̂(x), which can be used in (2) to bound Pr∗(F). Given x ∈ P , let
CP(x) be the conic program miny{eᵀy | Ay ≤K c − Bx} and CD(x) its dual
maxw{wᵀ(c − Bx) | wᵀA = eᵀ, wᵀ ≤∗

K
0} for w ∈ R

p. Throughout, we assume
that the following holds:

(A1) There is no duality gap between CP(·) and CD(·).
We will make additional assumptions as and when required for deriving our results.
These assumptions are listed in Appendix A for ease of reference.

See Theorem 1.4.2 in [5] for conditions when Assumption (A1) holds. Specifically,
if K = R

p
+, CP(·) and CD(·) exhibit no duality gap if either of them is feasible.

Using duality, we rewrite d(x) = miny∈Y (x) eᵀy, as d(x) = maxw{wᵀ(c − Bx) |
wᵀA = eᵀ, wᵀ ≤∗

K
0}. Let (R) be any convex relaxation of maxw,x {wᵀ(c − Bx) |

wᵀA = eᵀ, wᵀ ≤K
∗ 0, x ∈ P} in an extended space (x, w,W ) where, for each

feasible (x̄, w̄), there is a (x̄, w̄, W̄ ) feasible to (R) such that the objective evaluates
to w̄ᵀ(c − Bx̄) or higher. By partially maximizing (R) with (w,W ), we obtain d̂(x)
that is concave (see for example, Proposition 2.22(a) in [36]). If � > 0 and d(x) takes
negative values, we instead dualize miny max{0, f (x, y)} to construct d̂(x). Below
we discuss the construction of one such (R) as obtained in (5) using the reformulation
linearization technique (RLT).

RLT,which is a commonly used relaxation technique for nonlinear programs, can be
used to construct d̂(·). Affine policies, where y is restricted to Pᵀx+q, for P ∈ R

m×n

and q ∈ R
n are used to relax maxx∈P miny∈Y (x) f (x, y) [4, 7] and their connection

to RLT has been explored in [10, 19, 42]. We review this relation (and extend it to
allow for conic inequalities in (4)) so as to derive d̂(x) and, thereby, bound Pr∗(F).
Let Γ ∗ = maxx∈P miny∈Y (x) f (x, y) and Ψ be the restriction of this optimization
problem where y(x) = Pᵀx + q. Let Ψ1 = minP,q Ψ , then observe that Γ ∗ ≤ Ψ1.
We use RLT to relax maxx∈P d(x) as follows:

(R) : max
w,W ,x

wᵀc − Tr(BW ) (5a)

W A = xeᵀ (5b)

drw
ᵀ − CrW ≤K

∗ 0 ∀r ∈ [l] (5c)

wᵀA = eᵀ (5d)

Cx ≤ d (5e)

wᵀ ≤K
∗ 0, (5f)

where we have exploited Assumption (A1) to dualize the inner problem as CD(x) :
maxw{wᵀ(c − Bx) | wᵀA = eᵀ, wᵀ ≤K

∗ 0} and introduced W to linearize xwᵀ.
Constraints (5d) and (5f) are from CD(x), Constraint (5e) modelsP , Constraint (5b)
is obtained by pre-multiplyingwᵀA = eᵀ with x , and Constraints (5c) are obtained by
post-multiplying Cx ≤ dwithwᵀ ≤K

∗ 0. The formulation Γ O below is then obtained
by dualizing (R).
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Probability estimation via optimization and counting 313

Proposition 1 Let Γ O be obtained by dualizing (R) as in (5), then Γ O overestimates
Ψ1 and thus Γ ∗, where

Γ O = min
q,U ,P,Θ

eᵀq + dᵀΘ (6a)

APᵀ −UᵀC = −B (6b)

Uᵀd + Aq ≤K c (6c)

− Pe + CᵀΘ = 0 (6d)

Θ ≥ 0,Ur ≥K 0 ∀r ∈ [l], (6e)

P ∈ R
m×n, q ∈ R

n, Θ ∈ R
l , and U ∈ R

l×p is such that for all r ∈ [l], Ur denotes
its row vector. Moreover, the above problem finds the optimal affine policy when the
uncertainty setP is non empty and K = R

p
+. �


In general, Γ ∗ may be infinite. For example, if there is an x such that Y (x) is
empty, then Γ ∗ = ∞. Otherwise, Y (x) is non-empty for all x and Γ ∗ < ∞. This is
usually referred to as complete recourse [40]. If in addition, there is a (w, x̄) such
that wᵀA = eᵀ, wᵀ ≤K

∗ 0, and x̄ ∈ P , then it follows by weak duality that
Γ ∗ ≥ miny∈Y (x̄) eᵀy ≥ wᵀ(c − Bx̄) > −∞, and so Γ ∗ is finite.

InAppendixC,we relate polynomial policies for y to higher levels ofRLThierarchy.
These policies yield better candidates for d̂(·), when bounding Pr∗(d(X)). In Sect. 2.1,
we derive relaxations for 1̂(·) instead and show that higher levels of the hierarchy yield
better bounds via (3).

2.1 Better bounds by lifting indicator function using functions

We construct a formulation for 1F(x) as follows. Let C(x) = {y ∈ R
n : eᵀy ≤

�, Ay + Bx ≤K c}, and define Ξ(x) = {
(y, Φ) : Φ = 0, y ∈ C(x)

} ∪ {
Φ =

1, y = 0
}
, where Φ ∈ R. Then, let Δ(x) = {

(y, Φ) : Ay + Bx(1 − Φ) ≤K

(1 − Φ)c, eᵀy ≤ (1 − Φ)�,Φ ≥ 0
}
, where Ξ(x) ⊆ Δ(x) ⊆ cl(conv(Ξ(x))), see

Proposition 3.3.5 in [5]. Then, let I(x) = miny,Φ
{
Φ

∣∣ (y, Φ) ∈ Δ(x)
}
. We show

that I(x)1P (x) = 1F(x). First, we show that I(x) = 1 if C(x) = ∅ and 0 otherwise.
Assume there exists y ∈ C(x). Then, (y, 0) ∈ Δ(x) and I(x) = 0. Now, assume
that C(x) = ∅. Then, there does not exist (y, Φ) ∈ Δ(x) for Φ < 1. Otherwise,
( y

(1−Φ)
, 0
) ∈ Δ(x), which in turn implies that

y
(1−Φ)

∈ C(x) and contradicts that C(x)
is empty. Since (0, 1) ∈ Δ(x), it follows that I(x) = 1. Recall that x ∈ F if and only
if x ∈ P and d(x) > �. The latter condition is equivalent to C(x) = ∅. This shows
that I(x)1P (x) = 1F(x).

For the remainder of this paper, we assume that

(A2) The distribution of X is supported on a finite set of points T inP .

To improve the probability bound, we use the concave envelope of 1F(x) restricted
to T over conv(T ), which we denote as 1̂E (·). In doing so, we utilize that for
computing Pr∗(F), we can limit attention to F ∩ T exploiting that the distribution is
supported only on T . For x0 ∈ conv(T ), 1̂E (x0) = mina,b{aᵀx0 + b | aᵀxi + b ≥
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314 A. Chandra, M. Tawarmalani

I(xi ) ∀xi ∈ T }, where a, x0, xi ∈ R
m , and b ∈ R [38]. Unfortunately, the number of

constraints depends on the cardinality of the support set |T |, which can be large. For
example, ifT = {0, 1}m , there are 2m constraints. Regardless, numerical experiments
show that this bound can still be weak. It can, however, be improved by liftingT to a
higher dimensional space. Additional variables improve the bound in (3) since more
information about the probability distribution is captured in E∗[X]. In particular, ifT
are the vertices of the simplex, (3) is tight.

Proposition 2 If T are the vertices of a simplex, 1̂E (E∗[X]) = Pr∗(F). �

Assumewe have available expected values of a set of functions {fα(X) for α ∈ Γ̄ ⊆

N
m}. Then, we determine a ∈ R

|Γ̄ | and b ∈ R so that f(X):= b + ∑
α∈Γ̄ aαfα(X) ≥

1F(X). Clearly, Pr∗(F) = E∗[1F(X)] ≤ ∑
α∈Γ̄ aαE∗[fα(X)] + b, and the best such

estimate is:

min
b,a

⎧
⎨

⎩

∑

α∈Γ̄

aαE∗[fα(X)] + b
∣∣
∣ b +

∑

α∈Γ̄

aαfα(z) ≥ 1F(z) ∀z ∈ T

⎫
⎬

⎭
. (7)

Here onwards, we limit our consideration to the case where Y (x) is defined using
linear inequalities. In particular, we assume that:

(A3) K = R
p
+.

We define DI(x) by dualizing the formulation for I(x), and observe that, for all x ,
DI(x) = I(x) since (w, v, ϕ) = (0, 0, 0) is feasible in the following:

DI(x) = max
w,v,ϕ

{
ϕ | wᵀA + veᵀ = 0, ϕ ≤ wᵀ(c − Bx) + v� ≤ 1, w, v ≤ 0

}
, (8)

where w ∈ R
p and v ∈ R. Let r(x, w, v) = min{wᵀ(c − Bx) + v�, 1} if (x, w, v) ∈

T × S, where S = {(w, v) ∈ R
p
− × R− : wᵀA + veᵀ = 0}, and −∞ otherwise. Let

P be the problem maxx,ϕ,v,w{ϕ | ϕ ≤ h(x, w, v), (x, w, v) ∈ conv(T ) × S}, where
h(x, w, v) is the concave envelope of r(x, w, v) over conv(T ) × S. Let 1̂(x) =
maxv,w,ϕ{ϕ | ϕ ≤ h(x, w, v), (x, w, v) ∈ conv(T ) × S} i.e.,1̂(x) is obtained by

partially maximizing P w.r.t (w, v, ϕ). We show next that 1̂(E∗[X]) is the bound in
(3), obtained by using the concave envelope of 1F∩T (·) over conv(T ).

Proposition 3 Let 1̂(x) be the function obtained by partial maximization of P w.r.t
variables (w, v, ϕ) and 1̂E (x) be the concave envelope of 1F∩T (·) over conv(T ).

Then, for all x ∈ conv(T ), 1̂(x) = 1̂E (x). �

As before, 1̂E (x) = mina,b{aᵀx + b | aᵀx J + b ≥ I(x J ) = DI(x J ),∀x J ∈ T }.

We briefly describe below a column generation algorithm that computes 1̂E (x) [3, 38].
Let J = {J : x J ∈ T }. For J ⊆ J, consider the relaxation where T = ⋃

J∈J{x J }.
Then, the corresponding dual is:

max
λ

⎧
⎨

⎩

∑

J∈J
λJ1F(x J )

∣∣∣
∑

J∈J
λJ x

J = x,
∑

J∈J
λJ = 1, λJ ≥ 0 ∀J ∈ J

⎫
⎬

⎭
. (9)
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Probability estimation via optimization and counting 315

To compute 1̂E (x), let (a, b) be optimal dual solution to (9). Then, we find a J ∈ J\J,
such that the reduced cost 1F(x J ) − (aᵀx J + b) of λJ is positive and add J to J. We
use this algorithm in Sect. 3.1 to compute 1̂E (x). As in (3), we will use 1̂E

(
E∗(X)

)

to overestimate Pr∗(F). However, inspired by Proposition 2, we will instead use (7)
to compute a tighter bound by first lifting x to {fα(x) : α ∈ Γ̄ }, which requires the
choice of functions fα . We will, here onwards, make the following assumption.

(A4) T ⊆ {0, 1}m and an inequality description of conv(T ) is available.

For fα , we will use multilinear functions next and indicator functions of certain
polytopes in Sect. 3.1. The bound in (7) requires E∗[fα(X)]. Unfortunately, a naive
computation is expensive since |T | may be exponential in the size of the problem.
For example, [0, 1]m has 2m extreme points. However, in Sect. 3, we will approximate
E∗[fα(X)] in polynomial time for certain distributions Θ .

