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Abstract
In this paper, we devise new relaxations for composite functions, which improve the
prevalent factorable relaxations, without introducing additional variables, by exploit-
ing the inner-function structure. We outer-approximate inner-functions using arbitrary
under- and over-estimators and then convexify the outer-function over a polytope P ,
which models the ordering relationships between the inner-functions and their estima-
tors and utilizes bound information on the inner-functions as well as on the estimators.
We show that there is a subset Q of P , with significantly simpler combinatorial struc-
ture, such that the separation problem of the graph of the outer-function over P is
polynomially equivalent, via a fast combinatorial algorithm, to that of its graph over
Q. We specialize our study to consider the product of two inner-functions with one
non-trivial underestimator for each inner-function. For the corresponding polytope P ,
we show that there are eight valid inequalities besides the fourMcCormick inequalities,
which improve the factorable relaxation. Finally, we show that our results generalize
to simultaneous convexification of a vector of outer-functions.
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1 Introduction

Mixed-integer nonlinear programs (MINLPs) are typically solved to global optimal-
ity using branch-and-bound (B&B) techniques, which construct successively tighter
relaxations over refined partitions of the feasible domain [4,49]. The prevalent tech-
niques adopted by most state-of-the-art solvers for relaxing mixed-integer nonlinear
programs are inspired by the factorable programming (FP) scheme [30]. Given a
library of univariate functions and their relaxations, factorable programs are MINLPs
that only use functions that can be expressed as recursive sums and products of library
functions. Factorable programs are relaxed by introducing a new variable to replace
each univariate function, which is then required to satisfy constraints that model some
relaxation of the graph of the associated univariate function. Variable products are
relaxed by introducing a new variable for each product restricted to satisfyMcCormick
constraints, which describe the tightest convex outer-approximation of a bilinear term
over a rectangle [1,30].

The following three features of the FP scheme have resulted in its widespread
adoption. First, as the partition size is refined, the relaxation converges asymptotically
to the original function, a property needed for its successful use in convergent B&B
algorithms [24]. Second, the scheme imposes few restrictions on the types of functions
that can be relaxed, besides boundedness, making it suitable for automatically relaxing
large classes of MINLPs. Third, the number of variables introduced in the relaxation
is in direct correspondence with the nonlinearities in the problem, and, as a result, the
size of the relaxation is not much larger than the original MINLP formulation.

Nevertheless, the primary deficiency of FP is that it often produces weak relax-
ations [7,29]. Significant research has been devoted to improving the quality of
factorable relaxations by exploiting function structure. For various types ofmultilinear
functions [5,9,21,31,39,40], the fractional terms [46], and other useful functions [25–
27,45], envelopes have been derived. Tighter relaxations and cutting planes for
multilinear functions/sets have been proposed in [3,12–15,33,35,38,42]. Strong con-
vex relaxations for structured sets have been derived in [2,6,8,20,28,34,37,44]. These
techniques, however, do not directly improve the factorable programming scheme
itself.

Our framework shares the key properties of the FP but produces tighter relaxations.
We consider the composite function φ ◦( f1, . . . , fd) where, we refer to φ : Rd → R

as the outer function and ( f1, . . . , fd) as the inner-functions. Nonlinear expressions
in optimization problems are typically stored using expression trees, where each node
models a composition of a function and its children. Composite functions where
the outer-function is a product, radical, fraction, exp(·), log(·), and/or a trignomet-
ric function are commonly used to model nonlinear optimization problems [11,50].
We outer-approximate the graph of fi (·) with n estimators and derive bounds for esti-
mators. Then, we relax φ(·) over a polytope, P , that models the ordering relationship
between the functions, their estimators, and the bounds. Although P’s structure is
quite complex, it has as its subset a product of simplices, Q, which captures all the
interesting structure of the convex hull of the graph of φ(·) over P . We give a fast
combinatorial algorithm, with complexity O(dn) and a separation oracle call for the
graph of φ(·) over Q, that solves the separation problem for the graph of φ(·) over P .
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Moreover, when d is constant, and the convex hull of the graph of φ(·) is determined
by its value at extreme points of Q, we derive an LP formulation for the separation
problem, which is polynomially-sized in terms of the number of outer-approximators.

Wederive the inequalities explicitly for the casewhen the outer-function is a bilinear
term, where d = 2, and there is only one non-trivial underestimator for each inner-
function. Instead of the four inequalities that describe the McCormick envelopes, we
obtain 12 non-redundant inequalities for the bilinear term. This result shows factorable
programming relaxations can be easily tightened without introducing new variables.
We also show that access to a separation oracle that generates facet-defining inequal-
ities for the graph of φ(·) over Q and its projections, which are affinely isomorphic
to Q and obtained by ignoring some of the estimators, can be used to generate facet-
defining inequalities that separate a point from the convex hull of graph of φ(·) over P .
Finally,we show that these results extend to simultaneous convexification of composite
functions.

Notation Throughout this paper, we use the following notation. We shall denote the
convex hull of a set S by conv(S), the projection of S to the space of x variables by
projx (S), the extreme points of S by vert(S), the dimension of the affine hull of S
by dim(S), and the relative interior of S by ri(S). We denote the graph of a function
f by gr( f ), the convex (resp. concave) envelope of f (x) over a convex set X by
convX ( f ) (resp. concX ( f )), and the conjugate of f (x) over a set X by f ∗

X (x∗), i.e.,
f ∗
X (x∗) := sup

{〈x, x∗〉 − f (x)
∣∣ x ∈ X

}
.

2 Improving factorable relaxations using outer-approximations

FP expresses each function as a recursive sum and product of constituent functions,
where the key step involves relaxing a product of two functions. Consider the product
of two functions f1(x) f2(x), where fi : X → R and X is a convex set in R

m .
FP assumes that, for i = 1, 2, there are a convex function c fi (x) and a concave
function C fi (x) and constants f Li and f Ui so that, for x ∈ X , f Li ≤ fi (x) ≤ f Ui and
c fi (x) ≤ fi (x) ≤ C fi (x). Assume, without loss of generality, that f Li ≤ c fi (x) and
C fi (x) ≤ f Ui . Then, FP relaxes the epigraph

{
(x, μ) ∈ X × R

∣∣ μ ≥ f1(x) f2(x)
}
,

using additional variables f1 and f2, as follows:

{
(x, f , μ)

∣∣∣ μ ≥max
{
f L1 f2 + f1 f

L
2 − f L1 f L2 , f U1 f2 + f1 f

U
2 − f U1 f U2

}
,

c fi (x) ≤ fi ≤ C fi (x), x ∈ X
}
.

Observe that, in order to make the relationship between variables and functions trans-
parent, we will use the same name for the variable and the function, when the variable
models the graph of the function. The relaxation technique currently used in most
global optimization solvers augments the above relaxation with results for specially
structured problems; see [4,16,32,48].

We begin by showing that the FP relaxation of f1(x) f2(x) can be improved using a
two-step procedure. Assume that, besides bounds on fi (x), we may have access to an
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underestimator for fi (x). The factorable relaxation ignores this information, which,
as we show next, can be used to derive tighter relaxations.

Example 1 Consider the function x21 x
2
2 over [0, 2]2 and, for i = 1, 2 and for j ∈ Ji ,

let p( ji ) ∈ [0, 2] for ji ∈ Ji . The epigraph of x2i satisfies the tangent inequality
x2i ≥ vi ji := p( ji )2 + 2p( ji )

(
xi − p( ji )

)
. The inequality x21 x

2
2 ≥ v1 j1(x1)v2 j2(x2)

does not hold, in general. For example, x21 ≥ 2x1 − 1 and x22 ≥ 2x2 − 1 but x21 x
2
2 ≥

(2x1 − 1)(2x2 − 1) is violated at (0, 0). Nevertheless, if ui ji (x) = max{0, vi ji (x)}.
then x21 x

2
2 ≥ u1 j1(x)u2 j2(x). From the definition of ui ji (x), 0 ≤ ui ji (x) ≤ p( ji )

(
4 −

p( ji )
)≤ 4. Let ai, ji = p( ji )

(
4 − p( ji )

)
. Then, McCormick inequalities can be used

to underestimate u1 j1(x)u2 j2(x) over [0, 2]2 to obtain:

x21 x
2
2 ≥ u1 j1(x)u2 j2(x) ≥ max

{
0, a1 j1u2 j2(x) + a2 j2u1 j1(x) − a1 j1a2 j2

}

≥ a1 j1v2 j2(x) + a2 j2v1 j1(x) − a1 j1a2 j2 .

For p( j1) = p( j2) = 1, this reduces to x21 x
2
2 ≥ 6x1+6x2−15. It can be easily verified

that x1 = 1.5, x2 = 1.5 and μ = 2 satisfies the factorable relaxation, {(x, y, μ) | 0 ≤
μ, 4x2 + 4y2 − 16 ≤ μ, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}, but not μ ≥ 6x1 + 6x2 − 15. 
�

Example 1 uses a two-step procedure, where we first relaxed x2i using its lower bound
and a tangent inequality, and, in the second step, we relaxed the product of underesti-
mators using McCormick envelopes. We concluded that the resulting inequality is not
implied by using McCormick envelopes on the original product x21 x

2
2 , the one-step

procedure typically used in factorable relaxations. It may appear surprising that the
first relaxation step in the two-step procedure could strengthen the relaxation obtained
by directly using McCormick inequalities. However, this can be explained by the fact,
that the upper bounds, ai ji , are in general strictly smaller than the upper bounds on
x2i , and this helps strengthen the generated inequalities.

