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1. Introduction

This paper is concerned with convexification of permutation-invariant sets. A set S C R" is permutation invariant if
x € S implies that Px € S for all n-dimensional permutation matrices P. Permutation-invariant sets appear in a va-
riety of optimization problems. To support this claim and highlight the relevance of our construction, we next
provide a variety of example applications where exploiting permutation invariance proves fruitful. Consider
first sparse principal component analysis (PCA), a problem first introduced in Zou et al. [34], which consists in-
finding sparse vectors that explain the most variance in a data set. Specifically, the problem of finding the first
sparse principal component can be formulated as max{x"Xx|x € S}, where S = {x € R"|card(x) < K, ||x|| < 1}, card(x)
is the number of nonzero components of x, and X is the covariance matrix of the given data; see, for example
d’Aspremont et al. [7]. The feasible set of this model is permutation invariant because card(Px) = card(x) and
||Px]|| = ||x|| for any vector x € R" and permutation matrix P. The convex hull of S is the unit ball associated with
the K-support norm (Argyriou et al. [2]), a result that yields a tighter approximation of S compared with the elas-

tic net {x € R"|||x||l; < VK, ||x|| < 1} where || -||; is the [;-norm. Recognizing the set as permutation invariant allows
for a streamlined derivation of these results. Second, observe that permutation invariance also arises when study-
ing sets of matrices as the rank of a matrix can be thought of as a permutation-invariant cardinality constraint on
the singular values. This equivalent formulation suggests that the applicability of this concept extends to sets of
matrices whose singular values belong to a permutation-invariant set. For example, Hiriart-Urruty and Le [13]
considers the set {M € M™"(R)|rank(M) < K, [[M]|,, < r}, where M™"(R) is the set of m-by-n real matrices, and
||M||5,, is the spectral norm of M. Because the spectral norm is the largest singular value, it follows easily that the
singular values of these matrices belong to a permutation-invariant set. Using a permutation-invariant perspec-
tive to study such sets helps to generalize the results of Hiriart-Urruty and Le [13] in various ways. Finally, ob-
serve that a variety of sets with specific structures have been studied in nonconvex optimization because of their
uses in creating convex relaxations of more general problems. For example, specialized techniques have been
used to identify the convex hull of the multilinear monomial []%,x; over [0,1]" and [-1,1]" (Luedtke et al. [23],
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Rikun [30]). We will show that these results can be obtained as special cases of our general approach to convexi-
fying permutation-invariant sets. Besides, we will show that we can obtain hitherto unknown polynomial-sized
convex hull descriptions for various commonly occurring sets in global optimization.

We now describe why permutation invariance is a useful property to consider while constructing convex hulls
of sets. To see this, let Ay :={x|xzq) >+ > Xy}, where 7 is an n-dimensional permutation, and denote by
conv(S) the convex hull of a given set S. Because S can be expressed as a union of n! sets of the form S N A, if there
is a (possibly lifted) polynomial-sized representation of conv(S N Ay) for each n, disjunctive programming (Balas
[3]) can be used to represent conv(S) in a higher-dimensional space. Unfortunately, this representation is exponen-
tially sized in 1, because the construction creates copies, one for each 7, for each of the variables (xy,...,x,). What
is remarkable about the permutation invariance is that by exploiting this property, we will show that a much more
compact formulation can be derived. To appreciate the significance of this construction, we first argue that if S is
not permutation invariant, such a compact formulation for conv(S) may not even exist. To illustrate this point, we
consider the set B, which is a face of the Boolean-quadric polytope and is defined as B := {xx" |x € {0,1}",x; = 1}. If

we order all the @ products, these imply an order for all x; variables because x1x; = x; for j = 2,...,n. Moreover,

if x; < x;, it follows that x;x; = x;. Therefore, the ordering of the @ bilinear terms reduces to that of all x; varia-
bles, possibly with some equalities. In other words, it suffices to consider B N A7, where A7, = {xxT |x )Xz () =
Xn(Xr(j) Whenever max {r,i} < max{k,j}} is a lifting of A, and m(1) =1. Because x € {01}" N A, implies that
Xn(r)Xr (i) = Xr(max {r,i}), We can write conv(B N A7) ={X €[0,1]"" | Xij = X1 max{ij}, X1. € Ar, X11 = 1}. However, it is
known that conv(B) does not have a polynomial-sized formulation (Fiorini et al. [8]). In contrast, treating
permutation-invariant sets S in this way provides a significant advantage because the sets S N A, are congruent to
one another. Exploiting this fact, we show that it is possible to construct a polynomial-sized extended formulation
for S whenever a polynomial-sized formulation exists for conv(S N Ar). Our construction makes use of well-
known extended formulations of a permutahedron alongside the convex hull of S N A;. The outline of the con-
struction is as follows: first, we consider a permutation-invariant set S and assume that its convex hull over

A :i={xeR"|x; == x,} 1)

has a polynomial description. Then, the convex hull is simply the union of permutahedra where each permutahe-
dron is generated by a point in conv(S N A"). Each permutahedron can then be modeled using a polynomial
number of linear equalities and inequalities to provide an extended formulation for conv(S). The techniques in-
volved apply to other settings. For example, they can be used to obtain convex hulls of sign-invariant sets using
convex hull representations of S N {x|x > 0}.

The remainder of this paper is organized as follows. We present basic convexification results for permutation-
and/or sign-invariant sets in Section 2. We then explore various applications of the results in the ensuing
sections. In Section 3, we derive the convex hull of the intersection of a unit ball associated with a permutation-
invariant norm and a cardinality constraint. The resulting convex hull defines another norm for which we give
an explicit formula. As a result, we show that it is simple to determine whether an arbitrary point belongs to the
convex hull, and to construct a separating hyperplane when it does not. We study the connection between
permutation-invariant sets and sets of matrices characterized by their singular values. Furthermore, we investi-
gate the semidefinite-representability of rank-constrained sets of matrices.

In Section 4, we develop convex and concave envelope characterizations of various permutation-invariant func-
tions and sets described using such functions. For example, we derive the convex hull of the lower level set of a
Schur-concave function, which is convex when all but one variable are fixed, a lifted representation of the convex

hull of the graph of [,x; over [a,b]", where a,b € R, and the convex hull of [T,y > ]’[?lef over [c,d]" x [a,b]"

with a,¢ > 0 and a, > 0. We show numerically that, for general a and b, the convex hull of [, x; over [a,b]" is
much tighter than the widely used recursive McCormick relaxation, in contrast to the well-known fact that the re-
cursive McCormick procedure yields the convex hull of [ ]/_;x; whena = -1 and b = 1 (Luedtke et al. [23]).

In Section 5, we study the set of rank-one matrices whose generating vectors lie in a permutation-invariant set.
We construct semidefinite programming (SDP) relaxations of the convex hull by proposing various valid
inequalities derived from the rank-one condition of the matrix and the fact that every extreme point of a permu-
tahedron generated by a vector is a permutation of the generating vector. Finally, we perform computational ex-
periments with our relaxation for sparse PCA on several instances taken from the literature and other randomly
generated instances. We compare our results to the relaxations proposed by d’Aspremont et al. [7] and Bertsimas
etal. [6].

To increase the readability of this paper, we include a table of some frequently used notations in the appendix.



Downloaded from informs.org by [128.210.126.199] on 27 November 2022, at 13:16 . For personal use only, all rights reserved.

Kim, Tawarmalani, and Richard: Convexification of Permutation-Invariant Sets
Mathematics of Operations Research, 2022, vol. 47, no. 4, pp. 2547-2584, © 2021 INFORMS 2549

2. Convex Hull of Permutation-Invariant and Sign-Invariant Sets

In this section, we show that the convex hulls of permutation-invariant and sign-invariant sets can be readily con-
structed if their convex hulls over a fundamental subdomain are known. Given a set S, we use the notation int(S)
to represent its interior, vert(S) to denote the set of its extreme points, and conv(S) to represent its convex hull.

For a positive integer k, we denote the set of k-by-k permutation matrices by Py. Given a positive integer 7 and a
nonnegative integer p, a set S C {(x,z) € R" X RP} is called permutation invariant with respect to x if (x,z) € S implies
that (Px,z) € S for all permutation matrices P € P,,. When S C {x € R"} is permutation invariant with respect to x,
we simply say that S is permutation invariant. A real-valued function (x,z) +— f(x,z) with (x,z) € R" X RP is called
permutation invariant with respect to x if f(x,z) = f(Px, z) for all permutation matrices P € P,. When f : x — f(x) is
permutation invariant with respect to x, we say that f is permutation invariant. Moreover, any permutation-
invariant set S can be written as the lower-level set S = {(x,z)| f(x,z) < 0} of a permutation-invariant function f by
choosing this function to be the indicator function of the S, which takes value zero on the set and co otherwise.

A set S C{(x,z) € R" x R} where 7 is a positive integer and p is a nonnegative integer is called sign invariant
with respect to x if (x,z) € S implies that (X,z) € S for all X that satisfy [x| = |x].

Lemma 1 describes an important property of the convex hull of sets that are closed under certain linear trans-
formations of the coordinates of their elements.

Lemma 1. Let T € M"™"(R), and let S C R" be such that for each x € S, Tx € S as well. Then, if x € conv(S), Tx € conv(S).
Proof. The result follows because T'S C S implies that Tconv(S) = conv(TS) C conv(S). O

It follows from Lemma 1 that if S is permutation invariant (respectively, sign invariant), then conv(S) is also
permutation invariant (respectively, sign invariant).

For each x € R", we denote the ith largest component of x by xj; fori=1,...,n.
Definition 1. Given two vectors x,y € R", we say that x majorizes y, a property we denote by x >,y if Z};:lxm >
Sy forj=1,...,n—1,and 3L x5 = X0,y We say that y is weakly submajorized by x, and denote this relation
as x >y y if Z],:=1x[i] > Z§=1y[i]/ Vj=1,...,n. For simplicity of notation, we shall refer to this relation as weak majo-
rization of y by x.

The result of Lemma 2 relates majorization and permutation. Its proof follows from combining Hardy, Little-

wood, and Pélya’s theorem (Hardy et al. [12]) with Birkhoff’s theorem; see Marshall et al. [24, theorems 2.B.2 and
2.A.2].

Lemma 2 (Marshall et al. [24, corollary 2.B.3], Rado [29]). For x, y € R", x>,y if and only if y is a convex combination of
x and its permutations.

An extension of majorization, which is known as G-majorization, introduced by Rado [29] in the context of a
group of transformations, is defined using the property in Lemma 2 as the set of all doubly stochastic matrices
from a semigroup; see Marshall et al. [24, section 14.C] for more detail and references about G-majorization.
Lemma 3. Let Z be a convex subset of R" X RP. Then

(u,z)e Z,
Y:={(x,u,z) eER" X R" X RP|u >, x,
Ui > e > Uy

is convex.

Proof. First, observe that Zﬂ:ﬁ‘[i] = Z?Zlui because 11 > --- > u,. Furthermore, ij::lx[i] is a convex function being

the maximum of all possible sums of j elements chosen from x. Next, 3/, x;;; = >i.;x; and is, therefore, linear.
Therefore, Y has the following convex representation:

(u,z)€ Z,

J J

D= > forj=1,...,n-1,
P P

n n
PIEDY
i=1 i=1

Uy 22 Uy

Y =<(x,uz)eR" X R" x RF
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We next present Theorem 1, which gives an explicit description of the convex hull of a permutation-invariant set
when an explicit description of the convex hull of its intersection with the cone x; > -+ > x,, is available. This de-
scription only requires the introduction of a copy u of the variables x together with majorization constraints.

Theorem 1. Suppose S C {(x,z)|R" x R¥} is permutation invariant with respect to x € R". Then

(u,z) € conv(Sp), }
T ’

conv(S) =X := {(x, z) )

where So =S N {(u,z)|ug =+ > u,}.

Proof. To prove that X is convex using Lemma 3, it suffices to show that (1,z) € conv(Sp) implies u € A". This is
clear because conv(Sy) C conv(S) N {(u,z) | uq = - > uy,}.

We now show that S € X. As X is convex, this will also show that conv(S) C X. Consider an arbitrary (x,z) € S
and define u as u; = x;; fori=1,...,n. Then, (u,z) € Sg because S is permutation invariant and u is in descending
order. Because u >, x, (x,z) € X.

We next prove that X C conv(S). Let (x,z) € X. We show that this point can be expressed as a convex combina-
tion of points in S. Because (x,z) € X, there exists u such that (u,z) € conv(Sg) € conv(S) and u>,,x. It follows
from the permutation invariance of S with respect to x and Lemma 1 that conv(S) is permutation invariant with
respect to x. By Lemma 2, x can be written as x = 3,A;(P;u), where P; is a permutation matrix, A; > 0, and
>Ai = 1. Therefore, (x,z) = (3,Ai(Piu), z) = 3,;Ai(Piu, z), concluding the proof. O

We next present classical results that allow for a linear formulation of the majorization constraints; see Nemir-

ovski [27, section 3.3.4] for a more thorough discussion. To model Zi::lx[,‘], we express it as the value function of
the following optimization problem, where x1,...,x, € Randje{1,...,n -1}

n
max > XS
P

n
st Dsi=],
i=1
O<si<1, i=1,..n @)

To model majorization constraints, we need to enforce that for all feasible s, 3", x;s; does not exceed Zleuj. By
taking the dual of (3), we exchange the quantifier “for all” to “there exists” and obtain the following formulation,
which is amenable to direct inclusion in the model:

n
LS(j):min  jr+ Zt,-
i=1
st. x;<ti+r, i=1,...,n,
t; >0, i=1,...,n, 4)
where the dual variables r and ¢ correspond to the primal constraints 3! ;s; =j and s < 1, respectively. Because

(3) is feasible, (4) exhibits no duality gap. The constraint Zé:lui > Z]l::lx[i] is then modeled through the existence
of an (r, t) that is feasible to (4) such that Zgzluf > jr4+ 3t

Theorem 2. Suppose S C {(x,z) € R" x RF} is permutation invariant with respect to x. Then,

(u,z) € conv(Sy)
Up 2 2 Uy

Z?:l Ui = Z?:l Xi

conv(S) =4(x,2) Zi:l u; > jr + Z; fjl:, j=1,...,n-1, ’ ©)
X< t+7, j=1,...,n-1,i=1,...,n,
th >0, j=1,...,n-1,i=1,...,n

where So =S N {(u,z)|uy == uy,}.
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Remark 1. In fact, Theorems 1 and 2 remain valid for any choice of Sy that satisfies

conv(S) N {(u,z) | g =-->u,} 250 2SN {(u,z) | ug =+ >uy}.

The formulation given in (5) expresses conv(S) as the projection of a convex set with n% + 1 +p variables. This
formulation is much smaller than that which would have been obtained using a classical application of disjunc-
tive programming (see Balas [3, chapter 2]). An even smaller representation is possible using a more compact for-
mulation of the permutahedron. Goemans [10] proposed such an extended formulation for the permutahedron,
the convex hull of all possible permutations of a fixed vector u € R" using a sorting network where the numbers
of variables and inequalities of the extended formulation depend on the number of comparators of the associated
sorting network. When the Ajtai-Komlds-Szemerédi sorting network (Ajtai et al. [1]) is used, the extended for-
mulation for the permutahedron has ®(nlogn) variables and inequalities. As imposing the majorization con-
straint u >, x is equivalent to requiring that x belongs to the permutahedron generated by u, alternative extended
formulations of conv(S) can be obtained by replacing u >, x in (2) with such extended formulations. This results
in a formulation of conv(S) that is more compact than (5). For relaxations of sparse principal component analysis,
we show in Section 5.2 that this smaller formulation provides some computational benefit on larger instances in
our test set.

The ideas underlying the proof of Theorem 2 can also be applied when sets are invariants with respect to col-
lections of linear transformations that are not permutation matrices. In particular, we describe next a related con-
vexification result for sign-invariant sets.

Theorem 3. Suppose S C {(x,z) € R" x RF} is sign invariant with respect to x. Then,
conv(S) = X :={(x,2)|(1,z) € conv(Sy),u > |x|}, (6)
where So =S N (R} x RP).

Proof. Set X is convex because it is the projection of an intersection of two convex sets. We now show that S C X.
For an arbitrary (x,z) € S, define 1 = |x|. By sign invariance of S, (1,z) € S, and hence (u,z) € Sy C conv(Sp). By defi-
nition, u satisfies u > |x|. This shows that conv(S) C X.