Now, we describe how to use multilinear functions as fα so as to lift T into a
higher-dimensional space. This idea is related to the use of moments to compute
bounds on probability [23], where, invoking Putinar’s Positivstellensatz [24], sum-of-
squares of polynomials are used overestimate the indicator function. Instead, we use
multilinear functions, exploiting that T ⊆ {0, 1}m . Let T = {x j } j∈[s]. It is easy to
see that an arbitrary function over T can be written as a multilinear function. For
J ⊆ [m], let XJ ∈ {0, 1}m , be such that XJ

i = 1 if i ∈ J and 0 otherwise. We
associate with J a multilinear function, MJ (x) = ∏

i∈J xi
∏

i∈JC (1 − xi ), where
JC = [m]\J . Then,MJ (x) = 0 for all x ∈ {0, 1}m \ {XJ } andMJ (X

J ) = 1. There-
fore, 1F(x) = M(x):=∑

J :XJ∈FMJ (x), a multilinear representation of the indicator
function. If M(x) = ∑

α∈{0,1}m gαxα , we have EΘ [1F(X)] = ∑
α∈{0,1}m gαbα . Now,

let x̄ ∈ T . It follows from DI(x) that x̄ ∈ F if and only if there exists (wx̄ , vx̄ )

feasible to (8) such that wᵀ
x̄ (c − Bx̄) + vx̄� > 0. We write PrΘ(F) = EΘ [1F(X)] =∑

xi∈T 1F(xi )PrΘ(X = xi ) or

PrΘ(F) = max
{vi ,wi ,ϕi }i

s∑

i=1

ϕi (10a)

ϕi ≤ wiᵀ(c − Bxi ) + vi� ≤ PrΘ(X = xi ) ∀i ∈ [s] (10b)

(wi )ᵀA + vi eᵀ = 0 ∀i ∈ [s] (10c)

wi , vi ≤ 0 ∀i ∈ [s], (10d)

where wi ∈ R
p and vi ∈ R ∀i ∈ [s]. For Ji ⊆ [m]:

PrΘ(X = XJi ) = EΘ

⎡

⎢
⎣
∏

j∈Ji

xij
∏

j∈JCi

(1 − xij )

⎤

⎥
⎦ =

∑

J ′⊆JCi

(−1)|J ′|bα(Ji∪J ′), (11)
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316 A. Chandra, M. Tawarmalani

where α(J ) is the indicator vector of J ⊆ [m].Conversely, given Θ , EΘ [Xα] can be
computed as

∑
J⊆{ j :α j=1} PrΘ(X = XJ ). Therefore, we write (10) as:

PrΘ(F) = max
w,v,p,ϕ

∑

J⊆[m]
ϕ J (12a)

ϕ J ≤ (w J )ᵀ(c − BXJ ) + v J� ≤ pJ ∀J ⊆ [m] (12b)

(w J )ᵀA + v J eᵀ = 0 ∀J ⊆ [m] (12c)

w J , v J ≤ 0 ∀J ⊆ [m] (12d)
∑

J⊆[m]
pJ (X

J )α = bα ∀α ∈ {0, 1}m, (12e)

where (12e) constrains pJ to be PrΘ(X = XJ ) for J ⊆ [m]. In fact, (12) is related to
themth level RLT relaxation ofmaxx∈T DI(x), where the latter expands and linearizes
the following formulation after substituting x2i = xi :

max
w,v,x,ϕ

ϕ (13a)

ϕMJ (x) ≤ MJ (x)(w
ᵀ(c − Bx) + v�) ≤ MJ (x) ∀J ⊆ [m] (13b)

MJ (x)(w
ᵀA + veᵀ) = 0 ∀J ⊆ [m] (13c)

MJ (x)w,MJ (x)v ≤ 0 ∀J ⊆ [m] (13d)

MJ (x)x ∈ MJ (x) conv(T ) ∀J ⊆ [m]. (13e)

Theorem 1 Let ϕR be the mth level RLT relaxation obtained by expanding expressions
in (13), substituting x2i with xi for all i ∈ [m], and linearizing the monomials xα , for
α ∈ {0, 1}m as xα . Let ϕR(bα) be the maximum value of the RLT relaxation when xα

are fixed to bα and optimization is performed with respect to the remaining variables.
Then, ϕR(bα) = PrΘ(F). �


3 Probability estimation via weighted counting

Here, we develop techniques to compute EΘ [fα(X)], where fα could be a multilinear
function or the indicator of a special polytope, which we define below.

Definition 1 A polytope L = {x ∈ [0, 1]m : Ax ≤ b} for A ∈ Z
t×m, b ∈ Z

t is
a low weight polytope (LWP), if t is a constant, and entries in A, b are bounded
by polynomials in m. We refer to the constraints given by Ax ≤ b as low-weight
constraints.

Definition 2 Given a general inequality
∑m

i=1 wi xi ≥ C , for C, {wi }mi=1 ∈ Z, and
a LWP, L ⊆ R

m , we define a Sliced low weight polytope (SLWP) as {x ∈ R
m :∑m

i=1 wi xi ≥ C, x ∈ L}, where L is referred to as the underlying LWP.

Here onwards, we will assume that:
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(A5) P = conv(T ) = [0, 1]m and X ∈ {0, 1}m , with distribution Θ =⊗m
i=1 Bernoulli(pi ) (tensor product of m independent Bernoulli distributions).

Moreover, we assume that pi = ai
ni
, where ai , ni ∈ N, and GCF(ai , ni ) = 1.

In fact,wewill studyPrΘ(F)byfirst partitioning [0, 1]m intoLWPs, {Lb}Fb=1. Then,we
will obtain PrΘ(F) indirectly by quantifying PrΘ(F ∩ Lb) instead. For concreteness,
for b = 1, . . . , F , consider Lb = {x ∈ [0, 1]m : ∑m

j=1 x j = b} as the LWPs that

partition [0, 1]m . Then, we write PrΘ(F) = ∑F
b=1 PrΘ(F ∩ Lb). In this section, we

will develop techniques to approximate each term on the right-hand-side of the above
expression. We will also use overestimates of PrΘ(F ∩ Lb) to overestimate PrΘ(F).
To do so, we outer-approximate F∩Lb using Proposition 1 to derive an affine policy
y = P∗ᵀx + q∗ where x is restricted to Lb. Such a policy overestimates d(x) by
f (x, P∗ᵀx + q∗) for each x such that P∗ᵀx + q∗ ∈ Y (x). This implies that we can
outer-approximate F ∩ Lb by a union of SLWPs, derived from (since SLWPs do not
allow strict inequalities) D0, . . . , Dp, where D0 = {x ∈ Lb : f (x, P∗ᵀx + q∗) > �}
and, for all r ∈ [p], Dr = {x ∈ Lb : Ar (P∗ᵀx + q∗) + Br x > cr }. We will explore
this in more detail in Sect. 4.

Wewill compute PrΘ(F∩L), whereL is a LWP as in Definition 1. In particular, we
will be interested in a deterministic algorithm, that given εs > 0, overestimates (resp.
underestimates) PrΘ(

∑m
i=1 wiXi ≥ C, X ∈ L) for {wi }mi=1,C ∈ Z with a relative

error of (1+εs) (resp. (1−εs)) in time, that is polynomial in the size of input data and
1
εs
. Such an algorithm is a fully polynomial time approximation scheme (FPTAS) for

the computation of this probability [16]. We remark that the special case that counts
{0, 1}m solutions to an inequality

∑m
j=1 ŵ j x j ≤ Ĉ , with {ŵi }mi=1, Ĉ ≥ 0 is known

to be #P-complete. To see that this counting problem is a special case, let pi = 1
2 ,

L = [0, 1]m ,wi = −ŵ j , andC = −Ĉ . We leverage recent developments in knapsack
counting and counting paths in a directed acyclic graph (DAG) to develop an FPTAS
[13, 29, 33]. For any given SLWP, S, we let |S|Θ represent the cardinality of its {0, 1}
solutions where, in agreement with Θ , there are ai ways in which xi can be one, and
ni−ai ways inwhich it is zero. Then, |S|Θ = ∑

x∈S∩{0,1}m
∏

i :xi=1 ai
∏

i :xi=0(ni−ai ),

and PrΘ(S) = |S|Θ∏
i ni

, where ai and ni are as in (A5).

(A6) The weights of the general inequality defining each SLWP are non-negative
i.e.,{wi }mi=1 ∈ Z≥0.

This assumption is without loss of generality (wlog) since if (A6) does not hold,
then we may create another instance that satisfies the above conditions by defining
X

′
i = 1 − Xi if wi < 0 and X

′
i = Xi otherwise. Moreover, with this assumption, we

can assume that C ∈ Z
+. Otherwise, the inequality

∑m
i=1 wiXi ≥ C is redundant. To

keep notation simpler and to fix ideas, we will, at the outset, consider the SLWP, Ss
as in (14),

Ss =
⎧
⎨

⎩
x :

m∑

j=1

w j x j ≥ C, x ∈ L

⎫
⎬

⎭
, where L =

{

x :
K2∑

i=1

xi −
K1∑

i=1

xK2+i = b

}

, (14)
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K1 + K2 = m and b ≥ 0. In order to approximate |Ss |Θ , we construct a DAG in
Z
2, where, ∀(i, j) ∈ [m]2, there is a vertex associated with each lattice point (i, j).

There are arcs that connect (i − 1, j) to (i, j) for i < m, (i − 1, j − 1) to (i, j)
when i ≤ K2, and (i − 1, j + 1) to (i, j) when i > K2. The arcs from (i − 1, j) to
(i, j) are associated with a tuple (0, ni − ai ) while the remaining arcs are associated
with (wi , ai ). Given a function, f : Z

+ → Z
+, Gawrychowski et al. [13] construct a

1+ εs function approximation of f ≤(·), where f ≤(x) = ∑
y≤x f (y). We adapt their

definitions and properties [13] to our setting.

Definition 3 Given f : Z
+ → Z

+ and an approximation parameter εs > 0, a function
F : Z

+ → Z
+ is a 1+εs function approximation of f if: f (x) ≤ F(x) ≤ (1+εs) f (x)

for all x . A function F̄ : Z
+ → Z

+ is a 1 + εs sum-approximation of f if, for all
x , f ≥(x) ≤ F̄≥(x) ≤ (1 + εs) f ≥(x), where f ≥(x) (resp. F̄≥(x)) is defined as∑

y≥x f (y) (resp.
∑

y≥x F̄(y)).

Definition 4 Given f (·), and a shifting parameter h > 0, the shifting of f (·) by h is
defined as f|h(x), where f|h(x) = f (x − h) if x ≥ h and 0 otherwise.

Lemma 1 [13] Given εs > 0, let F and G be a (1 + εs) sum-approximations of f
and g respectively, then (i) A (1 + δs) sum-approximation of F is a (1 + δs)(1 + εs)

sum-approximation of f , (ii) F + G is a (1 + εs) sum-approximation of f + g, (iii)
F|w is a (1 + εs) sum-approximation of f|w for any w > 0, (iv) αF is a (1 + εs)

sum-approximation of α f . �

Definition 5 The number of pairs (x, f (x)) in the function representation of f is
defined as the size of f (·) i.e. | f (·)|.
Function sparsification to obtain F̄≥: Given a function f (·) : Z

+ → Z
+, and a

sparsification parameter δs > 0, we construct F̄ , a 1+δs sum-approximation function
of f . We partition the values of f ≥ into segments [ri , ri+1), where r0 = 0, ri+1 =
max{ri + 1, �(1 + δs)ri�} for all i ≥ 0. Let ci = maxc{c | f ≥(c) ≥ ri }. For any c,
we define pred(c) = maxi {ci | ci < c} and define F̄≥(c) = f ≥(pred(c) + 1), where
F̄≥(c) = limx→−∞ f ≥(x) if pred(c) = −∞.

Lemma 2 [13]Given a sparsification parameter δs > 0, F̄≥ constructed by the above
procedure is a (1 + δs) function approximation of f ≥. �

Since the sequence of values in r grows by a factor 1+δs each time, it follows that |F̄ |
is nomore than log1+δs

M , whereM is the largest value of f ≥. In order to approximate
|Ss |Θ , for all (i, j), we store a sparsified version of s((i, j), ∗) defined below. Given
a non negative integer, c̃ and (i, j), s((i, j), c̃) is the total number of directed acyclic
paths (DAPs) from (0, 0) to (i, j) of total path weight equal to c̃. Then, s((i, j), c̃)
satisfies the recursion:

s((i, j), c̃) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣
∣
∣
∣

{

(x)il=1 :
i∑

l=1
wl xl = c̃,

K2∑

l=1
xl −

i∑

l=K2+1
xl = j

}∣∣
∣
∣
∣
Θ

i > K2

∣∣{(x)il=1 :
i∑

l=1
wl xl = c̃,

i∑

l=1
xl = j

}∣∣
Θ

i ≤ K2.

(15)
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Moreover, for any (i, j) and c̃, we define s≥((i, j), c̃) = ∑
y≥c̃ s((i, j), y). Given

δs > 0, leveraging the sparsification procedure above, we obtain s̃≥((i, j), ·), as a
(1 + δs)

i−1 function approximation of s≥((i, j), ·).

Theorem 2 Given Ss , Θ as in (14), (A5) respectively, and an error parameter
εs ∈ (0, 1), we can deterministically compute a (1 + εs) relative error approx-
imation of |Ss |Θ , in time O

(
ε−1
s Θm2

(
ξ ln(m/ξ) + m ln T

))
, where T ≥ maxi ni ,

ξ = min
{
K2, K1 + b, m

2

}
and Θ = min{K2 − b, K1 + b}. �


Similar techniques yield a (1 − εs) relative error approximation of |Ss |Θ ; see
Appendix I. We extend Theorem 2 to SLWP, St+1 = {x : ∑m

j=1 w j x j ≥ C, x ∈ Lt },
where Lt , is the underlying LWP is described by t equality constraints, with {wl

i }mi=1
denoting the weights of the l th (l ∈ [t]) constraint.

Theorem 3 Consider the SLWP, St+1 described above. Let the first t constraints
describing St+1 correspond to Lt , and the (t + 1)st be a general inequality. Given
an error parameter εs ∈ (0, 1), and Θ as in (A5), there exists an FPTAS which
deterministically computes a (1 + εs) relative error approximation of |St+1|Θ . �


Let γ be as defined in the proof of Theorem 3 so that γ ≥ maxk wl
k − mink wl

k
for all l ∈ [t]. Then, we can relax the requirement that the constraints defining Lt are
equality constraints. This is because, there are at most (mγ )t possible nodes in the last
slice of the graph constructed in the proof of Theorem 3. Since, wl

k for k ∈ [m] and
l ∈ [t]were assumed to be polynomial inm and t is a constant, the number of nodes is
polynomial in the problem input. Therefore, we can run the algorithm of Theorem 3
on each of these nodes which satisfy Lt . In other words, we can extend Theorem 3 to
handle inequality constraints. Here onwards, whenever we create sparsified function
approximations, we will refer to Theorem 3, although a better time complexity can be
obtained for this construction using Theorem 2, when the underlying SLWP is of the
form (14).

We now describe an algorithm to approximately sample {0, 1}m solutions according
to distribution Θ , from a given SLWP, SΩ = {

x : ∑m
i=1 wi xi ≥ C, x ∈ LΩ

}
, where

the underlying LWP, LΩ = {x : Ωx ≤ CΩ} for Ω ∈ Z
t×m and CΩ ∈ Z

t . Later, we
will leverage this algorithm in Sect. 4.1 to obtain a randomized approximation scheme
for computing the probability of a union of SLWPs, which in turn will be constructed
to overapproximate PrΘ(F∩L), where L is the underlying LWP of the SLWPs in the
union.