Now, we consider a generalization, where we no longer assume that the inner-
functions are nonnegative. More specifically, we consider the product f1(x) f2(x),
where each fi (x) has a non-trivial underestimator ui (x) so that for all x ∈ X , f Li ≤
fi (x) ≤ f Ui and f Li ≤ ui (x) ≤ ai . For i = 1, 2, we introduce variables fi and ui for
functions fi (x) and ui (x), respectively.

Theorem 1 Let f L1 ≤ a1 ≤ f U1 and f L2 ≤ a2 ≤ f U2 . Then, consider the set:

P = {
(u1, f1, u2, f2)

∣∣ f L1 ≤ u1 ≤ min{ f1, a1}, f1 ≤ f U1 ,

f L2 ≤ u2 ≤ min{ f2, a2}, f2 ≤ f U2
}
.
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The following linear inequalities are valid for the epigraph of f1 f2 over P:

f1 f2 ≥ max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 := f1 f
U
2 + f2 f

U
1 − f U1 f U2

e2 := ( f U2 − a2)u1 + ( f U1 − a1)u2 + a2 f1 + a1 f2

+ a1a2 − a1 f
U
2 − f U1 a2

e3 := ( f U2 − f L2 )u1 + f L2 f1 + a1 f2 − a1 f
U
2

e4 := ( f U1 − f L1 )u2 + a2 f1 + f L1 f2 − f U1 a2

e5 := (a2 − f L2 )u1 + (a1 − f L1 )u2 + f L2 f1 + f L1 f2 − a1a2

e6 := f L1 f2 + f1 f
L
2 − f L1 f L2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof We show that e3, e4, and e5 are valid underestimators for f1 f2 over P using the
procedure in Example 1. That e3 underestimates f1 f2 follows from:

f1 f2 = ( f1 − f L1 )( f2 − f L2 ) + f L1 f2 + f L2 f1 − f L1 f L2

≥ (u1 − f L1 )( f2 − f L2 ) + f L1 f2 + f L2 f1 − f L1 f L2

≥ (u1 − f L1 )( f U2 − f L2 ) + (a1 − f L1 )( f2 − f L2 )

− (a1 − f L1 )( f U2 − f L2 ) + f L2 f1 + f L1 f2 − f L1 f L2
= e3,

where the first equality shifts f1 and f2 so that we relax a product of non-negative
functions, the first inequality underestimates the product ( f1 − f L1 )( f2 − f L2 ), and
the second inequality uses the McCormick relaxation for (u1 − f L1 )( f2 − f L2 ). The
derivation for e4 is symmetric, with the role of f1 and f2 is interchanged. Similarly,
to show that e5 is an underestimator:

f1 f2 = ( f1 − f L1 )( f2 − f L2 ) + f L1 f2 + f L2 f1 − f L1 f L2

≥ (u1 − f L1 )(u2 − f L2 ) + f L1 f2 + f L2 f1 − f L1 f L2

≥ (u1 − f L1 )(a2 − f L2 ) + (a1 − f L1 )(u2 − f L2 ) − (a1 − f L1 )(a2 − f L2 )

+ f L2 f1 + f L1 f2 − f L1 f L2
= e5.

Observe that e1 and e6 are derived by using the functions f1 and f2 themselves as
their underestimators.

To show the second inequality is valid, define s2 = max
{
u2, f L2 + a2− f L2

f U2 − f L2
( f2− f L2 )

}

and note that a2 − s2 + f2 − f U2 = f2− f U2
f U2 − f L2

( f U2 − a2) ≤ 0. Then, f1 f2 = e2 + (s2 −
u2)( f U1 −a1)+(u1−a1)(a2−s2+ f2− f U2 )+( f1−u1)( f2−s2)+( f1− f U1 )(s2−a2) ≥
e2, completing the proof. 
�

If ai ∈ { f Li , f Ui } for i ∈ {1, 2}, the factorable relaxation is the convex hull of the
epigraph of f1 f2 over P . Thus, to improve the factorable relaxation using Theorem 1,
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432 T. He, M. Tawarmalani

we requireai < f Ui for at least some i . Observe that the inequalities inTheorem1 share
many properties of the FP relaxations. First, they apply to all factorable programming
problems. Second, the coefficients of ui in the inequalities are non-negative. Therefore,
ui can be substituted with any convex underestimator of their defining relation, ui (x),
to yield convex inequalities. Third, if there are ni estimators of fi (x), Theorem 1 yields
2n1n2 + n1 + n2 + 2 inequalities underestimating f1 f2 instead of the two inequalities
typically used in FP.

Observe that the underestimator e2 is not obtained using the two-step procedure
in Example 1. In the next example, we demonstrate that underestimator e2 is not
dominated by other inequalities obtained using the two-step procedure. In other words,
existence of e2 shows that the epigraph of f1 f2 over P satisfies inequalities besides
those obtained using the two-step procedure.

Example 2 Consider the monomial x21 x
2
2 over [0, 2]2. Then, let ui = max{0, 2xi − 1}.

Then, Theorem 1 yields the following relaxation, after substitutions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y, μ) ∈ [0, 2]2 × R+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ ≥ e1 = 4x21 + 4x22 − 16

μ ≥ e2 = 2x1 + 2x2 + 3x21 + 3x22 − 17

μ ≥ e3 = 8x1 + 3x22 − 16

μ ≥ e4 = 3x21 + 8x2 − 16

μ ≥ e5 = 6x1 + 6x2 − 15

μ ≥ e6 = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Observe that μ ≥ e3, μ ≥ e4, and μ ≥ e5 are the inequalities obtained by first
underestimating x21 and x22 and then using the McCormick inequalities. However, the
inequality μ ≥ e2 is not obtained using the two-step procedure and is not redundant.
For example, at (x1, x2) = (1.6, 1.6), the highest underestimator is e2 which equals
4.76, while the remaining underestimators are below 4.5. We remark here that the new
inequalities we have derived still fail to describe the convex envelope of x21 x

2
2 over

[0, 2]2 since, at (x1, x2) = (1.6, 1.6), a convex underestimator 9.6x1 + 9.6x2 − 24.96
equals 5.76 while as mentioned, the tightest inequality in the set above evaluates to
4.76 at this point. For completeness, we show that x21 x

2
2 ≥ 9.6x1+9.6x2−24.96. First,

assume that x1x2+2x1+2x2 ≥ 4. Then, it follows that x21 x
2
2−9.6x1−9.6x2+24.96 =

(x1x2 + 2x1 + 2x2 − 4)(x1 − 2)(x2 − 2) + (2x1 + 2x2 − 6.4)2 ≥ 0. Now, consider
the case when x1x2 + 2x1 + 2x2 < 4. Then, x21 x

2
2 − 9.6x1 − 9.6x2 + 24.96 =

x21 x
2
2 − 4.8(x1x2 + 2x1 + 2x2 − 4) + 4.8x1x2 + 5.76 ≥ 0. Therefore, we have

x21 x
2
2 ≥ 9.6x1 + 9.6x2 − 24.96. 
�
In the next example, we illustrate that inequalities obtained using Theorem 1 are

not implied by reformulation-linearization techniques (RLT) [41].

Example 3 Consider the following system of valid inequalities:

xi ≥ 0 2 − xi ≥ 0

x2i ≥ 0 4 − x2i ≥ 0

x2i − (2xi − 1) ≥ 0 3 − (2xi − 1) ≥ 0

⎫
⎪⎬

⎪⎭
i = 1, 2. (1)
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Clearly, applying RLT over these inequalities yields a relaxation for x21 x
2
2 over [0, 2]2.

However, RLT does not exploit the inequality max{0, 2xi −1} ≤ x2i , which we used in
Examples 1 and 2 to derive 6x1+6x2−15 ≤ μ. Therefore, it is perhaps not surprising
that RLT is unable to generate this inequality. Moreover, minimizing an affine function
μ−(6x1+6x2−15) over the degree-4 RLT relaxation of (1) yields−0.36, while it has
been shown thatμ−(6x1+6x2−15) ≥ 0 is valid for the epigraph of x21 x

2
2 over [0, 2]2.

Perhaps, more importantly, the inequality μ ≥ 2x1 + 2x2 + 3x21 + 3x22 − 17 does not
have a two-step derivation and exploits 2y− 1 ≤ s2 := max

{
2y− 1, 3

4 y
2
} ≤ 3 in the

derivation, a construction that will play a central role in the subsequent development.

�

3 A relaxation framework for composite functions

In this section, we introduce a generalized version of the setup in Theorem 1, which
will be subject of study for most of the remaining paper. Our setup will generalize
that of Theorem 1 in the following way. First, we replace the bilinear term with an
arbitrary function, φ : Rd → R, and consider relaxations of φ ◦ f : X ⊆ R

m → R,
where f : X → R

d is a vector of bounded functions over X . We shall write f (x) :=(
f1(x), . . . , fd(x)

)
and refer to f (·) as inner-functions while φ(·) will be referred

to as the outer-function. Second, we allow a vector of under- and over-estimators,
instead of one underestimator, for each inner-function fi (·). Last,wewill derive convex
relaxations for the graph of φ ◦ f (instead of just the epigraph). Formally, wewill relax
the set:

gr(φ ◦ f ) =
{
(x, φ)

∣∣∣ φ = φ
(
f (x)

)
, x ∈ X

}
.

