
CR-I-TASSER: Assemble Protein Structures from Cryo-EM 
Density Maps using Deep Convolutional Neural Networks

Xi Zhang1, Biao Zhang1, Peter L Freddolino2, Yang Zhang1,2*

1Department of Computational Medicine and Bioinformatics, 2Department of Biological 

Chemistry, University of Michigan, Ann Arbor, MI 48109 USA

*Correspondence should be addressed to 

Yang Zhang, 

Department of Computational Medicine and Bioinformatics, University of Michigan, 

100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA, 

Phone: (734) 647-1549, Fax: (734) 615-6553, 

Email: zhng@umich.edu

Peter Freddolino,

Department of Biological Chemistry, University of Michigan,

1150 W. Medical Center Dr., Ann Arbor, MI 48109-0600, USA

Email: petefred@umich.edu

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

mailto:zhng@umich.edu


ABSTRACT

Cryo-electron microscopy (cryo-EM) has become a leading approach for protein structure 

determination,  but  it  remains  challenging  to  accurately  model  atomic  structures  with 

cryo-EM density maps. We propose a hybrid method, CR-I-TASSER, which integrates 

deep  neural-network  learning  with  cutting-edge  I-TASSER  assembly  simulations  for 

automated cryo-EM structure determination. The method is benchmarked on 778 proteins 

with simulated and experimental density maps, where CR-I-TASSER constructs models 

with a correct fold (TM-score>0.5) for 643 targets that is 64% higher than the best of 

other de novo and refinement-based approaches on high-resolution data samples. Detailed 

data analyses showed that the major advantage of CR-I-TASSER lies in the deep-learning 

based Cα position prediction, which significantly improves the threading template quality 

and therefore boosts the accuracy of final models through optimized fragment assembly 

simulations.  These  results  demonstrate  a  new  avenue  to  determine  cryo-EM  protein 

structures with unprecedented accuracy and robustness covering various target types and 

density-map resolutions.
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INTRODUCTION

Protein  3D  structure  determination  is  crucial  for  understanding  their  biological 

functions. Over the past decades, nuclear magnetic resonance (NMR) spectroscopy1, X-

ray  crystallography2 and  electron  microscopy  (EM)3 have  been  widely  employed  to 

obtain  protein  structures.  However,  NMR can  only  be  conducted  to  relatively  small 

proteins, whereas X-ray crystallography is often constrained by the difficulty of protein 

crystallization4.  Although  EM  can  overcome  some  of  these  limitations,  it  can  bring 

samples with damage due to high-energy radiation, or cause a low signal-to-noise ratio 

when  very  low electron  doses  are  used5.  The  idea  of  cryogenic  electron  microscopy 

(cryo-EM) was first  proposed in  the 1980s to  reduce  sample  damage through frozen 

specimens6. Over the last decade, various theoretical and technological innovations have 

been brought out, including single particle analysis and direct electron detection cameras5, 

7, 8,  which have made cryo-EM a practical means for probing protein structures without 

crystallization (X-ray) or size limitations (NMR). However, the success rate of cryo-EM 

is low with low-resolution density map data and more than half of cryo-EM samples in 

the EMDataResource have no atomic structure determined9.

To  help  cryo-EM  structure  determination,  a  variety  of  computational  structure 

modeling methods have been recently proposed, which can be generally categorized into 

two groups. The first group of approaches, such as Rosetta-Ref10, Flex-EM11, iMODFIT12, 

MDFF13,  Situs14 and  EM-Refiner15,  are  built  on  structure  refinement  guided  by 

correlations  between  the  atomic  model  and  cryo-EM  maps.  Despite  the  relative 

simplicity,  most  of  the  refinement  programs  require  predefined  model  and  map 

superposition, and the success rate critically depends on the quality of initial models and 

the  superposition.  The  second  group  is  referred  to  as  ‘de  novo’  modeling  which 

constructs models from sequence and density map alone. One such example is Rosetta de 

novo (Rosetta-dn)16,  17 which creates  the initial model from a density map followed by 

RosettaES17 beam  growing  and  Rosetta  folding  refinement.  Another  example  is 

MAINMAST18 which constructs  initial  backbone models from local  dense points and 

then refines the models with the MDFF program13. Although these  de novo approaches 

are capable of creating models from density maps alone, their success is highly sensitive 

to  the  resolution  level  of  density  maps.  Additionally,  methods  such  as  MAINMAST 
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requests for manual  tuning and combination of multiple  parameter-sets,  rendering the 

programs less convenient to be automatedly implemented.

We present  a  new hybrid  pipeline,  CR-I-TASSER (CRyo-EM  Iterative  Threading 

ASSEmbly Refinement), for fully automated protein structure determination. While it is 

a  de novo type approach in terms of creating models from sequence and density maps 

alone, CR-I-TASSER does utilize multithreading algorithms to identify homologous and 

analogous  templates  from the  PDB to  facilitate  structural  assembly.  Considering  that 

most  of  the  traditional  de novo and  refinement-based approaches  rely on model-map 

correlations, the information of which is less specific when the map resolution is low, we 

extend deep residual convolutional neural networks (CNN)19 to create high-accuracy Cα  

atom  trace  models  from  density-map  samples,  which  can  significantly  improve  the 

threading template quality. In addition, the deep-learning boosted threading models are 

further assembled with cutting-edge I-TASSER folding simulations, under the guidance 

of specific  CNN models and the highly optimized I-TASSER knowledge-based force 

field20. Our large-scale benchmark tests show a significant advantage of CR-I-TASSER 

over the traditional de novo and refinement-based approaches in assembling atomic cryo-

EM protein structures. The online server and standalone package of CR-I-TASSER have 

been made publicly available at https://zhanggroup.org/CR-I-TASSER/.

RESULTS

CR-I-TASSER is a hybrid method to determine atomic-level protein structures from 

cryo-EM density maps. As outlined in Fig. 1, CR-I-TASSER starts with the creation of a 

sequence-order independent Cα  conformation by deep convolutional neural network (3D-

CNN) training from density maps.  The  Cα  conformation is then used to improve the 

threading  templates  created  by  LOMETS21,  for  which  multiple  heuristic  iteration 

algorithms  are  designed  to  match  the  query  and  template  sequences  with  the  Cα  

conformation for template reselection and  Cα  trace regeneration.  Finally,  the iterative 

threading assembly refinement  method (I-TASSER20)  is  extended to assembly atomic 

structure models under the guidance of both cryo-EM density map correlation and deep-

learning boosted template restraints. Here, although CR-I-TASSER is built on I-TASSER 

and LOMETS21, the development of new deep-learning approach to cryo-EM based Cα  
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atom  prediction  and  the  integration  of  sequence-order  independent  Cα  models  with 

advanced  structure  assembly  methods  represent  the  major  novelty  of  the  pipeline. 

Although  there  were  prior  efforts  in  applying  deep-learning  techniques  to  extract 

structural information from cryo-EM density maps22,  23,  CR-I-TASSER marks the first 

pipeline  utilizing  sequence-order  independent  Cα  positions  to  improve  threading 

alignments and regenerate order-dependent  Cα  trace models, so that the deep-learning 

derived  cryo-EM  models  can  be  directly  used  for  guiding  atomic-level  structural 

assembly simulations. See Supplementary Text 1 for details of CR-I-TASSER datasets.

Density-map based Cα  significantly improve template quality

A  key  component  of  CR-I-TASSER  is  the  deep  neural-network  based  Cα  atom 

prediction  from  cryo-EM  density  maps,  which  is  used  to  guide  both  template 

regeneration and structure folding simulations. Since the predicted  Cα  atoms from 3D-

CNN do not have indexes,  we define CRscore to estimate the similarity  between the 

predicted Cα  atoms and the native structure by

CRscore=1
L∑i

1

1+( di , j

d0 )
2 (1)

where L is the target length.  d ij is the distance between ith atom in the 3D-CNN model 

and  jth atom in the native structure, where the  i-j correspondence is established by a 

greedy  method  selecting  the  non-redundant  i-j pairs  of  the  shortest  distance  (see 

Supplementary Text 2). d0=1.24
3√N−15−1.8 is a distance scale taken from TM-score to 

rule out length dependence24.  Here, the index information (and index connectivity)  of 

both structures is completely ignored when computing CRscore since we establish the i-j 

correspondence by using their coordinate information only (see Supplementary Text 2).