Since, we are interested in {0, 1}m solutions of SΩ , we write the solution set as⋃
J S(J ), where S(J ) = {x ∈ {0, 1}m : ∑m

i=1 wi xi ≥ C,Ωx = J }. The algorithm
first uses Theorem 3 for setting up s̃≥((·, ·), ·) with a chosen parameter δs . Then, for
each generation, it requiresm steps.We denote the generated randomvariable as X̃.We
begin by choosing J with probability s̃≥((m,J ),C)∑

J ′ s̃≥((m,J ′),C)
. At iteration t of the algorithm,

the values (X̃k)
m
k=m−t+2 are fixed. Then, let i = m− t +1, c(t) = C−∑m

k=i+1 wkX̃k ,

123



320 A. Chandra, M. Tawarmalani

j J (t) = J − Ω.,i+1:mX̃.,i+1:m , and

p̃ J
t =

s̃≥
((
i − 1, j J (t)

)
, c(t)

)
(ni − ai )

s̃≥
((
i − 1, j J (t)

)
, c(t)

)
(ni − ai ) + s̃≥

((
i − 1, j J (t) − Ω.,i

)
, c(t) − wi

)
ai

.

At each iteration, the algorithm generates a uniform random variable Ut in [0, 1] and,
if Ut ≥ p̃ J

t , it sets X̃i = 1. Otherwise, it sets X̃i = 0.

Theorem 4 Consider the {0, 1}m solutions of SΩ as defined above with the underlying
distribution Θ as in (A5). Let {wl

i }mi=1 denote the weights of the l
th constraint defining

LΩ , and assume that an error parameter εs ∈ (0, 1) is given. Then, after initial setup
that requires O(ε−1

s mt+4γ t ln T) time, we can generate a {0, 1}m solution from SΩ

with a probability which is different from the true probability by a relative factor of
(1± εs) in time O

(
m + (mγ )t

)
, where T ≥ maxi ni and γ ≥ maxk wl

k −mink wl
k for

all l ∈ [t]. �

As remarked earlier, Theorems3 and4will be used to estimatePrΘ(F). In particular,

they are the key ingredients of the algorithm that estimates the probability of a union
of SLWPs that cover F. Moreover, after Proposition 3, we discussed the need to
compute EΘ [fα(X)]. Theorem 3 provides a (1 + εs) relative approximation for this
quantity when fα = xα for α ∈ {0, 1}m . These functions are especially useful, as
shown in Theorem 1 to develop tight approximations for PrΘ(F), and, similarly in
approximating PrΘ(F∩Lb), whereLb, for b ∈ {1, . . . , F}, is a partitioning of {0, 1}m .
In fact, Theorem 3 can be used to approximate PrΘ(Xα = 1, X ∈ U ) for any SLWP
U . Indeed, xα = 1 if and only if xi = 1 whenever αi = 1. Therefore, the set
{x : xα = 1, x ∈ U } is itself an SLWP and amenable to probability estimation.

3.1 Indicators of SLWPs to improve concave envelope bound

For anySLWP,U , we can useTheorem3 to overestimate, to any accuracy,EΘ [1U (X)].
So, we may use 1U (x) as f(x) in (7) to improve the bound for PrΘ(F) as obtained in
(3). In this section, we describe Algorithm 1, which derives this improved bound and
uses the following subroutines.

(1.) Find- violate((a, b),V ): Given a linear function aᵀx + b and a set V ⊆ T ,
Find- violate returns an optimal solution to: maxx∈V {DI(x)−aᵀx−b}where
DI(x) is as in (8), if bounds on v, w are available so that this optimization
problem can be solved as an integer program. Otherwise, Find- violate returns
an optimal solution to maxx∈V {DI(x) | aᵀx + b < 1}, where we additionally
impose that ‖(v,w)‖ ≤ 1 for some norm ‖ · ‖.

2. Overestimator(EΘ [X], {Ê[1Ui (X)]}li=1,{Ui }li=1): Let conv(T ) be {x :
C0x ≥ d0}, and consider its l non empty subsets Ui = {x : Ci x ≥ di },
where Ci ∈ R

k×m and di ∈ R
k ∀i = {0, . . . , l}. Let Ê[1Ui (X)] overesti-

mate EΘ [1Ui (X)] for all i ∈ [l]. Then, consider mina,b,π
{
aᵀ

EΘ [X] + b +
∑l

i=1 πi Ê[1Ui (X)] ∣∣ aᵀx + b ≥ 0 ∀x ∈ conv(T ); aᵀx + b + πi ≥ 1 ∀x ∈
Ui , ∀i ∈ [l]; πi ≥ 0∀i ∈ [l]}, and use duality towriteaᵀx+b+πi ≥ 1∀x ∈ Ui
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Algorithm 1 Bound PrΘ(F) using indicators of SLWPs

Initialize: V 1
P = conv(T ) ; a = 0, b = 0; k = 1

Input: Input Θ .
Output: A bound on PrΘ(F)

1: procedure Bound
2: (w∗, v∗, x∗) ← Find- violate((a, b), V k

P )
3: while w∗ᵀ(c − Bx∗) + v∗� > 0 do
4:

(
Uk , Ê[1Uk (X)]) ← Solution- Counter(ν∗ = (w∗, v∗), V k

P )

5: (a∗, b∗, π∗) ← Overestimator(EΘ [X], {Ê[1Ui (X)]}ki=1,{Ui }ki=1)

6: k ← k + 1
7: V k

P ← V k−1
P ∩ {x | w∗ᵀ(c − Bx) + v∗� ≤ 0}

8: (w∗, v∗, x∗) ← Find- violate((a∗, b∗), V k
P )

9: return a∗ᵀ
EΘ [X] + b∗ + ∑k

i=1 Ê[1Ui (X)]

as:maxui∈R
k+{(ui )ᵀdi+b+πi−1 | (ui )ᵀCi = aᵀ} ≥ 0. Thus,Overestimator

solves:

min
π,a,b,u

aᵀ
EΘ [X] + b +

l∑

i=1

πi Ê[1Ui (X)]

(u0)ᵀC0 = aᵀ, (u0)ᵀd0 + b ≥ 0

(ui )ᵀCi = aᵀ, (ui )ᵀdi + b + πi ≥ 1 ∀i ∈ [l]
ui , πi ≥ 0 ∀i

Setting πi = 0 for all i ∈ [l], it follows that the optimal value of the above
problem is no more than the concave envelope bound in Sect. 2.1. Moreover,
since (a, b, π) = (0, 0, 1l), where 1l is an l-dimensional vector of ones, is
feasible, it follows that the bound is no more than

∑l
i=1 Ê[1Ui (X)].

3. Solution- Counter(ν = (v′, w′), V ): Given (v′, w′) ∈ argmaxDI(x ′) and
V ⊆ T , where x ′ ∈ V is such that DI(x ′) > 0. Let Vs = {x ∈ V :
w′ᵀ(c − Bx) + v′� > 0}, then from (8), Vs ⊆ F, and PrΘ(Vs) contributes to
PrΘ(F). Solution- Counter uses the algorithm in Theorem 3 to overestimate
EΘ [1Vs (X)] as Ê[1Vs (X)]. Since, it can only handle one general inequality, V is
first transformed to a LWP,making Vs a SLWP, and then Ê[1Vs (X)] is computed.
It returns Vs and Ê[1Vs (X)].

We mention that Algorithm 1 does not rely on Assumption (A5) except when we
use Theorem 3 to estimate EΘ [1Ui (X)] or EΘ [X].
Remark 1 To use a strict inequality, such as aᵀx + b < 1 in Find- Violate (resp.
−wᵀ(c− Bx)−v� < 0 in Solution- Counter, with c, B, and � integer), we utilize
that (a, b) (resp. (w, v)) are rational numbers, being optimal solutions to a linear
program.We can, therefore, scale (a, b) (resp. (w, v)) so that they are integer and then
increment b (resp. decrement v) by one and enforce the weak inequality. �

Remark 2 If maxx∈V {DI(x) − aᵀx − b} is solved, for V ⊆ T , then Find-
Violate finds an x ∈ F, such that aᵀx + b has the lowest value. Instead,
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maxx∈V {DI(x) | aᵀx + b < 1} finds an x ∈ V where aᵀx + b evaluates to
a value less than one. For practical reasons, we can replace aᵀx + b < 1 with
aᵀx + b ≤ 1 − ε. If Find- Violate does not find a violating (w∗, v∗, x∗), then
PrΘ(F) ≤ 1

1−ε
aᵀ

EΘ [X] + b
1−ε

+ ∑l
i=1 πi Ê[1Ui (X)]. Overestimator can also

be adapted to account for the relative approximation error in the computation of
EΘ [X] using Theorem 3. In particular, assume that yi , i ∈ [m] are available such
that yi

1+εs
≤ EΘ [Xi ] ≤ yi (1 + εs). Since aiEΘ [Xi ] ≤ max{ ai yi

1+εs
, ai yi (1 + εs)}, we

introduce variables zi , i = 1, . . . ,m, require that zi ≥ ai yi
1+εs

and zi ≥ ai yi (1 + εs).

Then, we minimize
∑m

i=1 zi + b + ∑l
i=1 πi Ê[1Ui (X)] instead. �


Remark 3 Algorithm 1 terminates in at most |T | iterations of the loop starting at
Step 3. This is because, at Step 7, |V k

P | is strictly decreasing in k. The finiteness can
also be shown as follows. For a fixed x∗, Find- Violate solves a linear program to
determine (w∗, v∗).Wemay, therefore, assume that (w∗, v∗) ∈ Vert(Sw,v(x∗)), where
Sw,v(x∗) = {wᵀA + veᵀ = 0, wᵀ(c − Bx∗) + v� ≤ 1, v, w ≤ 0} because Sw,v(x∗)
does not contain lines and the optimal value is finite. Moreover, the vertices of Sw,v

are extreme rays of Pw,v , where Pw,v = {wᵀA + veᵀ = 0, w, v ≤ 0}. Therefore, it
follows that the number of iterations of the loop is bounded by the number of extreme
rays of Pw,v . �

As presented, in Algorithm 1, Find- violate solves an integer program (or MINLP)
at each iteration to find an x ∈ F. As an alternative, we bypass Overestimator
so that it returns (a, b, π) = (0, 0, 1l) and combine the search in a single branch &
bound tree in Gurobi [17]. Whenever an integer feasible solution (w∗, v∗, x∗) is found
at Step 2 or Step 8 of Algorithm 1, we use the lazy-constraint callback function and
add a cut (w∗)ᵀ(c − Bx) + v∗� ≤ 0 which eliminates x∗ in Step 7 of Algorithm 1
and continue to find next violation.

Remark 4 If (w∗
k , v

∗
k , x

∗
k ) is obtained at the kth iteration of Algorithm 1, using Find-

violate((0,0),V k
P ), then F = ⋃L

k=1Uk , where Uk = {x ∈ V k
P : (w∗

k )
ᵀ(c − Bx) +

v∗
k� > 0}, and L is the number of iterations until the algorithm terminates. After
any intermediate iteration t < L , we obtain {Uk}tk=1, such that

⋃t
k=1Uk ⊆ F. We

use this to obtain a lower estimate for PrΘ(F). To do so, we may first transform the
constraints defining V k

P for all k ∈ [t], to low weight constraints and obtain V k
P as

an inner-approximation to V k
P , i.e., V

k
P ⊆ V k

P . Then, each Uk for k ∈ [t] is a SLWP.
For εs ∈ (0, 1), we may use Appendix I to obtain a (1 − εs) relative approximation
of PrΘ(Uk) for all k ∈ [t]. Given an εg , this assists in deriving a 1 − εg relative
approximation confidence estimate of PrΘ(∪t

k=1Uk) (see Sect. 4.1), a lower bound for
PrΘ(F). �

Clearly, a drawback of this approach is that at each iteration, Find- Violate solves
an integer program (or MINLP) which is NP-hard. Moreover, a cover for F or an
overestimate for PrΘ(F) is obtained only at the termination of the algorithm. As such,
this approach is not well-suited for obtaining an overestimate to PrΘ(F) when L is
large (see for instance our computational experience on network routing for D(3) -
Deltacom b = 3 in Table 1). Next, we propose a schemewhich derives an overestimate
for PrΘ(F) in polynomial time.
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4 Policy restrictions to outer-approximateF by a union of SLWPs

In Sect. 2, we discussed how a candidate d̂(x) in (2) is constructed by restricting
y to be an affine function of x and related this construction to RLT relaxations for
the corresponding nonlinear formulation. Now, we will elaborate on our discussion
following Assumption (A5) to show that such affine policy restrictions naturally lend
themselves to an outer-approximation of F via a union of SLWPs. Assume y ∈ Y (x)
as defined in (4), is restricted to be an affine function, δ(X), of X. Then, for an LWP
L, F ∩ L ⊆ S′ = D0 ∪ ⋃p

r=1 Dr , where Dr = {x ∈ L : Arδ(x) + Br x > cr } for
all r ∈ [p] and D0 = {x ∈ L : eᵀδ(x) > �}. Clearly, PrΘ(F) ≤ ∑p

r=0 PrΘ(Dr ).
Here, we discuss how this estimate can be improved. To do so, we may project out a
few y variables, thereby removing the restriction that they are affine in X. Second, we
bound PrΘ(S′) = ∑p

r=0 PrΘ
(
Dr ∩⋂r−1

j=0 D
C
j

) ≤ ∑p
r=0 PrΘ

(
Dr ∩⋂

j∈Jr D
′C
j

)
, where

Jr ⊆ {0, . . . , r − 1}, |Jr | ≤ κ for some constant κ , and D′
r ⊆ Dr . For tractability,

we choose D′C
r as an approximation of DC

r defined using low-weight constraints. For
example, let DC

r = {x ∈ L : ∑m
j=1 w j x j ≤ C}. Then, we use standard approximation

techniques to define D′C
r . For a given ε, and for q = maxmj=1 |w j |, we replace w j

with w′
j = ⌈w j m

qε

⌉
and C with C ′ = min

{
m
⌈m

ε

⌉
,
⌈Cm

qε

⌉}
. This way, |w′

j | ≤ ⌈m
ε

⌉
,

for all j , i.e.,all coefficients are bounded by a polynomial in m and 1
ε
and we can use

Theorem 3 to approximate PrΘ
(
Dr ∩⋂

j∈Jr D
′C
j

)
. Thus, we can outer-approximateF

with
⋃p

r=0 Dr ∩Br , where, for each r , Br = ⋂
j∈Jr D

′C
j is a LWP, Dr is equivalently

written as a SLWP (since SLWPs do not allow strict inequality) and, so, Dr ∩ Br is a
SLWP. Later in Sect. 4.2, we discuss various ways to derive such an affine policy to
cover the set of interest using a union of SLWPs.