We next show that X C conv(S). Let (x,z) € X. There exists u € R" such that (u,z) € conv(Sy) C conv(S) and
1 > |x|. Because conv(S) is sign invariant by Lemma 1, it follows that {(¥,z)|X; € {u;, —u;}} € conv(S). Therefore,
(x,2) € {(x,2)|1xi] < u;} € conv(S), where the containment follows from the convexity of conv(S). O

Next, we consider the case where the target set S is both sign invariant and permutation invariant. Although
two separate representations (2) and (6) for the convex hull already exist, we can derive a unified representation.
Inequality u>,, |x| would not be a useful description because >\ u; = 3, |x;| is a nonconvex constraint. In fact,
such a set would not even be convex, as can be seen from S = {-1,1}. Instead, we prove that the convex hull can
be represented using weak majorization. More precisely, suppose that S C {(x,z)|R" X R} is sign and permuta-
tion invariant with respect to x € R". Then, conv(S) =X :={(x,z)|(u,z) € conv(Sy), 1 =y |x|}, where Sp=5nN
{(u,2)|ug > -+ > uy > 0}. We first prove that S C X. Consider an arbitrary (x,z) € S, and define u as u; = |x|; for
i=1,...,n Then, (1,z) € Sy C conv(Sp) and u >y, |x], showing the inclusion. We next prove X C conv(S). Consider
an arbitrary (x,z) € X. Then, there exists 1 such that (1,z) € conv(Sp) C conv(S) and u > 4y, |x]. It follows that there
exists 1’ such that u>,, 1" and u’ > |x|; see Marshall et al. [24, result 5.A.9, p. 177], for example. Then, it can be
shown that (', z) € conv(S) using the same arguments that were used in the proof of Theorem 1. Because conv(S)
is sign invariant, this implies that all sign variants of (1/,z) € conv(S). Then, by the last part of the proof of Theo-
rem 3, this implies that (x,z) € conv(S). (This convex hull description can also be derived by first constructing
conv(S N (R} x RP)) using Theorem 1. Then, conv(S) is obtained by Theorem 3. The variables u’ introduced by
Theorem 3 can finally be projected using Marshall et al. [24, 5.A.9].)

The above convexification results can be easily extended to the sets that are permutation invariant or/and sign
invariant with respect to multiple subsets of independent variables.

Theorem 4. Let S C {(x,...,x",z) e R™ X --- X R™ x RF}.
1. Suppose S is a permutation-invariant set with respect to X* fork =1,...,m. Then,

@)

(u',...,u™, z) € conv(Sy), }

conv(S) =4 (x%,...,x" z
©) {( ) k>, kK k=1,...,m

where Sp =S N (A™ X+ X A" X RF).
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2. Suppose S is sign invariant with respect to x* fork =1,...,m. Then,

(u',...,u™, z) € conv(Sy), }
conv(S) =<{(x,...,x", z , 8
©) {( )uk2|xk|,k:1,...,m ®
where So =S N (R} x -+ x R}" X RP).
3. Suppose S is permutation invariant and sign invariant with respect to x* fork =1,...,m. Then,
Lo umz) € So),
conv(S) =4 (x},...,x™, 2) (L;( uk z) € conv(So) }, )
US> X, k=1,...,m

where

50:50{(u1,...,u’”,z)|u’; > > u’;k >0, k=1,...,m}.

We remark that our convexification result on sign-invariant sets can also be used to convexify reflections on a
hyperplane (Kaibel and Pashkovich [16]). In particular, consider a set S and assume that the set is closed under
reflection on (g, - ) = 0 for some a with |ja||, = 1. Assume further that Sy = S N {x|{a,x) > 0} is available. Consider
any orthogonal matrix U that aligns a along the first principal direction, so that Ua = e;. Observe that US is sign
invariant with respect to variable x;. Then, conv(US) ={z | (,z2,...,2,4) € U conv(Sp), t = |z1]} and so, conv(S) =
{x | x+(t—2z1)a € conv(Sy),t > |z1|}, where we have used the fact that U e; = a.

3. Sparsity Theorem

In this section, we first study the convex hull of the set
N|I|<,”5 = {x € R"[|lxll; < 1,card(x) < K}, (10)

where || - ||, is a sign- and permutation-invariant norm (also known as a symmetric gauge function), and introduce
the sparsity theorem (Theorem 6), which shows that the optimal value of

min [l
st.oup 2 >ug 20,
Ugsr ===y =0,
U2 o || (11)

is no more than one if and only if x € Conv(foll_) and that an optimal solution to (11) can be obtained in closed

form. In other words, given x € R", Theorem 6 gives a closed-form expression for a sparse vector u, in terms of x,
in the representative disjunct A" N R’ that weakly majorizes |x| and minimizes ||u||,. In fact, this u majorizes |x|.
This is not surprising. If the optimal u to (11) did not majorize |x|, there would exist #" such that u > u’ >, |x|; see
Marshall et al. [24, 5.A.9]. Then, because u’ is in the convex hull of u and its sign variants, it follows by sign in-
variance of || - [|; that ||u’]|; < ||u]l;, and so u’ is also optimal and majorizes |x].

We denote the set {x € R"|||x||; < r} by Bs(r). When K = 1, the convex hull is an ¢;-norm ball. The set is trivial
when K = n. Therefore, we assume 1 < K <n. When the associated norm || - ||, is the {,-norm, Nﬁf” is the feasible
set of the sparse principal component analysis problem; see d’Aspremont et al. [7].

We define

A= A"NR" (12)
and, for any vector x € R", define
(xA")z' = X[i] and (xAi)i = |X|[i], fori= 1,...,n.
When the dimension 7 of the set and the associated vector is clear in the context, we use the simpler notations
A,A+,XA, and XA, -
By sign and permutation invariance of the norm || - ||, and that of the cardinality requirement, NIﬁL is sign and

permutation invariant, and hence we can apply Theorem 4 to obtain its convex hull as a projection of a higher-
dimensional set

llulls < 1,
Conv(Nﬁf” ) ={xeR" MENIIH NA, cR" Uy > -->ug >0, 13
S U2 o [X] Ugs1 ==y =0,

u 2 wm |x|
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The extended formulation (13) can be written in closed form with O(nK) additional variables and constraints
based on the modeling technique described in Section 2. Other extended formulations are proposed in Lim [20]
and Lim and Wright [21] for the case where || - ||; is an £,-norm. In these papers, the formulations are obtained ei-
ther through dynamic programming concepts or Goemans’ [9] extended formulation of the permutahedron us-
ing a sorting network.

In this section, we describe the convex hull as a norm ball in the original variable space. The induced norm is
easily calculable if the associated norm || ||, is calculable. Moreover, given an arbitrary point in R” not in the con-
vex hull, we devise an algorithm to construct a separating hyperplane.

We first present the following lemma introduced in Li and Mehta [19].

Lemma 4. Suppose x >, y. Then, for any permutation-invariant norm f(-), f(x) > f(v).
A setin R" is called a convex body if it is a compact convex set with nonempty interior. In the next proposition,

we show that COHV(N|I|<_”‘) is a convex body.

Proposition 1. The set conv(N‘If_”‘) is a convex body.

Proof. Because N|I|<_”5 is a compact set, it follows that conv(NﬁfHS) is a compact convex set (Barvinok [4, corollary 1.2.4]).
To see that conV(Nﬁ”S) has a nonempty interior, observe that there exists € > 0 such that By(e) C Bs(1), where B (€)
represents the £1-norm ball with radius e. This follows from the equivalence of norms in a finite vector space. Notice
that vert(Bi(€)) = {*ee; | i=1,...,n}, where ¢; is ith canonical vector. Because for any x € vert(B;(€)), card(x) =1, it
follows that vert(B1(€)) C NIII<~||5’ and, so, B1(e) C conV(NIIIf”S). The result follows because 0 € int(B1(€)). O

It is well known that there exists a one-to-one correspondence between norms in R” and convex bodies symmetric
about zero and containing zero in their interior; see Matousek [25, section 14.4] for instance. Given an arbitrary norm

|- |l, we can construct its unit ball {x|||x|| < 1}, which is a convex body of the desired type. Conversely, given any
compact convex body C that is symmetric about zero and contains zero in its interior, we can define the function

felx) = min{t >0

% c c} (14)

for x e R". It is known that the function fc satisfies the properties of norms; see Matousek [25, section 14.4], for ex-
ample. Furthermore, the convex body C is a lower-level set of this norm, that is, C = {x| fc(x) < 1}.

Because conv(N; |I|<~H5) is a compact convex body that is symmetric about zero and contains zero in its interior, a
norm associated with conv(Nﬁf”;) can be defined as in (14). We denote the corresponding norm by || -||.. Because

I - |l is sign and permutation invariant, the following result holds.

Proposition 2. The set conV(N‘If,”) is the unit ball associated with a sign- and permutation-invariant norm, that is,
conv(Nﬁf”S) =B.(1).

We next show that the values of the norms || -||. and || - ||; are the same for vectors that satisfy the cardinality
constraint.

Proposition 3. If card(x) < K, ||x]|, = ||x]],

Proof. We first show that ||x||. > ||x||;. Because Nﬁf|| C By(1), it follows that B.(1) = conV(N|’|<,|| ) € Bs(1). This implies
that B.(r) C Bs(r) for any r. In particular, when r = ||x||., we have x € B.(r) C Bs(r), which implies that ||x||. > ||x||,.
We now show |[x[|, < [|x[|; when card(x) < K. Let 7 = ||x]|;, and observe that ¥ € N|I|<,Hq C B(1). Therefore, x € B.(r) or

llxlle < llxlls.  ©
We present an explicit formula to evaluate || - ||.. For an arbitrary x € R", define s(x) € RX*2 as
n
s(x); = ?%ﬁ[]ll’ i=1,...,K s(x)y = 5(x)gyq = .
Let i, be the minimum among those indices that minimize s(x);, and let 5(x) = s(x), . Now, define u(x) € R" as
Wy, if ie{l,...,i—1) '
u(x); =406(x), if ied{iy,...,K} (15)
0 otherwise.
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In the following proposition, we show that, for arbitrary x € R", we can construct a vector u(x) € A, that satisfies
the cardinality constraint and majorizes [x|.

Proposition 4. Let s(x), iy, 6(x), and u(x) be defined as above. Then,

L s(x)j41 —s(x); = ﬁ(s(x)iﬂ = Ixl) = ﬁ(s(x)i —lxlgp) fori=1,...,K-1,
2.5(x); 2 -+ 2 s(x);, and s(x);, < - < s(x),

3. u(x) 2 x|,

4. u(x)y = max {[x]) 5(2), ).

Proof. By definition of s(x),

(K = 1)s(x)j11 — (K= i + D)s(x); = (K ) ekl (K—i+1) il
s i K—i K—i+1
n n
= 2 Wy = 2ok = Il
j=i+l j=i

By adding s(x);;; on both sides, we have (K —i+1)(s(x);1 —s(x);) = s(x);4q — |x[;;), implying the first equality of
part 1. The remainder of the part can be shown similarly by adding s(x); on both sides.

To see part 2, if there is no index i in {1,...,K—1} so that s(x); <s(x);;;, the result holds trivially. Assume
now that i" is the smallest such index. Then, s(x);,; > s(x); > |x|s; = [x];7.1}, where the second inequality follows
because s(x);,; —s(x); >0 implies s(x); > |x|;;; >0 from part 1. This in turn shows, using part 1, that s(x),,, >
s(x);,1 as long as i’ < K—1. By induction, s(x);, <--<s(x)g, and by the definition of 7, s(x); > --- > s(x);. Then,
part 2 follows by defining i, as the first index such that s(x), = s(x);.

We next prove part 3. We first show that u(x) is nonincreasing. If i, = 1, then all components of u(x) equal 6(x),
and hence it is nonincreasing. Now, assume that i, > 2. By definition of u(x), it suffices to show that
|x[;,—1) = 0(x). Then, s(x); — |xl;;,—1) = (K=1i:)(s(x);, —s(x);,_1) < 0 by plugging in i =i, —1 in the first equality of
part 1. Therefore, |x|; _1; > s(x); = 0(x), completing the proof that u(x) is nonincreasing. Thus, u(x)j; = u(x);
for all i=1,...,n. Next, observe that > u(x);= >, |x|j; by definition of 6(x). This implies in turn that
Sim(x); = 3t xlpy- We next show that Z]ljzlu(x),- > Zi=1|x|m forallj=1,...,n—1. When j=1,...,iy — 1, the in-
equality holds with equality by definition of u(x). We next consider the case j > i,. If i, = K, the inequality holds
because >_,u(x); = K u(x);, = X1 u(x); = Similxlg = Z]z=1|x|[i]/ where the first and the second equalities follow
because j > K and u(x)g,q =+ = u(x), = 0. Now assume that i, < K. Because s(x); .; > s(x); and s(x); ,; —s(x); =
o (5(x);, = [xl;)) by part 1, s(x); > |xl};;, and hence 6(x) =s(x); > |x|; for all i > i,. Therefore, S u(x); -
Zé:1|x|[i] = Z]i:ixu(x)i - Z]izix|x|[i] = Zé:ix(é(x) - |x|[i]) = 0.

For part 4, first assume i, = 1. Then, u(x); = s(x);. By part 1, s(x); > |x|;;, and hence u(x), = max{|xp;;,s(x) }.
Next, assume that i, > 2. Then, u(x), = [x|y;;. By part 2, s(x), < s(x);, and hence, by part 1, s(x); < |x|;}. Therefore,

u(x); = max{|x|jy,s(x);}. O

We next show in the following theorem that u(x) can be used to compute ||x]|. if || - ||, is calculable. To this end,
we introduce the following notations. Let f be an optimal solution to

max {7 u(x)]l|flls. < 1}, (16)
where || - ||, is the dual norm of || - ||,. We now define 8 and x € R" as follows:

B, i=1,...,0 -1, R
B; for i=1,...,iy,—1,

K A
0; = ZF—’X’Bf, i=i,.. K, KN~ ZKB (17)
K—-i +1
0 otherwise,

Theorem 5. For an arbitrary x € R", let u(x) be defined as in (15). Then, ||x||. = ||u(x)|l;-

Proof. Recall the definitions of s(x), iy, and 6(x). We have [|x]|. < |[u(x)|. = |[u(x)||;, where the first inequality is be-
cause of part 3 of Proposition 4 and Lemma 4, whereas the equality is due to Proposition 3. We next show
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[Ixll. > [lu(x)ll;. Let r = [[u(x)||; so that u(x) € Bs(r). By the definition of || - ||, and f%, we have ﬁTu(x) =r. Moreover,
BTu < |lull; <  for all u € By(r), where the first inequality is because f3 € Bs-(1), and the second inequality is be-
cause u € B(r). Because u(x) € A,, it follows from rearrangement inequality that, without loss of generality, we
may assume that p € A,.

We next show that 6" u < r for all u € B;(r), where 0O is as defined in (17). Define B = (f%l, .. .,BK, 0,...,0) and
B:: (fﬂl,...,ﬁK, —EK+1,..., —ﬁn), and observe that 8 :¥. By sign invariance of ||-||; and thus of ||- ||, |- [ls,
p € Bs(1), and so B € Bs(1). However, because f >, 6, Lemma 4 shows that 6 € B;(1). This in turn shows that
0"u < ris valid for B (r)

We next claim that yTu < 1 is valid for NK L7 where y is as defined in (17). Assume that, on the contrary, there
exists i1 € N|| . such that x"i > 1. Because of the rearrangement inequality and the fact that x € A, we may as-
sume that il € A,. This yields the contradiction 1 > 07il = xTil > 1, where the first inequality is by the validity of
0"u < 1 for By(1), which outer-approximates NIII<~||5’ and the equality can be arranged by choosing i with support
at most K. It follows that x "u < ris valid for B.(r) or, in other words, that x € B..(1), where || -||.. is the dual norm
of || - |- Therefore,

%l = llxa, lle = max{BTxa | IBll < 1} = x"xa., (18)

where the inequality is because ||x||.. < 1. However, the following calculation shows that:
. -1 Zz z)ﬁ i= ltl I[z 19
X XA, Zﬁ |7 Z|x|m Zﬁ |l + ZﬁzK =B u(x)=r. (19)

Combining (18) and (19), we conclude that |[x]|, > |[u(x)|[;, where we have used that r was defined to be
[u@)ll;. O

Corollary 1. For a fixed x € R", let x be as defined in (17). Then, x "u < 1 is valid for NH L’ Axlle =1, and xTxa, =||x|.. In
particular, xTu < 1 separates x,, if x & Conv(N”‘|| )-

Proof. It was already shown in the proof of Theorem 5 that x"u < 1 is valid for NK|| Let u(x) be as defined in
(15). Then, x x5, = ||u(x)||5 = ||x|,, where the first equality is from (19) and the second equahty is from Theorem 5.
Therefore, ||xa, |l. = x"xa, < lIXllollxa, llc < llxa, |l., where the first inequality is due to Cauchy-Schwarz inequality,
and the second inequality is because the proof of Theorem 5 shows that |||l < 1. Therefore, equality holds
throughout, and, in particular, ||x||. =1. If x ¢ conV(N|| Vi ) =Bc(1), then x"xa, =||x||. > 1, where the inequality is

because x ¢ B.(1). O

Remark 2. In the proof of Corollary 1, let T be the transformation (a composition of sign conversions and permu-
tations) that maps x to x,, . Then, the hyperplane that separates x and N, |I|<-H~ isT'(x)"u<1.