In Supplementary Fig. 1a, we list the average CRscore of 3D-CNN models on the 530 

test  proteins  in  different  resolution  ranges.  The  average  CRscore  is  >0.95  when  the 

resolution is high (<5 Å), but slightly decreases when the resolution becomes lower (>10 

Å). This is consistent with the trend of RMSD shown in Supplementary Fig. 1b, which is 

around 2-3 Å for high-resolution density maps but rises to 3-5 Å for low-resolution maps. 

As a comparison, we employ an established algorithm, MAINMAST, which can generate 
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Cα  locations from the density map. In addition, we create  Cα  atom models by a naïve 

greedy procedure which picks Cα  atom positions of the highest density values not in an 

excluded volume (see Supplementary Text 3). As shown in Supplementary Fig. 1, the 

average CRscore and RMSD from our 3D-CNN Cα  models are considerably better than 

MAINMAST and the naïve greedy procedure when resolution is high to medium (1-8 Å), 

and they become much better as the resolution drops, demonstrating the efficiency of 

deep-learning training process for Cα  position prediction.

Using the 3D-CNN models, CR-I-TASSER creates two types of templates by either 

density-map based template reselection or  Cα  trace regeneration, followed by score re-

ranking.  In  Supplementary  Table  2,  we  compare  TM-scores  of  the  templates  from 

LOMETS  with  those  after  3D-CNN  based  refinement,  where  TM-score  is  a  metric 

defined to assess structural similarity of two structures, which has values ranged in (0,1] 

with a higher value indicating closer similarity24 (see Supplementary Text 4 for a more 

detailed description of TM-score). In general, 3D-CNN makes the largest improvement 

for Hard targets in which Cα  traces deduced from 3D-CNN models have a significantly 

higher  TM-score  (0.690  and  0.527  with  high-  and  low-resolution  density  maps 

respectively) than that of the original LOMETS (0.283). Combining both Easy and Hard 

targets, the TM-score of the first models by 3D-CNN (0.707) is 45% higher than that by 

the  original  LOMETS  (0.487),  which  corresponds  to  a  p-value=1.3×10-174 in  the 

Student’s t-test, showing that the template quality improvement brought by 3D-CNN is 

statistically highly significant.

CR-I-TASSER on high-resolution simulated density maps

To examine the efficiency of the CR-I-TASSER pipeline, we first apply it to the 301 

Hard  targets  from  our  benchmark  set  that  lack  homologous  templates  in  the  PDB. 

Overall, CR-I-TASSER creates models with average TM-score=0.772 and RMSD=4.4 Å. 

If we count the targets with TM-score >0.5, which corresponds to a model with correct 

fold25,  CR-I-TASSER creates correct folds for 251 targets,  which is 9.3 times of that 

obtained by I-TASSER (=27, see Table 1), showing the significant impact of cryo-EM 

density maps on I-TASSER based structure modeling.
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As a comparison,  we list  in  Table  1 (Rows 9-11) the  results  from three  de novo 

programs, MAINMAST18,  Rosetta-dn16,  17 and  Phenix26,  which create models from the 

same set of density map data (see Supplementary Texts 5-7 for setting). It shows that CR-

I-TASSER outperforms these programs significantly  with the average  TM-score 76% 

higher than MAINMAST (0.438), 84% higher than Rosetta-dn (0.419), and 66% higher 

than Phenix (0.466). In Figs. 2b-d, we present a head-to-head TM-score comparison of 

CR-I-TASSER with the three control programs, where CR-I-TASSER has a higher TM-

score in 259/270/252 cases than MAINMAST/Rosetta-dn/Phenix and the latter does so 

only in 42/31/49 cases. In Figs. 2e-i, we also list the modeling results by five start-of-the-

art cryo-EM refinement programs from Flex-EM11, iMODFIT12, MDFF13, EM-Refiner15 

and  Rosetta-Ref10,  which  start  with  the  I-TASSER models  after  superposition  of  the 

density  maps  using  Situs14 (see  Supplementary  Texts  8-12).  Overall,  the  refinement 

programs do not work well for the Hard targets, where their TM-scores are even lower 

than that of the initial I-TASSER models, probably due to the poor quality of the initial I-

TASSER models for the Hard proteins that have an average TM-score of 0.345. This 

result  is  consistent  with  a  previous  observation15,  which  showed  that  the  correlation 

between model quality and model-to-density correlation coefficient (CC) vanishes when 

the TM-score of the initial models <0.5, and therefore there is no sufficient CC gradient 

to guide the programs for refining structures. We also benchmarked CR-I-TASSER on 

229 Easy targets, where it outperforms other control groups with a significantly higher 

TM-score  (0.949;  p<10-20 in  all  cases,  Student’s  t-test).  Details  can  be  found  in 

Supplementary Text 13. 

In addition to the global structure quality listed in Table 1, we also calculate the local 

structure scores, including clashes and Molprobity27, in Supplementary Table 3. CR-I-

TASSER achieves the second-best clash and Molprobity scores following Rosetta-Ref, 

indicating  that  the  CR-I-TASSER  models  have  a  reasonable  local  structure  quality. 

Moreover,  we  demonstrated  the  improvement  of  template  quality  plays  an  critically 

important  role  in  CR-I-TASSER  structure  assembly  (Supplementary  Text  14),  and 

benchmarked  CR-I-TASSER  under  Gaussian  noises  added  by  Xmipp28 (see 

Supplementary Texts 15 and 16 for details). Furthermore, in Supplementary Fig. 3, we 

present an illustrative example from polyomavirus VP1 pentamer protein (PDB ID: 1vps-
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A), which demonstrated that the template regeneration process can create high-quality 

templates from the 3D-CNN Cα  traces and result in much improved full-length structure 

models,  even  though  the  initial  threading  templates  are  completely  incorrect  (see 

Supplementary Text 17 for details).

CR-I-TASSER on low-resolution simulated density maps

While cryo-EM experiments are now achieving increasingly good resolutions, it is still 

of  importance  to  model  structures  from  medium-  and  low-resolution  density  maps, 

especially  for  the  molecules  with  high  flexibility  or  conformational/compositional 

heterogeneity5. In Table 1 (Rows 25-34), we examine the performance of CR-I-TASSER 

on the  301 Hard proteins  with  resolution  ranging from 5 to  15 Å.  Compared to  the 

models  with high-resolution  density  maps (2-5 Å),  the  overall  performance of  CR-I-

TASSER  is  reduced  in  the  low-resolution  with  an  average  TM-score=0.597;  this  is 

mainly due to the reduction of the 3D-CNN Cα  model quality with lower map resolution, 

as  shown in  Supplementary  Fig.  1.  Nevertheless,  the  TM-score  of  CR-I-TASSER is 

significantly  higher  than  the  de  novo programs  by  MAINMAST (0.204),  Rosetta-dn 

(0.201) and Phenix (0.180),  as well  as the refinement  programs by Flex-EM (0.303), 

iMODFIT  (0.316),  MDFF  (0.319),  EM-Refiner  (0.305)  and  Rosetta-Ref  (0.268).  A 

similar trend can be found on the 229 Easy targets as summarized in Table 1 (Rows 36-

47); see Supplementary Text 18 for details.

In Supplementary Figs. 4a-b, we list a head-to-head TM-score comparison of CR-I-

TASSER  with  the  best  de  novo and  refinement  programs,  where  CR-I-TASSER 

outperforms MAINMAIST/MDFF in 296/265 cases, while the latter does so only in 5/36 

cases. If we count the number of cases with TM-score >0.5, CR-I-TASSER constructs the 

correct fold for 191 out of the 301 targets, which is 63 times of that by MAINMAST (3) 

and 7.3 times of that by MDFF (26).  As an illustration, we present in Supplementary 

Figs.  4c-h the  modeling  results  on Q6MIM9 from  Bdellovibrio  bacteriovorus,  which 

highlights that the hybrid effects of both template reselection and regeneration processes, 

as well as the optimized structure assembly simulations, make a major contribution to the 
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modeling of a Hard target with very low-resolution density maps (see Supplementary 

Text 19).