4.1 Randomized approximation scheme for probability of union of SLWPs

We discussed in Sects. 3 and 4 that affine policies can be used to outer-approximate
F ∩ Lb for b ∈ [F], and thereby F via a union of SLWPs. Similar SLWPs also arise
in Algorithm 1, as stated in Remark 4. Assume S:=⋃L

l=1 Sl ⊇ F ∩ Lb is such an
outer-approximation. By Assumption (A5), the support of Θ is restricted to binary
points, {0, 1}m . Moreover, any point generated by Theorem 4 belongs to {0, 1}m . In
this section, whenever we say that x ∈ Sl , it should be understood that x ∈ {0, 1}m ∩Sl
since these are the only vectors generated by our algorithm and PrΘ(x) = 0 for all x /∈
{0, 1}m . In this section, we will use sampling to obtain a 1+ εg relative approximation
confidence estimate of PrΘ(S). To this end, we adapt the algorithm of [12, 20] to our
setting and present it as Algorithm 2. This algorithm requires three input parameters,
where αg and εg specify the accuracy of the approximation, and δg specifies the
significance level. It also assumes the existence of the following polynomial time
subroutines.
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Algorithm 2 Generalized KLM [12] to estimate PrΘ(S) for S = ⋃L
l=1 Sl

Input parameters: αg , εg and δg .
Output: P̂r(S) such that with probability (1 − δg),

(1 − αg)(1 − εg)PrΘ(S) ≤ P̂r(S) ≤ (1 + αg)(1 + εg)PrΘ(S)

1: procedure Generalized- KLM
2: T ← 3L

α2g
ln
( 2
δg

)

3: P̂r(Sl ) ← SLWP- Prob(εg , Sl , Θ) ∀l ∈ [L]
4: for t = 1 to T do

5: Choose i0 ∈ [L] with probability
P̂r(Si0 )

∑L
i=1 P̂r(Si )

6: (X̃ ∈ Si0 ) ← Sample- Assign(εg , Si0 , Θ)
7: for j = 1 to L do
8: if Satisfaction(X̃, S j ) is True then
9: t(X̃) ← j
10: break
11: if t(X̃) = i0 then
12: Zt ← 1
13: else
14: Zt ← 0

Return P̂r(S) = 1
T
∑T

t=1 Zt
∑L

l=1 P̂r(Sl )

(1.) SLWP- Prob(εg , Sl , Θ): This procedure computes P̂r(Sl) which is a (1 ± εg)

relative error approximation of PrΘ(Sl). Using Theorem 3, we compute:

PrΘ(Sl) ≤ P̂r(Sl) ≤
(
1 + εg

3

)
PrΘ(Sl). (16)

(2.) Sample- Assign(εg , Sl , Θ): This procedure generates X̃l ∈ Sl so that:

(1 − εg)PrΘ(X = x̃) ≤ Pr(X̃l = x̃)P̂r(Sl) ≤ (1 + εg)PrΘ(X = x̃), (17)

for every x̃ ∈ Sl .
We show that the sampling algorithm of Theorem 4 with εs = εg

3 meets this
condition. If x̃ /∈ Sl , then, by (J.3) and PrΘ(X = x̃ |X ∈ Sl) = 0, it follows that
Pr(X̃l = x̃) = 0. For x̃ ∈ Sl , (17) holds because

(1 − εs)PrΘ(X = x̃) ≤ (1 − εs)PrΘ(X = x̃)
P̂r(Sl)

PrΘ(Sl)
≤ Pr(X̃l = x̃)P̂r(Sl)

≤ (1 + εs)PrΘ(X = x̃)
P̂r(Sl)

PrΘ(Sl)
≤ (1 + 3εs)PrΘ(X = x̃), (18)

where the first and last inequality are by (16) and (1 + εs)
2 ≤ 1 + 3εs for

εs ∈ (0, 1). The second and third inequalities are by (J.3).
(3.) Satisfaction(x , Sl ): Given a x and Sl , this subroutine trivially checks if x ∈ Sl

by using the inequalities that define Sl .
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Then, Theorem 1 in [12] shows that for any αg, εg, δg , Algorithm 2 computes
P̂r(S) = 1

T

∑T
t=1 Zt

∑L
l=1 P̂r(Sl) such that, with probability (1 − δg),

(1 − αg)(1 − εg)PrΘ(S) ≤ P̂r(S) ≤ (1 + αg)(1 + εg)PrΘ(S). (19)

We show that the sampling algorithmyields a fully polynomial almost uniform sampler
(FPAUS) for S = ⋃L

i=1 Si . A FPAUS for a set S is a randomized algorithm that takes
as input a tolerance δu and generates a randomvariableG ∈ S so that dTV ≤ δu , in time
polynomial in the problem size (m) and log( 1

δu
), where dTV = 1

2

∑
x∈S |PrΘ(X =

x |X ∈ S)−Pr(G = x)| is the total variation distance between the true distribution and
the sampling distribution.Wlogwe assume S1 �= ∅ and, in particular, x ′ ∈ S1∩{0, 1}m .
We run Algorithm 2, and terminate with X̃ the first time it encounters Zt = 1 if this
occurs in no more than T ′ = 2L ln

( 5
2δu

) iterations. Otherwise, we return x ′. We
denote the random vector generated by this procedure as G. For any x ∈ S, let
t(x) = mini {i | x ∈ Si }, i.e.,among {S1, . . . , SL}, the first set that x belongs to has
index t(x). Observe that, for

Pr(Zt = 0) = 1 − Pr(Zt = 1) = 1 −
∑

x∈S Pr(X̃t(x) = x)P̂r(St(x))
∑L

i=1 P̂r(Si )

≤ 1 − (1 − εg)

(1 + εg)

∑
x∈S PrΘ(X = x)
∑L

i=1 PrΘ(Si )

≤ 1 − 1

2

maxi∈[L] PrΘ(Si )
∑L

i=1 PrΘ(Si )
≤ 1 − 1

2L
.

The first inequality follows from (16) and (18), the second inequality because, for
ε ∈ (0, 1/3), 1−ε

1+ε
≥ 1

2 and
∑

x∈S PrΘ(X = x) = PrΘ(S) ≥ PrΘ(Si ) for all i . Let
Z ′ = 0 iff Zt ′ = 0 for all t ′ ∈ [T ′]. Then,

Pr(Z ′ = 0) = Pr(Zt ′ = 0, t ′ = 1, . . . , T ′) ≤
(
1 − 1

2L

)T ′

≤ 2δu
5

. (20)

Now,

Pr(G = x and Z ′ = 1) =
T ′∑

t ′=1

Pr(X̃t(x) = x)P̂r(St(x))
∑L

i=1 P̂r(Si )

∏

t ′′<t ′
Pr(Zt ′′ = 0)

=
T ′∑

t ′=1

(
Pr(X̃t(x) = x)P̂r(St(x))∑
x̃∈S Pr(X̃t (̃x) = x̃)P̂r(St (̃x))

Pr(Zt ′ = 1)
∏

t ′′<t ′
Pr(Zt ′′ = 0)

)

= Pr(X̃t(x) = x)P̂r(St(x))∑
x̃∈S Pr(X̃t (̃x) = x̃)P̂r(St (̃x))

Pr(Z ′ = 1), (21)

where the first equality follows by observing that the process stops at t ′ iteration with
G = x and Z ′ = 1, if Zt ′′ = 0 for t ′′ < t ′, Zt ′ = 1, and x is generated at t ′. This
happens if St(x) is chosen at Step 5 of Algorithm 2 and x is generated at Step 6 of
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Algorithm 2 by sampling St(x). The second equality uses

Pr(Zt ′ = 1) =
L∑

i=1

P̂r(Si )
∑

x̃ :t (̃x)=i Pr(X̃i = x̃)
∑L

l=1 P̂r(Sl)
=

∑

x̃∈S

Pr(X̃t (̃x) = x̃)P̂r(St (̃x))
∑L

l=1 P̂r(Sl)
,

and the third equality follows from the independence of Zt ′ with Zt ′′ for t ′′ < t ′ and
Pr(Z ′ = 1) = ∑T ′

t ′=1 Pr(Zt ′ = 1)
∏

t ′′<t ′ Pr(Zt ′′ = 0). It follows from (J.3) and (16)
that:

(1 − 3εg)
PrΘ(X = x)

PrΘ(S)
≤ Pr(X̃t(x) = x)P̂r(St(x))∑

x̃∈S Pr(X̃t (̃x) = x̃)P̂r(St (̃x))
≤ (1 + 4εg)

PrΘ(X = x)

PrΘ(S)
,

(22)

where we used that 1−εg

(1+εg)2
≥ 1−3εg and

(1+εg)
2

(1−εg)
≤ (1+4εg) for εg ∈ (0, 1

5 ). Choose

εg = 2δu
5 . Therefore, by (21), (20), and, (22), it follows that if x �= x ′:

(
1 − 8

5
δu

)
PrΘ(X = x)

PrΘ(S)
≤ Pr(G = x, Z ′ = 1) ≤

(
1 + 8

5
δu

)
PrΘ(X = x)

PrΘ(S)
, (23)

where we used 1 − 8
5δu ≤ (1 − 6

5δu)(1 − 2δu
5 ) and 1 + 4εg = 1 + 8

5δu . Thus,
dTV = 1

2

∑
x∈S |PrΘ(X = x |X ∈ S) − Pr(G = x)| ≤ 1

2

∑
x∈S |PrΘ(X = x |X ∈

S) − Pr(G = x, Z ′ = 1)| + Pr(Z ′=0)
2 ≤ 4δu

5

∑
x∈S PrΘ(X = x |X ∈ S) + δu

5 = δu .

Assume we have S = ⋃L ′
i=1 S

′
i such that F ∩ L ⊆ S, where L is a LWP. The

FPAUS for S can be used to estimate PrΘ(F) using rejection sampling. Let θF and βF
be given parameters that will be used in the specification of the accuracy of estimation
and the confidence level respectively.We run T ′′ = 2+θF

θ2F
ln 2

βF
iterations of the FPAUS

described above. For each t ′ ∈ [T ′′], let Z ′
t ′ = 0 if Z ′ = 0 or G /∈ F ∩ L. Otherwise,

we define Z ′
t ′ = 1. Therefore, it follows that E[Z ′

t ′ ] = p̃ = Pr(G ∈ F ∩ L, Z ′ = 1),
which by (23) yields:

(1 − εu)
PrΘ(F ∩ L)

PrΘ(S)
≤ p̃ ≤ (1 + εu)

PrΘ(F ∩ L)

PrΘ(S)
, (24)

where we have used εu = 8
5δu . Let Z

′′ = ∑T ′′
t ′=1 Z

′
t ′ and p = PrΘ(F∩L)

PrΘ(S)
. Let εF = θF

p̃ .
By the 2-sided Chernoff bound, we have Pr(|Z ′′ − p̃| ≥ θF) = Pr(|Z ′′ − p̃| ≥ εF p̃) ≤
2 exp

(
− ε2F

2+εF
p̃T ′′

)
≤ 2 exp

(
− θ2F

2+θF
T ′′

)
= βF. Therefore, Pr(Z ′′ − θF ≤ p̃ ≤

Z ′′+θF) ≥ (1−βF). Combining with (24) and (19), we have Pr
(

(Z ′′−θF)P̂r(S)
(1+εu)(1+αg)(1+εg)

≤
PrΘ(F ∩ L) ≤ (Z ′′+θF)P̂r(S)

(1−εu)(1−αg)(1−εg)

)
≥ (1 − δg)(1 − βF).
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4.2 Deriving affine policies to coverF ∩ Lwith a union of SLWPs

Earlier in Sect. 4, we discussed how the affine policy δ(x) assists in outer-
approximating F with a union of SLWPs. In this section, we discuss two ways of
obtaining affine policies that utilize chance-constrained programming techniques [26].
LetV be a discrete randomvariable such that Pr(V = τi ) = pi for i ∈ {1, . . . , s̄}. Con-
sider the problem max{ 1

L̃
∑s̄

i=1 ziτi | ∑i=1
s̄ zi ≤ L̃, 0 ≤ zi ≤ pi }. Let τ̄ = max{τi |

Pr(V ≥ τi ) ≥ L̃}. Clearly, an optimal solution sets zi = pi if τi > τ̄ , zi = L̃−Pr(V>τ̄)
Pr(V=τ̄ )

if τi = τ̄ , and zi = 0 otherwise. This models expected value of the largest supports of
V with a cumulative probability of L̃, which is typically referred to as the conditional
value-at-risk (CVaR). Then, as is standard, this quantity is computed by solving the
dual CD:minl,vi {l + 1

L̃
∑s̄

i=1 p
ivi | vi ≥ 0 ∀i ∈ [s̄], l + vi ≥ τi ∀i ∈ [s̄]} [5]. So, for

a sample, {xi }i∈[s̄], we use CD to minimize CVaR [35]:

P-CVaR: min
l,v,τ

{
l + 1

L̃

s̄∑

i=1

pivi | ∀i ∈ [s̄], f (xi , δ(xi )) ≤ � + τi w̄0,

Aδ(xi ) + Bxi ≤ c + τi w̄, τi ≥ vi + l, vi ≥ 0

}
, (25)

where we have scaled τi in the constraints using w̄ ∈ R
p, a vector of arbitrary positive

weights, and a positive w̄0 ∈ R. As before, pi is the probability of scenario xi and s̄ is
the number of sampled scenarios. The variables vi for i ∈ [s̄] and l are used to model
CD as above.