3.1 Polyhedral abstraction of outer-approximation

In this subsection, we formally generalize the construction in Theorem 1. First,
instead of using a single underestimator for each function, we consider a vector of
bounded under- and over-estimators for the inner-function fi (·). More specifically,

let (n1, . . . , nd) ∈ Zd , and consider a vector of functions u : Rm → R

∑d
i=1(ni+1)

defined as u(x) = (
u1(x), . . . , ud(x)

)
, where ui (x) : Rm → R

ni+1, and consider

a vector a = (a1, . . . , ad) ∈ R

∑d
i=1(ni+1), where ai ∈ R

ni+1. Moreover, for each
i ∈ {1, . . . , d} and for every x ∈ X , the pair

(
ui (x), ai

)
is assumed to satisfy

ui0(x) = ai0, ai0 ≤ uini (x) = fi (x) ≤ aini ,

for each j ∈ Ai : uLi ≤ ui j (x) ≤ min
{
fi (x), ai j

}
,

for each j ∈ Bi : max
{
fi (x), ai j

} ≤ ui j (x) ≤ uUi ,

uLi ≤ ai0 ≤ · · · aini ≤ uUi ,

(2)

where the pair (Ai , Bi ) is a partition of {0, . . . , ni } so that {0, ni } ⊆ Ai . The first
requirement states that uini (·) is the inner-function fi (·), which is bounded from
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434 T. He, M. Tawarmalani

below (resp. above) by ai0 (resp. aini ), and ui0(·) is a constant function matching the
lower bound ai0. The second (resp. third) requirement states that for j ∈ Ai (resp.
j ∈ Bi ), ui j (·) is an underestimator (resp. overestimator) for fi (·), which is bounded
from above (resp. below) by ai j and bounded from below (resp. above) by uLi (resp.
uUi ). The last requirement that the elements of ai are ordered in a non-decreasing
order and contained within [uLi , uUi ] is only for notational convenience. Notice that
we do not explicitly specify different lower bounds for the underestimators and upper
bounds for the overestimators. This is because they are not important in constructing
the relaxations and do not change the quality of the relaxations. In particular, we show
in Proposition 1 that, without loss of generality, uLi and uUi can be set to be the lower
bound ai0 and the upper bound aini of fi (·) respectively. We also remark that, for
j ∈ Ai (resp. j ∈ Bi ), ai j need not be the tightest possible upper (resp. lower) bound
of ui j (·) over X although better bounds improve the quality of the relaxation. We
mention that there are several techniques to derive bounds for expressions defining
inner-functions and estimators including bound tightening and relaxation techniques;
see [17,36] for example. Last, although the number of estimators for each function can
be different, we will assume without loss of generality and for notational simplicity
that n1 = · · · = nd . Since all ni are equal, we will use n to denote ni .

We now formally describe a generalization of P that was defined as in Theorem 1.
The polytope P is denoted, in general, as

P(a, uL , uU , B) :=
d∏

i=1

Pi (ai , u
L
i , uUi , Bi ),

where B := ∏d
i=1 Bi , u

L := (uL1 , . . . , uLd ) and uU := (uU1 , . . . , uUd ), and

Pi (ai , u
L
i , uUi , Bi ) :=

⎧
⎪⎨

⎪⎩
ui ∈ R

n+1

∣∣∣∣∣∣∣

∀ j ∈ Ai : ui j ≤ uin, uLi ≤ ui j ≤ ai j

∀ j ∈ Bi : uin ≤ ui j , ai j ≤ ui j ≤ uUi
ui0 = ai0, ai0 ≤ uin ≤ ain

⎫
⎪⎬

⎪⎭
. (3)

We will typically not write the arguments of Pi and P since they will be apparent from
the context. We will refer to the polytope Pi as the abstraction of outer-approximators
of function fi (·) and P as the abstraction of outer-approximators for the vector of
functions f (·). Essentially, the polytope Pi is obtained by introducing a variable ui j
for the estimator ui j (·) and replacing the ordering relationships between the functions
with those between the introduced variables.

Last, we consider the graph, ΦP , of the outer-function φ(u1n, . . . , udn) over the
abstraction P given as follows:

ΦP = {
(u, φ)

∣∣ φ = φ(u1n, . . . , udn), u ∈ P
}
.

In the rest of the paper, we are interested in studying the graph ΦP and its convex
hull conv(ΦP ). We remark that our construction treats estimators of inner-functions
abstractly, and exploits various bounding relationships while being oblivious of the
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A new framework to relax composite functions in nonlinear… 435

precise dependence of the inner-functions f (·) on x . Thus, our methods apply to
general nonlinear programming problems while providing flexibility, which can be
tailored to exploit specific problem structure, e.g. properties of the outer-function
φ(·).

3.2 An overview of themain polynomial-time equivalence result

Since P generalizes the standard hypercube [0, 1]d , by considering the special case
where φ(·) is a bilinear function, it follows that there does not exist a polynomial time
algorithm to solve the separation problem for ΦP , unless P = NP. But, Theorem 1
shows that special instances of this problem are solvable, sometimes in closed-form,
which improve relaxations for nonlinear programs. We now describe the main struc-
tural insights, we derive for ΦP , in this paper. We will show that separating ΦP is
polynomially equivalent to separating a simpler object ΦQ , the graph of φ(·) over a
subset of P , which is termed Q here onwards and described formally in Sect. 4. We
remark that this equivalence is not just a mapping of hard instances of ΦP to hard
instances of ΦQ . Clearly, existence of such a mapping follows from NP-Hardness of
these problems. Rather, this equivalence is derived from an algorithm that separates
an instance of ΦP using an oracle to separate a specific related instance of ΦQ .

To show this polynomial equivalence, we devise a separation oracle for ΦP by
augmenting the separation oracle for ΦQ with a fast-polynomial-time combinatorial
algorithm. The key ingredient of the combinatorial algorithm is a lifting procedure
that lifts ΦP into a higher dimensional space. We show such lifting procedure is
equivalent to solving d two-dimensional convexification problems separately. A direct
consequence of our results will be that for any fixed number of inner-functions d, the
problem of separating conv(ΦP ), when its extreme points project to the extreme
points of P , is polynomially solvable in the number of estimators n. In contrast, a
direct LP-based separation formulation of conv(ΦP ) would be exponential because,
even for a fixed d, the number of extreme points of P is exponential in n. This result
is interesting for practice because compositions often involve only a few functions or
can be recursively decomposed as such.

The resulting algorithm has many interesting features besides tractability. Assume,
for the purpose of illustration, that φ(·) is a multilinear function, which would imply
that conv(ΦP ) and conv(ΦQ) are polyhedral sets [39]. If we have access to a separa-
tion oracle that separates conv(ΦQ) by generating facet-defining inequalities and we
assume that this separation oracle can also be used when some of the estimators are
dropped from the construction, our combinatorial algorithm can be used to separate
points from conv(ΦP ) using facet-defining inequalities. Moreover, the polynomial
equivalence carries over to the problem of simultaneously convexifying a collection
of functions and, so does the property of generating facet-defining inequalities.

3.3 Projecting out introduced estimator variables

Wementioned in the discussion following Theorem 1 that ui variables can be replaced
with convex functions, and illustrated this procedure inExample 2. To project out intro-
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duced variables, u1 and u2, we relied on the fact that u1 and u2 have non-negative
coefficients in the inequalities derived in Theorem 1. In this subsection, we show a sim-
ilar result for conv(ΦP ), and will utilize it to eventually substitute the underestimator
(resp. overestimator) variables ui j with convex functions (resp. concave functions).

The convex hull of ΦP is the intersection of the epigraph of the convex envelope
and hypograph of concave envelope of φ(u1n, . . . , udn) over P , that is,

conv(ΦP ) = {
(u, φ)

∣∣ convP (φ)(u) ≤ φ ≤ concP (φ)(u), u ∈ P
}
. (4)

Observe that although the function φ(·) depends only on (u1n, . . . , udn), the func-
tions convP (φ) and concP (φ) depend on all the variables u. In the following lemma,
we consider the concave envelope concP (φ)(·) and establish certain monotonicity
properties for it. A similar property, albeit reversed in direction, can be obtained for
convP (φ)(·) since convP (φ)(u) = − concP (−φ)(u) for every u ∈ P .

Lemma 1 If the concave envelope concP (φ)(u) is closed then it is non-increasing in
ui j for all i and j ∈ Ai\{0, n} and non-decreasing in ui j for all i and j ∈ Bi .