Theorem 6 (Sparsity Theorem). For an arbitrary x € R", u(x) as defined in (15) is an optimal solution to
min  [ful;
st up >2->ux 20,
Uger ==y =0,

uzwm |x|'

Proof. First, u(x) is feasible because of its definition and part 3 of Proposition 4. Now, it suffices to show that
llu(x)ll; < ||lully for any feasible solution u. Because u > x|, there exists u” such that u >,,u" and v’ > |x|; see Mar-
shall et al. [24, 5.A.9], for example. Then, |lul|; = [lull, = [[v’|l. > [lx]l. = [[(x)|l;, where the first equality follows
from Proposition 3, the first inequality follows from Lemma 4, and the last equality follows from Theorem 5.
Finally, to prove the second inequality, observe that |x| can be written as a convex combination of 1" and its
sign invariants because u’ > [x|. By the triangle inequality, positive homogeneity, and the sign invariance of
-l llxelle < flw’fle. @

Example 1. Consider the set NH |, Where n = 6. Let x := (2—5, T o B 2—8) Note that ||x||, =1 and x € A,. For il-

lustration, we establish that x ¢ conV(N|| 1,) by constructing an explicit separating hyperplane described in (16)
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and (17). First, we construct the vector s(x) € R? as follows:

" :&:1(&3&&&;):@
173-1+1 3128 "28 28 28 28 28] 56’
6
S(X) :M:1(5+4+3+2+1):15
273-2+1 2128 28 28 28 28] 56’
N :1(i+3+£+l)=§
373-3+1 1128 28 28 28] 56

Observe that s(x), = min {s(x);,s(x),,s(x)5}. Next, we compute that

W)y =31 =20, () = (@) = 5(0)y = 2, u(x)y = u(x)s = u(@)g =0.

28’ 56’
Because ||u(x)|l, = 1.036 ---> 1, we conclude from Theorem 5 that x ¢ COIAlV(Nﬁ"HZ). We now derive the separating
hyperplane. We first separate u(x) from By(1). Because || - ||, is self-dual, = u(x)/||u(x)|, is an optimal solution to
(16). Then, the inequality BTu < 1 (or, equivalently, u(x) "u < |[u(x)|),) is valid for By(1). Furthermore, it separates
u(x) because u(x) u(x) = ||u(x)||§ > ||lu(x)|l,. We next construct a hyperplane that separates x from Nﬁ L Define 6

and yx as follows:

1 1 27 1 1 15
6 = :—u(x) =, 6 :6 :7( + ):——/ 9 ::6 :0/
=P o " T ez 2T T3 PR T e O ‘
1 1 27 1 1 15
X1 = =—Ulx) = —, ==X == —+ =
=B ol " T uh2s” ©=3-2+1 P2 TP =, 56

Observe that |||, =1|6|l, =1, but ||x]l, > 1. Now consider the inequality x"y < 1. It is valid for Nﬁ_”z because for

any u eNﬁ‘llz’ XTu< xTua, =0Tua, < ||0lllua,ll, < 1. Moreover, it separates x because x'x=

.
1 (271515151515) (22 5 4 3 2 1)_
||u(x)H2(28'56'56'56'56'56) (28’28’28’28’28’28)_1'036 >1. 0O

Next, we consider some special cases of the set Nﬁf”‘ defined in (10) and provide explicit convex hull
descriptions. ‘

Proposition 5. Let S = {x € R7|card(x) < K, [|x[|o, < 7}, where [|x]|o, = |x|[1). Then,
conv(S) = {x e R7| ||x]l; < K, ||x|lo < 7} (20)

Proof. Observe that S/r = {x € R7|card(x) < K, ||x||o, < 1}. Then,
conv(S) =r conv(S/r) ={y € RT | [lu(y)lloo < 7} = {y € RY [max{lyl;1}, s(wh} < 7},

where the second equality follows from Proposition 2 and Theorem 5, and the third equality from part 4 of Prop-
osition 4. Because s(y); = %27:1 lyl;;; by definition of s(y), the result follows. [

When |- ||, is the £,-norm, the norm || - ||. associated with conv(NIK,HZ) is known to be the K-support norm (or K-
overlap norm). An explicit formula for this norm is introduced in Argyriou et al. [2]. We next provide an alternate
derivation of this formula using our arguments. For consistency with literature, we denote the K-support norm
by I 7.

Lemma 5. The unique integer r € {0, ..., K — 1} that satisfies
Pxlik—r-17 > s(X)x— = |Xljx-r (21)
is r = K — iy, where |x|jg) = 0o by convention.

Proof. This result follows from Proposition 4, and we refer to its parts directly in the proof. Let |x|y;; < s(x); <
|x[;_1] for some i € {1,...,K}. We show that i = i,. First, we show that |x|[]-] < s(x)]- forallj > i. Letj + 1 be the first
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index no less than i so that [x|;;,1) > s(x);;;, and observe that, in fact, j+1 > i. Then, we obtain the contradiction
|l je1) < Ixlpj) < s(x); < s(x)j4q <[x|[j41), where the third inequality is by part 1. Therefore, |x|;; < s(x); for j > i,
which implies by part 1 that s(x); < ---< s(x)x and by part 2 that i > i,. Because [x|;_;) > s(x),, it follows by part 1
that either i = 1 or s(x),_; > s(x);. In either case, it follows that i < i,. Therefore, i =i, = K—-r. O

Proposition 6 (Argyriou et al. [2, proposition 2.1]). Suppose r the unique integer in {0, ..., K — 1} satisfying (21). Then,

s K-r-1 ) 1 n 2%
lIxll¥ = 20 Mt Z Xl ] |- (22)

Proof. By Theorem 5,

i1 2 :
Il = [fu(x)ll, = (ZIXIfﬂ + (K =iy +1)o(x) ) [lel (ZI |[1]) ]
i=1

The result then follows because Lemma 5 establishes that r = K—i,. O

3.1. Convexification of Sets of Matrices Characterized by Their Singular Values

Let M™"(R) be the set of m x n real-valued matrices. For M € M™"(R), let 01(M) > -+ > 0,(M) denote the singu-
lar values of M, where g =min{m,n}, and let 0 : M""(R) — R? be defined as o(M) = (61(M), ...,0,(M)). Let
[Mlls, = 01(M) and [[M]], = 37 ,0i(M) be the spectral norm and the nuclear norm of M, respectively. In this subsec-
tion, we consider sets of matrices that are characterized by their singular values. More specifically, we are inter-
ested in sets of the form S = {M e M™"(R)|fi(c(M))< 1,i=1,...,r} and their convex hulls, where each f; is a
sign- and permutation-invariant function. Define S = {x e R7| fi(x) < 1,i =1,...,7}, where g = min {m, n}. It is clear
that M € S if and only if ¢(M) € S. As we show next, Theorem 4 implies that convex hulls of sets of the form S
can be obtained by studying S instead. Similar results, although dealing with closed convex hulls, can be derived
using conjugacy results of Lewis [18]. We include a direct proof based on Theorem 4.

Theorem 7. For peZ.. and g€ Z, and each i€ {1,...,r}, let fi:(x,z) — R, where (x,z) € R xR, be sign- and
permutation-invariant functions with respect to x€RF. Let m,ne€Z, such that min{m,n}=p, and define
S ={(M,z) e M""(R) X R | fi(c(M),z) < 1,i=1,...,r}. Furthermore, define S = {(x,z) e R* x R7|fi(x,z) < 1,i=1,...,1}.
Then,

conv(S) = X := {(M,z) e M"™"(R) x R7 | (¢(M), z) € conv(S)}.

Proof. We first show that conv(S) € X. Consider (M, z) € conv(S), so that (M,z) = 3. y](Mf ), where (M/,2)) € S
and y; are convex multipliers. For k € {1,...,p} and any Y € M™"(R), define s5(Y) := Zl 10(Y)j; to be the kth Ky
Fan norm. Then, it follows by sublinearity and positive homogeneity of norms that s*(M) < Vs s€(M/). In other
words, Zj)/ja(Mj) >um0(M). Let o =o(M). Because (M/,z)e€S, it follows that fi(o/,z) < 1. Therefore,
(Z].yjaf,z) € conv(Sg), where Sop=SnN{(0,z)|01 = -+ 2 0, 2 0}. Then, it follows by part 3 of Theorem 4 that
(0(M), z) € conv(S) and (M, z) € X.

We now show that conv(S) 2 X. Let (M,z) € X, and let Udiag(c)V" be the singular value decomposition of
M, where diag(c) € M™"(R) is the diagonal matrix, whose diagonal is the vector ¢, and ¢y > --- > g, > 0.
Because (0,z) € conv(S), it follows by part 3 of Theorem 4 that there exist o’ € R?, (¢/,7) €Sy and convex
multipliers y; so that (¢’,z) = ijj(af,zf ) and ¢’ >4 0. Now, if ¢ is obtained by permuting ¢/ or changing the
sign of some of its entries, it follows readily that (U diag(@f )VT,2/) € S, because these operations do not alter
the singular values of the matrix. Because ¢’ >0, 0=>,xIx0’, where xj are convex multipliers, and
each T, permutes the entries of ¢’ and possibly changes the sign of a few of the entries. Then, it follows that
(0,2) = Syxi(Txo’,2) = Zkzj)(kyj(Tkaf,zf). Because U diag(0)VT is a linear operator of 6, 32Xy =1, and we
have already shown that (U diag(Tyo/)VT,2/) € S, it follows that (M, z) € conv(S). O
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In the following, we denote the set of p X p real symmetric matrices by S¥, and for any M € S, we denote the
eigenvalues by A(M). In this context, a similar result can be shown using eigenvalues instead of singular values.

Theorem 8. For p€Z,, and qeZ, and each i€ {1,...,r}, let f;: (x,z) — R, where (x,z) e RP X R7 be permutation-
invariant functions with respect to x € RF. Define S={(M,z) e &’ xRY | fi(AM),z) < 1,i=1,...,r}. Furthermore, define
S={(x,z) eRF xR fi(x,2) < 1,i=1,...,r}. Then,

conv(S) = X:={(M,z) € S xR | (A(M), z) € conv(S)}.

Proof. We provide only a proof sketch because the proof is similar to that of Theorem 7. To show that conv(S) C X,
we consider (M, z) = ij/j(Mf,zf ) € conv(S) and use the fact that Zj)/j/\(Mf )>,, A(M) (Horn and Johnson [14, theo-
rem 4.3.27]). Then, the result follows from part 1 of Theorem 4. To show that conv(S) 2 X, we consider (M,z) € X
and express Zj)/j()\j ,2) 2 (A(M), z) for some (A, 2/) € S. Then, we observe that this implies that for any orthogonal

matrix U and a permutation 7, (U diag(t(V))UT,z) € S. The result is then derived in a manner similar to that in the
proof of Theorem 4 except that instead of using the singular value decomposition U diag(c)V" of M, we use the
eigenvalue decomposition M = UAM)UT. O

The rank of a matrix can be represented as the cardinality of the vector of singular values. Because cardinality
is a sign- and permutation-invariant function, we obtain the following result as a special case of Theorem 7.

Corollary 2. Let S = {M € M"™"(R)|rank(M) < K, ||c(M)||; < r}. Then,
conv(S) = {M € M""R)||lc(M)||. < r}.

Consider S in Corollary 2. Recall that determining whether an arbitrary matrix M € M™"(R) is in the convex hull
conv(S) can be easily done when the norm ||- ||, is calculable. In particular, when ||- ||, is the Euclidean norm, a
given matrix M is in conv(S) if |[o(M)|[} < r; see (22) for an explicit formula for ||-|[¥. Semidefinite representabil-
ity of the convex hull will be discussed in Section 3.2.

Next, we consider the special case where || - ||, is the lc norm. Proposition 5 and Theorem 7 together give an al-
ternative proof for the following result.

Proposition 7 (Hiriart-Urruty and Le [13, theorem 1]). Let S ={M € M""(R)|rank(M) < K, |Mlls, < 7}. Then,
conv(S) ={M e M™"R)| Ml < K, [IMllg, < 7}.

3.2. Semidefinite Representability of Sets of Matrices Characterized by Their Singular Values

We presented in Corollary 2 a convex hull result for a set of matrices S that is described using their singular
values. The resulting convex hull is written in a norm || - ||, induced by the defining norm || - ||, of S. In this subsec-
tion, we discuss the representability of this set as the feasible set of a semidefinite programming problem. A set
is called semidefinite representable if it is a projection of a set expressed by a linear matrix inequality. We
remark the following well-known results about semidefinite representability; see section 4.2 of Ben-Tal and
Nemirovski [5].

Lemma 6. The following sets are semidefinite representable:
1. the epigraph of the sum of p largest singular values of a rectangular matrix,
2. the epigraph of the sum of p largest eigenvalues of a symmetric matrix,
3. the graph of the sum of all eigenvalues of a symmetric matrix,
4. the set A N B, where A and B are semidefinite representable.

In particular, we consider the set S = {M € M""(R)|rank(M) < K,f(c(M)) < r}, where g = min{m,n}, and f:
A+ — R is a quasiconvex function. A function f is said to be quasiconvex on A, if for A €[0,1] and x,y € A;, we
have f(Ax + (1 - A)y) < max{ f(x),f(y)}. We assume this function has semidefinite-representable lower-level sets.
Then, we show that the convex hull of S, the set of rank-constrained matrices whose singular values belong to a
lower-level set of f, are semidefinite representable.
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Theorem 9. Let = min {m,n} and S = {M € M"™"(R)|rank(M) < K, f(c(M)) < r}, where f : A, — R has semidefinite-
representable lower-level sets. Then, conv(S) is semidefinite representable.

Proof. Define g : R? — R so that g(x) = f(xa, ). Observe further that g is sign and permutation invariant. Then, let
S={xeR7|card(x) < K,g(x) < r}. By sign and permutation invariance of S and Theorem 4,

fw<r,
uy > >ug =0,
conv(S) =4x e RY ! K
uK+l = ... = un :0,
U o X
Therefore, by Theorem 7,
flu) <r,
. up > > ug 20,
conv(S) =M € M"™"(R) ! K
Ugep == Uy =0,
U > om 0(M)
By the definition of weak majorization, the convex hull has the following representation:
fw) <7,
u > e 2> Ug = 0/
Ugyr ===, =0, (23)

i ]
Dz >oiM), j=1,...,K
i=1 i=1

The semidefinite representability of (23) follows from Lemma 6 and the semidefinite representability of the level
set {u| f(1) < r} and the introduced linear inequalities. O

Although Theorem 9 is similar to proposition 4.2.2 in Ben-Tal and Nemirovski [5], we discuss next how these
results differ. First, we introduce a rank constraint and thus treat a nonconvex set. Second, we discuss the repre-
sentation of the convex hull rather than the set itself. Third, we do not require monotonicity of f(x) and require
semidefinite representability only over A, (= A]) instead of R%. We briefly describe why the added assumptions
are required in proposition 4.2.2 in Ben-Tal and Nemirovski [5], but not in our result. This is because, when f(x)
is not monotone but is quasiconvex over A, its extension to R} defined using g(x) :=f(xa,) is not necessarily
quasiconvex. As such, the lower-level sets of g(x) are not always semidefinite representable. To see this, consider
f(x) =1—-x, where x € R. Then, {x| g(x) < 0} is not a convex set because g(1) = g(—1) = 0, whereas g(0) = 1. On the
contrary, consider an f(x) that is monotone, permutation invariant, and quasiconvex over R}. Let
C ={x| g(x) < r}. We argue that C is convex and can be expressed as X = {x| f(u) < r,u € Ay, u >,y |x|}. First, ob-
serve that Theorem 4 shows that X = conv(C) 2 C. Now, we argue that X C C. To see this, assume x € X. Then,
xa, € X because X, being conv(C), inherits the sign and permutation invariance of C. Then, there exist u# and u’
such that u>,, 1’ > x5, and f(u) < r. Therefore, we have g(x) =f(xa,) < f(1') < f(u) < r, where the first inequality
is from monotonicity of f. The second inequality is because u and #’ are nonnegative, u’ is in the convex hull of u
and its permutation variants, and f is quasiconvex and permutation invariant. The third inequality follows by defi-
nition of u. Therefore, it follows that x € C.