Overall,  although the average TM-score of CR-I-TASSER drops for low-resolution 

maps  in  530  Hard/Easy  targets,  the  magnitude  of  the  TM-score  reduction  for  CR-I-

TASSER (by 17% from 0.849 to 0.727) is much smaller than that of the other  de novo 

methods, including MAINMAST (54%), Rosetta-dn (53%) and Phenix (73%). Even with 

the low-resolution maps, the average TM-score of CR-I-TASSER is 87% higher than that 

of the second-best method (MDFF) for Hard targets, and 14% (299%) higher than other 

refinement-based (de novo) methods for Easy targets. This advantage on low-resolution 

data modeling is mainly attributed to the integration of multi-threading alignments and 

the deep Cα trace learning with the BFGS and MC assembly simulations, which makes 

CR-I-TASSER a robust pipeline for a wide range of map densities.

Structure modeling on experimental density maps

To examine our pipeline in a realistic setting, we further tested CR-I-TASSER on 248 

non-redundant proteins with experimental density maps; see Supplementary Text 1 for 

details of dataset.  On average, CR-I-TASSER achieves an average TM-score=0.783 for 

the 248 EMDataResource targets, which is 158% higher than the best de novo program 

Rosetta-dn (0.303) and 17% higher than the best refinement program MDFF (0.671). In 

Fig.  3,  we present a  head-to-head comparison of CR-I-TASSER with I-TASSER and 

other  control  programs,  where  CR-I-TASSER  outperforms  the  control  methods 

(including I-TASSER) in most of the cases.  Especially, CR-I-TASSER outperforms the 

sequence-based I-TASSER method in 228 out of 248 cases (92%). The average TM-

score of CR-I-TASSER (0.783) is 23% higher than that of I-TASSER (0.637), which 

corresponds to a p-value=3.8×10−6 in Student’s t-test, showing significant impact of the 

introduction of cryo-EM data in the cutting-edge structure assembly simulations. If we 

count the number of cases with TM-score >0.5/0.9 for low-/high-resolution targets, CR-I-

TASSER achieves good predictions in 138 cases, which is 23 and 1.7 times of that by the 

best  de novo program (Rosetta-dn,  6)  and the  best  refinement  program (MDFF, 83), 

respectively. In the bottom of Table 1 (rows 46-67), we split the data samples into high- 

and low-resolution, where a similar trend of the superiority of CR-I-TASSER over other 
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methods  is  seen.  The  gap  between  CR-I-TASSER  and  the  comparison  methods,  as 

assessed  by  ΔTM=TM-scoreCR-I-TASSER-TM-scoreother,  is  slightly  larger  for  the  low-

resolution  (0.543/0.141  for  Rosetta-dn/MDFF)  than  the  high-resolution  samples 

(0.457/0.101),  despite  that  all  methods  perform  better  for  high-  than  low-resolution 

samples. This is probably due to the fact that TM-scores of the control methods for low-

resolution  samples  are  lower  and  therefore  have  more  room  for  improvement. 

Furthermore,  we  specifically  checked  whether  any  particular  secondary  structure 

components  would  affect  the  performance  of  CR-I-TASSER.  As  shown  in 

Supplementary Fig. 5, although CR-I-TASSER performs better in high-resolution than in 

low-resolution maps, there is no obvious correlation between the average TM-score and 

the  ratio  of  secondary  components  for  both  high-  and  low-resolution  cases. More 

benchmark results (e.g., template homology cutoff, different network trainings, full maps 

etc.) can be found in Supplementary Text 20.

As a  further  case study focusing  on difficult  targets,  we examine in  detail  a  hard 

example from the anthrax toxin antigen pore protein (PDB ID: 3j9c-A) in Fig. 4 and 

Supplementary Fig. 6. This target consists of 423 residues and the cryo-EM density map 

has a resolution of 2.6 Å. In this case, LOMETS failed to locate good templates (the best 

template  has  a  TM-score=0.257),  which  resulted  in  an  incorrect  fold  of  the  final  I-

TASSER  model  with  a  TM-score=0.132.  Therefore,  the  superposition  from  Situs  is 

nearly random. Consequently, all refinement-based methods failed to model the target 

and have the final model with TM-score=0.144, 0.132, 0.136, 0.143 and 0.153 for Flex-

EM, iMODFIT, MDFF, EM-Refiner and Rosetta-Ref, respectively. As illustrated in Figs. 

4a and 4d, the Rosetta-Ref model does not match the native structure both globally and 

locally. On the other hand, Phenix built a model from density map alone which fits the 

global conformation with the density map. However, there are multiple misconnections 

and  disordered  local  structures  in  the  model,  resulting  in  an  incorrect  topology  and 

sequence  mapping  with  a  TM-score=0.274  (Figs.  4b  and  4e).  Similar  results  were 

obtained by MAINMAST and Rosetta-dn with TM-score=0.165 and 0.245, respectively.

Given the high resolution of the density map, 3D-CNN generated a well-predicted Cα  

conformation  with  CRscore=0.947.  Benefitting  from  this  high-quality  prediction,  the 

template  regeneration  algorithm  created  a  reasonable  Cα  trace  model  with  TM-
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score=0.534. Following the CR-I-TASSER reassembly, the final model achieves a TM-

score=0.725) for the head globular domain (Fig. 4c) and TM-score=0.620 for the overall 

chain (Fig. 4f), which are both significantly higher than that by all template and cryo-EM 

based modeling programs.

It  is  notable  that  the  TM-score of  the  sequence-ordered  Cα  trace  model  in  CR-I-

TASSER is considerably lower than the CRscore calculated from the order-independent 

Cα  conformation in the anthrax toxin antigen pore protein case. This is mainly due to the 

extreme complexity of target structure consisting of a 3-domain globular head flanked 

with a long beta-hairpin stem that form an antigen pore with other homo-chains; such 

structural complexity not only introduces noises to  Cα  position predictions due to the 

high  flexibility  of  the  long stem,  but  also results  in  a  huge conformational  space  of 

fragment connection patterns, which makes the true backbone difficult to trace. As shown 

in Supplementary Fig. 8, there are many mis-predicted Cα  atoms around the long stem. 

Additionally,  the connection conformational  space is  huge because the two long beta 

strands  are  close  to  each  other,  making  it  hard  for  the  fragment-tracing  program to 

interpret the correct connection patterns, and hence difficult to establish correct backbone 

trace models for the long stem.  Given the specific local structures, however, this issue 

could be amended by using the density-map-based secondary structure prediction models 

because the backbone conformational space could be significantly reduced by excluding 

the  zigzag  connection  patterns  in  the  predicted  beta  zone.  A  separate  computational 

pipeline  implementing  real-space  secondary  structure  prediction  powered  with  deep-

learning is currently under development, which may in the future highly benefit modeling 

for targets with extremely low-resolution maps as well.

End-to-end studies on protein complexes EMD-10564/EMD-30703

As end-to-end case studies from raw density map to final structure, we first present an 

illustrative example in Figs. 5a-f and  Supplementary Figs.  9a-c for a large-size homo-

tetramer complex Beta-galactosidase (PDB ID: 6tsk), with each chain consisting of 1040 

residues. The corresponding density map EMD-10564 has a resolution of 2.3 Å and is 

segmented  by  Phenix  segment_and_split_map that  has  been  integrated  in  the  CR-I-

TASSER pipeline (see Supplementary Text 22),  resulting in a reasonable segmentation 
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model  as  shown in  Supplementary  Fig.  9a.  Here,  we construct  4  models  from the  4 

segmented  density  maps  separately  and look specifically  into  chain  A.  As  shown in 

Supplementary Fig. 9b, 3D-CNN creates a high-quality Cα  model with CRscore=0.946, 

which  is  subsequently  used  for template  reranking  and selection  from the  LOMETS 

alignment pool (outlined in Supplementary Fig. 12) and for Cα  trace generation with the 

Cα  trace connection algorithm (outlined in Supplementary Fig. 14). In this case, the best 

template with a TM-score=0.666 was identified by both LOMETS and the predicted Cα  

trace  conformation,  as  shown  in  Supplementary  Fig.  9c.  However,  the  rest  of  the 

threading  templates  are  not  as  good  as  the  best  one,  resulting  in  an  average  TM-

score=0.446 for the top-40 LOMETS templates. By combining the template reranking 

and Cα  trace generation processes, CR-I-TASSER improved the TM-score from 0.446 to 

0.513 for the top-40 templates.

These templates are submitted to the structural assembly simulations which are guided 

by  the  restraint-enhanced  I-TASSER  force  field  and  the  density-map  correlations. 