Proof We will only prove that concP (φ)(u) is non-increasing in ui j for all i and
j ∈ Ai\{0, n} since a similar argument shows that it is non-decreasing in ui j for
all i and j ∈ Bi . Let φ ≤ 〈α, u〉 + b be a valid inequality of concP (φ)(u). Let
Ji := { j ′ ∈ Ai\{0, n} | αi j ′ > 0}. By considering (α̃, b′), where α̃i j = 0 for all i and
j ∈ Ji , α̃i j = αi j otherwise, and b′ = b + ∑d

i=1
∑

j∈Ji αi j aLi , it is easy to construct
a valid inequality φ ≤ 〈α̃, u〉 + b′ of concP (φ)(u) such that α̃i j ≤ 0 for all i and
j ∈ Ai\{0, n}, and 〈α̃, u〉 + b′ ≤ 〈α, u〉 + b for every u ∈ P .
Now assume that concP (φ)(u) is closed. We prove that concP (φ)(u) = ψ(u),

whereψ(u) := infα
{〈α, u〉+(−φ)∗P (−α)

∣∣ αi j ≤ 0 ∀i ∈ {1, . . . , d} ∀ j ∈ Ai\{0, n}}
and (−φ)∗P denotes the Fenchel conjugate of −φ(u1n, . . . , udn) with its domain
restricted to P . This will show what we seek to prove since, by definition, ψ(u)

is non-increasing in ui j for all i and j ∈ Ai\{0, n}, being the infimum over α of linear
functions 〈α, u〉 + (−φ)∗P (−α), all of which satisfy this property. Since concP (φ)(u)

is assumed to be closed, by Theorem 1.3.5 in [23], we have

concP (φ)(u) = inf
α

{〈α, u〉 + (−φ)∗P (−α)
}
. (5)

It follows that ψ(u) ≥ concP (φ)(u) because ψ(u) ≥ infα
{〈α, u〉 + (−φ)∗P (−α)

}
.

To show concP (φ)(u) ≥ ψ(u), we consider a point ū ∈ P . By (5), there exists a
sequence ᾱk so that the inequality concP (φ)(u) ≤ 〈ᾱk, u〉+ (−φ)∗P (−ᾱk) is valid for
all k and limk→∞〈ᾱk, ū〉 + (−φ)∗P (−ᾱk) = convP (φ)(ū). If ᾱk

i j > 0 for some i and

j ∈ Ai\{0, n}, we have shown that there exists a valid inequality φ ≤ 〈α̃k, u〉 + b′
of concP (φ)(u) such that 〈α̃k, u〉 + b′ ≤ 〈ᾱk, u〉 + (−φ)∗P (−ᾱk) for all u ∈ P and
α̃k
i j ≤ 0 for all i and j ∈ Ai\{0, n}. Therefore, we have

concP (φ)(ū) = lim
k→∞〈ᾱk, ū〉 + (−φ)∗P (−ᾱk)

≥ lim
k→∞〈α̃k, ū〉 + b′
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≥ lim
k→∞〈α̃k, ū〉 + (−φ)∗P (−α̃k) ≥ ψ(ū),

where first equality and first inequality are established above, second inequality fol-
lows because the validity of φ(u1n, . . . , udn) ≤ 〈α̃k, u〉 + b′ for u ∈ P implies
(−φ)∗P (−α̃k) = supu∈P

{
φ(u) − 〈α̃k, u〉} ≤ b′, and the last inequality holds since

α̃k ≤ 0 for all i and j ∈ Ai\{0, n} implies α̃ is feasible in the optimization problem
defining ψ(ū). Therefore, the proof is complete. 
�

Wenowusemonotonicity of concP (φ)(u) and convP (φ)(u) to construct relaxations
for gr(φ ◦ f ) in the space of (x, φ, u·n) variables, where u·n = (u1n, . . . , udn), by
substituting the convex underestimators and concave overestimatorswith their defining
relationships in the cuts valid for conv(ΦP ).

Theorem 2 Let φ ◦ f be a composite function, where φ : Rd → R is a continuous
function and f : Rm → R

d is a vector of functions which are bounded over X ⊆ R
m.

Given a pair
(
a, u(x)

)
satisfying (2), we have gr(φ ◦ f ) ⊆ proj(x,φ)(R), where

R :=
{
(x, u·n, φ)

∣∣∣∣

(
ũ1(x, u1n), . . . , ũd(x, udn), φ

) ∈ conv(ΦP )

u·n = f (x), x ∈ X ,

}
(6)

and ũi (x, uin) = (
ui0(x), . . . , ui(n−1)(x), uin

)
. The relaxation is convex if ui j (x) is

convex for j ∈ Ai\{n} and concave for j ∈ Bi and
{
(x, u·n) ∈ X ×R

∣∣ u·n = f (x)
}

is outer-approximated by a convex set.

Proof See “Appendix A.1”. 
�

3.4 Simplifying the structure of polyhedral abstraction

We start with simplifying P(a, uL , uU , B) to show that it suffices to consider the case
where uL = a·0 and uU = a·n to treat the general case, where a·0 := (a10, . . . , ad0)
and a·n := (a1n, . . . , adn).

Proposition 1 Define u′ so that u′
i j = min

{
max{ui j , ai0}, ain

}
. Then, for any u ∈

P(a, uL , uU , B) and φ ∈ R, (u, φ) ∈ conv
(
ΦP(a,uL ,uU ,B)

)
if and only if (u′, φ) ∈

conv
(
ΦP(a,a·0,a·n ,B)

)
.

Proof Let P := P(a, uL , uU , B) and P ′ := P(a, a·0, a·n, B). In the following, we
will show that concP (φ)(u) = concP ′(φ)(u′). By considering −φ(·), a similar argu-
ment shows that convP (φ)(u) = convP ′(φ)(u′), completing the proof.

First,we argue that concP (φ)(u) = concP (φ)(u′). For any j ∈ Bi ,ui j ≥ uin ≥ ai0.
Therefore, u′

i j ≤ ui j . Similarly, for j ∈ Ai , max{ui j , ai0} ≤ uin ≤ ain . Therefore,
u′
i j ≥ ui j , and, in particular, u′

i0 = ui0 and u′
in = uin . It follows from Lemma 1 that

concP (φ)(u′) ≤ concP (φ)(u). Now, we argue that concP (φ)(u′) ≥ concP (φ)(u).
Let Ji (u) = { j | ui j < ai0} and Ki (u) = { j | ui j > ain}. We perform induction on
∑d

i=1

(|Ji (u)|+|Ki (u)|). The base case is trivial because∑d
i=1

(|Ji (u)|+|Ki (u)|) = 0
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implies u′ = u and the inequality is trivially satisfied. Let i ′ be such that there exists
a j ′ ∈ Ji ′(u) ∪ Ki ′(u). Since ai ′0 ≤ ui ′n ≤ ai ′n , it follows that j ′ �= n. We assume
j ′ ∈ Ji ′(u) as a similar argument applies when j ′ ∈ Ki ′(u). Since u ∈ P , by the
definition of concP (φ), there exist convex multipliers λk and points (uk, φk) ∈ ΦP

such that
(
u, concP (φ)(u)

) = ∑
k λk(uk, φk). Define ūki ′ j ′ = ai ′0 and ūki j = uki j

otherwise. Since j ′ �= n, it can be verified easily that (ūk, φk) ∈ ΦP . Then, define(
ũ, concP (φ)(u)

) = ∑
k λk(ūk, φk) and observe that the representation shows that

concP (φ)(ũ) ≥ concP (φ)(u), ũi ′ j ′ = ai ′0, and ũi j = ui j otherwise. However, since
j ′ /∈ Ji ′(ũ), it follows that

∑d
i=1

(|Ji (ũ)| + |Ki (ũ)|) = ∑d
i=1

(|Ji (u)| + |Ki (u)|) − 1.
Therefore, it follows that concP (φ)(u) ≤ concP (φ)(ũ) ≤ concP (φ)(u′), where the
last inequality is by the induction hypothesis.

Next, we show that concP (φ)(u′) = concP ′(φ)(u′). Clearly, concP ′(φ)(u′) ≤
concP (φ)(u′) since P ′ ⊆ P . Let φ′ = concP (φ)(u′). Then, there exist (ul , φl) ∈ ΦP

and convex multipliers γ l so that
(
u′, φ′) = ∑

l γ
l(ul , φl). Define

ũli j = min
{
max{uli j , ai0}, ain

}
,

and let ū = ∑
l γ

l ũl . It follows that (ũl , φl) ∈ ΦP ′
, and thus (ū, φ′) ∈ conv(ΦP ′

). In
other words, φ′ ≤ concP ′(φ)(ū). Moreover, ūi j ≥ u′

i j for j ∈ Ai\{0, n}, ūi0 = u′
i0

and ūin = u′
in , and ūi j ≤ u′

i j for j ∈ Bi . Hence, by Lemma 1, we obtain that
concP (φ)(u′) = φ′ ≤ concP ′(φ)(ū) ≤ concP ′(φ)(u′). 
�
By Proposition 1, it suffices to construct conv

(
ΦP(a,a·0,a·n ,B)

)
to characterize

conv
(
ΦP(a,uL ,uU ,B)

)
. The primary role played by uL and uU is to ensure that the

estimating functions u(·) are bounded. Therefore, without loss of generality, we will
assume in the foregoing discussion, unless specified otherwise, that uL = a·0 and
uU = a·n . In other words, we will use Proposition 1 to simplify P . Proposition 1
has another subtle value. It turns out that one of the main results in this paper can
be viewed as a sharpening of Proposition 1. This sharper version will show that
(u, φ) ∈ conv(ΦP ) if and only if a certain point (s, φ) ∈ conv(ΦP ), where s is
larger than the u′ constructed in the statement of Proposition 1. The transformation
from u to s is significantly more involved and is, arguably, one of the cornerstones
of the development later. The more general result will have much further reaching
consequences since it will enable a significant simplification of P .