Corollary 3. Let S = {M € M""(R)|rank(M) < K, [[o(M)||; < r}, where || - |\, is a permutation-invariant monotone norm.
Then, conv(S) is semidefinite representable. In particular, when ||o(-)|l; is a Ky Fan p-norm (the sum of p largest singular
values) for some p =1,...,min{m,n}, the convex hull is semidefinite representable.

Similarly, we can prove the following result, where S] € M7(R) is the set of positive semidefinite symmetric
matrices.

Theorem 10. Let S = {M € S |rank(M) < K,f(A(M)) < r}, where f : Ay — R has semidefinite-representable lower-level
sets. Then, conv(S) is semidefinite representable.
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Proof. Define g: R} + R so that g(x) = f(xa). Then, let S = {x € R |card(x) < K,g(x) < r}. By permutation invari-
ance of S and Theorem 4,

f<r,
up =-->ug =0,
conv(S)=dxeRl| K
Ke1 == Uy =0,
U2pyX
Therefore, by Theorem 8,
f) <,
— u 2 2 u > ,
conv(S) = {Me st | K
Ugsp == Uy =0,
u >, A(M)
By the definition of majorization, the convex hull has the following representation:

fw <,

Uy > -2 ug 20,

uK+1 :...:un: ,

] j
Zul > ZA/(M)/ ] = 1/ /K - 1/ (24)
i=1 i=1
K q
DU = 2 M)
i=1 i=1

The semidefinite representability of (24) follows from Lemma 6 and the semidefinite representability of the level
set {u|f(1) < r} and the introduced linear inequalities. O

The ideas in the above proof can be extended, using disjunctive programming techniques, to symmetric matri-
ces that are not necessarily positive semidefinite. Because the eigenvalues are no longer nonnegative, we cannot
impose the restriction that # > 0 and, thus, assume that ug,1,...,u, =0. Instead, we express the rank constraint
as a union of sets, each of which satisfies 1,41 =---= tty4,—x = 0 for some a € {0, ..., K}. Then, we obtain conv(S) as
the convex hull of a union of semidefinite-representable sets. Using the disjunctive programming argument of
Ben-Tal and Nemirovski [5, proposition 3.3.5], this yields a lifted representation of a set that outer-approximates
conv(S) and is contained in clconv(S).

4. Convex Envelopes of Nonlinear Functions

The problem of finding convex envelopes of nonlinear functions is central to the global solution of factorable prob-
lems through branch and bound. When the domain over which the envelope is constructed is a polytope P, it is of-
ten the case that the envelope is completely determined by the values that the function takes on a subset of the
faces of P, or more generally, a subset of its feasible points. If the above property holds, disjunctive programming
techniques can often be employed to provide an explicit (although typically large) description of the envelope,
through the introduction of new variables for each of the important subsets of P. In this section, using Theorem 4
as a foundation, we show that for certain functions defined over permutation-invariant polytopes, (i) envelopes
can be built without recourse to disjunctive programming (Proposition 8), and (ii) polynomially sized disjunctive
programming formulations can be constructed even when the number of faces of P important in the construction
of the envelope is exponential (Theorem 11). These results yield compact envelopes descriptions for specific fami-
lies of functions (Propositions 9 and 10). We also provide numerical evidence that the use of these techniques pro-
duces relaxations of multilinear functions over permutation-invariant hypercubes that are significantly stronger
than those obtained using a recursive application of McCormick’s procedure. The techniques can be extended to
handle epigraphs of singular values/eigenvalues of matrices using the ideas presented in Sections 3.1 and 3.2.

Definition 2. A function ¢: C+— R is said to be Schur concave on C if for every x,y € C, x>,,y implies that
P(x) < D(y)-

Various functions have been shown to be Schur concave, including the Shannon entropy > ; x;log (xl,) and ele-
mentary symmetric functions e, mplp=kl TigfXi- Symmetric concave functions are also Schur concave. More
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complex Schur-concave functions can be constructed from known Schur-concave functions using some composi-
tions or operations that preserve Schur concavity; see Marshall et al. [24, chapter 3] for further detail.

In this section, for any function ¢ : C — R, we denote the convex envelope of ¢ over C by convc(¢). A com-
mon tool in the construction of convex envelopes is to restrict the domain of the function to a smaller subset. We
say that a function ¢:C+— R can be restricted to X, where X CC, for the purpose of obtaining convc(¢p) if
conve(@|x) = conve(¢), where ¢ | x(x) is defined as ¢(x) for any x € X and +oo otherwise.

First, we establish in Lemma 7 that when deriving the envelope of a Schur-concave function over a permutation-
invariant polytope, it is sufficient to restrict attention to those points in the domain that are not majorized by other
feasible points. When coupled with a simple domain structure, this result permits a description of convexification
results without the use of majorization inequalities, in a smaller dimensional space.

Lemma 7. Let ¢:P+—R be a Schur-concave function, where PCR" is a permutation-invariant polytope. Let
M :={x € P|Pu € Pwithu>,xandup # xp}. Let S := {(x,9)|p(x) < ¢ < a,x € P} and X := {(x,)|p(x) < ¢ < a,x € M}.
Then, conv(S) = conv(X).

Proof. Because M C P, it follows that XC S and, therefore, conv(X) C conv(S). Now, consider (x’,¢") € S\X.
Therefore, p(x') < ¢' < a and x’ € P\M. Let x/ =157 _,x/, for all i € {1,...,n}. That is, all components of x”" are
identical. Let v’ := arg max {||lu — x”|||u >,,x’, u € P}. The maximum is achieved because the feasible set is compact
and because the objective is upper semicontinuous. Assume by contradiction that there exists " € P such that
Yy 2, u" and y) # uj,. Because 1’ can be written as a convex combination of at least two permutations of i and
the objective of the problem defining u’ is permutation invariant and strictly convex, it follows that
lly’ —x"|| > [[u" —x"||, violating the optimality of u’. Therefore, there does not exist ' € P such that iy’ >,,u’ and
yu # ). In other words, u’ € M. It follows that, for any permutation matrix Q € P,, Qu’ € M. Because ¢ is Schur
concave, then p(Qu’) = p(1') < Pp(x’) < ¢’ < a. Therefore, (Qu’,¢") € X. Finally, because x'<,, 1/, x’ can be written
as a convex combination of permutations of u’. Therefore, (x’,¢") € conv(X). We conclude that S C conv(X). O

Lemma 7 requires the identification of the set M, which consists of points in P that are not expressible as a con-
vex combination of another point in P and its permutations. In Lemma 8, we characterize such points as those
that have a supporting hyperplane of a specific form. Later, we discuss how these results can be combined to ob-
tain, in closed form, convex envelopes of various Schur-concave functions.

Lemma 8. Let x” € P, where P is a permutation-invariant polytope. Let 1t be a permutation of {1,...,n} such that for each
i€f{l,...,n=1},x7; > X7,y Then, there exists u’ € P with u’ 2y, x" and u), # x}, if and only if there does not exist a
R" such that ay) > i) forallie {1,...,n =1} and 3L a:(x; — x]) < 0 is valid for P.

Proof. We first show that if such a exists, there does not exist #” € P such that u’ >,,x" and u, # x),. Assume by
contradiction that such a u” exists. Because P is permutation invariant, we may assume that u] , > u7 ;) for all
ie{l,...,n—1} by sorting u’ if necessary. Because u’ >, x" and 1’ # x’, there exists y’, 0 >0, ke {1,...,n—1}, and
re{l,...,n—k}suchthatu’ >,y >,x, y;(k) = x;(k) +0, y;(km = x;(km — 0 and y; = x] otherwise; see Marshall et al.
[24, lemma 2.B.1]. Because u’ € P, P is convex and permutation invariant, and because y’ can be written as a con-
vex combination of u’ and its permutations, it is clear that y’ € P. Therefore, > ,a;(y;—x/)<0 or
Ar(k) = Ar(k+r) < 0. This is a contradiction to the assumed ordering of a.

Now, we show that if there does not exist u” € P such that u’ >, x" and u/, # x,, we can construct such a vector
a. Define a polyhedral cone K := {37 ) (eni) — enivn) | > 0}, where ej represents the jth standard basis. Ob-
serve that v € K (equivalently, v > 0) implies that v>,,0. More specifically, given v € R", let S}[v] be the partial
sums so that SJ'[v] = Zlevn(i). Then, v € K if and only if Sf[v] is nonnegative for every k and S}[v] = 0. To verify
that the latter set is contained in K, write any v in that set as v = Z,’z;ll SE[v](en() — erges1)) to see that v e K. To
show the reverse inclusion, verify that S [e () — exi+1)] = 0, where the last inequality is satisfied at equality. Be-
cause 3% v > SF[v] for all k and 3%, v; = ST[v], v € K implies that v>,,0. We next construct the polyhedron
C:=P-K-{x"}, where the difference is the Minkowski difference. Because x’ € PN (K +{x’}), it follows that
0€C. Let (a’,x) < 0 define the minimal (possibly trivial) face F of C containing zero. We show next that a can be
chosen to be a’. First, note that for x € P, x — x’ € C. Therefore, as claimed, (a’,x — x") < 0. Because e(;;1) — ez € C
forall ie{l,...,n—1}, we have that a;z(l. )~ a;(i) < 0. We now show that the inequalities are strict; otherwise,
there exists a point in w € C so that w > g 0 such that there is a k for which SJ'[w] > 0. This suffices because if there
exists w=u—-veCNK, where u € P and v —x’ € K, then we have u> g v > x’, which in turn proves the existence
of u € P that majorizes x’. Furthermore, by showing S/‘[w] > 0 for some k, we have u, # x),, which contradicts our
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assumption that such a u does not exist. Assume that the inequality is not strict for some k € {1,...,n -1} so that
(@, er(es1) — €n(r)) = 0. Then, for € > 0, we define we = €(ex) — enx+1)) € K and show that, for a sufficiently small €,
w, € C. Because —w, € F and zero is in the relative interior of F, it follows that there exists an € such that w, € C.
Moreover, Sf[w.] = € > 0. As we argued above, the existence of such a w. contradicts our assumption and, so, we
conclude thata ; , —a;, <O0forallie{l,...,n-1}. O

Lemmas 7 and 8 can be combined to develop convex envelopes of Schur-concave functions. This is because,
taken together, they prove that it suffices to restrict attention to a subset M of P in order to construct the convex
envelope. To better understand the structure of M and to illustrate potential applications, we derive in Proposi-
tion 8 the closed-form description of the convex envelope of a Schur-concave function over [a,b]". In this case,
M is contained in the one-dimensional faces of [a,b]", the key insight that allows for the derivation of the closed
form. Although we provide a self-contained argument for this fact in the proof of Proposition 8, this inclusion
can be seen as a special case of Lemma §, a visualization that serves to illustrate the use of Lemma 8 in character-
izing M. To see this special case, observe that x’ € M N A" only if there is an inequality (,x—x’) < 0 valid for
[a,b]" such that B, >---> B, . Because such an inequality is tight at x’, it can be derived as a conic combination of
facet-defining inequalities tight at x’. The facet-defining inequalities of [a, b]" are —x;< —a and x; < b for
i=1,...,n. Let F(x") be the set of facet-defining inequalities tight at x’, and for any facet-defining inequality in
this set, say, (@,x—x') <0, let L, ={(t,t +1)|a; > a;1}. It is easy to see that, for x’ € [a,b]",|L,| < 1 for each
a € F(x); that is, each L, contains at most one pair. Then, for  to be derived as a conic combination of inequalities
in F(x’), it must be that {(i,i + 1)}?:_11 C Uger(v)La- Because |L,| < 1, it follows that |[F(x’)| > n — 1. Therefore, M is a
subset of one-dimensional faces of the hypercube. More generally, a similar argument shows that if there exists a
ke{l,...,n—1} such that |L,| < k, then |[F(x")| > [”—El'l, and, consequently, M is a subset of n — f%] faces of P.

Proposition 8. Consider a function ¢(x):R"+ R that is Schur concave over [a,b]" and let S* :={(x,})|Pp(x) <
¢ < a,x €[a,b]"}. Forany x € [a,b]", define S(x) = 31, (x; —a). For any s € [0,n(b—a)], let i* = max{i|i(b—a) < s} and

b ifi<#,
w=Ja+s—(b-a) ifi=i+1, (25)
a otherwise.

Let " :={(x,$)|p(u’W) < ¢ < &, x € [a,b]"}. Then, conv(S¥) = conv(®*). Moreover, if ¢ is component-wise convex,
then ®% is convex.

Proof. We first show that u5*) >, x’ for each x’ € [a,b]". This follows because u°*") simultaneously maximizes the

continuous knapsack problems max{37_,x;| 3, x; = S(x’) + na, x € [a,b]"} for all j because the ratio of objective
and knapsack coefficient of x; reduces with increasing i, and x” is a feasible solution to these knapsack problems.

We now show that S* C ©*. Let (x',¢’) € S*. Therefore, p(u°*)) < p(x’) < ¢ < a, where the first inequality fol-
lows from Schur concavity of ¢ and u**) >,,x’, and the remaining inequalities follow because (x’,¢’) is feasible
to S%. Therefore, (x’,¢") € ©“.

Now, we show that ®* C conv(S¥). Let (x’,¢’) € ©®". Because u*) € [4,b]" and ¢p(u5*)) < ¢’ < a, we conclude
that (15%),¢’) € S*. Then it follows that (x’,¢’) € conv(S%) because u5*) >, x" implies that x’ can be written as a
convex combination of permutations of #°*), and S is permutation invariant in x.

To show that ®" is convex when ¢ is component-wise convex, we write ©" as proj, » 2", where E* =
{(x,5,0)|p(s) < p< a,xe[ab]",s=>" (xi—a)} and @(s) = P(u). The result follows if ¢(s) is convex over
[0,n(b—a)] because ©" is expressed as the projection of the convex set E®. First, observe that, for
se(i(b—a),(i+1)(b—a)), the convexity of ¢(s) follows from the assumed convexity of ¢(1°) because, in this inter-
val, u° varies only along the ith coordinate. Now, choose k € {0, ...,n — 1}, and let 5 = k(b — a). To prove the result,
it suffices to verify that the left derivative of ¢(s) at 5§ is no more than the corresponding right derivative. For any
€ >0, observe that u® +ee >, u° + eegyq. This follows because (1 —A)(uf +€,u5, ) + A5, ui +€) = (U, u5, | +e€),

where 0 <A =—-——<—< 1, showing that 1° + €epy1 can be expressed as a convex combination of 1° + eey and its
k k+1

permutations. Because ¢(+) is Schur concave, it follows that ¢(u® + eex) < G(u° + €ers1) = @(5 + €). Then, the follow-
ing chain of inequalities follows:

o PO =G =6 L 005) ~ 9 —ee) _ 008 +ee) = p) _ 96 +e) —p6)

el0 € el0 € €l0 € el0 €
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Figure 1. The thicker segments indicate {uS® |x €[2,5]°}, a set of points in A® that are not majorized by other points in R3 (up to
permutation).

where the first equality is by the definition of ¢(-) and u°, the first inequality is from the assumed convexity of
¢(-) when the argument is perturbated only along the kth coordinate, and the second inequality is because ¢(u° +

eer) < (5 +e)and ¢(u) = p(3). O

In essence, Proposition 8 shows that we can reduce our attention to the edges of the hypercube belonging to
A" in our construction of conv(5%); see Figure 1 for an illustration when 2 = 2 and b = 5. A similar result can be
shown for upper level sets of quasiconcave functions over general polytopes (Tawarmalani and Richard [32]).
Symmetric quasiconcave functions are a subclass of Schur-concave functions. In other words, both the results
show that for symmetric quasiconcave functions over permutation-invariant polytopes, it suffices to consider the
edges of the polytope to construct the convex hull. However, the result in Tawarmalani and Richard [32] applies
to general quasiconcave functions over arbitrary polytopes, whereas Proposition 8 applies to Schur-concave
functions over a hypercube. Perhaps more importantly, the result in Proposition 8 also applies to level sets of the
functions, whereas the result in Tawarmalani and Richard [32] applies only to convex envelope construction.