Eventually, CR-I-TASSER constructed the final model with TM-score=0.705 (Fig. 5c), 

which is 41% higher than that of the original I-TASSER prediction (0.500). Due to the 

size and complexity  of  the  model,  Situs  does  not  correctly  superpose the  I-TASSER 

model into the density map, resulting in the general low quality from the refinement-

based  programs  with  TM-score=0.476,  0.474,  0.343,  0.359  and  0.353  for  Flex-EM, 

iMODFIT, MDFF, EM-Refiner and Rosetta-Ref, respectively. Meanwhile, the  de novo 

programs that we tested are also unsuccessful in creating correct folds because of the 

complexity of tracing/building such a large protein, resulting in final TM-scores of 0.194, 

0.105 and 0.251, for MAINMAST, Rosetta-dn and Phenix, respectively.

Although CR-I-TASSER successfully built a model with the highest TM-score among 

the state-of-the-art programs, there is still room for improvement. In fact, the final model 

in Fig. 5c shows that the structure of the three domains in the left side of the picture is 

very close to the native, but that for the remaining two domains in the right side is poor. 

This is partly because the correct LOMETS alignments are mostly located in the left 

domains.  However,  the  connection  patterns  of  the  Cα  trace  model  shown in  Fig.  5a 

overlaps well with the target structure, indicating the connections are mostly correct. A 

closer view shows that there are several small flaws of misconnections in beta sheets of 
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the right part, where these misconnections can terminate the growth of the long traces as 

the target atoms may be out of the probing radius of the lastCα  atom, as shown in the 

zoom-in figure of Fig. 5b. The probing radius request is employed as the default in CR-I-

TASSER to ensure the  reasonability  of the  Cα  tracing models for general sequences. 

Nevertheless, if we use the option of “keep-tracing mode” provided in the CR-I-TASSER 

pipeline, which allows for the end point of current trace to break the connection patterns 

(see Supplementary Text 23), the created Cα  trace models are greatly improved with the 

average TM-score increased from 0.446 to 0.708 for this case, where the TM-score of the 

first template is improved from 0.666 to 0.749. These high-quality  Cα  trace templates 

lead to a much-improved full-length model with TM-score=0.857 (Fig. 5e). Despite the 

improved  performance  for  this  case,  the  “keep-tracing  mode”  is  not  used  as  default 

setting  in  CR-I-TASSER  as  the  drop  off  of  the  probing  radius  could  increase  the 

connection  uncertainty  and  reduce  the  average  performance  for  regular  proteins. 

Additionally, since we have separately modeled 4 segmented chains, we could choose a 

possibly better  model by examining the estimated TM-scores (see Eq. 8 in Methods), 

which  are 0.777,  0.912,  0.834 and 0.856 for  chain  A,  B,  C and D,  respectively.  By 

selecting the model for chain B, we obtained the final full-length model with a TM-score 

of 0.908 as shown in Fig. 5f. 

Overall,  this example demonstrates the  practicality  of CR-I-TASSER for generating 

high-quality  models  from  unsegmented  raw  density  map  data,  but  also  exposes  the 

potential  weaknesses  of  the  default  CR-I-TASSER  pipeline  which  is  sometime  too 

conservative  when  generating  Cα  traces  for  targets  involving  long  loops/tails  and 

disorder regions, where the “keep-tracing mode” may help provide an alternative solution 

for better Cα  tracing and final model constructions for these cases when the first try fails.

In Figs. 5g-h, we present another example of models built from raw low-resolution 

density map (13.5 Å), which is for the complex of the SARS-CoV-2 spike protein with a 

2H2 Fab (PDB ID:  7dk5). In this complex, three large homo-chains (each with 1261 

residues) are bound with the two heavy/light chains of a 2H2 Fab with 214/218 residues. 

Due to the low resolution, it is not feasible to automatically segment with only density 

map information. Thus, we attempted to build models on the whole map. Given that CR-

I-TASSER performs better for the cases with higher protein-map size ratio as shown in 
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Supplementary Fig. 7b, we first tried to build a long spike protein chain in the map. In 

this case, LOMETS recognize the top-1 template with TM-score=0.562, where the CR-I-

TASSER  re-ranked  the  alignments  and  chose  a  better  first-rank  template  with  TM-

score=0.671. As shown in Fig. 5g and Supplementary Fig. 9d, CR-I-TASSER superposed 

the first-rank template  into the low-resolution density  map correctly  and built  a final 

model with TM-score=0.798 to the deposited structure in the chain C position, where the 

model built by I-TASSER has only a TM-score=0.682. After that, the density map was 

masked by deleting the part  which overlaps with the model just built.  The remaining 

density map was then used by CR-I-TASSER to build the second and third spike chains 

subsequently by repeating this process. As shown in Fig. 5h and Supplementary Figs. 9e, 

CR-I-TASSER eventually  built  three spike protein models  on the low-resolution map 

with TM-scores of 0.668, 0.800 and 0.798 for the chain A (with up receptor-binding 

domain, RBD) and chain B/C with down RBDs, respectively (compared to 0.599, 0.677 

and 0.682 by I-TASSER). Although the resolution is low, CR-I-TASSER still assembles 

spikes with up/down RBD conformations in the correct position.

Following  the  long-chain  structure  modeling  for  the  spike  proteins,  we  further 

attempted to build models of the heavy/light chains of 2H2 Fab. Since these two chains 

are of similar length but not identical, it is hard to tell which one should be built first. By 

randomly selecting the heavy chain to start,  CR-I-TASSER created models with TM-

scores  of  0.702  and  0.518  for  the  heavy  and  light  chains  respectively,  which  are 

marginally better than I-TASSER (TM-score=0.524 and 0.571), where the positions of 

the two chains on the map are apparently incorrect (see Supplementary Figs. 9f-g). The 

failure for improvement is partly because the native structures of these two chains share 

similar folds (TM-score=0.730 by TM-align32), and hence they have very similar density 

maps, which make it harder to locate the correct position in such a low-resolution map. 

Instead of one-by-one modeling, a better strategy may be to introduce complex modeling. 

Here, we slightly extended the current pipeline to simultaneously superpose the templates 

from two chains and choose the best combination poses (see details in Supplementary 

Text 24). With this, good templates for both chains were correctly ranked and superposed 

in  the  density  map  as  shown  in  Supplementary  Fig.  9h.  These  templates  were  then 

submitted to CR-I-TASSER simulations separately, which resulted in the final models 
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with  higher  TM-scores  (0.827/0.670  for  heavy/light  chains,  see  Fig.  5i  and 

Supplementary Fig. 9i). Despite the simplicity, this result demonstrates the feasibility to 

extend CR-I-TASSER for complex-based structural modeling on full density maps.

CONCLUSION

We present a new hybrid pipeline,  CR-I-TASSER, for automated protein structure 

modeling from cryo-EM density map. The core component of the pipeline is the density-

map based Cα  trace predictions from deep convolutional neural networks, which are used 

for threading template selection and initial model generations through fragment tracing. 

The advanced I-TASSER folding simulation platform is then extended to reassemble the 

template and Cα  trace models, under the guidance of an optimized force field combining 

3D-CNN density-map and template restraints with the advanced knowledge-based energy 

potentials.

CR-I-TASSER was carefully benchmarked on a large-scale data set containing 778 

proteins with both computer-simulated and experimental density maps, compared to three 

state-of-the-art  de  novo (Rosetta-dn16,  17, MAINMAST18 and  Phenix26)  and  five 

refinement-based  (Flex-EM11,  iMODFIT12,  MDFF13,  EM-Refiner15 and  Rosetta-Ref10) 

methods.  Overall,  CR-I-TASSER generates  models  with  an  average  TM-score=0.839 

when high-resolution (2-5 Å) density maps are used, which is 88% higher than the best 

de novo modeling program (Phenix) and 41% higher than the best refinement program 

(MDFF),  with  a  p-value  <10-66 in  Student’s  t-test  for  both  comparisons.  When  the 

medium-to-low resolution (5-15 Å) maps are used, although the average TM-score of 

CR-I-TASSER is slightly reduced (=0.726),  it  still  generates correct fold with a TM-

score >0.5 for 482 cases, which is 66% higher than the best of other methods (289 by 

MDFF  program).  Detailed  data  analyses  showed  that  the  density-map  based  deep-

learning  Cα  trace  models  from 3D-CNN play  a  critical  role  in  the  structure  quality 

improvement.  Since deep-learning can derive  specific  and precise information  on  Cα  

atoms from density map, the 3D-CNN Cα  trace models can therefore be used to more 

efficiently  constrain  both  initial  template  regeneration  and  CR-I-TASSER  model 

assembly simulations, compared to traditional de novo and refinement-based approaches 

that  are  guided  solely  by  model-density  correlations.  Thus,  CR-I-TASSER  provides 
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currently  best-in-class  performance  for  automated  structure  prediction  from cryo-EM 

density maps.