We now further simplify the structure of polytope P . First, we show that we
may assume that the index set Bi defining Pi in (3) is empty. To do so, we trans-
form overestimators into underestimators (and vice-versa) and thus show that the
assumption Bi = ∅ is without loss of generality. Consider an affine transformation
T : Rd×(n+1) → R

d×(n+1) defined as follows:

T (u)i j = ui j for j ∈ Ai and T (u)i j = ai j − ui j + uin for j ∈ Bi . (7)

Recall that Ai and Bi are the index sets for underestimators and overestimators of fi
respectively. Let

(
u(x), a

)
be a pair satisfying (2). It follows that

(
T (u(x))

)
i j is an

underestimator of fi (x) bounded from above by ai j because ai j ≤ ui j (x) for all i and
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j ∈ Bi . Clearly, the transformation Ti is invertible.More specifically, given a vector t ∈
R
d×(n+1), we have T−1(t)i j = ti j for j ∈ Ai and T−1(t)i j = ai j −ti j +tin for j ∈ Bi ,

where we have used n ∈ Ai to substitute tin for uin . Since the transformation T is such
that T (u)i j depends only on ui j and uin , wemaywrite T (u) := (

T1(u1), . . . , Td(ud)
)
,

where Ti : Rn+1 → R
n+1. Similarly, we write T−1(t) := (

T−1
1 (t1), . . . , T

−1
d (td)

)
.

Then,

P̂i := Ti (Pi ) =

⎧
⎪⎨

⎪⎩
ti ∈ R

n+1

∣∣∣∣∣∣∣

∀ j ∈ Ai : ti j ≤ tin, uLi ≤ ti j ≤ ai j

∀ j ∈ Bi : ti j ≤ tin, tin + ai j − uUi ≤ ti j ≤ ai j
ti0 = ai0, ai0 ≤ tin ≤ ain

⎫
⎪⎬

⎪⎭
.

We further relax P̂i to P̄i as follows:

P̄i = {
ti ∈ R

n+1
∣∣ ti j ≤ tin, ūLi ≤ ti j ≤ ai j , ti0 = ai0, ai0 ≤ tin ≤ ain

}
,

where ūLi = min{uLi , ai0 + ai j − uUi }. Let P̂ = ∏d
i=1 P̂i and P̄ = ∏d

i=1 P̄i .

Proposition 2 Let G := {
(t, φ)

∣∣ t ∈ P̂, (t, φ) ∈ conv(Φ P̄ )
}
. Then, conv(Φ P̂ ) = G.

Moreover, conv(ΦP ) = {
(u, φ)

∣∣ u ∈ P,
(
T (u), φ

) ∈ conv(Φ P̄ )
}
. 
�

The proof of Proposition 2, which is included in “Appendix A.2”, considers a point,

t ∈ P̂ and (t, φ) ∈ conv(Φ P̄ ), and shows that (t, φ) ∈ conv(Φ P̂ ). This is is done by
changing each (tk, φk) ∈ Φ P̄ , which is used to express (t, φ) as a convex combination,
such that the tki j is replaced with max

{
tki j , u

L
i , tkin + ai j − uUi

}
.

Since P̄ is a special case of P with Bi = ∅ for all i , Proposition 2 shows that
this special case is sufficient to treat the general case. Combined with Proposition 1,
it suffices to consider P̄ with aLi = ai0. We may further assume that ai0 < ai1 <

· · · < ain , i.e., we may assume that (ai j )nj=0 are strictly increasing in j since we
may replace with ui j the maximum of all underestimators that share the same bounds.
Unless specified otherwise, we will, from here onwards, let P(a) denote

∏d
i=1 Pi (ai )

for ai0 < · · · < ain , where

Pi (ai ) =
{

ui ∈ R
n+1

∣∣∣∣∣
ui j ≤ uin, ai0 ≤ ui j ≤ ai j
ui0 = ai0, ai0 ≤ uin ≤ ain

}

. (8)

We showed in Example 1 that redundant underestimators of inner-functions can
help improve the relaxation of the composite function.However,when underestimators
are obtained using a convex combination derivation, we will show that they do not
improve the quality of the relaxation. For a pair

(
u(x), a

)
satisfying (2), we denote by

R
(
u(x), a

)
the relaxation of composite function φ ◦ f obtained as in (6). In addition,

consider a vector of underestimators u′ : Rm → R
d×(n′+1) and their upper bounds

a′ ∈ R
d×(n′+1) obtained by taking convex combinations of u(x) and a, respectively,

where n′ ≥ 0. More precisely, let Λi be a nonnegative matrix in R(n+1)×(n′+1), where
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rows indexes are in {0, . . . , n} and columns indexes are in {0, . . . , n′} such that

Λi ≥ 0, en+1Λi = en
′+1, Λi (·, 0) = (1, 0, . . . , 0)�, Λi (·, n′) = (0, . . . , 0, 1)�,

(9)
where ek is the all-ones row vector in Rk and Λi (·, k) is the kth column of the matrix
Λi . We let ui (x) (resp. u′

i (x)) denote a row vector of n + 1 (resp. n′ + 1) functions(
ui0(x), . . . , uin(x)

)
(resp.

(
u′
i0(x), . . . , u

′
in′(x)

)
). Then, we define u′

i (x) : R
m →

R
n′+1 such that u′

i (x) := ui (x)Λi and a′
i ∈ R

n′+1 such that a′
i := aiΛi . First two

conditions in (9) imply that, for all i and k ∈ {0, . . . , n′}, u′
ik(x) and the corresponding

bound a′
ik are obtained by taking a convex combination of ui0(x), . . . , uin(x) and their

bounds ai0, . . . , ain respectively. The third (resp. fourth) requirement in (9) ensures
that u′

i0(x) = ui0(x) and a′
i0 = ai0 (resp. u′

in′(x) = uin(x) and a′
in′ = ain). Therefore,

the new pair
(
u′(x), a′) satisfies the requirements in (2), and thus, by Theorem 2,

R(u′(x), a′) is a valid relaxation for the composite function φ ◦ f . In the following
proposition, we show that R

(
u(x), a

) ⊆ R
(
u′(x), a′).

Proposition 3 Let
(
u(x), a

)
be a pair which satisfies conditions in (2) and Λi

be a matrix defined in (9). Define u′(x) ∈ R
d → R

d×(n′+1) such that u′
i j (x) =

ui (x)Λi (·, j) and a′ ∈ R
d×(n′+1) such that a′

i j = aiΛi (·, j). Then, R
(
u(x), a

) ⊆
R
(
u′(x), a′).

Proof See “Appendix A.3”. 
�

4 Polynomial time equivalence of separations

To efficiently utilize conv(ΦP ) for constructing relaxations, we must solve the sep-
aration problem of conv(ΦP ), that is, given a vector (ū, φ̄) we need to determine if
(ū, φ̄) ∈ conv(ΦP ) and, if not, find a hyperplane that separates (ū, φ̄) from conv(ΦP ).
The main goal of this section is to prove that the separation problem of conv(ΦP ) can
be solved in polynomial time, given a polynomial time separation oracle for conv(ΦQ),
where Q := ∏d

i=1 Qi for a certain subset Qi of Pi , which will be formally defined in
Sect. 4.1, and

ΦQ := {
(s, φ)

∣∣ φ = φ(s1n, . . . , sdn), s = (s1, . . . , sd) ∈ Q
}
.

4.1 A simplicial structure of polyhedral abstraction

Recall that ai is a strictly increasing vector in Rn+1. Now, we consider a set of points
{vi j }nj=0 ⊆ R

n+1, where vi0 = (ai0, . . . , ai0) and:

vi j = (
ai0, . . . , ai j−1, ai j , . . . , ai j︸ ︷︷ ︸

n− j+1 terms

)
j = 1, . . . , n. (10)
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Clearly, Qi := conv
({vi j }nj=0

)
is a simplex in R

n+1. Moreover, Qi is a subset of
Pi since {vi j }nj=0 ⊆ Pi . In the following, we first characterize the vertex set and

facet-defining inequalities of Qi . Then, we study the relation between conv(ΦP ) and
conv(ΦQ). In particular, we show that a convex hull description of ΦQ , together with
O(dn) number of inequalities, yields a convex hull description of ΦP in the space of
(u, s, φ) variables.

To characterize the simplex Qi , we argue that it can be seen as an invertible affine
transform of a simpler simplex Δi defined as:

Δi := {
zi ∈ R

n+1
∣∣ 0 ≤ zin ≤ · · · ≤ zi1 ≤ zi0 = 1

}
. (11)

Denote by ζi j the vector
∑ j

j ′=0 e j ′ for all j = 0, . . . , n, where e j is the j th principal

vector in R
n+1 with e0 = (1, 0, . . . , 0)�. It follows readily that points ζi0, . . . , ζin

are affinely independent since the matrix ζi ∈ R
(n+1)×(n+1) := (ζi0, . . . , ζin) is

invertible, being the upper triangular matrix of all ones. Moreover, it can be verified
that vert(Δi ) = {ζi j }nj=0. This implies that dim(Δi ) = n.