Permutation invariance also helps with constructing compact extended formulations of certain nonlinear sets.
To motivate this statement and introduce the following result, consider the set Z’ = {(x,z) € [a,b]" X R|z = [T, x:}.
It is well known that, in order to generate conv(Z’), it suffices to restrict x to the vertices, ' = {a,b}", of the hy-
percube [a,b]". More precisely, conv(Z’) = conv(Uyez (x, [T, X)), where each disjunct in the union is a polytope
with compact description (a single point). A higher-dimensional description of the convex hull of this union can
be obtained using classical disjunctive programming results. Because the dimension of this formulation depends
linearly on the number of disjuncts, |F’|, such an approach has found limited practical use for the given example,
as |F’| is exponential in n. Surprisingly, taking advantage of the permutation invariance of Z’ through Theorem 1
allows for a much more economical use of disjunctive programming. Intuitively, this is because the number of
elements of 7’ required to compute conv(Sp) in Theorem 1 is polynomial in 7. As a result, disjunctive program-
ming provides a polynomial formulation for conv(Sy), which can then be integrated with the result of Theorem 1
to obtain a polynomially sized higher-dimensional formulation of conv(Z’). The settings where such polyno-
mially sized formulations can be obtained extend far beyond the example presented above, as we describe next
in Theorem 11.

Consider now the much more general setup of sets S(Z,a,b) := {(x,z) € [a,b]" x R"|(x,z) € Z}, where Z is com-
pact and permutation invariant in x. Furthermore, for F ={Fy,...,F,}, where F; are faces of [a,b]", define
X(Z,a,b,F) :={(x,2) € [a,b]" x R"|(x,z) € Z,x € U_; F;}. Using Theorem 1, we show next that a polynomial-size ex-
tended formulation can be constructed for any set S(Z,a,b) for which there exists a collection of faces F’ that
completely determines the convex hull, that is, conv(S(Z,a,b)) = conv(X(Z,a,b, F’)), and for which a polynomial
(possibly extended) formulation of the set on each of these faces F; € 7, that is, conv(X(Z,a,b,{F;})), can be ob-
tained. The strength of this result is that we make no assumption on |#’| and that this collection may have expo-
nentially many faces.
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Theorem 11. Let a,beR, Z C{(x,z)|x e R",z € R™} be a compact permutation-invariant set with respect to x, and let
F =A{F1,...,E} be a collection of faces of [a,b]" such that conv(S(Z,a,b)) = conv(X(Z,a,b, F)). Moreover, assume that
conv(X(Z,a,b,{F;})) has a polynomial-sized compact extended formulation for each F; € F. Then, conv(S(Z,a,b)) has a
polynomial-sized extended formulation.

Proof. For brevity of notation, in this proof, we shall write S(Z,a,b) as S and X(Z,a,b, F) as X(F). We construct
conv(S) using its equivalence to conv(X(F)). We may assume for computing conv(X(F)), by taking the union of
all permutations of X(F) with respect to x if necessary, that X(F) is permutation invariant in x. This is because a
permutation of X(F) with respect to x, say, X(F):={(x,z)|(n(x),z) € X(F)}, is contained in conv(X(F)), as is
seen from X (F) C S C conv(S) = conv(X(F)), where the first inclusion is by permutation invariance of S and the
equality is by the assumed hypothesis. Because S is permutation invariant with respect to x, by Lemma 1,
conv(S) is also permutation invariant. We shall use Theorem 1 to construct conv(X(F)). We first show that we
can limit the faces of [a,b]" that need to be considered in the construction of Sy; see Theorem 1. Consider an arbi-
trary face F; of [a,b]", which is determined by setting a set of variables with indices in B; C{1,...,n} to their upper
bound b and a disjoint set of variables A; C {1,...,n} to their lower bound a. We will show that the only faces, F;,
i=1,...,r, that need to be considered are such that B; and A; are hole-free; that is, B; is of the form {1,...,p}, and
A; is of the form {gq,...,n}. To see this, let j(i) = max{j|j € B;} and X; = X({F;}) N {(x,z)|x1 = --- = x,,}. It follows
from Theorem 1 and permutation invariance of X(F) that it suffices to consider points in U]_;X; to construct
conv(X(F)). We will further argue that it suffices to restrict attention to points in Uiz, Xi. Notice that B, is hole-
free if and only if j(i) = |B;|. Assume by contradiction that i’ is the index of a face such that j(i") > |By| and that X;
contains a point that is not in Uj;;)-j5,X;. Among all such faces, we choose i’ to minimize j(i) - |B;|. Because By is
not hole-free, there exists j ¢ B; such that j <j(i"). Any point that belongs to X; must satisfy b > x; > xji) = b.
Therefore, x; = b. Because X; # 0, j ¢ A;. Consider now i such that B;» = B; U {j}\{j(i")} and A;» = Ay. Such a face
exists in F because we assumed that for every face F; ¢ F, F contains all faces obtained by permuting the varia-
bles, and F;» is obtained from F; by exchanging the variables x; and x;;,). We next show that X;» 2 Xj. For arbitrary
(x,z) € Xy, x; = b for all i € By. Then, it follows that x; = b for all i < j(i") as x; > --- > x,,. Therefore, x; = b for all
i € Bi». Because Ay = A;» and x; is not restricted for other indices j, (x,z) € X;. Therefore, X;» contains a point not
in Ugj(;)=p, Xi, establishing that j(i”’) > [B;»|. However, because j(i"") — |B;»| < j(i") — |By|, this contradicts our choice of
i’. A similar argument can be used to show that we only need to consider faces F; such that A; is hole-free.

n+2
2

assumed to have a polynomial-sized compact extended formulation, it follows, by disjunctive programming
(Ben-Tal and Nemirovski [5, proposition 2.3.5]), that conv(Sg) has a polynomial-sized compact extended formula-
tion. The result then follows directly from Theorem 1. O

There are at most ( ) such faces, one for each choice of (p, q), where 0 < p < g —1 < n. Because each X({F;}) is

We record and summarize the extended formulation of conv(S(Z,a, b)) for later use in Corollary 4. We also ob-
serve that our construction applies even when Z is not compact, as long as the convex hull of X(Z,a,b,{F;}) for
each F; of interest is available. For a face F of a polyhedron described by aTx < b, we refer to another face F as a
permutation of F if F is described by aT < b where a is a permutation of a. We say that a collection of faces F of a
polyhedron is permutation invariant if for a face in F described by an inequality, all its permutations are includ-
ed in F. For a face F, we define [(F) = {j € {1,...,n}|X;=a, VX € F}and u(F) ={j € {1,...,n}|%; =b, VX € F}.

Corollary 4. Leta,b e R, Z C {(x,z)|x e R",z € R™} be a permutation-invariant set with respect to x, and let F = {Fy,...,F,}
be a permutation-invariant collection of faces of [a,b]". Let I={ie{l,...,r}|3p,q,p<qst-u(F;)= {1,...,p}
and I(F;) =1q,...,n}}. Then,

conv(X(Z,a,b, F)) = {(x,z) | (,z) € conv

UX(Z,a,b,{Fi})),ul > > U Uy x}.

iel

We remark that conv(U;e;X(Z,a,b,{F;})) can be constructed using disjunctive programming techniques if the
recession cone of X(Z,a,b,{F;}) does not depend on i (Rockafellar [31, corollary 9.8.1]). Theorem 11 shows that
even though the number of faces in 7 may be exponentially large, we can exploit the permutation invariance

of the set to consider only a polynomial number of faces in the construction. More explicitly, there are 2”_d(2)
””) d-dimensional faces of the simplex b > x; > --- > x,, > a. But, there are

d-dimensional faces of [a,b]" and ( i
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only n—d + 1 of the d-dimensional faces of the hypercube, namely, F; for [ € {0,...,n —d}, that are defined by the
hole-free sets By ={1,..., [} and A;={l+d +1,...,n} with the convention that By = A,,_; = 0.

Applications of Theorem 11 extend beyond Schur-concave functions. For example, consider the convex hull of
{(x,@) € [a,b]" x R|[T,x; < a}, where a is not necessarily positive. The product function is not Schur concave
when some of the variables take negative values; for example consider the function x;x;x3 and observe that al-
though (1, -1, —3)>,,(0,0, — 3), the function value is higher at (1, — 1, —3) than at (0,0, — 3).

There are many functions besides the multilinear monomial that are permutation invariant and whose envelopes
are determined by their values on certain low-dimensional faces—the postulates required for the construction in Theo-
rem 11. We discuss some examples next. Observe that all elementary symmetric polynomials satisfy these postulates
because, being multilinear, their convex envelope is generated by vertices of [a,b]". Because Theorem 11 allows z to be
multidimensional, this result in fact yields the simultaneous convexification of the elementary symmetric monomials
over [4,b]" and thus the convex envelope of positive linear combinations of elementary symmetric polynomials. Next,
consider the function [T/, xf over [a,b]", where a,t > 0. If t < 1, the function is concave when all but one variable is
fixed, and therefore the convex envelope is generated by vertices of [,b]". If t > 1, then by restricting attention to any
face of the hypercube, where two or more variables are not fixed, say x; and x,, we see that the determinant of the
Hessian of x!x} is —x3'~2x3'~2t2(2t — 1), which is strictly negative. Therefore, there is a direction in which the function
is concave and the convex envelope is determined by one-dimensional faces of the hypercube. Because the function is
convex on these faces, the convex envelope can be developed using Corollary 4. In fact, when ¢ > 1, Proposition 8 pro-
vides a closed-form expression for the convex envelope. This is because the function f(x) = [T/, x! is Schur concave
because (x; — x-)(a—f - ‘9—/() = t(x; — x;) INEL )

! J/\ox;  ox; ! ] XX,

We next expané on the characterization we gave in Corollary 4 to obtain a more streamlined description of the
result for the particular cases of permutation-invariant functions whose convex envelopes are completely deter-
mined by the extreme points of their domain, which is assumed to be a hypercube.

Proposition 9. Consider a function ¢(x) : [a,b]" + R that is permutation invariant in x and whose convex envelope re-
mains the same even if its domain is restricted to {a,b}". Fori=1,...,nand j=0,...,n, let pij=aif i > jand b otherwise,
and let p; denote the jth column of this matrix. Define f(x) := ¢(p.o) + X1 31=5 (P(pi) — ¢(p.i-1)). Then, the convex enve-
lope of ¢(x) over [a,b]" can be expressed as the value function of the following problem:

conv, pp(P)(x) = min{ f(u) [u>,x,b 2 uy 2 - 2 u, 2 aj. (26)

Proof. Observe that the points in {a,b}" that intersect with x; > --- > x,, are precisely the columns p,; described in
the statement of the result. Consider the column p,;, and observe that f(p,) = ¢(p,;). Moreover, f is affine. Let
I'={xe{ab}"|x; > > x,}. Then, we show that f = conv onyr)(¢lr), where ¢|r denotes the restriction of ¢ to I
Clearly, f(x) < convony(r)(@lr)(x) because it matches ¢|r- at all the points in the domain and is a convex underestima-
tor. Also, f(x) > conveny(r)(@lr)(x) because of Jensen’s inequality applied to convny(r)(¢), observing that f(x) is ex-
act at the extreme points of I', and because f(x) is affine. Now, consider Corollary 4. Let F be the set of extreme
points of [4,b]" and Z = {(x,z)|z > ¢(x)}. By assumption, conv(S(Z,a,b)) = conv(X(Z,a,b, F)). By Corollary 4, it fol-
lows that conv(X(Z,a,b, F)) = {(x,z) | (u,z) € conv(U;’:OX(Z,a,b, {pih)),uzp x} ={(x,2)lz2fu),b>u > 2uy 2a,u>,x}. O

In the next result, we show how the convex hull of {(x,y) € [2,b]" x [c.d]" |TT2yf = ﬂ}’zlx}g } can be constructed.

To do so, it suffices to construct the convex hull of S = {(x,y) € [a,b]" x [c,d]" [Ty = 1‘[}7:19(?}, because the con-

vex hull for the reverse inequality can be developed by switching the x and y variables, and the convex hull for
the equality can then be obtained as the intersection of these two convex hulls; see Nguyen et al. [28]. Such a set
occurs in polynomial optimization problems where linearized variables are introduced to relax uv =y, u> = x4,
and v? = x in the form of y? = x;x,. Similar higher-dimensional equality constraints also occur, and their relaxa-
tions can be employed in polynomial optimization problems.

Proposition 10. Consider S ={(x,y) € H|[ [,y = ]‘[]T’lef}, where H =[a,b]" x [¢,d]", witha > 0,c > 0, a >0, and
B>0. Let k =min {m, LSJ}. Define the convex sets

S,‘j =SSN {(X,y) e€eH

oy =d, (Yo eiipr =€, Yy EA™ }
(xs)]s=1 =D, (xs)gzj+2 =a '

C=Sn {(x, Y EH| () = b, (x) g =a,y € Am},
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where Sy is defined fori=0,...,m—kand j=0,...,n—1,and C;is defined for j = 0,...,n. Let T = U;;5;UU;C;. Then
conv(S) = X :={(x,y) | v=y y,u=y x,(u,v) € conv(T)}.

In particular, if ma < B, then

conv(S) =X := {(x,y) €H

m 1 n 5
y;‘n = u(x)jma}/ (27)
i=1 j=1
where u(x) := u°W, defined as in Proposition 8.

Before providing the proof, we discuss its architecture. This proof will write the convex hull of S as a disjunc-
tive hull of convex subsets of S. Because these convex subsets will be obtained by fixing variables at their bounds,
even though they are exponentially many, Corollary 4 will allow the construction of the convex hull. In the first
part of the proof, we consider a slice of S at a fixed y and show that it suffices to restrict x to one-dimensional
faces of [a,b]" for constructing the convex hull of the slice. Then, we show that there are two cases. If the remain-
ing x; variable is also fixed to the bounds, the set is already convex. If not, then we show that any point in such a
set cannot be extremal in S unless at least a certain number of y variables, specifically max {0, m — [g'l} of them,
are fixed to their bounds. The sets obtained by fixing these variables are once again convex. Then, it will follow
by Theorem 11 that we may restrict our attention to the faces in T and, as a result, conv(S) = X.

Proof. Let ¢(x) := ﬂ?zlxﬁ , and consider the set Y(y) = {x € [4,b]" | ¢(x) < y}. By Marshall et al. [24, theorem 3.A.3],

¢(x) is Schur concave over [ab]" because it is permutation invariant and 37‘*13 - < g%’ at any point with

Xp > > x,. Let Yi(y) = {x € {b}' ! x [a,b] x {a}"" |xf b=DPa(=0f <} Then, it follows by Proposition 8 and Cor-
ollary 4 that conv(Y(y)) = {x | u>,, x,u1 > -+ > u,,u € conv(UL, Y;(y))}.

Because 1 — 1 of the x; variables can be fixed to bounds in the construction of the convex hull of each slice, this
restriction can also be imposed in the construction of conv(S). Now, let ¢(y) := []iZ,y; and consider the slightly
more general set © that will appear when we fix some of the y variables at their bounds. This set is defined as
O ={(x,y) €la,b] x[cd]" | TP(y) = 6x§}, where §,C > 0. Consider a point (x',1') € ©. Then, by restricting atten-
tion to i = Ay’, where A € R, we obtain an affine transform of a subset A of ® such that A ={(x,A) € [a,b] X

[c/,d']|A0 > (5’x%}, where 6 = C%gb(y’)%, 8 =6n, ¢ = max {A1Ay; < cfor some i}, and d’ = min{A| Ay, > d for some i}.

Assume x’ € (a,b) and v’ € (cd)". We will first show that if m > g, such a point is not an extreme point of S. By
definition, ¢’ <1,d’ > 1, and (x/,1) € A. Assume m > g and (x’,y’) is an extreme point of S. Define s = ¢’ n%(x’)%_l.
If x’ € (a,b), then, for sufficiently small € > 0, we show that (x’,1) can be written as a convex combination of (x" —
€0,1—se) and (1" +€6,1 + se). The latter points are feasible in A because

&'+ 69)% < &' x'm + s(x’ +eB—x") < O(1 xs¢),

where the first inequality is by concavity of xi for m > g, and the second inequality is because §'x'm < 6 as («,1)
belongs to A. Because A is an affine transform of a subset of ®, we have expressed (x/,1’) as a convex combina-
tion of (¥ — €0, (1 —se)y’) and (" + €6, (1 +s€)y’), each of which is feasible to ©. Because € >0 and x’ >a > 0 im-
plies s > 0, it follows that these points are distinct, thus contradicting the extremality of (x’,).