Despite the encouraging results, it is important to note that the current CR-I-TASSER 

pipeline relies on the success of 3D-CNN on Cα  trace prediction, and we observe that the 

accuracy can decrease on low-resolution data.  There are also issues in converting  Cα  

positions into ordered tracing models when the target structure involves long loops/tails 

or disordered regions. Given the exciting progress witnessed in hybrid deep-learning and 

evolution-based protein structure prediction29-31, the combination of 3D-CNN with deep 

multiple sequence alignments collected from metagenome databases should help further 

improve the 3D-CNN Cα  trace and CR-I-TASSER model accuracy. Additionally, a new 

module of CR-I-TASSER aimed to further enhance its performance on low-resolution 

data  is  in development,  in which we employ density-map based real-space secondary 

structure modeling powered by deep neural-network learning to assist cryo-EM model 

construction.  The  preliminary  result  is  encouraging  and  shows  that  since  secondary 

structure is “coarser” than Cα  positions, the models are easier to learn and can provide 

more relevant information to improve the modeling accuracy for the targets with poorer 

resolution maps. Meanwhile, CR-I-TASSER mainly focuses on monomer proteins, for 

which the density maps need to be segmented manually in the first place. We expect that 

it  will  be  possible  to  combine  CR-I-TASSER  in  a  modular  fashion  with  improved 

upstream or downstream tools for other modeling tasks (e.g., segmentation or refinement) 

to further enhance future performance. Given that a major advantage of cryo-EM is on 

large-size protein complex structure determination, however, an important next step is to 

extend  the  deep-learning  based  structure  assembly  simulations  for 

protein-protein/protein-nucleic  acid  complex  structure  modeling  and  determination. 

While one of the current state-of-the-art segmentation programs has been integrated into 

CR-I-TASSER, new algorithms built  on I-TASSER homology modeling and heuristic 

structure-map alignment iterations32 can be a meaningful solution; investigations along 

these lines are under progress. 
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Tables

Table 1.  Modeling results by CR-I-TASSER and other methods on 778 benchmark test 
proteins involving different density map types and resolutions.  P-values are calculated 
using two-tailed Student's t-tests between the TM-scores produced by CR-I-TASSER and 
the other methods.  Bold fonts highlight the performer which obtains the best average 
result in each category. 

Methods ⟨ TM ˗ score ⟩ N (TM>TM0)4 ⟨RMSD⟩ (Å) P-value
301 Hard targets with high-resolution density map (resolution in 2-5 Å) (TM0=0.5)
I-TASSER1 0.345 27 12.0 8.0×10-91

Flex-EM2 0.318 22 12.4 3.8×10-96

iMODFIT2 0.340 25 11.9 6.6×10-91

MDFF2 0.331 26 12.1 3.4×10-91

EM-Refiner2 0.315 18 12.2 6.9×10-96

Rosetta-Ref2 0.297 30 14.0 1.2×10-99

MAINMAST3 0.438 121 10.2 9.8×10-47

Rosetta-dn3 0.419 94 12.2 8.7×10-52

Phenix3 0.466 134 8.6 8.7×10-42

CR-I-TASSER3 0.772 251 4.4 --
229 Easy targets with high-resolution density map (resolution in 2-5 Å) (TM0=0.9)
I-TASSER1 0.762 16 5.1 8.4×10-75

Flex-EM2 0.824 66 4.4 4.6×10-35

iMODFIT2 0.799 43 4.7 5.6×10-48

MDFF2 0.857 104 4.1 4.8×10-21

EM-Refiner2 0.846 76 4.0 3.5×10-37

Rosetta-Ref2 0.851 103 4.0 6.9×10-21

MAINMAST3 0.439 9 11.8 5.7×10-78

Rosetta-dn3 0.474 17 12.0 8.0×10-77

Phenix3 0.493 8 8.4 1.4×10-76

CR-I-TASSER3 0.950 198 1.4 --
301 Hard targets with low-resolution density map (resolution in 5-15 Å) (TM0=0.5)
I-TASSER1 0.345 27 12.0 2.0×10-48

Flex-EM2 0.303 13 12.3 1.2×10-61

iMODFIT2 0.316 23 12.0 2.0×10-56

MDFF2 0.319 29 11.8 6.8×10-55

EM-Refiner2 0.305 19 12.1 2.3×10-60

Rosetta-Ref2 0.268 18 13.9 1.6×10-70

MAINMAST3 0.204 3 14.3 2.1×10-86

Rosetta-dn3 0.201 7 14.6 6.7×10-91

Phenix3 0.180 0 12.5 5.5×10-95

CR-I-TASSER3 0.597 191 6.3 --
229 Easy targets with low-resolution density map (resolution in 5-15 Å) (TM0=0.9)
I-TASSER1 0.762 16 5.1 8.4×10-75

Flex-EM2 0.666 0 5.3 3.5×10-90

iMODFIT2 0.767 34 4.4 4.0×10-29

MDFF2 0.788 46 4.3 5.5×10-23

EM-Refiner2 0.739 21 4.7 5.3×10-42

Rosetta-Ref2 0.714 14 4.9 7.5×10-49

MAINMAST3 0.202 0 15.6 5.7×10-311

Rosetta-dn3 0.225 1 9.2 1.5×10-238
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Phenix3 0.174 0 13.8 3.2×10-309

CR-I-TASSER3 0.898 137 2.1 --
178 targets with experimental density map (resolution in 2-5 Å) (TM0=0.9)
I-TASSER1 0.647 6 8.3 4.0×10-15

Flex-EM2 0.681 24 8.5 3.6×10-9

iMODFIT2 0.695 19 7.8 6.8×10-8

MDFF2 0.709 37 7.3 4.9×10-6

EM-Refiner2 0.690 32 8.3 2.5×10-7

Rosetta-Ref2 0.688 40 8.5 7.1×10-7

MAINMAST3 0.323 2 15.2 7.4×10-72

Rosetta-dn3 0.353 5 15.7 1.4×10-60

Phenix3 0.349 1 13.3 2.7×10-63

CR-I-TASSER3 0.810 75 4.9 --
70 targets with experimental density map (resolution in 5-10 Å) (TM0=0.5)
I-TASSER1 0.612 49 9.2 2.7×10-3

Flex-EM2 0.546 45 9.3 4.3×10-7

iMODFIT2 0.603 48 8.9 1.7×10-3

MDFF2 0.573 46 8.7 5.9×10-5

EM-Refiner2 0.576 45 8.8 9.7×10-5

Rosetta-Ref2 0.554 43 9.3 9.7×10-6

MAINMAST3,5 0.221 0 16.1 2.0×10-31

Rosetta-dn3 0.176 1 15.6 5.4×10-41

Phenix3 0.118 0 18.3 1.5×10-43

CR-I-TASSER3 0.714 63 6.2 --
1Protein structure prediction methods
2Cryo-EM based structure refinement methods
3Cryo-EM based de novo structure modeling methods
4TM0=0.5 for simulated Hard targets and low-resolution experimental targets, =0.9 for simulated Easy targets or high-
resolution experimental targets
5Only 61 targets are solved with MAINMAST, probably due to the low resolution and experimental noise

19

502
503
504
505
506
507

508
509

19



Figure Captions

Figure 1. CR-I-TASSER pipeline. Starting with a query sequence and cryo-EM density 
map, CR-I-TASSER constructs atomic models through 3 consecutive steps: 1. Initial data 
processing  to  generate  3D-CNN  Cα  conformation,  LOMETS  threading  and  ResPRE 
contact-map prediction; 2. Density-map based template reselection and trace generation; 
3. Density-map guided fragment reassembly simulations and model refinements.

Figure  2.  TM-score  comparisons  of  CR-I-TASSER with  I-TASSER and  eight  other 
control methods on 301 Hard targets with 2-5 Å resolution simulated density maps. CR-I-
TASSER versus (a) I-TASSER; (b) MAINMAST; (c) Rosetta-dn; (d) Phenix; (e) Flex-
EM;  (f)  iMODFIT;  (g)  MDFF;  (h)  EM-Refiner;  (i)  Rosetta-Ref.  The  symbols  with 
different  colors  and shapes  denote  different  ranges  of  resolution:  red  square:  2-3  Å; 
yellow circle: 3-4 Å; blue triangle: 4-5 Å.