In contrast, Bernstein approximation does not require explicit enumeration of sce-
narios [6, 31]. Recall that x is not inF∩L if the affine policy satisfies all the constraints
and evaluates to an objective no larger than �.We previously outer-approximatedF∩L
as a union of sets, each one obtained when one of these conditions is violated. Say,
this violated inequality is given by wᵀx > C where wi and C depend, possibly,
on the affine coefficients used to derive δ(x). Then, under various technical condi-
tions, when the cumulant generating function of

∑m
i=1 wiXi over L is known, we

can use Bernstein approximation to derive δ(x). Observe that if L = [0, 1]m then
PrΘ(

∑m
i=1 wiXi ≥ C) ≤ ε̄ if there is a t ′ > 0 such that (t ′, w) satisfy the following

convex constraint [4]:

− C +
m∑

i=1

t ′ log
(ni − ai

ni
+ ai

ni
e

wi
t ′
)

≤ t ′ log(ε). (26)

We derive a similar approximation for a specially structured Θ , where each set in
the outer-approximation is of the form S′,

(A7) S′ = {∑m
i=1 wi xi ≥ C,

∑m
i=1 xi = b, where wi ≥ 0 ∀i} and PrΘ(Xi = 1) =

p for all i .
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Although classical Bernstein approximation does not allow side constraints, we
use the recent analysis of 1-negatively correlated random variables in [11] to derive
this extension. To do so, we upper bound EΘ [exp(tY) | ∑m

i=1 Xi = b], where
Y = ∑m

i=1 wiXi . Assume, for all i ∈ [m], X
′
i are independent random variables

such that Pr(X′
i = 1) = b/m and Y

′ = ∑m
i=1 wiX

′
i . Then, for I ⊆ [m], if |I | ≤ b,

we have PrΘ(∀i ∈ I , Xi = 1 | ∑m
i=1 Xi = b) = (m−|I |

b−|I |)
(mb)

≤ (
b
m

)|I |. Instead, if

|I | > b, PrΘ(∀i ∈ I , Xi = 1 | ∑m
i=1 Xi = b) = 0 ≤ (

b
m

)|I |. This implies

that: EΘ [Yl | ∑m
i=1 Xi = b] = EΘ

[∑
i∈[m]l

∏l
j=1 wi j Xi j | ∑m

i=1 Xi = b
] ≤

∑
i∈[m]l

∏l
j=1 wi j

∏
i∈{i1,...,il } Pr(X

′
i = 1) = E

[∑
i∈[m]l

∏l
j=1 wi j X

′
i j

] = E[Y′l ],
where the first inequality uses that

∏l
j=1 wi j is non-negative. Therefore, for all t > 0,

EΘ [exp(tY) | ∑m
i=1 Xi = b] ≤ E[exp(tY′)] and

PrΘ(S′) ≤ EΘ

[
exp(tY) | ∑m

i=1 Xi = b
]

exp(tC)
≤ exp(−tC)E

[
exp

(
tY′)]. (27)

Then, with t ′ = 1
t , PrΘ(S′) ≤ ε if there exists t ′ > 0 such that

− C +
m∑

i=1

t ′ log
(
1 − b

m
+ b

m
e

wi
t ′
)

≤ t ′ log(ε). (28)

Now, with p̄i = ai
ni

(resp. p̄i = b
m ), the following formulation can be used to model

(26) (resp. (28)), where Kexp denotes the exponential cone:

{

(u, v, θ) : − C +
m∑

i=1

θi ≤ t ′ log ε, (1 − p̄i )ui

+ p̄ivi ≤ t ′(ui , t ′,−θi ), (vi , t
′, wi − θi ) ∈ Kexp for i ∈ [m]

}

. (29)

5 Case study: network reliability problem

Consider a graph, G(V , E), where V and E are the set of nodes and edges in G. Let
d : V × V → R be the traffic between node-pairs and c : E → R the link capacities.
For link 〈i, j〉 ∈ E , xi j = 1 if 〈i, j〉 fails and 0 otherwise. Given x , the network routes
traffic by solving a multicommodity flow problem as in (30) that minimizes maximum
link utilization, MLU(x), where MLU(x) = max〈i, j〉∈E Ui j andUi j is the ratio of the
traffic on 〈i, j〉 to ci j .

MLU(x) = min
y,U

U (30a)
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∑

t∈V
yi j t ≤ Uci j (1 − xi j ) ∀〈i, j〉 ∈ E (30b)

∑

j∈V
yi j t −

∑

j∈V
y jit = dit −

∑

j∈V
d jtδ(i=t) ∀i, t ∈ V (30c)

yi j t ,U ≥ 0
∀〈i, j〉 ∈ E

∀t ∈ V ,
(30d)

where, for all 〈i, j〉 ∈ E and t ∈ V , yi j t is the flow destined to node t on link
〈i, j〉, and δ(i=t) is 1 if i = t and 0 otherwise. Constraints (30b) and (30c) model
capacity and flow balance constraints respectively. We will consider the uncertainty
set of b simultaneous link failures Xb = {x ∈ {0, 1}|E | : ∑〈i, j〉∈E xi j = b}, which
is of interest to network architects [9, 10, 25, 39]. Further, consistent with network
failure measurements [15, 27], we assume that links fail independently of one another,
i.e., if X is a |E |-dimensional binary random vector representing the state of the
links then X ∼ ⊗|E |

i=1 Bernoulli(pi ). We are then interested in computing PrΘ(FNR),
where FNR = {x ∈ Xb : MLU(x) > 1}, a set we often refer to as set of “bad
failures”. Clearly, this is a special case of the PQ problem introduced in Sect. 2,
where P = {x : ∑

〈i, j〉∈E xi j = b}, d(x) = MLU(x), � = 1 and X ∼ Θ =
⊗|E |

i=1 Bernoulli(pi ) is binary randomvector. It is easy to check that this setting satisfies
our assumptions (A2)–(A6). Here, for the results in Sect. 3, we treatP = [0, 1]m and
interpret FNR as the intersection of the set of interest with Xb, an LWP. The related
robust network reliability problem (RNR) computes maxx∈Xb

MLU(x) and can be
written by dualizing MLU(x) as follows:

(RNR): max
λ,v,x

∑

i,t∈V
i �=t

vi t dit −
∑

t∈V
vt t

⎛

⎝
∑

j∈V
d jt

⎞

⎠ (31a)

vi t − v j t ≤ λi j ∀〈i, j〉 ∈ E,∀t ∈ V (31b)
∑

〈i, j〉∈E
λi j ci j (1 − xi j ) ≤ 1 (31c)

λi j ≥ 0 ∀〈i, j〉 ∈ E (31d)

x ∈ Xb. (31e)

Moreover, Assumption (A1) is satisfied because, for any x , (λ, v) = (0, 0) is a feasible
solution.Consider a relaxation ofRNR, obtained usingRLT,where, as in Proposition 1,
(31b) and (31d) are multiplied with constraints definingXb. This relaxation produces
a weak bound [10, 28]. However, this can be remedied (see [10]) by first lifting (30)
to an equivalent higher-dimensional formulation, Slack-MLU(x), before performing
RLT. Slack-MLU(x) is obtained from (30) by (i) introducing additional new variables
ai j ≥ 0 ∀〈i, j〉 ∈ E , (ii) replacing d with d ′ where, for all (i, j) ∈ V × V , d ′

i j =
di j+ai jδ〈i, j〉∈E , (iii) replacing (30b)with

∑
t∈V yi j t ≤ Uci j (1−xi j )+ai j ∀〈i, j〉 ∈ E .

For completeness, we prove the validity in Appendix K.
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Proposition 4 For a given x = {xi j }〈i, j〉∈E , consider the multi-commodity flow prob-
lem in (30) and its lifted version described above as Slack-MLU(x). Then, given a
feasible solution to either of the formulations, a feasible solution to the other can be
constructed that has the same utilization. �


So, it follows from Proposition 4 that PrΘ(FNR) can be expressed as PrΘ({x ∈
Xb : �(y, a) feasible to Slack-MLU(x) with U = 1}). Let g(x) represent the indica-
tor function of {x ∈ Xb : Slack-MLU(x) > 1}. Then,

g(x) =max
λ,v

z(λ, v, x) (32a)

− λi j + vi t − v j t ≤ 0 ∀〈i, j〉 ∈ E, ∀t ∈ V (32b)

λi j − vi j + v j j ≤ 0 ∀〈i, j〉 ∈ E (32c)

z(λ, v, x) ≤ 1 (32d)

λi j ≥ 0 ∀〈i, j〉 ∈ E, (32e)

where z(λ, v, x) = ∑
〈i, j〉∈E λi j ci j (xi j−1)+∑

i,t∈V :i �=t ditvi t−
∑

t∈V vt t
(∑

j∈V d jt
)
.

Proposition 5 Given x ∈ Xb, we may equivalently require that vi j = λi j for all
〈i, j〉 ∈ E and vt t = 0 for all t ∈ V in (32). �


5.1 Computational evaluation on network reliability test instances

We estimate PrΘ(FNR) on three network topologies (i) Geant (|V | = 32, m = 100),
(ii) Highwind (|V | = 16, m = 58), and (iii) Deltacom (|V | = 103, m = 302), taken
from the topology zoo [21]. We abbreviate them as G, H and D respectively. As in
[9], we recursively removed one-degree nodes in the original topologies and used
the gravity model [43] to generate traffic matrices with MLU in [0.6, 0.67]. Geant
has ci j ∈ [1, 100] Gbps, whereas ci j = 1 for the other topologies. Undirected links
(i, j) were replaced with two directed links i → j and j → i of the same capacity.
Unless mentioned otherwise, we report the probability ΛNR(b):=PrΘ{FNR | X ∈
Xb} instead of PrΘ(FNR). This is obtained from PrΘ(FNR) by estimating PrΘ(X ∈
Xb) using Theorem 2 (resp. Corollary 1) when an overestimate (resp. underestimate)
is needed.

Our algorithms were implemented in Python, the LPs and IPs were solved using
Gurobi 8.0 [17], while formulations using Bernstein approximation (29) were solved
usingMOSEK9.1 [1]. TheCPUusedwas IntelXeonE5-2623@3.00GHz.We assume
that all b-simultaneous link failure scenarios (b failures) occur with equal probability
and report conditional probabilities, which are much higher than the unconditional
ones. We only report bounds that use our algorithms from Sects. 3 and 4.1. This is
because bounds from relaxation of RNR using Proposition 4 or using the concave
envelope building algorithm of Sect. 2.1 are not tight enough to be useful for our NR
instances.

We denote a problem instance as T(b), where T abbreviates the topology and b is
the number of failures. In Table 1, column labeled True reports the ground truth values
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Table 1 Deterministic Bonferroni estimates to ΛNR(b) = PrΘ(FNR | X ∈ Xb)

T(b) True
∑

-Counting (V, G, C, B, W)
∑

-Bernstein (V, G, C, B, W)

H(1) 0.035 (0.035, 0.793, 0.035, 0.069, 0.035) (0.052, 4.276, 1.310, 0.345, 1.741)

H(2) 0.075 (0.075, 1.653, 0.175, 0.179, 0.174) (0.140, 8.119, 3.345, 1.590, 3.817)

H(3) 0.122 (0.123, 2.563, 0.412, 0.351, 0.410) (0.234, 11.255, 5.224, 3.400, 5.680)

G(1) 0.040 (0.040, 1.050, 0.040, 0.090, 0.040) (0.060, 2.130, 1.320, 0.360, 2.780)

G(2) 0.088 (0.089, 1.252, 0.140, 0.204, 0.145) (0.166, 3.829, 2.834, 1.488, 4.272)

G(3) 0.142 (0.146, 1.665, 0.295, 0.391, 0.311) (0.273, 5.325, 4.220, 3.174, 5.599)

D(1) 0.017 (0.020, 0.858, 0.364, 0.083, 0.017) (0.030, 14.417, 3.755, 0.715, 3.911)

D(2) 0.037 (0.057, 4.848, 0.775, 0.205†, 0.084) (0.114, 28.345, 8.147, 2.248, 7.206)

D(3) – (–, 10.690, 1.231, 0.419‡, 0.202) (–, 39.669, 12.165, 4.397, 10.171)

† estimates are obtained by sparsifying with δs = 0.005
‡ respresent the δs = 0.05

of ΛNR(b) obtained by enumeration. Since we report probabilities when network per-
formance is unacceptable, a lower value corresponds to better network performance.
For D(3), enumeration was not possible in a reasonable time. We consider 5 types of
approximations of the failure set, and report rigorous upper bounds on ΛNR(b) using
these approximations.

For the first approximation, called the V-cut approximation (abbreviated as V), we
use the constraints referred to as V-cuts that are identified by Find- violate, and
obtained as in Step 3 of Algorithm 1. For all the other approximations we derive
policies to upper bound ΛNR(b).