Because, S is compact, in order to construct conv(S), we may restrict our attention to the extreme points of S.
Therefore, either x’ € {a,b} or there exists an i such that y; € {c,d}. If x’ € {a,b}, the point belongs to the convex
subset of ® obtained by fixing x" at its current value because the defining inequality can be written as
C%IP(}/)% > 6x’§, a convex inequality. A permutation of such an (x’,y’) is included in one of the C;s. On the other
hand, if y; € {c,d}, we can reduce the dimension of the set by fixing y; at y; and, thus, effectively reduce m. There-
fore, we may assume without loss of generality that m < g Then, we rewrite the defining inequality of © as
C%I{J(y)% > gixi and observe that this is a convex inequality because x,b(y)'}_' is a concave function and x is a con-
vex function. Therefore, we need to consider faces where either all x; are fixed at their bounds or where we fix all
i except for a subset of cardinality min {m, Lg]} and fix all x; except for one; all such sets are, up to permutation,
included in one of the Cjs or S;;s.

Because S;; C S, C; C S, and S is permutation invariant, it follows that conv(S) 2 X. Because X is convex and S is
compact, we only need to show that the extreme points of S are contained in X. However, we have shown that
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the extreme points of S belong to T or a set obtained from T by permuting the x and/or y variables. Because X is
permutation invariant and contains T, it follows that every extreme point belongs to X. Therefore, X = conv(S).

Nov;z, consider the case where ma < B. Clearly, k = m. If we fix y at y, it follows from the Schur concavity of

[Timx" over [a,b]", the convexity of xj" over [a,b], and Proposition 8 that the convex hull of ;his slice is defined
1 £ £

by ﬂé’ily’;’ > ﬂ}ilui(x)]”-’“. This shows that X’ Cconv(S). By Schur concavity of [],xj", it follows that
]‘[}le]’-’“’ > ]‘[}Llu(x)]?‘“, or S C X’. This implies that S € X’ C conv(S). To show thz}t X' = conv(S), we only need to
show that X’ is convex. As in the proof 01f Proposition 8, we let ¢(s) = ]‘[}Llu(x)i”_“, where s = >, (x; —a), and re-
write the above inequality as ¢(s) — [12,y" < 0. Because the left-hand side is jointly convex in (s, y) and s is a line-
ar function of x, this proves that X’ is convexin (x, y). O

So far in this section, we have given various results where we describe the convex hull of a set in an extended
space by introducing variables u. We now discuss how inequalities in the original space can be obtained by solv-
ing a separation problem.

Usually, given a set X and an extended space representation of its convex hull, C, we separate a given point x
from X by solving the problem inf(, ,cc||x — X||. By duality, the optimal value matches max . <1{(X,a) —h(a)},
where h(-) is the support function of C and || - |, is the dual norm. Then, if the optimal value, z* is strictly larger
than zero and the optimal solution to the dual problem is a*, we have (x,a") —z* > (x,a") for all x € proj,C, and
this inequality separates x from proj, C.

However, such an inequality is typically not facet defining for conv(X) even when the latter set is polyhedral.
We now discuss a separation procedure that often generates facet-defining inequalities. The structure of
permutation-invariant sets and their extended space representation allow for this alternate approach. Assume
we are interested in developing the convex envelope of a permutation-invariant function ¢, such as [}, x;, over
[a,b]". As in Theorem 1, the convex envelope of ¢ at x is obtained by expressing x as a convex combination of u
and its permutations, where 1 >,, x. Moreover, assume that the convex envelope at u is obtained as a convex com-
bination of the extreme points of the simplex a < x; < ---< x, < b with convex multipliers y. Because x = Su for
some doubly stochastic matrix S and u = Vy, where the columns of V correspond to vertices of the simplex, it fol-
lows that x = SVy. Therefore, we can find a representation of x as a convex combination of vertices in V and their
permutations.

We implement the above procedure for multilinear sets over [4,b]" to evaluate its impact on the quality of the relax-
ation. For the purpose of illustration, we consider the special case of [ T, x; over [4,b]". In this case, (26) reduces to

n
min a"+ > b " (u; —a),

i=1
28
s.t. uz,x, 28

b>u > >u, >a.

Given x € R" in general position inside [a,b]", assume that the optimal solution to (28) is u. Then, we express x =
Su, where S € M""(R) is a doubly stochastic matrix. Given x and u, this can be done through the solution of a
linear program, min{0]x = Su,S1=1,1"S=1",S > 0}. Although S can also be derived as a product of T-trans-
forms (see Hardy et al. [12, section 2.19, proof of lemma 2]), we use the linear programming approach in our
numerical experiments, given its simplicity of implementation. Then, we express S as a convex combination of
permutation matrices. Such a representation exists due to the Birkhoff theorem. We obtain it using a straightfor-
ward algorithm, which we describe next. Observe first that the desired representation is such that all permuta-
tion matrices with nonzero convex multipliers have a support that is contained within the support of S. This
implies that the bipartite graph, which we describe next, has a perfect matching. The bipartite graph is con-
structed with nodes labeled {1, ...,n} in each partition and edges that connect a node i in the first partition to j in
the second partition if and only if S;; > 0. Given a perfect matching, we construct a permutation matrix P so that
P;; = 1if node i in the first partition is matched to node j in the second partition. Then, we associate P with a con-
vex multiplier 7 that is chosen to be min ;{S;;| P;; = 1}. If = = 1, we have a representation of S as a convex combi-

nation of permutation matrices. Otherwise, observe that ;1 (S — 7tP) is again a doubly stochastic matrix with one

less nonzero entry. Therefore, by recursively using the above approach, we obtain S as a convex combination of
at most n° permutation matrices. Then, we permute u according to these permutation matrices. For each such ,
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the convex envelope is given by the optimal function value of (28). Each permuted u can be expressed as a con-
vex combination of the corner points of the permuted simplex {b > 1y > - > u, > a}. We claim that an affine
underestimator q3 of conv(¢) that is such that (f)(x) = conv(¢)(x) must also satisfy (f)(vi) = conv(¢)(¢') for every
vertex o' of [a,b]" that has a nonzero multiplier in the representation of x computed above. If not, we have convex
multipliers A;, where x = 37.A,0', such that

H(x) = conv(@)®) = A conv(9)(©) = S0 (0) > A (e) = ),

which yields a contradiction. Here, the first equality is by the definition of ¢, second equality is because our con-
struction obtains conv(¢)(x) as a convex combination of conv(¢)(v') using multipliers A’, the third equality is be-
cause v' are extreme points, the first inequality is because there exists an i such that ¢(v') > (i)(vi), and the final
equality is because ¢ is affine. Therefore, it follows that ¢ (o) = ¢() for all i. Because x was assumed to be in gen-
eral position, these equality constraints uniquely identify ¢.

We conclude this section by presenting the results of a numerical experiment that suggests that the bounds ob-
tained when building convex relaxations of ¢, (x) = [T/, x; over [4,b]" using the procedure described above are
significantly stronger than those obtained using factorable relaxations. To this end, we consider functions 1, (x)
where 1 = 10 over two permutation-invariant hyper-rectangles. The first one, By = [2,4]'"°, is contained in the pos-
itive orthant, whereas the second, B, = [-2, 3]10, contains zero in its interior. We generate nine sample points uni-
formly at random inside of By and B,. At each point, we compare the value z, of the relaxation obtained using
a recursive application of McCormick’s procedure with the value z, of the convex envelope, obtained using the
results described in this section. We then compute the existing gap (“Gap” in Tables 1 and 2) and relative gap
("% gap”) using the formulas z, —z, and **, respectively. Results are presented in Tables 1 and 2, where it can
be observed that the proposed approach leads to substantial improvements in bounds, especially when variables
x take both positive and negative values.

5. Set of Rank-One Matrices Associated with Permutation-Invariant Sets
For a positive integer n and a given set Se€R", define Ms:={(x,X) e R" Xx M"|X =xxT,x €S}, where M" =
M"™(R). For each element (x, X) € Mg, it is clear that rank(X) = 1. Studying Ms is particularly important when
constructing valid inequalities for semidefinite relaxations of nonconvex optimization problems. In this section,
we study the case where the base set S is permutation invariant.

For an arbitrary positive integer n, we denote by 1, the n-dimensional vector of ones. When 7 is clear in the
context, we simply denote it by 1. Similarly, we denote by 1,, the n-by-n matrix of ones.

As a motivating example, consider sparse PCA, which, for a given covariance matrix X, finds a sparse vector x
that maximizes the variance x" Zx. A semidefinite relaxation of sparse PCA therefore aims to approximate

M:={(x,X) eR" x M"| X =xx",|x|| £ 1,card(x) < K} (29)
for a positive integer K€ {1,...,n—1}. The set M can be seen as Mg by choosing S to be the permutation-

invariant set S={x e R"||jx[| < 1,card(x) < K}. The separation problem associated with M is known to be
NP-hard (Tillmann and Pfetsch [33]). Hence, semidefinite relaxations have been considered that relax the non-

convex constraint X = xx" with X > xx", which is equivalent to the convex constraint [ :i ’1‘ ] = 0. Linear valid

inequalities in (x, X) are then developed by exploiting the property that X = xx". For example, the authors of d’A-
spremont et al. [7] introduce the valid inequality 1'X1 < K for (29), which is implied by valid inequality
S,x; < VK and the condition X = xx .

We next show that additional valid inequalities can be constructed in a higher-dimensional space by using the
permutation invariance of the base set S. To this end, we prove the following result.

Proposition 11. Suppose S CR" is a permutation-invariant set. Let
X=xxT,U=uu",
N =43(x,u, X, U) e R" X R" x M" x M"|x = Pu for someP € Py,
ueESNA

Then, Ms = proj, x, N



Downloaded from informs.org by [128.210.126.199] on 27 November 2022, at 13:16 . For personal use only, all rights reserved.

Kim, Tawarmalani, and Richard: Convexification of Permutation-Invariant Sets
Mathematics of Operations Research, 2022, vol. 47, no. 4, pp. 2547-2584, © 2021 INFORMS 2569

Proof. To prove Ms Qprojxlx./\/, consider (x,X) € Ms. Let P€ P, be such that u:=P 'xe€A, and let U=uu".
Then, (x,u,X,U) e N. To prove Mg 2 projx,XN , consider (x,u,X,U)e N, and let P € P, be such that x = Pu. By

permutation invariance of S, x € S, showing (x,X) e Ms. O

Now we develop linear inequalities implied by the conditions in NV. For any (x,u, X, U) € N/, observe that X =
xxT = (Pu)(Pu)" = PUPT for a permutation matrix P. Therefore, consider linear inequalities implied by the facts
that x is a permutation of 1, and X is obtained by permuting some columns and rows of U symmetrically. Per-
haps, the most straightforward such inequalities are

1Tu=1"x, (30a)
trace(X) = trace(U), (30b)
17X1=1TUl. (30c)

More generally, consider any function ¢ : R" x M" — R such that ¢(x,xx") is permutation invariant with respect
to x. Then, we can impose the equality ¢(x, X) = ¢(u, U) if ¢ is linear in (x, X). In fact, if ¢ is linear in (x, X), then
we argue that this identity is implied by (30). To see this, observe that ¢(x,xx") is a quadratic function in x. Let
Y(x) =p(x,xxT) =x"Cx+d x+e for CeS",deR", and e € R. By permutation invariance of 1, the function 1(x) —
Y(Px) is the zero function in x for every P € P,. Observe that

Y(x) = Y(Px) =x"(C=P"CP)x+(d—P"d) 'x =0.

Therefore, d =P"d and C=PTCP. For i #je€{1,...,n}, consider the permutation matrix P such that (Px); = x;,
(Px)j = x;, and (Px) = x; for all k # i,j. Then, d; = d;, C;; = Cj;, and C;; = Cj;. Because the choices for i and j are arbi-
trary, it holds that d = p1 for some p € R", the diagonal entries of C are identical, and C is symmetric. We next
claim that all off-diagonal entries of C are identical. We assume 1 > 3 because it is clear otherwise. For any
ge{l,...,.n}\{ij}, [C— PTCP]iq = Ci; — Cjy; that is, all entries of gth column of C except for C,, are equal. By sym-
metry of C, all entries of gth row of C except for C,, are equal. Because q is arbitrary, all off-diagonal entries of C
are identical because for any i <jand p < g with g <j, C;; = C; = C;. Therefore,

Y(x) = xT(crdiag(1) + ca Lysen)x + (p1) Tx +e
= cytrace(xx) + o 17 (xx ™)1 + p(17x) +e.

Now, the desired equality ¢(x, X) = ¢p(u, U) is
citrace(X) + 2 1T X1 + p(17x) = cytrace(U) + ¢ 17U T + p(17w),
which is implied by equalities in (30).
Another type of constraints can be obtained when S C R’}; that is, u € S is chosen to be nonnegative and in de-
scending order. Then, entries in each row of uu" are also in descending order, yielding the inequalities

Uj2 Uy, 1<isn 1<j<n—1. (31)

Similar arguments can be made for column entries. These inequalities, however, are redundant because of the
symmetry of U.

Table 1. Gap at a randomly chosen point for ]_[}le,- on [2,4]".

Sample Ze Z, Gap % gap (%)
1 18,943.5 7,584.8 11,358.6 60.0
2 52,904.9 21,933.9 30,970.9 58.5
3 22,754.2 8,622.1 14,132.1 62.1
4 26,299.0 8,526.7 17,772.3 67.6
5 13,817.1 5,750.7 8,066.3 58.4
6 25,028.6 8,906.2 16,122.4 64.4
7 13,852.4 5,694.1 8,158.3 58.9
8 16,059.4 8,069.1 7,990.2 49.8
9 10,122.1 4,812.2 5,309.9 52.5
Average 59.1




Downloaded from informs.org by [128.210.126.199] on 27 November 2022, at 13:16 . For personal use only, all rights reserved.

Kim, Tawarmalani, and Richard: Convexification of Permutation-Invariant Sets
2570 Mathematics of Operations Research, 2022, vol. 47, no. 4, pp. 2547-2584, © 2021 INFORMS

Table 2. Gap at a randomly chosen point for [/, x; on [-2,3]%.

Sample Ze Z, Gap % gap (%)
1 -12,314.6 —25,655.4 13,340.9 108.3
2 -16,221.2 —-29,559.4 13,338.2 82.2
3 —-13,247.0 —29,405.9 16,158.9 122.0
4 -14,069.4 —28,248.4 14,179.0 100.8
5 -10,660.9 —23,134.2 12,463.3 116.9
6 -10,979.5 -21,263.1 10,283.7 93.7
7 -9,367.8 -21,327.4 11,959.6 127.7
8 -10,245.9 —24,782.6 14,536.8 141.9
9 -9,182.8 -21,137.0 11,954.2 130.2
Average 113.7

We next introduce a general framework that constructs tighter linear relaxations by exploring the
conceptual relationship that x is a permutation of u. This allows us to model or relax identities of the form
O(x,xxT) = ¢p(u,uu"), where ¢ is a certain real-valued nonlinear permutation-invariant function. To this end, for
fixed integers p,g € {1,...,n}, re{1,...,min{pn,qn}}, and W € M", consider the optimization problem

n n
max > > Wit

=1 j=1
sty ty<q, i€{l,...n}, (32a)
j=1
ti < p, jef{l,...,n}, (32b)
i=1
Z tq <r, (32C)
i=1 j=1
< tl]S 1,i, jE{l,...,l’l}. (32(1)

Its dual is

min gy lai+p> BTy + D) >0
i1 =

=1 j=1
s.t. +‘B] +y+ 61] = Wl] + 6,] i jE {1, . .,1’1}, (333)
a; > 0,‘3]- >0,y 2 0,6,']‘ > 0,917 > 01, je{l,...,n}, (33b)

where dual variables a, 8, y, and 6 correspond to primal constraints (32a), (32b), and (32c), and the upper-bound
constraints of (32d), respectively. We denote these optimization problems by max{f"(t)|t€®} and
min{g(z)|z € Q(W)}. Strong duality holds because both (32) and (33) are feasible. We denote h(W):=
max{ f(t)|t € P} = min{g(z)|z € Q(W)}. Observe that h(ww") as a function of w is permutation invariant with
respect to w. Therefore, if (x,u,X,U) € NV, it holds that h(U) = h(X). Because the linearity of the identity is not
guaranteed, we construct linear inequalities in (x,u, X, U) by taking the identity and the conditions in the set de-
scription of NV into account. In the following discussion, we assume that (x,u, X, U) € N.