Now, the affine transformation that maps Qi toΔi is Zi : si ∈ R
n+1 �→ zi ∈ R

n+1,
where

zi0 = 1 and zi j = si j − si j−1

ai j − ai j−1
for j = 1, . . . , n. (12)

To verify that Δi = Zi (Qi ) observe that Zi maps vi j to ζi j . Besides, the inverse Z−1
i

is given by:

si j = ai0zi0 +
j∑

k=1

(aik − aik−1)zik for j = 0, . . . , n, (13)

and Qi = Z−1
i (Δi ). We now characterize the extreme points and facet-defining

inequalities of Qi .

Lemma 2 Let ai := (ai0, . . . , ain) be a strictly increasing vector in R
n+1 and let

Qi := conv
({vi j }nj=0

)
. Then, Qi is a simplex so that vert(Qi ) = {vi j }nj=0, and

Qi =
{
(si j )

n
j=0

∣∣∣ si0 = ai0, 0 ≤ sin − sin−1

ain − ain−1
≤ · · · ≤ si1 − si0

ai1 − ai0
≤ 1

}
, (14)

where all the inequalities are facet-defining. For j , j ′, and j ′′, satisfying 0 ≤ j <

j ′ < j ′′ ≤ n, each point in Qi satisfies 0 ≤ si j ′′−si j ′
ai j ′′−ai j ′

≤ si j ′−si j
ai j ′−ai j

≤ 1.

Proof See “Appendix A.4”. 
�
Next, we lift simplex Qi into the space of (ui , si ) variables by imposing ordering

constraints ai0e ≤ ui ≤ si , ui0 = si0, and uin = sin . This yields a polytope

PQi = {
(ui , si )

∣∣ ui0 = si0 = ai0, uin = sin, ai0e ≤ ui ≤ si , si ∈ Qi
}
, (15)
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where e is the all-ones vector in Rn+1. Let PQ := ∏n
i=1 PQi and

ΦPQ := {
(u, s, φ)

∣∣ φ = φ(s1n, . . . , sdn), (u, s) ∈ PQ
}
.

The next result establishes that ΦP and ΦQ are projections of ΦPQ .

Lemma 3 Let ai := (ai0, . . . , ain) be a strictly increasing vector in R
n+1. Then,

projui (PQi ) = Pi and projsi (PQi ) = Qi . Moreover, ΦP = proj(u,φ)(Φ
PQ) and

ΦQ = proj(s,φ)(Φ
PQ).

Proof See “Appendix A.5”. 
�
Remark 1 In the following, it will be useful to interpret the point (ui , si ) ∈ PQi in the
following way. First, recall that in Sect. 3.1, polytope Pi was introduced as an abstract
way of capturing the information about the underestimators of the inner-function fi (·).
The important property of the underestimator ui j (·) exploited in the construction of
Pi is its upper bound ai j . Observe now that ui j ≤ si j ≤ min{ai j , uin}. This is because
(ui , si ) ∈ PQi implies that ui j ≤ si j and sin = uin , and si j ≤ min{ai j , sin} is
satisfied by all the extreme points of Qi . Therefore, we may interpret si j as a variable
corresponding to an underestimator of fi (·) that is tighter than ui j (·) and yet bounded
from above by ai j . Our constructionsmake significant use of this relationship. In short,
Pi can be considered as the polytope abstraction of arbitrary underestimators of fi (·)
while Qi can be regarded as the polytope corresponding to the best underestimators
obtained by taking convex combinations of the provided underestimators. 
�
Observe that Lemma 3 implies that

conv(ΦP ) = conv
(
proj(u,φ)(Φ

PQ)
) = proj(u,φ)

(
conv(ΦPQ)

)
,

where the second equality holds because conv(AS) = A conv(S) for any affine map-
ping A and a set S. Similarly, conv(ΦQ) = proj(s,φ) conv

(
ΦPQ

)
. In the following,

we will show that

conv(ΦPQ) = {
(u, s, φ)

∣∣ (s, φ) ∈ conv(ΦQ), (u, s) ∈ PQ
}
. (16)

Therefore, the right hand side of (16) yields an extended formulation of conv(ΦP ).
Next, we establish the equality in (16) in a more general setting, which is also useful
when we consider the convex hull of a vector of functions over PQ in Sect. 5. Let
X := {(x, μ) ∈ R

m+k | μ = f (x), x ∈ X} be the graph of a vector of functions
f : Rm → R

k over a non-empty subset X ofRm . Let l : Rm → R
n and h : Rm → R

n

be vectors of affine functions. We consider a set Z defined as:

Z = {
(x, y, μ) ∈ R

m+n+k
∣∣ l(x) ≤ y ≤ h(x), (x, μ) ∈ X }

.

To expressΦPQ in the form ofZ , we let y = u,X = ΦQ , h(s) = s, lin(s) = sin , and
li j (s) = ai0 if j < n. Interpreting Z as such, the following result implies the equality
in (16).
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Lemma 4 Assume that l(x) ≤ h(x) for all x ∈ X. Then, we have conv(Z) ={
(x, y, μ)

∣∣ (x, μ) ∈ conv(X ), l(x) ≤ y ≤ h(x)
}
.

Proof Let R := {
(x, y, μ)

∣∣ (x, μ) ∈ conv(X ), l(x) ≤ y ≤ h(x)
}
. The inclu-

sion conv(Z) ⊆ R follows from Z ⊆ R since R is convex. We now show that
R ⊆ conv(Z). Let (x ′, y′, μ′) ∈ R. Clearly, (x ′, y′, μ′) lies in the hypercube,
H := {

(x, y, μ)
∣∣ (x, μ) = (x ′, μ′), l(x ′) ≤ y ≤ h(x ′)

}
. So, it suffices to

show that the vertex set of H belongs to conv(Z). We only show that vertices of
the form

(
x ′, l(x ′), μ′) lie in conv(Z) since a similar argument applies to the remain-

ing vertices. Let Z ′ := {
(x, y, μ)

∣∣ (x, μ) ∈ X , y = l(x)
}
and express it as the

image of X under the affine transformation A : (x, μ) �→ (
x, l(x), μ

)
. Therefore,

conv(Z ′) = conv
(
A(X )

) = A
(
conv(X )

)
and, so,

(
x ′, l(x ′), μ′) ∈ A

(
conv(X )

) =
conv(Z ′) ⊆ conv(Z), where the last containment follows because Z ′ ⊆ Z is implied
by our assumption that l(x) ≤ h(x) for all x ∈ X . 
�

4.2 A combinatorial algorithm for polynomial equivalence

Before establishing that the separation problems of conv(ΦP ) and conv(ΦQ) are
polynomially equivalent, we give an application of this equivalence. For this, we con-
sider the case when the number of inner-functions is fixed and it suffices to restrict
φ(·) to the extreme points of Q in order to construct the convex hull of ΦQ . We
show that the separation problem for conv(ΦQ) has a polynomial-sized LP formula-
tion in this case. Then, by the announced polynomial equivalence of the separation
of conv(ΦP ) and conv(ΦQ), this yields a polynomial-time separation algorithm for
conv(ΦP ). Since vert(Q) = ∏d

i=1 vert(Qi ) and |vert(Qi )| = n + 1, it follows that
|vert(Q)| = (n + 1)d . In other words, if d is a constant, the number of vertices of Q
is polynomial in n. More generally, assuming r and d are constants, the number of
r dimensional faces of Q is polynomial in n, being upper-bounded by (n + 1)d

(nd
r

)
.

Since convex/concave-envelopes of many functions depend only on the function value
at the vertices or, more generally, low-dimensional faces of the domain over which
the function is convex, we can construct polynomial-sized formulations for separa-
tion of conv(ΦQ) and, therefore, of conv(ΦP ). For simplicity, we only discuss the
implication of the equivalence of separating concQ(φ) and concP (φ) since a similar
discussion directly applies to convQ(φ) and convP (φ) by considering −φ instead.

Definition 1 ([45]) A function g : D → R, where D is a polytope, is concave-
extendable (resp. convex-extendable) from X ⊆ D if the concave (resp. convex)
envelope of g(x) is determined by X , that is, the concave envelope of g and g|X over
D are identical, where g|X is the restriction of g to X :

g|X =
{
g(x) x ∈ X

−∞ otherwise.


�
If φ(s1n, . . . , sdn) is concave-extendable from vertices of Q then, using Theorem 2.4
in [45], we can separate (s̄, φ̄) ∈ R

d×(n+1) ×R from the hypograph of concQ(φ)(s)
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by solving the following linear program:

min
(α,b)

〈α, s̄〉 + b

s.t. 〈α, v〉 + b ≥ φ
(
v1n, . . . , vdn

) ∀v ∈ vert(Q)

α ∈ R
d×(n+1), b ∈ R,

(17)

where a solution (α∗, b∗) that is an extreme point of the feasible region yields a facet-
defining inequality of concQ(φ)(s) tight at s̄, i.e. 〈α∗, s̄〉 + b∗ = concQ(φ)(s̄). We
retain b although it can be absorbed in αi0 if αi0 �= 0. Since |vert(Q)| = (n + 1)d , it
follows that the size of the LP (17) is polynomial in n for a fixed d. As an example of
the usefulness of this construction, observe that multilinear functions are convex and
concave extendable from the vertices of Q (see [39]). Then, as Theorem 3 shows, the
above LP gives a tractable approach to separate conv(ΦQ), when φ is multilinear and
d is fixed. Techniques in [47] can be used to identify whether a function is concave-
extendable (convex-extendable) from vertices of Q.