Our second approximation, theG-cut approximation (abbreviated asG) uses Propo-
sitions 6 (in Appendix C), 4, and 5 to derive a restricted version of the affine policy.
Numerical computations have shown that this formulation (detailed in Appendix L)
results in good bounds for RNR [9, 10]. The corresponding formulation is referred
to as Gen-R3. To derive this policy, we set b = 1 in Gen-R3. Then, we fix U to 1 in
Constraint (L.1b) and negate the constraint to obtain Constraint (L.2), which we refer
to as G-cut. Using this constraint, we identify scenarios where the Constraint (L.1b)
can only be satisfied with U > 1. Since these scenarios cover all the scenarios where
MLU exceeds 1, we overestimate the probability of a bad failure by the probability
that a failure scenario violates (L.1b). Similarly, the cuts we describe next are also
used to overestimate the probability of bad failures.

Next, we describe the C-cut approximation (abbreviated as C). This approximation
uses the affine policy obtained by solving the following problem, which is derived by
specializing (25) to NR:

min
v,l,r ,p,a

l + 1

L̃

s̄∑

i=1

pivi (33a)

∑

t∈V
ret +

∑

l∈E
pel x

i
l ≤ Uice(1 − xie) + aex

i
e ∀e ∈ E, i ∈ [s̄] (33b)
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Ui − 1 ≥ vi + l, vi ≥ 0 ∀i ∈ [s̄]
(L.1c), (L.1d), (L.1e), (33c)

where s̄ is the number of sampled scenarios and pi is the probability of scenario
xi ∈ Xb. Variables ret , pel are as defined for (L.1), and variables vi for i ∈ [s̄] and
l are as defined for (25). We choose L̃ = 5 and use the resulting policy in Constraint
(L.2) to obtain a cut, which we refer to as the C-cut.

Our fourth approximation (abbreviated as B) uses a B-cut. This cut uses the affine
policy obtained by solving the Bernstein approximation described in Sect. 4.2. This
approximation requires that Assumption (A7) is satisfied, or that the failure probability
of each link is the same. For theB-cut approximation,we solve (29) iteratively choosing
ε̄ so that MLU is below 1.

The last approximation, W-cut approximation (abbreviated as W) uses the policy
obtained by solvingGen-R3, but by restricting failure scenarios to those single-failures
whereMLU is below 1 (see [9]). The cut obtained using this policy is referred to asW-
cut. The C- and W-cut approximations can be improved by adding other good failure
(failures x ′ with MLU(x ′) ≤ 1) scenarios, an extension we do not implement. These
cuts suffice to show that our framework is flexible enough so that it can be used to
estimate ΛNR(b) in a variety of ways. In the column labeled

∑
-Counting of Table

1, we use the counting algorithm of Theorem 2, to obtain a rigorous upper bound
for ΛNR(b) by summing up the probabilities for each of the SLWPs in the union.
For V-cuts, we do not report the bound for D(3), since Algorithm 1 did not terminate
within 36 hours of CPU time. In column labeled

∑
-Bernstein, we report a similar

bound, but compute the probability of each SLWP by optimizing (28), after replacing
t ′ with 1

t . Note that the bounds in
∑

-Bernstein are much weaker than those obtained
in

∑
-Counting using Theorem 2. Also, this bound can only be obtained when the

probability of link failures is the same. We remark that we did not use a sparsifier for
computing entries in

∑
-Counting except those marked with † and ‡, where we chose

δs as 0.005 and 0.05 respectively. This is because, unlike other cuts, the B-cuts are
dense, and thus the approximation benefits, in terms of computational time, from the
use of sparsifier. To illustrate, for G(3), the Bonferroni estimate without the sparsifier
takes 521 CPU seconds, while it takes 150 s (resp. 12 s) with δs = 0.005 (resp.
δs = 0.05).

The rigorous bounds in Table 1 are conservative. Recall that each of the cuts, G, C,
B, andW, is associatedwith a policy. Theorem4 gives an algorithm to sample scenarios
where an edge in the network violates the capacity constraint. This algorithm is then
used as the Sample- Assign subroutinewithinAlgorithm 2 to sample scenarios where
at least one edge violates the capacity constraint. Such a sampling algorithm only
samples scenarios where the corresponding policy does not perform well. Using this
algorithm, we improve the Bonferroni estimate given in Table 1 by directly estimating
theprobability of the unionof scenarioswhere at least one edge exceeds capacity. These
improved estimates are given in Table 2, where we generated 100,000 samples with
Zt = 1 for each problem instance and each cut. Recall that V-cuts do not correspond to
a specific policy. Rather, each V-cut is obtained by solving a nonlinear integer program
that gives a dual solution to MLU(x) described in (30). When we report the results for
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these cuts, we also report the number of V-cuts along with the probability of union of
V-cuts.

As mentioned above, for G, C, B, and W cuts, the reported probabilities in Table 2
are estimates of the probability that a network using a certain routing policy does
not perform well. On the other hand, with V-cuts, whenever Algorithm 1 terminates,
Table 2 estimates a lower bound on the probability that no routing policy can achieve
an MLU of less than one. Therefore, when Algorithm 1 terminates, the probability
associated with V-cuts in Table 2 is expected to be close to the ground truth as is indeed
the case. However, when Algorithm 1 does not terminate, as in the case of D(3), the
reported probability in Table 2 is a lower estimate of the probability of bad failures.
We mention that rejection sampling, as described at the end of Sect. 4.1, can be used
to estimate the fraction of bad failures discovered using the V-cuts. In particular, we
recognize that the policy corresponding to any of the cuts ismore restrictive than a fully
flexible network response.Although our discussion below applies to any of the cuts, we
use W-cuts to illustrate the usage of rejection sampling. In particular, there may be an
alternate routing strategy that allows the network to performwell even when the policy
associated with W-cut fails to achieve the desired performance. Using Algorithm 2,
we sample failures where the policy associated withW-cut fails, and runMLU(x) as in
(30), on each of these failure scenarios to estimate the probability of such failureswhere
an alternate routing recovers the network performance. Rejecting these scenarios, we
are left with the sampled scenarios where the network does not performwell. Consider
D(3). We generated 10,000 scenarios using Algorithm 2 where the policy associated
withW-cuts does not performwell. Among these, the network can handle 40.5% of the
scenarios using a different routing strategy. As a result, our estimate for the probability
of scenarios that this network cannot handle is 0.405×0.15 ≈ 0.061 which is also the
estimate obtained using the V-cuts. This suggests that the 432 V-cuts that we derived
using Algorithm 1 are able to identify almost all scenarios where the network does
not perform well.

Although, we have reported conditional failure probabilities throughout, uncon-
ditional probabilities over [0, 1]m are obtained either by dropping the constraint∑m

i=1 xi = b or by aggregating the results by varying b. As mentioned above, the
estimates of these unconditional probabilities can be further improved using rejection
sampling on the samples generated by Algorithm 2. For instance, consider p = 0.001
as the probability of each link failure for Geant. Using B-cuts, we generated 10,000
samples via Algorithm 2, to find that 79.49% of the sampled scenarios were bad. In
contrast, only 0.40% of all scenarios are bad. Our computations show that our algo-
rithms prune the sample space significantly and the probability estimates we obtain
are reasonably close to the ground truth values.

6 Conclusions

In this paper, we developed methods to estimate the probability that the optimal value
of a convex program, satisfying certain structural assumptions, exceeds a given thresh-
old.We used convexification, robust counterpart, and chance-constrained optimization
techniques to cover the event set of interest by a union of sets and devised new approx-
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Table 2 Estimates for ΛNR(b) via Algorithm 2

T(b) True Union Pr.: V G C B W

H(1) 0.035 (0.035, 1) 0.328 0.035 0.035 0.035

H(2) 0.075 (0.075, 12) 0.593 0.147 0.093 0.153

H(3) 0.122 (0.122, 33) 0.778 0.311 0.185 0.326

G(1) 0.040 (0.040, 2) 1 0.040 0.050 0.040

G(2) 0.088 (0.088, 50) 0.999 0.121 0.113 0.127

G(3) 0.142 (0.142, 71) 1 0.232 0.228 0.248

D(1) 0.017 (0.017, 3) 0.480 0.192 0.066 0.017

D(2) 0.037 (0.037, 179) 0.998 0.366 0.156† 0.068

D(3) – (0.061, 432) 0.997 0.514 0.295‡ 0.150

† estimates are obtained by sparsifying with δs = 0.005 ‡ respresent the δs = 0.05)

imate sampling and counting techniques to estimate the probability of this union. Our
techniques effectively prune uninteresting scenarios from the sample space. To our
knowledge, this is the first work to use affine policies with approximate counting tech-
niques to derive bounds on probability quantification problems. We considered the
network reliability (NR) problem which determines the probability of failures where
network utilization exceeds one. Our computational results on NR are encouraging
and, to our knowledge, the first non-trivial bounds obtained in polynomial time on the
probability of bad failure scenarios.

Acknowledgements We acknowledge Shabbir Ahmed for his insightful comments at Dagstuhl on the use
of Markov inequality for OUQ and Sanjay G. Rao for extensive discussions on NR. The second author
would like to acknowledge the funding provided by NSF CMMI-1727989 and AFOSR 21RT0453

A List of assumptions

Here, we will briefly describe the assumptions we make in different parts of the paper.

1. In Sect. 2, for relating RLT to affine and polynomial policies, we assume:

– There is no duality gap between CP(·) and CD(·) (A1).
2. For deriving the column generation algorithm and to show convergence of RLT at

the mth level in Theorem 1, we assume in Sect. 2.1 that:

– The distribution of X is supported on a finite set of points T inP (A2).
– K = R

p
+ (A3).

– T ⊆ {0, 1}m and an inequality description of conv(T ) is available (A4).

Additionally, when T consists of the vertices of a simplex, we show in Proposi-
tion 2 that the concave envelope of the indicator function can be used to compute
Pr∗(F). The column generation algorithm also assumes that expectations of a set
of functions of the random variable X, denoted as {fα(X), α ∈ Γ̄ ⊆ N

m}, are
known.
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3. In Sects. 3 and 4 we devise counting and sampling algorithms by assuming that:

– P = conv(T ) = [0, 1]m and X ∈ {0, 1}m , with distribution Θ =⊗m
i=1 Bernoulli(pi ) (tensor product ofm independent Bernoulli distributions).

Moreover, we assume that pi = ai
ni
, where ai , ni ∈ N, and GCF(ai , ni ) = 1

(A5).
– Without loss of generality, the weights of the general inequality defining each
Sliced low weight polytope (SLWP) are non-negative i.e.,wi ∈ Z≥0 for all
i ∈ [m] (A6).

4. We derive the Bernstein approximation by assuming in Sect. 4.2 that:

– S′ = {∑m
i=1 wi xi ≥ C,

∑m
i=1 xi = b, where wi ≥ 0 ∀i ∈ [m]} and

PrΘ(Xi = 1) = p for all i ∈ [m] (A7).

B Proof of Proposition 1

Let y = Pᵀx + q. For y to be feasible, (APᵀ + B)x + Aq ≤K c for all x satisfying
Cx ≤ d. Then, (APᵀ+B)x+Aq−c ≤K UᵀCx−Uᵀd = Uᵀ(Cx−d) ≤K 0,where the
first inequality follows from (6b) and (6c) and the last inequality becauseUᵀ(Cx −d),
by (6e) is a non-positive conic combination of vectors in K. Moreover, the objective,
eᵀ(Pᵀx+q) = ΘᵀCx+eᵀq ≤ Θᵀd+eᵀq, where thefirst equality is from (6d) and the
second inequality is becauseΘ ≥ 0 andCx ≤ d. This shows that the feasible solutions
in (6) describe an affine policy and the objective function value overestimates that of
the corresponding affine policy. We now show that relaxation is exact when K = R

p
+

andP �= ∅. For an affine policy to be feasible, (Ak Pᵀ+Bk)x+Akq−ck ≤ 0 for all x
satisfying Cx ≤ d and for all k ∈ [p], where Aᵀ

k ∈ R
n , Bᵀ

k ∈ R
m represent the kth row

of A and B respectively, and ck ∈ R represents the kth entry of c. In other words, for
aᵀ = −(Ak Pᵀ + Bk) and b = Akq − ck , it follows that {x | aᵀx < b,Cx ≤ d} = ∅.
By Farkas’ Lemma, one of S1 and S2 is therefore feasible, where

S1 := {
(λ, μ) ∈ R++ × R

l+
∣∣ λaᵀ + μᵀC = 0, λb + μᵀd ≤ 0

}

S2 := {
(λ, μ) ∈ R+ × R

l+
∣∣ λaᵀ + μᵀC = 0, λb + μᵀd < 0

}
.

InS1, to see the equivalence scale λ to 1 and set μ = Ũk , the kth column ofU . InS2,
we assume λ = 0, otherwise we obtain a solution to S1. Therefore, there is a non-
negative μ such that μᵀC = 0 and μᵀd < 0, which, by Farkas’ Lemma contradicts
that P �= ∅. �


C Extension of Proposition 1 to consider polynomial policies

The design of such polynomial policies relates to the use of polynomial chaos expan-
sion for structured representation of uncertainty in chance-constrained optimization;
see [30] for its use in optimal power flow. Suppose y j = ∑

α∈γ j
gα
j x

α for j ∈ [n],
where α = (α1, . . . , αm) ∈ γ j ⊆ N

m , gα
j ∈ R, and xα represents the monomial
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xα1
1 · · · xαm

m . Let Y (x) = {y ∈ R
n : A(x)y + X (x) ≤K c}, where A(x) is a p × n

matrix of polynomial functions, X (x) is a p sized vector of polynomials, such that
A(x)k j = ∑

β∈Sk j a
β
k j x

β and X (x)k = ∑
β∈Sk0 a

β
k0x

β for some sets Skj and Sk0.