Figure 3. Modeling results on 248 targets with experimental density maps by different 
methods.  CR-I-TASSER versus  (a)  I-TASSER; (b)  MAINMAST;  (c)  Rosetta-dn;  (d) 
Phenix; (e) Flex-EM; (f) iMODFIT; (g) MDFF; (h) EM-Refiner;  (i)  Rosetta-Ref. The 
symbols with different colors denote different ranges of resolution: purple: 2-5 Å; yellow: 
5-10 Å.

Figure 4. Structure modeling results on a protective antigen pore protein (PDB ID: 3j9c-
A)  with  high-resolution  (2.9  Å)  density  map.  (a-c)  Predicted  models  by  Rosetta-Ref 
(green),  Phenix  (orange)  and  CR-I-TASSER  (red)  are  shown  along  with  the  native 
structure  on  the  head  globular  domain  (Residues  1-98;  185-423,  blue).  (d-f)  The 
corresponding  full-length  models  including  the  stem  region.  The  predicted  Cα  
conformations and connection pattern can be found in Supplementary Fig. 6.

Figure 5. Illustrative examples of end-to-end structural modeling by CR-I-TASSER from 
unsegment maps. Through all pictures, native structures are shown in blue overlaid on 
density map in gray. (a-f) Beta-galactosidase in complex with L-ribose (PDB ID: 6tsk) 
from density map (EMD-10564, resolution 2.3 Å).  (a)  Best  Cα  trace model  (orange) 
superposed  with  the  native.  (b)  Zoom-in  pictures  of  breaking  connections  can  be 
remedied by the “keep-tracing mode” (see Supplementary Fig. 15 for details). (c) Full-
length model by CR-I-TASSER with default setting (red). (d) Cα  trace model generated 
with “keep-tracing mode” (green). (e) Full-length model by CR-I-TASSER with “keep-
tracing mode” (red); (f) Full-length model with the highest eTM-score among 4 chains 
(magenta). (g-i) the SARS-CoV-2 spike protein with receptor-binding domains (RBD) 
bound with a 2H2 Fab (PDB ID: 7dk5) from density map (EMD-30703, resolution 13.5 
Å). (g) First CR-I-TASSER model (yellow) built on the map as in the chain C location; 
(h) Models of chains A (green), B (red) and C (yellow) built on the map; (i) Final CR-I-
TASSER models of heavy/light  chains of 2H2 Fab (gold/silver)  using complex-based 
superposition process described in Supplementary Text 24.
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ONLINE METHODS

CR-I-TASSER is a hierarchical method integrating I-TASSER with cryo-EM density 

maps  for  high-accuracy  protein  structure  determination.  As  outlined  in  Fig.  1,  the 

pipeline consists of three consecutive steps: (1) initial data processing; (2) deep learning-

based  template  refinement  and  regeneration;  (3)  density  map  guided  structural 

reassembly simulations.

Initial data processing

Starting  from query  sequence  and  cryo-EM density  map,  CR-I-TASSER extracts 

three parts of information.

Predicting Cα locations using deep neural-network learning. Deep convolutional 

neural  network  (3D-CNN) with  a  residual  network  architecture19 (see  Supplementary 

Text 25 for details) is employed to predict Cα  atom locations in a grid system, where the 

input of the 3D-CNN is the cryo-EM density  map,  and the output  is  the grid values 

ranging from 0 to 1 representing the possibility of Cα  atoms at the grids. The overall 3D-

CNN architecture is shown in Supplementary Fig. 10a, where the density map in 3D grid 

space  is  taken as input  signal  to  send through a 3D convolutional  layer  followed by 

instance normalization and ReLU and extended to 32 channels. Next, 10 basic blocks 

with residual network architecture are used to enhance the network capability of learning 

essential information of density maps. Eventually, the signal goes through the last layer 

which contains a 3D convolutional layer with 2 output channels and a SoftMax layer. The 

final outputs of 3D-CNN contain two complementary probability maps with the same 

size of the input density map, in which one map represents the probability of class 1 

(“having Cα  atom”) while the other one stands for class 0 (“not having Cα  atom”). Since 

only  a  few  grids  are  with  Cα  atoms  around  them,  these  two  classes  are  highly 

imbalanced.  Specifically,  if  we look at  the  central  part  (instead  of  marginal  part)  of 

density  maps  where  proteins  are  located,  the  ratio  of  the  numbers  of  class  0/1  in 

experimental  training  set  is  440,462,749/9,537,251,  which  is  approximately 50/1  (see 

Supplementary Table 1). Therefore, to make the training process more balanced, we set 

the weights  as  1.0 and 50.0 for  class  0  and 1 respectively  when computing  the  loss 

function,  for  which  the  Cross  Entropy  Loss  is  employed. Although  the  weights  are 
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important in imbalance training and can affect the training process, the slightly different 

weights (e.g. 1/25 or 1/75 for class 0/1) will have negligible effect on the final training 

result and hence we only used the weights that are most naturally derived from statistics 

result.  During  the  training,  Adam  optimizer  is  employed  to  enhance  the  learning 

efficiency with a learning rate of 0.0005. To reduce overfitting, random dropout is also 

used with a drop_rate=0.2, and the batch sizes are set to 1.

The network was trained on two datasets to obtain two network models separately: To 

obtain  the  first  training  dataset,  we  download  the  file 

“cullpdb_pc20_res1.6_R0.25_d190404_chains3470.gz”  from 

http://dunbrack.fccc.edu/Guoli/pisces_download.php,  which  contains  3,470  non-

redundant proteins and was then randomly split  into a training (3,088 proteins) and a 

validation (382 proteins) set with a ratio ~9:1 to prevent overfitting. The density map for 

the first dataset is simulated by

ρ ( y )=∑
i

Ai

√2π σ2
e

−|y−x i|
2

2σ 2 (2)

where σ=R/√2π  with R being the resolution parameter randomly taken from [1, 15Å], y 

is the coordinate vector of the density map, x i and Ai indicate the coordinate vector and 

atomic  number  of  ith  atom  of  the  protein,  respectively.  The  second  training  dataset 

contains 3,600 targets with experimental density maps whose resolutions range from 2.1 

Å to 10.0 Å. These experimental maps were generated from 36 large complexes with 

well-superposed experimental structures by randomly segmenting them into small maps 

with a size of 50×50×50 Å3. To make the training process focus more on Cα atoms, we 

set a filter of these small maps by containing at least 250 Cα atoms. This can avoid the 

issue of containing too few Cα  atoms in a map, which could happen in the marginal parts 

of experimental maps. Through the 3D-CNN networks, the first model was trained on the 

simulated training set with more than 720 epochs. We calculated the average CRscore 

loss from the validation  set  every 30 epochs and stopped the training if:  (1) training 

epochs > 500 and max average CRscore > 0.8 and the latest average CRscore is 0.02 less  

than the max average CRscore, or (2) training epochs > 2000. After stopping training, we 

selected the model with the max CRscore (708 epochs, see Supplementary Fig. 11a). The 

second model started from the first model and was trained on the experimental training 
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set for 217 more epochs, where the average loss against  training epochs is  shown in 

Supplementary Fig. 11b. The loss in the first model starts to  saturate around 600-700 

epochs, while that in the second model does so after 800 epochs, probably because of the 

relatively higher complexity associated with the experimental maps. 

Following the  3D-CNN model,  a  quick  procedure  is  designed  to  convert  the  Cα  

possibility map into Cα  atom coordinates (Supplementary Fig. 10b). The procedure first 

locates the grid with the highest possibility and labels it as the first  Cα  atom. It then 

iteratively searches for the next  Cα  atom with the highest possibility at the grids with 

distance no less than 3.3Å from all the labeled Cα  atoms. The procedure repeats to ensure 

at least L (=query length) Cα  atoms are located. It will continue until 1.2*L Cα  atoms are 

located if the next highest possibility is >0.9.

Initial  template  identification  by  LOMETS. We  employed  LOMETS21,  a  meta-

threading  method  containing  11  leading  fold-recognition  programs,  to  identify 

homologous and analogous templates from the PDB. For each query sequence, top 300 

templates  are  collected  based  on  the  normalized  Z-score  (Zn),  which  measures  the 

significance of query-template alignments by each program. Accordingly, a target will be 

defined as ‘Easy’ if there is on average one or more good templates with Zn>1 for each 

program, while others are labeled ‘Hard’ due to the lack of good templates.