Theorem 3 Assume that φ(s1n, . . . , sdn) is concave-extendable from vert(Q) and d is
a fixed constant. For any given s̄ ∈ R

d×(n+1), there exists a polynomial time procedure
to generate a facet-defining inequality of concQ(φ)(s) that is tight at s̄.

Proof Given s̄ ∈ Q, the LP (17) can be solved in polynomial time by using an interior
point algorithm.Moreover, by Lemma 6.5.1 in [19], an optimal extreme point solution
of linear program (17) can be found in polynomial time. Then, the result follows from
Theorem 2.4 in [45]. 
�
Remark 2 Although the separation problem of concQ(φ)(s) can be directly formulated
as a LP of polynomial size, the similar LP formulation for concP (φ)(u) using the
construction of (17) is exponentially-sized in n because the |vert(Pi )| is exponential
in n. To see this, for i ∈ {1, . . . , d}, consider the face of Pi defined as Fi := Pi ∩
{ui | uin = ain}. Since Fi coincides with the hypercube {ui | uin = ain, ai0 ≤
ui j ≤ ai j , j = 1, . . . , n − 1} and ai0 < ai j for j = 1, . . . , n − 1, it follows
that |vert(Fi )| = 2n−1. As vert(Fi ) ⊆ vert(Pi ), |vert(Pi )| ≥ 2n−1. Therefore, by
vert(P) = ∏d

i=1|vert(Pi )|, we conclude that |vert(P)| ≥ 2d(n−1). 
�
Remark 3 A convex program, similar to the above LP, can be written to treat the sep-
aration problem of concQ(φ)(s) for more general cases. For example, consider the
case when concQ(φ) is determined by its value over polynomially many faces of Q
(for example, faces of dimension r or less, for some constant r ) and φ(s1n, . . . , sdn)
is concave over those faces. To treat this case, we replace the constraint in (17)
with b ≥ supx∈F

{
φ(x) − 〈α, x〉} = (−φ)∗F (−α), for each face F of Q which is

required in the computation of concQ(φ). Here, (−φ)∗F denotes the Fenchel conjugate
of −φ(s1n, . . . , sdn) with its domain restricted to F . 
�

In the rest of this subsection, we will focus on proving that separating conv(ΦP )

and conv(ΦQ) are polynomially equivalent. In particular, we devise a combinatorial
algorithm that solves the separation problem of conv(ΦP ) in O(dn) and a separation
oracle call for conv(ΦQ). We start by presenting a brief preview of our construction.
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Fig. 1 Illustration of the lifting procedure

Given a point (ū, φ̄) /∈ conv(ΦP ), where ū := (ū1, . . . , ūd) ∈ P , we first devise
a lifting procedure, Algorithm 1, to lift ūi to a particular point (ūi , s̄i ) ∈ PQi for
all i = 1, . . . , d. For this particular pair (ūi , s̄i ), we show in Proposition 5 that,
for j ∈ {0, . . . , n}, s̄i j can be expressed as a convex combination of ūi0, . . . , ūin .
Second, we show that (s̄, φ̄) /∈ conv(ΦQ), where s̄ = (s̄1, . . . , s̄d). Third, we augment
the separation oracle for concQ(φ)(s) to modify the cut that separates (s̄, φ̄) from
conv(ΦQ) into another cut which additionally satisfies a certain sign condition on the
coefficients. Last, given a cut for concQ(φ) which satisfies these sign conditions, we
use the relationship between s̄i and ūi to derive an inequality valid for conv(ΦP ) that
cuts off (ū, φ̄). The lifting procedure that maps ū to (ū, s̄) is a cornerstone in our proof
architecture. Before presenting the lifting procedure formally, we illustrate, in the next
example, the main idea behind the procedure.

Example 4 Consider x2 where x lies in the interval [0, 2], and define ui (x) =(
ui0(x), ui1(x), ui2(x)

)
where ui0(x) := 0, ui1(x) := 2x − 1, and ui2(x) := x2,

which are bounded from above by ai0 = 0, ai1 = 3 and ai2 = 4 respectively (see
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Fig. 1a). We derive the largest underestimator si j (x) bounded from above by ai j by
taking convex combinations of the provided underestimators. More specifically, for
all j , si j (x) := max

{∑2
j ′=0 λ′

j ui j ′(x)
∣∣ ∑2

j ′=0 λ′
j ai j ′ = ai j

}
. In Fig. 1b, we tighten

ui1(x) to si1(x) = max
{
0.75ui2(x), ui1(x)

}
. This tightening gives an underestimator

si1(x) of x2 with an upper bound of 3 over [0, 2]. The derivation uses a convex com-
bination of ui2(x) and u10(x), 0.75ui2(x) + 0.25ui0(x), to obtain 0.75ui2(x) and its
upper bound 3. We let si0(x) = ui0(x) and si2(x) = ui2(x).

We will find it useful to visualize the evaluation of si (x) as depicted in Fig. 1c.
Consider x = 0.5 and let ui = ui (0.5). In order to evaluate si1(x) at 0.5, we
compute conc[0,2](ξ)(a; ui ) at a = ai1 = 3, where ξ(a; ui ) is a univariate dis-
crete function whose graph consists of the points,

{
(ai0, ui0), (ai1, ui1), (ai2, ui2)

}
,

which are depicted as black nodes in Fig. 1c. In this way, the construction of
the envelope of this univariate function lifts ui = ui (0.5) = (0, 0, 0.25) to
(ui , si ) = (

ui (0.5), si (0.5)
) = (

(0, 0, 0.25), (0, 0.1875, 0.25)
)
. The obtained pair

(ui , si ) belongs to PQi = {(u, s) | ui0 = 0, ui1 ≤ si1, ui2 = si2, si ∈ Qi }, where
Qi := {

s
∣∣ si0 = 0, 0 ≤ si2−si1

1 ≤ si1−si0
3 ≤ 1

}
; see Fig. 1d. Observe that in order to

be able to draw a 3-D figure, we do not show axes for the variables ui0 and si0 which
are fixed to 0 and depict uin and sin on the same axis by exploiting uin = sin . 
�

We now formally introduce the lifting operation illustrated in Example 4. Given a
point ū = (ū1, . . . , ūd) ∈ P1 × · · · × Pd , for each i ∈ {1, . . . , d}, we lift ūi ∈ Pi to a
point (ūi , s̄i ), where s̄i is an optimal solution of the following LP:

min
s

∑n
j=0 si j

s.t. ūi ≤ si
si ∈ Qi .

(18)

By Lemma 3, the feasible region of the linear program (18) is non-empty. We will
show that (18) has an unique optimal solution and propose an algorithm, Algorithm 1,
to solve (18) inO(n) operations. This algorithm relies on representing points in Pi as
discrete univariate functions in the following way. With a point ui ∈ Pi , we associate
a discrete univariate function ξ(a; ui ) : [ai0, ain] → R as follows:

ξ(a; ui ) =
{
ui j a = ai j for j ∈ {0, . . . , n}
−∞ otherwise.

(19)

Moreover, let ξ̂ (a; ui ) : [ai0, ain] → R be the piecewise-linear interpolation of
ξ(a; ui ) such that ξ̂ (a; ui ) = ξ(a; ui ) for a ∈ {ai0, . . . , ain} and, for all j = 1, . . . , n,
the restriction of ξ̂ (a; ui ) to [ai j−1, ai j ] is linear. In the next result, we show that this
representation leads to a characterization of points in the simplex Qi as a family of
univariate concave functions.

Lemma 5 Given a point si ∈ Qi , the extension ξ̂ (a; si ) : [ai0, ain] → R of ξ(a; ui )
defined as in (19) is a non-decreasing concave function such that ξ̂ (a; si ) ≤ a for
a ∈ [ai0, ain] and ξ̂ (ai0; si ) = ai0. On the other hand, if a concave function ψ :
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[ai0, ain] → R satisfies

ψ(a) ≤ a for a ∈ [ai0, ain], ψ(ai0) = ai0, and ψ is non-decreasing (20)

then si := (
ψ(ai0), . . . , ψ(ain)

)
belongs to Qi .

Proof We start by proving the first part. Let si ∈ Qi . By Lemma 2, there exists an
unique non-negative vector λi ∈ R

n+1 such that si = ∑n
j=0 λi jvi j , where vi j is

defined as in (10). Then, there exists a j ′ ∈ {1, . . . , n} and γ ∈ [0, 1] such that

ξ̂ (a; si ) = (1 − γ )ξ(ai j ′−1; si ) + γ ξ(ai j ′ ; si )

= (1 − γ )

n∑

j=0

λi jξ(ai j ′−1; vi j ) + γ

n∑

j=0

λi jξ(ai j ′ ; vi j )

=
n∑

j=0

λi j
(
(1 − γ )ξ(ai j ′−1; vi j ) + γ ξ(ai j ′ ; vi j )

) =
n∑

j=0

λi j ξ̂ (a; vi j ),

where the first equality is because for a ∈ [ai0, ain], there exists j ′ ∈ {1, . . . , n} and
γ ∈ [0, 1] such that a = (1−γ )ai j ′−1 +γ ai j ′ and ξ̂ (a; si ) is linear over [ai j ′−1, ai j ′ ],
the second equality is by linearity of ξ(a; si ) with respect to si , the third equality
is by rearrangement of terms, and last equality holds because ξ̂ (a; si ) is linear in a
over [ai j ′−1, ai j ′ ]. Since, for all j ∈ {0, . . . , n}, ξ̂ (a; vi j ) ≤ a for a ∈ [ai0, ain],
ξ̂ (ai0; vi j ) = ai0, ξ̂ (a; vi j ) is a non-decreasing concave function, and these properties
are closed under convex combination, it follows that ξ̂ (a, si ) follows these properties
as well.