Let S′:={α′ : ∃( j, k) such that α′ = α + β, α ∈ γ j , β ∈ Skj }. Assume that P =
{x ′ : C′x ′ ≤ d′} is a linear relaxation of {x ′ : x ′

α′ = xα′∀α′ ∈ S′,Cx ≤ d}. Let
ς = maxx∈P miny∈Y (x) eᵀy and restrict y to a polynomial policy to define:

Ψ ∗
1 :=min

ξ,g
ξ

ξ ≥ eᵀ ∑

α∈γ j

gα
j x

′
α ∀x ′ ∈ {C′x ≤ d′}

∑

j∈[n]

∑

β∈Sk j

∑

α∈γ j

aβ
k j g

α
j x

′
α+β +

∑

β∈Sk0
aβ
k0x

′
β ≤K ck

∀k ∈ [p]
∀x ′ ∈ {C′x ≤ d′}.

Then, assuming {x ′ : C′x ′ ≤ d′} is not empty and K = R
p
+, dualization allows us

to succinctly express the constraints for all x ′ so that Ψ ∗
D = Ψ ∗

1 , where:

Ψ ∗
D = min

g,Θ,U

∑

r∈[l]
d′
rΘr +

∑

j :0∈γ j

e j g
0
j (C.2a)

∑

r∈[l]
UrkC

′
rα =

∑

j∈[n]

∑

α−α′∈Sk j

∑

α′∈γ j

aα−α′
k j gα

j + aα
k0 ∀k ∈ [p], α ∈ γ j

(C.2b)
∑

r∈[l]
Urkd

′
r +

∑

j :0∈Sk, j
a0k j g

0
j +

∑

0∈Sk0
a0k0 ≤ ck ∀k ∈ [p] (C.2c)

∑

r∈[l]
ΘrC

′
rα =

∑

j :α∈γ j

gα
j e j ∀α ∈ γ j (C.2d)

Θ ≥ 0, U·k ≥ 0 ∀k ∈ [p]. (C.2e)

Proposition 6 Assume that x̄ ∈ P , and there exists a w̄ ∈ −K
∗ such that w̄ᵀA(x̄) =

eᵀ, and that strong duality holds for the inner problem, i.e.,

min
y∈Y (x)

eᵀy = CD(x):=max
w

{
wᵀ(c − X (x)

) ∣∣ wᵀA(x) = eᵀ, w ≤∗
K
0
}
,

where Y (x) = {y ∈ R
n : A(x)y + X (x) ≤K c}, such that A(x)k j and X (x)k for

k ∈ [p] and j ∈ [n], are as discussed above. Then, if K = R
p
+, there is an RLT

relaxation of ς = maxx∈P miny∈Y (x) eᵀy which dualizes (C.2) and has the same
optimal value.

Proof By strong duality, ς = maxx∈P CD(x). We obtain the following constraints
by taking products of equality constraints in CD(x) with xα and inequalities with
C′x ′ ≤ d′ that relax the monomial definitions:

∑

k∈[p]

∑

β∈Sk j
wka

β
k j x

α+β = xαe j ∀α ∈ γ j ,∀ j ∈ [n]; and (d′
r − C′

r x
′)wᵀ ≤K

∗ 0.
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Upon linearization, we obtain:

Δ:= max
w,x,w′,w′′ wᵀ(c − B ′x ′) (C.3a)

w′A′ = M ′ (C.3b)

d′
rw

ᵀ − C′
rw

′′ ≤K
∗ 0 ∀r ∈ [l] (C.3c)

C′x ′ ≤ d′ (C.3d)

w ≤K
∗ 0, (C.3e)

where: (i) w′′
(α,k) linearizes x

αwᵀ and x ′
αwᵀ, (ii) whenever α′ + β ′ = α, j ∈ [n], α′ ∈

γ j , and β ′ ∈ Skj , w′
( j,α′),(β ′,k) = w′′

(α,k), (iii) for all k ∈ [p], j ∈ [n], A′
(β,k), j = aβ

k j

if β ∈ Skj and 0 otherwise, (iv) for all α ∈ γ j and j ∈ [n], M ′
( j,α) = xαe j , and (v)

for all k ∈ [p], B ′
(k,β) = aβ

k0 if β ∈ Sk0 and 0 otherwise. Let P ′, {U ′
r }r∈[l], and Θ ′

be the dual variables to the equations (C.3b), (C.3c) and (C.3d) respectively. Given
that (w̄, x̄) is feasible for maxx∈P CD(x), its relaxation (C.3) used to compute Δ is
also feasible. When K = R

p
+, (C.3) is a linear program and so has no duality gap. In

general, its dual is:

min
Θ ′,U ′,P ′

∑

j :0∈γ j

P ′
j0e j +

∑

r∈[l]
Θ ′

rd
′
r (C.4a)

−U ′ᵀC′ + F ′ + B ′ = 0 (C.4b)

U ′ᵀd′ + L ≤K c (C.4c)

h + C′ᵀΘ ′ = 0 (C.4d)

Θ ′ ≥ 0,U ′
r ≥K 0 ∀r ∈ [l], (C.4e)

where, for k ∈ [p] and α ∈ γ j , F ′
α,k = ∑

j
∑

α′∈γ j

∑
β ′=α−α′∈Sk j a

β ′
k j P

′
α′ j , and,

for k ∈ [p], Lk = ∑
j∈[n]

∑
0∈γ j

∑
k:0∈Sk j a

0
k j P

′
0 j . Finally, for α ∈ γ j , hα =

−∑
j :α∈γ j

Pα j e j . When K = R
p
+, we obtain (C.2) by replacing (Θ ′,U ′, P ′) in (C.4)

with (Θ,U , g). �

The equivalence in Propositions 1 and 6 holds whenK has a tractable linear inequality
representation. To reduce the more general case to that for R

p
+, we write U ∈ K as

GU ≥ 0 for some G and replace Ay + Bx ≤K c with GAy + GBx ≤ Gc.

D Proof of Proposition 2

By definition, 1̂E (E∗[X]) = maxλ

{∑
i∈I λi1F(xi )

∣
∣∑

i∈I λi x i = E∗[X], λ ≥
0,
∑

i∈I λi = 1
}
, where λ = {λi }i∈I and {xi }i∈I are the extreme points in T . There

is a unique feasible solution with λi = Pr∗(X = xi ). So, 1̂E (E∗[X]) =
∑

i∈I
Pr∗(X =

xi )1F(xi ) = E∗[1F(X)]. �
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E Proof of Proposition 3

We first write 1̂(x) as max(w,v)∈S h(x, w, v). Then, for any x̄ ∈ T , max(w,v)∈S
r(x̄, w, v) = 1F∩T (x̄) ≥ 0. Since max(w,v)∈S h(x, w, v) is concave and, for
x ∈ conv(T ), is larger than 1F∩T (x), it follows that 1̂(x) ≥ 1̂E (x). For the converse,
observe that, for all (x̄, w, v) ∈ conv(T ) × S, r(x̄, w, v) ≤ 1F∩T (x̄) ≤ 1̂E (x).
Since 1̂E (x) is concave, it follows that h(x̄, w, v) ≤ 1̂E (x) and, so, 1̂(x) =
max(w,v)∈S h(x, w, v) ≤ 1̂E (x). �


F Proof of Theorem 1

We prove the result by showing that ϕR(bα) computes the optimal value in (12).
Let MJ (x):=∏

j∈J x j . Let α be defined so α j = 1 if j ∈ J and 0 other-
wise. Then, MJ (x) = xα . Clearly, for any variable z, the functions zMJ (x) and
zMJ (x) for J ⊆ [m] form bases of the same vector space of functions. Indeed,
zMJ (x) = ∑

J ′:J⊆J ′⊆[m](−1)|J ′\J |zMJ ′(x). Conversely, we have zMJ (x) =∑
J ′:J⊆J ′⊆[m] zMJ ′(x). Therefore, we write the RLT relaxation obtained from (13)

equivalently without expanding the multilinear terms, instead linearizing ϕMJ (x),
wMJ (x), vMJ (x), andMJ (x) directly using ϕ J , w J , v J , and pJ respectively. Since
the former basis includes 1, we must also require that

∑
J ′:J ′⊆[m] zMJ ′(x) = z for

each z ∈ {ϕ,w, v, 1}. When z is ϕ, this shows that the objective (12a) matches that in
(13a). The substitution x2i = xi replaces xiMJ (x) with XJ

i MJ (x). This is linearized
as XJ

i pJ in (13e) whileMJ (x)wᵀBx in (13b) is replaced with (w J )ᵀBXJ . The con-
straints (12b), (12c), and (12d) now follow easily from the linearizations of (13b),
(13c) and (13d).

We show that the set defined by the linearization of (13e), denoted as X ′ is: X ={
(pJ )J⊆[m] : pJ ≥ 0, J ⊆ [m]; ∑J⊆[m] pJ = 1; pJ = 0 if XJ /∈ T

}
. Note

that X models the probability distributions with support on T . Because xiMJ (x)
linearizes to XJ

i pJ , X
′ has the same variables as X . We first show that X ′ ⊆ X .

Observe that
∑

J ′:J ′⊆[m] MJ ′(x) = 1, linearizes to
∑

J ′:J ′⊆[m] pJ ′ = 1. Moreover, for
any j ∈ J , (resp. j ∈ JC ), x j ≥ 0 (resp. 1 − x j ≥ 0) is implied by conv(T ). Thus,
the linearization of x jMJ (x) ≥ 0 (resp. (1 − x j )MJ (x) ≥ 0) is implied by (13e)
and yields pJ ≥ 0. Now, consider any XJ /∈ conv(T ). Then, if pJ > 0, we obtain
a contradiction since (13e) requires that pJX

J ∈ pJ conv(T ). Therefore, pJ = 0
whenever XJ /∈ T . Now, we show that X ′ ⊇ X . Since X ′ is convex, it suffices to
show that the extreme points of X are contained in X ′. It can be verified that ifXJ ∈ T
then the solution pJ = 1 and pJ ′ = 0 for J ′ �= J is feasible to X ′.

Finally, we show that xα = bα is feasible to the linearization of (13e). Let
p̄J = ∑

J ′⊆JC (−1)|J ′|bα(J∪J ′) for all J ⊆ [m]. Then, since bα is the moment of
xα with support on T , it follows that p̄J ∈ X . Let xα linearize MJ (x), where
α j = 1 if j ∈ J and 0 otherwise. Observe that, with this linearization, (13e)
yields an affine transform of X , say T (X), in the space of xα variables. Then,
xα = ∑

J ′:J⊆J ′⊆[m] p̄J ′ is feasible to T (X). However, it can be easily verified

that
∑

J ′:J⊆J ′⊆[m] p̄J ′ = ∑
J ′:J ′⊆[m] p̄J ′(XJ ′

)α = bα . The first equality is because
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(XJ )α = 1 if J ⊆ J ′ and 0 otherwise, while the second equality follows since p̄J
is the probability distribution corresponding to the moments bα . Thus, xα = bα is
feasible to T (X). Then, it follows that ϕR(bα) computes PrΘ(F) as in (12). �


G Proof of Theorem 2

We denote the maximum value of s≥((i, j), ∗) by Mi , where s≥((i, j), c) =∑
c̃≥c s((i, j), c̃). For any i , range( j)i is the range of possible values of j . For

i ≤ K2, Mi ≤ (i
j

)
Ti , j ∈ [

max{0, i + b − K2},min{K2, K1 + b, i}], and
range( j)i = min{K2, i + b − 2K2, K1 + b,m − i}. For i > K2, there is a
l ∈ [

0,min{K2 − j, i − K2}
]
so that we select j + l (resp. i − K2 − l) vari-

ables from {1, . . . , K2} (resp. {K2 + 1, . . . , i}) to set to 1 (resp. 0). It follows that
Mi ≤ ( i

j+i−K2

)
Ti , j ∈ [

b,min{K2,m− i+b}], and range( j)i = min{K2−b,m− i}.
We choose a sparsification parameter, δs , to perform (1 + δs) sparsification of each
s((i, j), c̃). Observe that log(1+δs )

(i
j

) ≤ min{ i2 , j} log1+δs

i exp(1)
min{ i2 , j} . Since the time-

complexity of summing, shifting, and querying function lists is bounded by their size,
the time complexity is O

(
mΘ

(
ξ log1+δs

(m/ξ) +m log1+δs
T
))
. The time complexity

in Theorem 2, follows by choosing δ = (1+ εs)
1/m − 1, and using ln(1+ εs) ≥ εs/2

for εs ∈ (0, 1). �


H Proof of Theorem 3

Consider a t + 1 dimensional DAG, where the (l + 1)st dimension corresponds
to the l th low weight constraint. Let s((i, j1, . . . , jt ), ∗) be the list of all pairs
(c, s((i, j1, . . . , jt ), c)). For T ≥ maxi ni , if M is the maximum value of s≥((i, j1,
. . . , jt ), ∗), then M ≤ (2T)i as there are 2i solutions, each of which occurs at most
Ti times. Moreover, let γ be such that γ ≥ maxk wl

k − mink wl
k for all l ∈ [t]. Thus,

the l th low weight constraint at the i th slice has at most iγ values. Since there are
t low weight constraints, the number of nodes with first coordinate i is bounded by
(mγ )t . Then, after a 1+ δs sparsification the cumulative length of lists is bounded by
m(mγ )t log1+δs

(2T)m . For a 1 + εs approximation, with 1 + δs = (1 + εs)
1/m , the

time complexity is O[ε−1
s mt+3γ t ln T]. �


I A lower estimate for probability of 0–1 solutions to a SLWP

Given a function f : Z
+ → Z

+ and an approximation parameter εs > 0, we say
F : Z

+ → Z
+ (resp. F : Z

+ → Z
+) is a (1 − εs) function approximation (resp.

sum-approximation) of f if, for all x , (1 − εs) f (x) ≤ F(x) ≤ f (x) (resp. (1 −
εs) f ≥(x) ≤ F≥(x) ≤ f ≥(x)). The properties in Lemma 2 follow easily for (1 − εs)

sum-approximation of functions. The sparsifier takes as input a function f and a
parameter δs > 0. We partition values of f ≥ into [ri+1, ri ), where r0 = maxc f ≥(c)
and if ri > 0, then ri+1 = min{ri − 1, �(1 − δs)ri�}. Let ci = minc{c | f ≥(c) ≤ ri }.
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For any c, we define l(c) = mini {ci | ci > c}. If l(c) is finite, F≥(c) = f ≥(l(c)− 1).
Otherwise, F≥(c) = limx→∞ f ≥(x). Then, F≥(x) is a (1 − δs) approximation of
f ≥(x). As a consequence of the Theorem 2, we obtain the time complexity to compute
|Ss |Θ such that for any given εs ∈ (0, 1), (1 − εs)|Ss |Θ ≤ |Ss |Θ ≤ |Ss |Θ .