Inter-residue contact map prediction. ResPRE33 is used to predict the residue-residue 

contact maps. From a query sequence, ResPRE first uses DeepMSA34 to collect multiple 

sequence  alignments  (MSAs)  from  the  whole-genome  and  metagenome  sequence 

databases,  where  the  inter-residue  contact  maps  are  then  predicted  from the  inverse 

covariance matrix derived from the MSAs, based on deep residual convolutional network 

training19.

Deep learning-based template selection and regeneration

We design  two procedures  utilizing  the  deep-learning  based  Cα  conformations  to 

improve  initial  template  quality  of  CR-I-TASSER  through  template  reselection  and 

model regeneration, respectively.

Template reselection by  Cα  and density map matching. LOMETS creates multiple 

threading templates, but the best templates do not always rank at the top by the Z-score. 
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We  re-rank  the  top  300  template  structures  based  on  their  match  with  the  Cα  

conformations predicted by the 3D-CNN from cryo-EM density map, using a procedure 

outlined  in  Supplementary  Fig.  12.  Because  the  3D-CNN  Cα  conformation  has  no 

sequence  index  assigned,  the  matching  procedure  starts  with  the  calculation  of  the 

“fingerprint”  for  each  Cα  atom in a given LOMETS template  and  Cα  conformation, 

where a fingerprint vector of ith Cα  atom F⃑ temp(¿Cα)(i) is defined as a set of 20 ascending-

ranking intra-distances between ith Cα  atom and 20 nearest Cα  atoms in the template (or 

Cα  conformation).  A  pairing  score  of  ith  atom  at  template  with  jth  atom  at  Cα  

conformation is then calculated by

Fscoreij=|F⃑ temp ( i )−F⃑Cα( j)|
2
(3)

The lower Fscoreij is, the more similar environment two atoms (i, j) are in, indicating a 

higher probability for (i , j) to be correctly paired. Therefore, we initially select the  Cα  

atom pairs with the minimum Fscoreij and pair them in the ascending order, where each 

atom can only be paired once. Generally, if ith and iith Cα  atoms from the template are 

correctly paired to  jth and  jjth  Cα  atoms from the  Cα  conformation, the intra-distance 

between ith and iith  Cα  atoms,  d (i , ii), should be close to that between jth and jjth  Cα 

atoms,  d ( j , jj). Based on this assumption, we further refine the initial pairing using a 

weighted matching score S(i , j) defined by

S ( i , j )=∑
ii ≠i
jj ≠ j {

W (i ,ii ) if |d ( i ,ii )−d ( j , jj )|≤1
W ( i , ii )

(d ( i ,ii )−d ( j , jj ) )2
if |d (i ,ii )−d ( j , jj )|>1 (4)

Here, W ( i ,ii )=w (i) ∙w(ii), where w (i) is the weight for ith Cα  atom from the template 

which  is  initially  set  as  1  and  updated  iteratively  by  an  algorithm  outlined  in 

Supplementary  Fig.  12.  After  the convergence,  only  the  pairs  with a  matching score 

S ( i , j )>S0 are selected, where the threshold S0 is defined by the 2-mean clustering of the 

matching scores. Based on the selected Cα  pairing, the Kabsch RMSD superposition of 

template and  Cα  conformation is performed35, where the inter-chain distance  d ij<10 Å 

will be used as a new condition to select Cα pairing in addition to Eqs. (3-4). This new 

pairing  will  be  used  as  the  input  of  pairing  refinement  and  Kabsch superposition  to 
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generate a newer pairing. The procedure will repeat until the final pairing and structure 

superposition converge (Supplementary Fig. 12).  Overall, the idea of the superposition 

process  described  above  is  to  identify  the  correct  pairs  of  atoms  between  Cα  

conformation (index-free) and template alignments (indexed) by comparing their  intra 

environments. 

Finally,  the  CRscore  is  calculated  for  each  template  with  the  3D-CNN  Cα  

conformation  based  on  the  selected  Cα  pairing,  where  the  300  LOMETS  templates 

selected by Z-score are re-ranked based on the calculated CRscores. A template will be 

defined as a ‘good’ template if the CRscore >0.5. Up to 30 good templates (N rank≤30) are 

selected from this template reselection procedure.

Initial  Cα trace model  generation from 3D-CNN  Cα conformations. Since  CR-I-

TASSER uses 40 replicas in the replica-exchange Monte Carlo (REMC) simulations and 

each replica starts with different templates, we generate  N gen=40−N rank new templates 

directly  from  the  3D-CNN  Cα  conformations;  this  contains  two  steps  of  Cα-trace 

connection and sequence-trace mapping (Supplementary Fig. 14).

For  Cα-trace connection,  we first  connect all  neighboring  Cα  atoms which have a 

distance below a bond-length  db. All connections to a  Cα  atom that has the number of 

connections (nconn≤2) are considered as ‘true’ connections (e.g., connections to Atoms-1, 

3, 5, 7 and 8 in Supplementary Fig. 14a), while all other connections that contradict with 

the true connections and make nconn>2 for other atoms are removed (e.g., connection 2-4 

in Supplementary Fig. 14a). After this scan, if a  Cα still contains >2 connections, this 

atom will be removed from the trace (e.g., Atom 6 in Supplementary Fig. 14a). As shown 

in Fig. 11b, the remaining Cα  trace pattern will depend on the selection of db. In CR-I-

TASSER, we implement the procedure under eighteen different cutoffs of db=¿3.8, 3.9, 

…, 5.5 Å separately, and keep only the connections with a frequency of occurrence >40% 

in the final Cα  connection.

This connection procedure creates multiple Cα  fragments, where up to 1,000,000 Cα 

traces are generated by randomly connecting the fragments, until no atom is available for 

the next connection. The latter could happen at the true end of the protein, or if there is no 

available atom in the probing radius (5.5 Å), or if there are other atoms but are already 
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fully  connected  in  an  unused  fragment. Although  the  constraints  involved  in  the 

connection process can help improve the accuracy of the template generation on average, 

it cannot always result in Cα  trace model with full length because the growth could stop 

anywhere  under  the  constraints.  To  address  this  issue,  CR-I-TASSER  provides  an 

alternative  “keep-tracing  mode”  to  improve  fragment  tracing  success  rate  for  some 

special  cases  by partially  releasing some of the restraints  or additional  iterations (see 

Supplementary Text 23 for details).

Assuming that each fragment is continuous, we map the query sequence to each Cα  

trace by gapless threading and calculate the Cα-Cα  contact map using a distance cutoff 

d<8 Å. Top 300  Cα  traces  are  selected  based on the Pearson correlation  coefficient 

(PCC) of the Cα-Cα  contact map with the predicted contact map from ResPRE, as well 

as the PCC of the template structure with the target density map (see Supplementary Text 

26). Finally,  N gen templates are selected from the 300 traces based on the PCC of the 

template structure with the target density map. This PCC is also employed to re-rank all 

top-40 templates including those from template reselection and regeneration. 

It  is  noted  that  two  3D-CNN  models  have  been  trained  on  the  simulated  and 

experimental  density-map  datasets  separately,  which  generates  two  sets  of  Cα 

conformations for each target. If the two conformations are close, i.e., with the CRscore 

between them >0.85, which usually indicates good quality of the conformations, we will 

take the average for each Cα atom pair to generate the final Cα conformation and use it 

for  the  template  reselection  and  regeneration  as  described  above.  In  case  the  Cα 

conformations are different (CRscore<0.85), which while rare, happens in some cases 

with  low-resolution  experimental  cases  and  usually  indicates  that  the  predicted  Cα 

conformation is not reliable, we skip the Cα  conformation-based template reselection and 

regeneration. Instead, we match each of the LOMETS templates directly with the density 

maps using BFGS algorithm (Supplementary Text 27) followed by a short Metropolis 

Monte Carlo simulation under the guidance of template-density correlation as defined in 

Supplementary  Text  26,  with  movements  including  2,000  rigid-body 

translations/rotations. The top 40 templates  are then selected based on the correlation 

coefficients from high to low. 