We first consider the case where a closed-form description of the optimal value h(ww™) is known, h(U) is linear
in U, and h(X) is not linear in X. Because h(X) and f*(t) are both nonlinear in (X, W) and (t, W), respectively, we
use the dual objective formulation to reformulate the identity h(U) = h(X) because the dual objective function
and the constraints are linear in (z, W). We obtain a reformulation by replacing h(X) with g(z) and adding the con-
ditions in the feasible set ()(X) into the formulation.

We next consider the case where either a closed form of h(wwT) is unknown or h(U) is nonlinear in U. Then,
we construct the relaxation by replacing both h(U) and h(X) with linear functions g(z") and g(z*) with distinct
variables zU = (a4, g4,yY,8Y,01) and z* = (¥, B%,7%,6%,6%) and add the conditions in Q(U) and Q(X). Then,
we tighten the relaxation by exploring the permutation relationship between u and x and the rank-one
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conditions. Assume that x = Pu and that zY = (@, gY,y4,6Y,0Y) is an optimal solution to the dual with W = uuT.
Then, (PaY, Pﬁu,yu,P(SUPT,PGUPT) is an optimal solution to the dual with W = xx". Therefore, we can tighten
the relaxation by considering conditions aX = PaY, X = PgX,y! = X, and 6* = P6"PT for some P € P,,. For exam-
ple, we can add the baseline linear conditions 1Ta!=1"a*X, 17" =17p%, pU =%, trace(s") = trace(5*),
trace(8Y) = trace(6%), 17641 =176%1, and 1761 = 1T0*1. If a € A (respectively, B € A) then we can add the
linear reformulation for a¥ >, a* (respectively, g >,, f%). Furthermore, we can take advantage of a “good” feasi-
ble solution of the dual. Let zél = (aél , ‘8'6[,)/61 , 63[ ) be a feasible solution to the dual with W = uu™. Then, we can re-
place the left-hand side with g(z{/) and the equality with the inequality >. We may add inequalities that capture
the permutation relationships. Obviously, we can add y{ = y*. In addition, we can impose the linear reformula-
tions of all >, a* and i >, p* because a}l and B are constants. In addition, any linear inequalities implied by
the relationship 6§ = PT6*P for some P € P,, such as trace(dy) = trace(6) and 176§/ 1 = 1761, can be consid-
ered. Similar relations can also be introduced for 6. More generally, arbitrary linear functions that are permuta-

tion invariant in &, f8, y, 6, and 0 can be considered instead of the specific one in the objective of the dual.
We next present some special but important cases where the closed form of (W) is known.

Lemma 9. When W = ww? for w > 0 and p = q =1, the optimal value of (32) is Zlewfi].

Proof. Without loss of generality, we assume that w € A and prove that the optimal value is 3]/_,w?. Define ' as
tl'-]. =1if i =j < r and zero otherwise. Then, t' is feasible for the primal. Its objective value is Z?:lw% We next de-
fine 2/ :=(a/,',7/,0') ER" XR" x Rx M" as a] = ! :max{w’zgwg,O} fori=1,...,n,9 =w?, and 6;]- =0 for i,j €
{1,...,n} and prove that z’ is feasible for the dual. The nonnegativity of z’ is clear. We next show that z’ satisfies

. ) wr+w? . .
(33a). First, suppose i < rand j < r. Then, aj + 8, + )" + 0y = —5 2 wiwj. Next, consider the case where i < r and

i 2.2
j>r. Then, a] + ﬁ]’ +y + b,’-]- =4 erw* > wiw, > w;w;, where the last inequality holds because w € A. The case where

i>rand j < ris symmetrical, and the case where i>r and j>r is clear. Because ' and z’ satisfy complementarity-
slackness conditions, they are optimal solutions to the primal and the dual, respectively. Their common objective
value is )_,w?. O

By Lemma 9, when p =g =1, h(W) is the sum of r largest diagonal entries of W. Whereas h(W) is nonlinear,
h(U) is linear because it is the sum of the first r diagonal entries. On the other hand, the inequalities #(U) > h(X)
for re{l,...,n—1} are equivalent to the inequality parts of the majorization diag(U) >,, diag(X). The equality
part of the majorization is equivalent to the existing constraint (30b). Therefore, diag(ll) >,, diag(X) is a special
case of the aforementioned modeling technique.

Lemma 10. When W = ww? for w > 0 and r = pq, the optimal value of (32) is Zf;lz?:lwmwm.
Proof. Without loss of generality, we assume that w € A,. First, define " as ;=1 if i< p and j< q and zero
otherwise. It is clear that # is feasible and that its objective function value is (Zf’zlwi)(z;’zle). Next, we
consider its dual (33) and define z’ := (a/, f',7’,0") e R" X R" X R x M" as follows:

o] = max{(w; —wp)w,, 0}, i=1,...,n,

ﬁ]'. =max{wy(w; —w,),0}, j=1,...,n,

Y’ = wpty,

=

{(wi —wy)w;j—w,) ifi<pandj<yg,
if

0 otherwise.
We first show that z’ is feasible for the dual. The nonnegativity of the variables is clear from their definition. To

prove that they satisfy (33a), we first consider the case where i< p and j<g4. Then, we compute that
aj + ﬁ]' +)" + 0j; = wiw;, showing the result. Next, consider the case where i > p or j > g. Without loss of generality,

we assume that i > p. When j > g, it holds that a7 + 8/ +)" + 6jj=7" = wywy > wiw;, where the inequality holds
because i > p, j > g, and w € A,. When j < g, it holds that af + p; +7" + ) = B; + )" = wyw; > w;wj, where the in-
equality holds because i > p and w € A,. Because t’ and z’ satisfy complementarity-slackness conditions, they are
optimal solutions to the primal and dual, respectively. Their common objective value is Z?:1Z?:1wiwj' |
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Lemma 10 and (32) can be trivially extended to the case where W = ww", where w e R", w e R", w,w > 0, and
r=pq, in which case the optimal value is Zlezgzlz'v[i]w[ j- However, this is not of direct relevance for our sparse

PCA relaxations. Whereas h(W) is nonlinear because the order of w is unknown, k(U) is linear because it is the
sum of the entries of the p-by-q upper-left submatrix of U. In particular, for g = n and p € {1,...,n}, the inequal-
ities h(U) > h(X) are equivalent to the inequality parts of RY >,, RX, where RY and R* are the vectors of the row
sums of U and X, respectively. The equality part of the majorization is equivalent to (30c). Therefore, RY >, RX is
a special case of the aforementioned modeling technique.

In the remainder of the section, we introduce various strengthened semidefinite programming relaxations for
sparse PCA.

5.1. An SDP Relaxation for Sparse PCA
Principal component analysis is a well-known dimension reduction technique in statistical analysis. A principal
component is a linear combination of independent variables. It also typically stands for the coefficient vector of
the linear combination. The first principal component is a unit principal component for which variance is maxi-
mized; it is the eigenvector corresponding to the largest eigenvalue of the covariance matrix. Even though the
first principal component explains the most variance of the data, it is often hard to interpret because most of its
coefficients are nonzero. Sparse PCA is a variant of the approach introduced to resolve this issue by finding line-
ar combinations with few explanatory variables.

Formally, let . € §" be the covariance matrix of the data set. The following optimization problem, which we re-
fer to as sparse PCA and as defined in Section 1, where x € R" is the coefficient vector of the principal component,
finds a unit sparse vector with at most K nonzero entries that explains most of the variance of the data:

max x'Xx
s.t. x| <1, (Sparse PCA)
card(x) < K,

where K is a positive integer satisfying 1 < K < .

We studied the feasible set of sparse PCA in Section 3, where we denoted it by N|I|<_”, assuming ||-|| is the
{>-norm. The feasible region of sparse PCA is nonconvex because of the sparsity constraint. We established in
Section 3 that

llull < 1,

up = -->ug >0,

conv(N |I|<,H) =4x (34)

uK+1 :...:un :0/
U gomlX|

Because sparse PCA maximizes a convex function, we can replace the feasible set with its convex hull, thereby
obtaining a new problem formulation. This formulation, however, remains difficult to solve as it is a convex max-
imization problem. Next, we introduce new positive semidefinite relaxations for sparse PCA. The most common-
ly used (and, to the best of our knowledge, only) SDP relaxation for sparse PCA was introduced in d’Aspremont
et al. [7] as follows:

max trace(XX)
s.t. trace(X) < 1,
35
171X|1 < K, )
X>0.

We refer to this as the D-relaxation.

We next present a strengthened SDP relaxation based on the convex hull description (34). First, we introduce
the matrix variable X to model the relationship X = xx". Then, we introduce variables y and Y to represent |x|
and |X|, respectively. Furthermore, we add the auxiliary variables v, w, V, and W to model the absolute values.
The variables and the constraints are

X=v-w, Yy=v+w
n n (36)
v,weR], x,yeR
and
X=V-W, Y=V+W
n n (37)
VWeML, X YeS
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where M is the set of n-by-n (entry-wise) nonnegative matrices, and S" is the set of n-by-n symmetric matrices.
Next, we introduce the vector # majorizing y(= |x|) and the matrix U to model uuT. The constraint u € A, and the
constraint (31) in the cardinality setting can be written as

Uy 2 -2 Ug

u; =0, i>K+1,
Uy >->Ug, i=1,...K (38)
U;; =0, i>K+1lorj>K+1,

n n
ueRl,UeSy,,

where S is the set of n-by-n (entry-wise) nonnegative symmetric matrices. In the following construction, we
use the relationship between Y and U that Y = PUPT for some P € P,. (That is, the entries of Y and U equal up to
row permutations and the corresponding column permutations.) We impose the constraints (30) as follows:

trace(U) < 1, (39a)
1"Tur=17y1. (39b)

The nonconvex relationships X =xx™,Y =yy", and U = uu" can be relaxed using Schur complements as

Y
-0, | Y

y' 1
By constraint X = xx T, it holds that X > 0; hence, diag(X) > 0. Therefore, the constraint trace(U) = trace(Y) can be
replaced with

X x

xT 1 ut 1

BN
=0, ~0. (40)

trace(U) = trace(X). 41)

We next present modeling details for the majorization constraints using the arguments presented earlier. First,
the majorization relationship u >,, y is represented as

Z£=1Mj2j7j+z;l=1tij, j=1,...,1’l—1,
yiﬁt;‘j-i'l’j, i=1,...,7’l,j=1,...,1’l—1 (42)
reR™1, te R0
as mentioned in (4). Even though the modeling techniques using (32) and (33) can potentially derive several
inequalities, we only present certain representative inequalities in the proposed SDP relaxation for the sake of ex-

position. First, the row sum majorization RY >,, RY and the diagonal majorization diag(U) >,, diag(Y) are repre-
sented as

u_ n Y _ n .
R; _ijl Ui, Ri =21 Y i=1,...,n,
J pU s R n R .
Zl=1Rz Z]r] +Z]=1tl]’ ]—1,...,1’1—1, (43)
RIYSt{;JFr]R, i:]_,,,.,n,j:l,.”,n_l
ReR™, (ReR™=D RU RY ¢ R"
and
j . n D .
Zi=1uif217?+zj:1tij, j=1,...,n-1,
Xy <t +17, i=1,...,n,j=1,...,n-1 (44)

,,.D e Rn_l, i’D e R:’_X(n_l),

respectively. Last, we use (33) as follows to underestimate 1" (UP)1 for p € {1,...,n} and g € {1,...,n}, where for
a matrix A € R™" and indices p < m and g < n, A" is defined as the p-by-q submatrix whose sum of entries is
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maximum:
p AL - n
Uy > a3 0 +p > L B +pay+ 3, >0, 0, pe{l... . Khqefp,... K},
+ﬁ’.”‘7 +)/W +6Z-q > Y, pe{l,....,K}y,ge{p,... K}, i je{l,...,n},
K(K 1) K(K-1) K(K-1) K(K-1).
aeR,” ",BeR. T ",yeR. T ,0eR,Z ",
(45)
p if p<K-1 if g<K-1
with p = andéz{q . I
n if p=K n if g=kK.

The proposed SDP relaxation, which we refer to as the submatrix relaxation, is

max trace (XX)

st (36)—(44), (45). (46)

Theorem 12. All constraints in (35) are implied by (37), (39a), (39b), (40), and (41).

Proof. First, trace(X) = trace(U) < 1, where the equality and the inequality directly follow from (41) and (39a), re-
spectively. We next show that 17|X|1 < K is implied. Let Uk be the upper-left K-by-K submatrix of U, and let 1
be the K-dimensional vector of ones. Define f : RK S Ras f(x) := xTUg gx. Because U = 0, we have Uk g > 0, show-
ing that fis convex. Furthermore, f(ax) = a’f(x) for any scalar a. Therefore,

K K
17u1 ZHEUK,K]IK :f(lK) :f(Zei _f KZ%&,
= K?f ZK] < K2 Zf(e,) Ktrace(U) < K, (47)
1 z—

where the inequalities follows from the convexity of f and (39a). Therefore,
X =1TV-W1<1T(V+W)1=1"Yl=1"Ul <K, (48)

where the first two equalities and the first inequality follow from (37), the third equality from (39b), and the
last inequality from (47). The positive semidefiniteness of X follows from the first Schur complement condition
in (40). O

Remark 3. We present another relaxation of (45) that improves computational efficiency compared with (45), al-
though this approach provides a weaker bound. First, we introduce variables (SR);, to define the sum of g-largest
components of the ith row of Y as follows:

(SR),, _qrql+2tqy i=1,...,n9=1,...,K,
Yzjstg”Jrrm i=1,...,nj=1,...,nq9=1,... K,
tr >0,

e REx R x R", 1’ e R x R™.

Using a specific feasible solution of (32), we relax (45) as follows:

- L LUjzph >0 0, p=1,...,Kqg=1,..K
(SR),q_ t§q1+rpq p=1,...,Kqg=1,...,Kji=1,...,n,
8 >0,

8 e RK x RE x R”, 7B € RK x RK,

We refer to this relaxation as the two-step relaxation.

5.2. Computational Experiments for Sparse PCA
We next report our computational results on sparse PCA. First, we summarize the following standard result.
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Proposition 12. The following is a correct formulation for sparse PCA:

max trace(XX) (49a)
s.t. trace(X) < 1, (49b)
X0, (49¢)
diag(X) < z, (49d)

1"z =K, (49¢)
ze{0,1)". (49f)

Let (X*,z") be an optimal solution to (49) and 3, Ax'x'T be an eigenvalue decomposition of X* so that each x is a unit ei-
genvector. Then, for any i’ such that Ay >0, x” is an optimal solution to sparse PCA.

Theorem 13. The following constraints are valid for sparse PCA:

Yi<TyTi i=1,..,nj=i+1,...,n (50a)
le' = Yi,‘ i= 1, ...,n, (50b)
n
ZTU'ZZ,' i=1,...,7/l, (SOC)
j=1
n
ZT,]:KY” ].:1,..‘,1’1, (50d)
i=1
0<T;<Y; i=1,...,nj=1,...,n (50e)

In particular, T;; may be regarded as a linearization of ziyjz. Using that Y; = Y for all (i, j), the above constraints imply

1. forall (i, j), Ty + Tji = 2Y5;

2.foralli, Y < z;and, for all (i, j) with i # j, 2Y; < z;

3.forallSC{1,...,n}, Zi,jesyif < Sieszis

4. foralli, 37, Y5 < ;Y5

5. for all i, Z}“:lY?j < Tj as long as, for all ', Yﬁ < Y;iYyj or, more specifically, Y = 0;

6. 17|X|1 < K, as long as (37) holds;

7. Z]'-;lXizj < z;Xj; as long as (37), and trace(Y) = trace(X) hold;

8. Z}Llej < Ty as long as (37) holds, trace(Y) = trace(X), and X > 0.
Proof. To show that the constraints are valid, we only need to show that T can be chosen to be ziy]z. We may as-
sume that for all (i, j), Yj; = yiy;. Constraint (50a) follows because for i’ € {i,j}, y» = zyy, implies that (y,-yj)2 <
ziyfzjy]z. Constraint (50b) follows because z;Yj =Y;. Constraint (50c) follows because trace(Y)=1 implies
32121V = z;. Constraint (50d) is valid because (49¢) implies that 33,z;Yj; = KYj;. Finally, (50e) follows because it
relaxes y? = z;y? = Y.