Corollary 1 Given Ss , Θ as in (14), (A5) respectively, and an error parameter εs ∈
(0, 1), we can deterministically compute a 1−εs relative error approximation of |Ss |Θ
in time given as in Theorem 2.

Proof When we use a (1 − δs) sparsifier, the time to compute |Ss |Θ is
O
(
mΘ

[
ξ log 1

(1−δs )

(m
ξ

) + m log 1
1−δs

T
])
. To control the approximation error, we set

(1 − δs)
m = (1 − εs). Then, we obtain the same time-complexity as in Theorem 2

using ln(1 − εs)
−1 ≥ εs . �


J Proof of Theorem 4

We write the solution set of SΩ as
⋃

J S(J ), where each S(J ) = {x ∈ {0, 1}m :∑m
i=1 wi xi ≥ C,Ωx = J }. For a given x̃ ∈ {0, 1}m , we first compute PrΘ(X =

x̃ |X ∈ SΩ). To do so, we will compute PrΘ(X = x̃ | X ∈ S(J )). Let si ( j, c) = {
x :

∑i
k=1 wk xk ≥ c,Ω·,1:i x1:i = j

}
and s′

i ( j, c) = si ( j, c) ∩ {x : xk = x̃k∀k > i}.
Define c(i) = C − ∑m

k=i+1 wk x̃k and j J (i) = J − Ω·,i+1:m x̃i+1:m . Clearly, if x̃ ∈
S(J ), j J (0) = 0, c(0) ≤ 0, and s′

0

(
0, c(0)) = {̃x}. Observe that s′

r

(
j J (r), c(r)

) ⊆
s′
r+1

(
j J (r + 1), c(r + 1)

)
because if x ∈ s′

r

(
j J (r), c(r)

)
, we have xk = x̃k for k > r ,

∑r
k=1 wk xk ≥ c(r) = c(r + 1) − wr+1 x̃r+1, and Ω·,1:r x1:r = j J (r) = j J (r + 1) −

Ω·,r+1 x̃r+1, showing that x ∈ s′
r+1

(
j J (r + 1), c(r + 1)

)
. Then, s′

0

(
j J (0), c(0)

) ⊆
s′
1

(
j J (1), c(1)

) ⊆ · · · ⊆ s′
m

(
j J (m), c(m)

) = S(J ), and we have

PrΘ
(
X = x̃

∣
∣X ∈ SΩ

)

=
∑

J

⎛

⎝PrΘ
(
X ∈ S(J )

∣∣ X ∈ SΩ

) m∏

i=1

PrΘ
(
X ∈ s′i−1

(
j J (i − 1), c(i − 1)

)∣∣∣X ∈ s′i ( j J (i), c(i))
)
⎞

⎠ .

(J.1)

Further, for all J and i ∈ [m],PrΘ
(
X ∈ s′

i−1

(
j J (i−1), c(i−1)

)∣∣∣X ∈ s′
i ( j

J (i), c(i))
)

is:

PrΘ
(
X ∈ s′

i−1( j
J (i − 1), c(i − 1))

)

PrΘ
(
X ∈ s′

i ( j
J (i), c(i))

)

= PrΘ
(
X ∈ si−1( j J (i − 1), c(i − 1))

)

PrΘ
(
X ∈ si ( j J (i), c(i))

) PrΘ(Xi = x̃i )

= |si−1( j J (i − 1), c(i − 1))|Θ
|si ( j J (i), c(i))|Θ PrΘ(Xi = x̃i )ni = pJ

i δx̃i=0 + (1 − pJ
i )δx̃i=1,
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where pJ
i = |si−1( j J (i),c(i))|Θ

|si ( j J (i),c(i))|Θ (ni −ai ) and δx̃=a is 1 if x̃ = a and 0 otherwise. The first

equality is because the event X ∈ si ( j, c) is independent of {Xi ′ }mi ′=i+1 and, therefore,
PrΘ

(
X ∈ s′

i ( j
J (i), c(i))

) = PrΘ
(
X ∈ si ( j J (i), c(i))

)∏m
i ′=i+1 PrΘ(Xi ′ = x̃i ′). The

secondequality follows since |si ( j J (i), c(i))|Θ = PrΘ
(
X ∈ si ( j J (i), c(i))

)∏i
i ′=1 ni ′

and the last equality is because |si−1( j J (i), c(i))|Θ(ni−ai )+|si−1( j J (i)−Ω.,i , c(i)−
wi )|Θai = |si ( j J (i), c(i))|Θ . Now, we compute Pr(X̃ = x̃), where X̃ is the generated
random variable. We write Pr(X̃ = x̃) = ∑

J Pr
(
X̃ ∈ S(J )

)∏m
i=1 Pr(X̃i = x̃i | X̃k =

x̃k∀k > i and X̃i ∈ S(J )). Let p̃ J
i = Pr(X̃i = 0|X̃k = x̃k∀k > i and X̃i ∈ S(J )). At

the (m + 1 − i)th iteration, the algorithm chooses the value for X̃i . Assume that X̃k

was chosen to be x̃k for k > i . Then,

p̃ J
i = s̃≥((i − 1, j J (i)), c(i))(ni − ai )

s̃≥((i − 1, j J (i)), c(i))(ni − ai ) + s̃≥((i − 1, j J (i) − Ω.,i ), c(i) − wi )ai
.

Since s̃≥((i, j J (i)), c(i)) is a (1 + δs)
i−1 approximation of |si ( j J (i), c(i))|Θ :

pJ
i

(1 + δs)i−2 ≤ p̃ J
i ≤ (1 + δs)

i−2 pJ
i (J.2a)

1 − pJ
i

(1 + δs)i−2 ≤ 1 − p̃ J
i ≤ (1 + δs)

i−2(1 − pJ
i ), (J.2b)

where the left hand side inequality in (J.2a) (respectively (J.2b)) is obtained by realizing
that s̃≥((i−1, j J (i)), c(i)) ≥ |si−1( j J (i), c(i))|Θ and s̃≥((i−1, j J (i)−Ω.,i ), c(i)−
wi ) ≤ (1 + δs)

i−2|si−1( j J (i) − Ω.,i , c(i) − wi )|Θ , (respectively s̃≥((i − 1, j J (i) −
Ω.,i ), c(i) − wi ) ≥ |si−1( j J (i) − Ω.,i , c(i) − wi )|Θ and s̃≥((i − 1, j J (i)), c(i)) ≤
(1+δ)i−2|si−1( j J (i), c(i))|Θ ). The right hand side of (J.2a), (J.2b) can be obtained in
a similar way. For δs ∈ (0, 1), we have 1/(1+δs)

i > (1−δs)
i . Thus, (1−δs)

i−2 pJ
i ≤

p̃ J
i ≤ (1 + δs)

i−2 pJ
i . We let Pr

(
X̃ ∈ S(J )

) = s̃≥((m,J ),C)∑
J ′ s̃≥((m,J ′),C)

, and observe that:

Pr(X ∈ S(J ) | X ∈ SΩ)

(1 + δ)m−1 ≤ Pr
(
X̃ ∈ S(J )

) ≤ (1 + δ)m−1 Pr(X ∈ S(J ) | X ∈ SΩ).

Therefore, each term in the summation on the right hand side of (J.1) is approximated
within a relative error of (1 + δs)

η where η = m(m − 1)/2. It follows that

(1 − δs)
η PrΘ(X = x̃ |X ∈ SΩ) ≤ Pr(X̃ = x̃) ≤ (1 + δs)

η PrΘ(X = x̃ |X ∈ SΩ).

(J.3)

Now, we obtain a (1 ± εs) approximation if δs ≤ 1 − (1 − εs)
1/m2

and δs ≤ (1 +
εs)

1/m2 −1. Since (·) 1
m2 is concave, it follows that 1

2 (1+εs)
1/m2 + 1

2 (1−εs)
1/m2 ≤ 1.

Therefore, it suffices to choose δs = (1 + εs)
1/m2 − 1 in J.3. The desired complexity

follows from Theorem 3. �
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K Proof of Proposition 4

We assume wlog that xi j = 0 for all 〈i, j〉 ∈ E and U = 1. Given a solution to
Slack-MLU (x), we construct a feasible solution to MLU(x). If y is a solution to
MLU(x) with demand d and d = d ′ + d ′′ where d ′, d ′′ ≥ 0, then, using augmenting
paths, y can be decomposed into y′, y′′ ≥ 0, where y′ services d ′, y′′ services d ′′ and
y′′ does not contain cycles. Now, let (ya, a), be the given solution to Slack-MLU(x)
where, ya , is a routing of d ′. Then, we decompose ya into y1 and y2, where y1 routes
d, y2 routes a, and y2 does not contain cycles. Assume wlog that the support of a is
a pair (i, j), and, so:

∑

t∈V
y1klt + y2kl j ≤ ckl + ai jδ(〈i, j〉=〈k,l〉) (K.1)

where δ(〈i, j〉=〈k,l〉) = 1 if 〈i, j〉 = 〈k, l〉 and 0 otherwise. Clearly, ai j ≥ y2i j j because

y2 does not contain cycles. We define

Zt =
⎧
⎨

⎩

y1i j t
ci j+ai j−y2i j j

if ci j + ai j − y2i j j > 0

0 otherwise.
(K.2)

Since 0 ≤ ∑
t∈V y1i j t ≤ ci j + ai j − y2i j j , we get 0 ≤

∑
t∈V y1i j t

ci j+ai j−y2i j j
= ∑

t∈V Zt ≤ 1. We

argue that the flow y′′, defined as

y′′
klt = y1klt + Zt y

2
kl j − Ztai jδ(〈i, j〉=〈k,l〉) (K.3)

is feasible to MLU (x). First, we show feasibility to the capacity constraint.

C.1 Consider 〈i, j〉 = 〈k, l〉 and observe that:
∑

t∈V Ztci j − ∑
t∈V y′′

i j t =
∑

t∈V
(
Ztci j + Ztai j − Zt y2i j j − y1i j t

) = 0, where the first equality is by (K.3). If

ci j + ai j − y2i j j > 0, the second equality is from (K.2). Otherwise, it follows from

0 ≤ ∑
t∈V y1i j t ≤ ∑

t∈V Zt (ci j + ai j − y2i j j ) = 0. Then,
∑

t∈V y′′
i j t ≤ ci j because

0 ≤ ∑
t∈V Ztci j ≤ ci j , where the second inequality holds because

∑
t∈V Zt ≤ 1.

C.2 Now, consider 〈k, l〉 �= 〈i, j〉. We have 0 ≤ ∑
t∈V y′′

klt = ∑
t∈V (y1klt +

Zt y2kl j ) ≤ ∑
t∈V y1klt + y2kl j ≤ ckl , where, the first equality is from (K.3), the

first inequality is because Zt , y1, and y2 are non-negative, the second inequality
is because y2kl j ≥ 0 and

∑
t∈V Zt ≤ 1, and the last inequality follows from (K.1).

Finally, y′′ satisfies flow balance equations in MLU(x) because it is defined in (K.3)
by adding a circulation to y1 which services d. �
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L Formulation of Gen-R3

For a directed arc e from i to j , we write tail(e) to represent i and head(e) to represent
j . For a node j and commodity t , we write ex ′(r , j, t) to represent

∑
e∈E :tail(e)= j ret −∑

e∈E :head(e)= j ret . Then Gen-R3 is: [9]:

Gen-R3: min
r ,p,a

U (L.1a)
∑

t∈V
ret +

∑

l∈E
pel xl ≤ Uce(1 − xe) + aexe ∀e ∈ E,∀x ∈ Xb

(L.1b)

ex ′(r , j, t) = d jt −
∑

i∈V
ditδ j=t ∀ j, t ∈ V (L.1c)

ex ′(p, j, l) = alδtail(l)=i − alδhead(l)= j j ∈ V , l ∈ E
(L.1d)

ret , pel ≥ 0 e, l ∈ E, t ∈ V .

(L.1e)

Here, ret is the traffic on link e destined to t and pel is the the amount of traffic on link
l that is bypassed on e when l fails, and ae is the reservation to bypass traffic on link
e.

We solve Gen-R3 with b = 1 inXb i.e.,forX1 in (L.1b). Then using the obtained
(r∗, p∗, a∗), the G-cuts are the negation of constraint (L.1b) with U fixed to one i.e.,

∑

t∈V
r∗
et +

∑

l∈E
p∗
el xl > ce(1 − xe) + a∗

e xe for e ∈ E and x ∈ Xb. (L.2)

Constraint (L.2) can be used to outer-approximate the set of scenarios in Xb where
MLU exceeds 1.
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