28

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

28



Density-map guided structural assembly simulations

CR-I-TASSER performs REMC simulations to assemble full-length structure models, 

under a composite energy force field of

ECR-I-TASSER=E I-TASSER+W tempE temp+W EM EEM+W EM
CNN EEM

CNN (5)

where  E I -T ASSER is  the inherent  knowledge-based potential  extended from I-TASSER20

and described in Supplementary Eqs. S2-33 in Supplementary Text 28,  Etemp contains 

four  aspects  of  distance  and  contact  restraints  collected  from  the  top  templates 

determined  by  LOEMTS  and  3D-CNN  models  (Supplementary  Eqs.  S34-43  in 

Supplementary  Text  29).  EEM counts  for  the  global  correlation  between  structure 

conformation and experimental density map ρ0 by

EEM=−∑
y
ρ0 ( y ) ∙ ρ ( y )(6)

where  ρ( y ) is  calculated  by  Eq.  (2).  The  EEM
CNN  counts  for  the  correlation  between 

structure conformation and the 3D-CNN predicted Cα conformation:

EEM
CNN=−∑

y
ρ0
CNN ( y ) ∙ ρ ( y )(7)

where ρ0
CNN  is the density maps calculated by Eq. (2) for the 3D-CNN Cα  conformation. 

This term is performed only when CRscore between the two 3D-CNN conformations is 

>0.85, which is designed to enhance the convergence of simulations to the consensus Cα  

conformations. It is noted that the negative cross correlation in Eqs. (6-7) instead of PCC 

defined in Supplementary Text 26 is implemented because the former is computed faster 

than the latter.  Additionally,  benefit  from the linear  combination  form of  Eqs.  (6-7), 

energy  terms  need  to  be  computed  only  for  the  local  segment  involved  in  each 

movement,  which is significantly faster than the calculations on the entire chain after 

each movement. The resolution for ρ( y ) and ρ0( y) calculations is automatically detected 

and set by a short-trained 3D-CNN predictor for resolution prediction. Our benchmark 

results  showed  that  the  final  model  quality  is  not  sensitive  to  the  value  of  setting 

resolution. The weight parameters in Eq. (5), as well as those in the inherent knowledge-

based I-TASSER force field, are determined in a separate training protein dataset, which 

29

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

29



is non-homologous to the test proteins of this work, by maximizing the average TM-score 

of the final models.

Final model selection and model quality estimation

The structure  conformations  generated  by CR-I-TASSER (referred  as  ‘decoys’)  in 

eight  low-temperature  replicas  are  clustered  by  SPICKER  to  select  the  states 

corresponding to the lowest free energy states36. Specifically, an all-to-all RMSD matrix 

is calculated among all decoys where a pair of decoys are considered as neighbors if their 

RMSD is within a cutoff. The decoy with the largest number of neighbors is selected as 

the center  of  the first  cluster  and the representative  centroid  model  for the cluster  is 

obtained by averaging all decoys included. The second cluster is obtained in a similar 

way on the remaining decoys after excluding all decoys from the first cluster, and the 

procedure  repeats  till  five  clusters  are  obtained.  Thus,  a  decoy  cluster  captures  the 

inherent statistics of the Monte Carlo process, i.e., the larger the size of the decoy cluster 

is, the higher the convergence is, and accordingly the less uncertainty the model sampling 

is.  As  the  cluster  centroid  models  from  SPICKER  often  contain  steric  clashes,  the 

centroids  of  the  five  biggest  clusters  are  reassembled  by  a  second  round  of  REMC 

simulation to improve the hydrogen-bonding network and local structural geometry. The 

lowest energy conformations are selected from the second-round simulations and further 

refined at atomic level by the fragment-guided molecular dynamics (FG-MD)37 to create 

final models.

To evaluate the quality of predicted structures, we calculate the estimated TM-score 

(eTM-score) of the mth CR-I-TASSER model relative to the target structure by

eTM-scorem=0.18+0.82 ∙max (Cm ,max
n≠m

(TM-scoremn−0.5 (1−Cn )))(8)

where  TM-scoremn is  the  TM-score  between  mth  and nth  predicted  models.  The 

confidence score Cm is defined as

Cm=
CRscorem
1+0.05 (M tot ∙ ⟨RMSD ⟩m )/Mm

(9)

30

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

30



where M tot is the total number of decoy conformations submitted to SPICKER, Mm is the 

number of decoys at  mth cluster,  ⟨ RMSD ⟩m is the average RMSD of the decoys to the 

cluster centroid, and the CRscorem is the matching score of the model with the 3D-CNN 

predicted Cα  conformation by Eq. (1).

Supplementary Fig. 16 displays the data of eTM-score versus the actual TM-scores 

on the first predicted models of all 530 test proteins with high-/low-resolution density 

maps, where most of the data points are located near the diagonal line, showing a strong 

linear correlation. The PCC and cosine similarity between eTM-score and TM-score are 

0.858  and  0.989,  respectively.  If  we  use  eTM-score=0.5  as  cutoff  to  split 

“Positive”/“Negative” cases, the numbers of cases for True Positive (TP), False Negative 

(FN), True Negative (TN) and False Positive (FP) are 856, 44, 119 and 41, respectively, 

which correspond the TP, FN, TN and FP rates of 95.1%, 4.9%, 74.4% and 25.6%, and 

the  overall  Matthews  correlation  coefficient  (MCC)  =  0.710.  The  strong  correlation 

indicates that eTM-score can be used to reliably estimate the quality of predicted models.

In addition to the eTM-score for overall quality estimation, we introduce two metrics, 

local PCC and local confidence, to estimate the local agreement to the density for the 

final models. First, the local PCC for ith-residue modeling quality from the mth predicted 

model is defined as

LPCC (m, i )=
∑
y

[ρm ( y , i )−E [ ρm (i)] ] [ρm' ( y , i)−E [ρm' (i)] ]

{∑y [ ρm ( y , i )−E [ ρm( i)] ]2 ∙∑
y

[ ρm' ( y , i )−E [ρm
' (i)] ]

2}
1 /2 (10)

where ρm ( y ,i ) is the density on grid y calculated by Eq. (2) but only from the ith residue 

of  the mth  predicted  model. Eq.  (10)  is  very  similar  to  the  normal  PCC  (see 

Supplementary  Text  26)  except  that  we  use  a  modified  density  ρm
'  instead  of  the 

experimental density ρ0:

ρm
' ( y ,i )=ρ0 ( y ) ∙

ρm ( y , i)

∑
j
ρm ( y , j )

(11)

The reason we use the modified density to compute local PCC for ith residue is because 

the experimental density ρ0 ( y ) on grid y contains contributions from all residues, where 

Eq. (11) is designed to decouple the experimental density for ith residue specifically. Toy 
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model  results  shown in  Supplementary  Fig.  17  demonstrate  that  the  ρm
' ( y ,i ) is  more 

reasonable than ρ0 ( y ) when computing the local PCC.

Second, the local confidence for ith-residue from the mth predicted model is defined 

by integrating eTM-score and local PCC:

LC (m ,i )=T (m ,i ) ∙∑
j

eTM-scorem
T (m, j )

(12)

where T (m , i ) is defined as 

T (m , i )=
( LPCC (m,i )+1 )

N model
∑
n=1

Nmodel eTM-scoren

1+(di (m ,n )
d0 )

2 (13 )

Here,  d i (m,n ) is the distance of  ith residue between  mth and  nth models, and  d0 is a 

scaling parameter from TM-score (see Supplementary Text 4).  Nmodel is the number of 

final models predicted by CR-I-TASSER which is no more than five. 

As an illustration, Supplementary Fig. 18 displays the local PCC and local confidence 

scores on two end-to-end study proteins (6tsk-B and 7dk5), where Supplementary Table 

5 lists the average correlation coefficients between the local quality scores and the local 

error of predicted models from the experimental structure for all 248 test proteins with 

experimental density maps. The data show that both scores can be used for local model 

quality estimation. Although the local confidence shows a slightly higher correlation with 

the local modeling errors, CR-I-TASSER output both scores for alternative local quality 

estimations. In addition, CR-I-TASSER produces up to five models, which allow user to 

estimate  the  global/local  quality  using  other  methods  such  as  ensemble  structure 

comparison.

Data Availability

All  training  and  testing  data  are  available  at 

https://zhanglab.ccmb.med.umich.edu/CR-I-TASSER/.

Code Availability
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The standalone package of the CR-I-TASSER programs, including library and manual 

documents,  are  available  to  download  at  https://zhanglab.ccmb.med.umich.edu/CR-I-

TASSER/download.html. 
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