We now show the implications claimed. First, we show statement 1. To see this, observe that we can write
(50a) as (2Y3)* + (Tj; — Tji)* < (Tyj + T;s)*. Then,

2Y1] < \/(2Y1])2 + (le - Tﬁ)Z <. ’Tl] + T]l = le + T]',', (51)

where the first inequality is because (T — T]-i)2 > 0, the second inequality is because of (50a), and the equality is
because, by (50e), T;; and T}; are nonnegative. Second, we show statement 2. Clearly, Y;; = Tj; < z;, where the first
equality is by (50b) and the inequality follows from (50c). If i # j, we have

ZY,']‘ < Tl']' + T]',' < Tl']' +Y;= Ti]' +T; <z, (52)

where the first inequality is by statement 1, the second inequality is because of (50e), the equality is because of
(50b), and the inequality is because i # j and (50c). Third, we show statement 3. This is because

0< Z(Ti]-—Yij)S ZZTij_ZYij=ZZi_ZYij/ (53)

i,jeS ieS j=1 i,jesS i€S i,jesS
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where the first inequality is because of statement 1 and Y;; =
equality is by (50c). Now, we show statement 4 as follows:

20 2Ty < Y23 Ty =2 64
j=1 j=1

Yj;, the second inequality is because of (50e), and the

where the first inequality follows from (50a), the second inequality from (50e), and the equality from (50c). To
see statement 5, observe that

Z Y2 < lezll Y;=Yii=Ty, (55)

where the first inequality is because, for all j*, we have Y < YiiY}y, the first equality is because trace(Y) =1, and
the third equality is by (50b). Next, we show statement 6. We write

ITX[I=1TV-WI1<1T(VI[+W)1=1"Y1<17z=K

where the second equality is because Y=V + W, V > 0, and W > 0; the first inequality is because of (53) with
S={1,...,n}; and the last equality is because of (49¢). To show statement 7, we write

i X Z (Vz] Wl]) < Z (VU + Wz]) = Z YZ < ziYii = i Xii, (56)
=1

where the first two equalities and first inequality are by (37), and the second equality is because of statement 4.
The last equality is because (37) implies diag(Y — X) > 0. Together with trace(Y — X) = 0, this implies that for all 7,
Y;; = X;;. Finally, the proof of statement 8 is similar to that for statement 5, where Y is replaced with X, where we
also utilize that trace(Y — X) =0, diag(Y —X) > 0, and (50b) imply that X;; = Tj;for alli. O

We use the following formulation, which we refer to as the T-formulation, to find the optimal solution for
sparse PCA. We chose to develop this formulation around the diagonal relaxation obtained using constraints
(44) as it is simple to implement but, as we will show later, it is also strong:

(T) : max trace(XX)
s.t.  (37),(38),(39),(44), (4%),(49f), (50),

trace(U) = trace(Y) = trace(X) = 1,

Y2 < Yy i=1,...,mj=i+1,...n

X=0,Ux=0.
To prove that this formulation is correct, we need to show only that (49d) is satisfied. To see this, observe that
Xii < Yy < z;, where the first inequality follows from (37) and the second inequality from (52). Instead of requir-
ing that Y- 0, we relax it so that YU < Y;;Yj; for all (i, j). Notice that the constraints Y,] < T;Tj and Yl] < YY) can
be written as second-order cone programming (SOCP) constraints ||(2Y;, Tj; — Tj)ll, < Tji + Tq and [|(2Y5;, Yi — Y]])||2
< Y + Y, respectively. We refer to the relaxation obtained by dropping (49f) as the T-relaxation.

After the initial draft of this paper (Kim et al. [17]), the following relaxation for sparse PCA was proposed in
Bertsimas et al. [6]:

max trace(XX)
s.t.  (37),(49%e), (49f),
trace(X) =1,

Yi < z i=1,...,n, (57a)
ZYZ‘]'< Z; i=1,...,nj=i+1,...,n, (57b)
Zijgzl w i=1,...,n, (57¢)
]1 Y1 =K

X>0.
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We refer to the relaxation as the B-relaxation. Theorem 13 shows that the B-relaxation is dominated by the
T-relaxation because (57a)—(57c) are implied in the T-relaxation.

We remark that the relaxations we develop here do not intrinsically depend on trace(X) =1. In particular,
when the constraint (50c) is replaced with Z?:lTi]' < ztrace(T) and the constraint trace(U) = trace(Y) = trace(X) =
1 is replaced with trace(U) = trace(Y) = trace(X), our relaxations can be used more generally. More specifically,
they are valid whenever we seek a rank-one matrix X that is symmetric and positive definite, and is such that
only K rows and columns have nonzero values.

We next define the notations used in the computational experiments. We refer to the relaxation obtained by
dropping constraints (44) and (45) from (46) as the rowsum relaxation. Also, we refer to the relaxation obtained
by dropping constraints (43) and (45) from (46) as the diagonal relaxation. We denote the optimal values of the
D-relaxation, B-relaxation, rowsum relaxation, diagonal relaxation, two-step relaxation, submatrix relaxation,
and T-relaxation by z,, 25, 27 osums Ziiagr Zasteps Zeubmat A0 2, respectively.

We use CVX (Grant and Boyd [10, 11]) version 2.2 or YALMIP (Lofberg [22]) version R20210331 to solve SDPs in
the experiments. MOSEK (MOSEK ApS [26]) version 9.2.47 was selected as the SDP solver in both cases.
To measure the relative tightness of a relaxation when compared with (35), we calculate gap closed as

(M) x 100.
Z5 —z*
where z, is the target SDP relaxation on which we calculate the gap closed. Here, z* denotes the optimal value
of sparse PCA and we obtain this value by solving the T-formulation of sparse PCA, (T), to optimality using the
bnb solver of YALMIP with MOSEK version 9.1.9.

In addition, we conducted experiments with an alternate formulation. This formulation is based on a compact
extended formulation of the permutahedron proposed by Goemans [9], where the construction and the size of
the reformulation depend on the choice of a sorting network. Although the optimal Ajtai-Komlds-Szemerédi
sorting network (Ajtai et al. [1]) gives an extended formulation for the permutahedron with ®(nlogn) variables
and inequalities, it has limited practical value because the constant hidden in the ©(-) notation is very large.
Instead, we used Batcher’s bitonic sorting network that gives an extended formulation with ©(1log?n) variables
and inequalities. When it comes to the time comparison between these two reformulations, we use the diagonal
relaxation among the aforementioned SDP relaxations because, as we show later, this relaxation produces com-
petitive bounds and is simple to implement. Because the formulation based on a sorting network is equivalent to
the duality-based formulation based on (4), the quality of bounds is the same, and we compare only their compu-
tation times.

The experiments were performed with an Intel Core i5-10400 machine containing a 2.90 GHz central process-
ing unit with 32 GB of random access memory and running Windows 10.

5.2.1. pitprops Problem. The pitprops problem (Jeffers [15]) is one of the most commonly used problems for
sparse PCA algorithms. The instance has 13 variables and 180 observations. Table 3 shows the test results for car-
dinality K=3,...,10.

Observe that the diagonal (respectively, submatrix) relaxation reduces the gaps of (35) by more than
88% (respectively, 96%), returning global optimal solutions for three (respectively, five) problems. The
T-relaxation attains the optima except for the instance K = 10. On average, it reduces the gaps of (35) by
99.81%.

For all computational times reported in Table 3, we used (44) to model the majorization constraints. However, as
we discussed earlier, these constraints can also be formulated using Batcher’s bitonic sorting network, which re-
quires only ®(nlog?n) variables. Our primary intention here is to compare the formulation of the permutahedron
based on (44) with that obtained via Batcher’s bitonic sorting network. For this comparison, we use the diagonal re-
laxation and simplify it by dropping the requirement that Y= 0. We refer to this simplified relaxation as the

Table 4. Computation time (in seconds) comparison with the diagonal relaxation for pitprops problems.

K 3 4 5 6 7 8 9 10 Average

Diagonal’-relaxation 0.23 0.22 0.23 0.22 0.23 0.23 0.23 0.22 0.23
Diagonal’-relaxation-sort 0.20 0.23 0.23 0.22 0.22 0.21 0.22 0.23 0.22
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Table 6. Comparison between the B-relaxation and the T-relaxation with n € {55, 60, ...,95,100} and K = round(n/6).

n 55 60 65 70 75 80 85 90 95 100
K 9 10 11 12 13 13 14 15 16 17
B-relaxation
Gap closed 32.88 29.28 17.18 19.07 18.32 17.01 11.82 13.56 10.68 11.61
Time (min) 0.02 0.03 0.05 0.07 0.09 0.13 0.17 0.23 0.30 0.40
T-relaxation
Gap closed 96.19 91.93 87.11 90.97 84.79 87.12 85.44 79.70 79.97 76.65
Time (min) 0.09 0.14 0.21 0.31 0.45 0.66 0.90 1.17 1.60 2.14

Diagonal’-relaxation. To differentiate the relaxation based on a sorting network, we will refer to it as Diagonal’-relaxa-
tion-sort. Clearly, both relaxations yield the same bound. Therefore, we only report on the solution times when com-
paring these relaxations. As n and K are small, no significant difference between the reformulations is observed.

5.2.2. Experiments with Randomly Generated Matrices. We next report test results for randomly generated
covariance matrices. Random matrices are generated using the following procedure. First, we choose a random
integer m € {1,...,n} for the number of nonzero eigenvalues of the matrix by setting m = [nU], where U is ran-
domly drawn from the uniform distribution ¢(0, 1). Second, we generate m random vectors v; € R" ~ N'(0, 1), for
i=1,...,m for rank-1 matrices. Third, we generate m positive random eigenvalues A; ~4(0,1), for i=1,...,m.
Finally, we construct the desired random covariance matrix as X = 3\ ;00 .

The tests are performed for problems with size n € {5+5i|i=1,...,9}, and the cardinality K =round(n/6) is
chosen to reflect the motivation of sparse principal components analysis to produce sparse vectors, where
round(x) represents the integer closest to x (i.e., round(x) = |x] as long as the fractional part of x is strictly less
than 0.5 and [x] otherwise). For each n and the associated K, 30 instances generated from random covariance ma-
trices are tested. The reported computation times and gaps closed are the averages for the 30 instances. In Table 5,
we present average gap closed for the computation times in seconds and gap closed of the relaxations. The com-
putational results show that our SDP relaxations improve the gaps of the SDP relaxation (35) significantly.

Among the relaxations in Table 5, the T-relaxation yields the tightest bound on our instances. We remark
that the T-relaxation bound improves when the constraints for the two-step relaxation and/or the submatrix re-
laxation are also imposed. However, we do not report on the performance of these relaxations because they are
more complex and more computationally expensive to solve. For larger-dimensional instances, we choose the
B-relaxation and the T-relaxation to compare. For n € {5+5i|i=10,...,19}, we generate 30 random covariance
matrices for each n and summarize the results of the comparison in Table 6 and Figure 2, where the computation
times are in minutes.

We next show that replacing (44) with a sorting network helps reduce the solution time for the diagonal relaxa-
tion by comparing the Diagonal’-relaxation and Diagonal’-relaxation-sort on the synthetic data sets. For this
demonstration, we consider dimensions n € {10i|i=1,...,15} and choose K =round(rn/6). For each choice of n
and the associated K, 30 randomly generated instances are tested; see Table 7 and Figure 3 for comparison of the

Figure 2. Comparison between the B-relaxation and the T-relaxation with n € {10,15,...,95,100} and K = round(1/6).
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Figure 3. Computation time comparison between the Diagonal’-relaxation and Diagonal’-relaxation-sort for sparse PCA with
random covariance matrices; n = 10,20, ...,150; and K = round(r/6).

--m-- Diagonal’-relaxation
12 I | —e—Diagonal’-relaxation-sort i

Time (min)

1 1 1 1
0 20 40 60 80 100 120 140 160

computation times (in minutes). Our results show that the sorting-network-based formulation reduces the com-
putational time for the relaxation.

6. Conclusion

In this paper, we present an explicit convex hull description of permutation-invariant sets and applications of the re-
sults to various important sets/functions in optimization. The construction of the convex hull is based on the fact that
a permutation-invariant set is a union of permutahedra with generating vectors in A = {x e R"|x1 > --- > x,,} and the
convex hull of this union can be described in closed form. We then applied this result to derive various convexification
results. First, we presented an extended formulation for the convex hull of permutation-invariant norm balls con-
strained by a cardinality requirement. Second, we convexified sets of matrices that are characterized using functions of
their singular values. Third, we derived convex/concave envelopes of various nonlinear functions and convex hulls of
sets defined using nonlinear functions when bounds for variables are congruent. Fourth, we studied sets of rank-one
matrices whose generating vectors lie in a permutation-invariant set. We use majorization inequalities in the space of
generating vectors to construct valid inequalities for the convex hull in the matrix space. As a motivating example, we
construct tight semidefinite programming relaxations for sparse principal component analysis and report computa-
tional results that show that our tightest relaxation reduces more than 99.8% (respectively, 97.9%) of the gaps for the
pitprops data set (respectively, synthetic data sets with the dimensions up to n = 50). The concept of permutation in-
variance can be used to study a variety of other sets, including those arising from logical requirements in 0-1 mixed in-
teger programming; see Kim et al. [17] for additional descriptions.
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Appendix. Table of Notations

Notation Definition Defined in
card(x) Number of nonzero components of x Section 1

1114 l;-norm of vectors Section 1

M"HR) Set of m-by-n real matrices Sections 1 and 3.1
Il-1lsp Spectral norm of matrices Sections 1 and 3.1

Ar {xeR" |X7-[(1) > > Xn(,,)} Section 1

A'(=A) {xeR"|xg = > x,} Section 1, (1)

conv(X) Convex hull of the set X Section 1

Pr k-by-k permutation matrices Section 2

X[ ith largest element of x Section 2, Definition 1
X2y X majorizes y Section 2, Definition 1

X2 omY x weakly majorizes y from below Section 2, Definition 1
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Appendix. (Continued)

Notation Definition Defined in
1+ 1ls An arbitrary sign- and permutation-invariant norm of vectors Section 3, (10)
NIII<-H,- {x e R"||x|l; < 1,card(x) < K} Section 3, (10)
Bs(r) {x e R"|||x|l, < 7} Section 3
AL(=Ay) A"NRY Section 3, (12)
Xpn(=xp) (oca); =13 Section 3, (12)
xar (= xa,) (xcpn); = Iy Section 3, (12)
vert(P) Set of vertices of the polyhedron P Section 3, Proposition 1
int(X) Set of interior points of X Section 3, Proposition 1
-1l The norm corresponding to the convex body N"f”ﬁ Section 3
n ) :
s(x) 50, = %, i=1,.. K, s(x) = s(¥)g,; = 00 Section 3
iy argmin{s(x);|i=1,...,K} Section 3
o(x) s(x);, Section 3
u(x) [, i€{l,... i =1} Section 3
u(x);:==490(x), ied{iy,...,K}
0, otherwise.
- 11F K-support norm (K-overlap norm) Section 3
a(M) Vector of singular value of the matrix M Section 3.1
[I- 11 Nuclear norm of matrices Section 3.1
diag(v) The diagonal matrix whose diagonal is v Section 3.1
S The set of p-by-p symmetric matrices Section 3.1
Sh The set of p-by-p positive semidefinite matrices Section 3.1
AM) The vector of eigenvalues of the matrix M Section 3.1
conve(¢) The convex envelope of ¢ over C Section 4
Plx Olx(x) = d(x) for any x € X and +oo otherwise Section 4
S(Z,a,b) {(x,z) € [ab]" X R™|(x,z) € Z} Section 4
X(Z,a,b,{F;}_,) {(x,2) € [ab]" xR"|(x,2) € Z,x € U_,F;} Section 4
M M»z,n(R) Section 5
Ms {(x,X) eR" x M"|X =xx",x €S} Section 5
Wa.(=K) n-dimensional vector of ones Section 5
Wosen k-by-k matrix of ones Section 5
trace(M) The trace of the matrix M Section 5, (30b)
diag(M) The diagonal vector of the matrix M Section 5
RM The vector of row sums of the matrix M Section 5
MY, The set of n-by-n nonnegative matrices Section 5.1
S, The set of n-by-n nonnegative symmetric matrices Section 5.1
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