Assume that ψ(a) is a univariate concave function satisfying (20). Let si =(
ψ(ai0), . . . , ψ(ain)

)
and let zi = Zi (si ), where Zi is as defined in (12). By the discus-

sion precedingLemma2, to prove that si ∈ Qi , it suffices to show that zi ∈ Δi . Clearly,
we have zi j ≥ 0 because ψ is non-decreasing. Moreover, we have zi1 = si1−si0

ai1−ai0
≤ 1

because ψ(ai0) = ai0 and ψ(ai1) ≤ ai1. Finally, we show that the concavity of ψ

implies that zin ≤ · · · ≤ zi1. Let j ′ ∈ {1, . . . , n − 1}, and let ψ(a) ≤ L(a) be a
supergradient inequality of ψ at ai j ′ . It follows readily that

zi j ′+1 = ψ(ai j ′+1) − ψ(ai j ′)

ai j ′+1 − ai j ′
≤ L(ai j ′+1) − L(ai j ′)

ai j ′+1 − ai j ′

= L(ai j ′) − L(ai j ′−1)

ai j ′ − ai j ′−1
≤ ψ(ai j ′) − ψ(ai j ′−1)

ai j ′ − ai j ′−1
= zi j ′ ,

where first equality and last equality follow by definition, first inequality holds because
ψ(ai j ′+1) ≤ L(ai j ′+1) andψ(ai j ′) = L(ai j ′), second equality is the linearity of L(a),
second inequality holds because ψ(ai j ′) = L(ai j ′) and ψ(ai j ′−1) ≤ L(ai j ′−1). 
�

Now, we present Algorithm 1 to lift a point in Pi to another in PQi . To lift, the
algorithm constructs the concave envelope of the discrete one-dimensional function
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defined in (19). Formally, given a point ūi ∈ Pi , let ξ(a; ūi ) be a discrete func-
tion associated with the point ūi . The graph of ξ(a; ūi ) consists of (n + 1) points
(ai0, ūi0), . . . , (ain, ūin) in R

2, which are sorted using the first coordinate. The con-
cave envelope of ξ(a; ūi ) over [ai0, ain] can be found using two-dimensional convex
hull algorithms (see [10,18]). In particular, since points of the graph of ξ(a; ūi ) are
sorted in terms of the first coordinate, Graham scan [18] takes O(n) to derive the
envelope.

Algorithm 1 Lifting procedure
1: procedure Lifting(ūi )
2: construct function ξ(a; ūi )
3: apply Graham scan to obtain conc(ξ)(a; ūi )
4: (s̄i0, . . . , s̄in) ← (conc(ξ)(ai0; ūi ), . . . , conc(ξ)(ain; ūi ))
5: return s̄i .
6: end procedure

Proposition 4 Given ūi ∈ Pi Algorithm 1 returns the unique optimal solution s̄i of (18)
in O(n).

Proof We first show that s̄i is a feasible solution to (18). Clearly, ūi ≤ s̄i as
ξ(a; ūi ) ≤ conc(ξ)(a; ūi ). Next, we show that conc(ξ)(a; ūi ) satisfies the three con-
ditions in (20), and, therefore, by the second result in Lemma 5, s̄i ∈ Qi . First,
conc(ξ)(ai0; ūi ) = ξ(ai0; ūi ) = ūi0 = ai0. Second, observe that ξ(a; ūi ) ≤ a since,
for all i and j , ūi j ≤ ai j . This implies that conc(ξ)(a; ūi ) ≤ a because by definition
conc(ξ)(a; ūi ) is the smallest concave overestimator of ξ(a; ūi ) over [ai0, ain]. Last,
we show the monotonicity of conc(ξ)(a; ūi ). Observe that, for every a ∈ [ai0, ain],
conc(ξ)(a; ūi ) ≤ ūin = ξ(ain, ūi ) = conc(ξ)(ain; ūi ), where first inequality holds
because ūi j ≤ ūin implies that ξ(a; ūi ) ≤ ūin . Consider two points a′, a′′ such that
a′ < a′′ < ain . Let λ ∈ [0, 1] such that a′′ = (1 − λ)a′ + λain . Observe that
conc(ξ)(a′′; ūi ) ≥ (1 − λ) conc(ξ)(a′; ūi ) + λ conc(ξ)(ain; ūi ) ≥ conc(ξ)(a′; ūi ),
where the first inequality is by concavity of conc(ξ) and the second inequality is
because conc(ξ)(a′; ūi ) ≤ conc(ξ)(ain; ūi ).

Next, we prove by contradiction that s̄i is the optimal solution of (18). Suppose that
s′
i is a feasible solution so that

∑n
j=0 s

′
i j ≤ ∑n

j=0 s̄i j and s
′
i �= s̄i . As s′

i ∈ Qi it follows

from the first statement of Lemma 5 that ξ̂ (a; s′
i ) is a concave function over the interval

[ai0, ain]. Moreover, we have ξ(a; ūi ) ≤ ξ̂ (a; s′
i ) because ūi ≤ s′

i . In other words,
ξ̂ (a; s′

i ) is a concave overestimator of ξ(a; ūi ) over [ai0, ain]. By the hypothesis,
∑n

j=0 ξ̂ (ai j ; s′
i ) = ∑n

j=0 s
′
i j ≤ ∑n

j=0 s̄i j = ∑n
j=0 conc(ξ)(ai j ; ūi ). Since s′

i �= s̄i ,

there exists a j ′ ∈ {0, . . . , n} such that ξ̂ (ai j ′ ; s′
i ) = s′

i j ′ < s̄i j = conc(ξ)(ai j ′ ; ūi ),
contradicting that conc(ξ)(a; ūi ) is the smallest concave overestimator of ξ(a; ūi )
over [ai0, ain]. 
�
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To further understand the output of Algorithm 1, we study the following set

PQ′ := {
(u, s)

∣∣ si = (
conc(ξ)(ai0; ui ), . . . , conc(ξ)(ain; ui )

)
, i = 1, . . . , d

}
.

(21)
In particular, for a point (ū, s̄) ∈ PQ′, we will recover a mapping from ū to s̄ that
is implicit in the construction of conc(ξ), and, geometrically, we show that s̄ lies in
a face of Q. In order to do so, we observe that the envelope, conc(ξ)(·; ūi ), gives a
representation of (ai j , s̄i j ) as a convex combination of points (ai0, ūi0), . . . , (ain, ūin).
To explicitly characterize such a representation, we consider a collection of d-tuples
defined as follows:

J :={
(J1, . . . , Jd)

∣∣ {0, n} ⊆ Ji ⊆ {0, . . . , n}, i = 1, . . . , d
}
, (22)

and, for each tuple J ∈ J , we define a linear map, ΓJ : Rd×(n+1) → R
d×(n+1), as

follows:

ũi j = ui j for i ∈ {1, . . . , d} j ∈ Ji ,

ũi j = γi j uil(i, j) + (1 − γi j )uir(i, j) for i ∈ {1, . . . , d} j /∈ Ji ,
(23)

where l(i, j) := max{ j ′ ∈ Ji | j ′ ≤ j}, r(i, j) := min{ j ′ ∈ Ji | j ′ ≥ j}, and
γi j = (air(i, j) − ai j )/(air(i, j) − ail(i, j)) for j /∈ Ji . With each tuple J ∈ J we
associate a subset FJ := F1J1 × · · · × Fd Jd of Q, where Fi Ji := conv

({vi j | j ∈ Ji }
)

and vi j is defined as in (10). Clearly, FJ is a face of Q since Fi Ji is a face of the
simplex Qi . It is also useful to observe that the face Fi Ji can also be described as the
set of points of Qi that satisfy the following at equality:

si j+1 − si j
ai j+1 − ai j

≤ si j − si j−1

ai j − ai j−1
for j /∈ Ji . (24)

In the next result, we show that, there exists a J ∈ J such that s̄ = ΓJ (ū) and s̄ lies
in the face FJ .

Proposition 5 For each tuple J ∈ J and for each (u, s) ∈ PQ,
(
ΓJ (u), s

) ∈ PQ.
Moreover, inequalities ΓJ (s) ≤ s define the face FJ . If (ū, s̄) ∈ PQ′ then s̄ = ΓJ ′(ū)

and s̄ ∈ FJ ′ , where J ′ = (J ′
1, . . . , J

′
d) such that J ′

i := { j | ūi j = s̄i j }.
Proof We start by showing that

(
ΓJ (u), s

) ∈ PQ for every (u, s) ∈ PQ. Let (u, s) ∈
PQ and define ũ := ΓJ (u). Clearly, for i ∈ {1, . . . , d} and j ∈ {0, n}, we have
ũi j = ui j = si j , where first equality holds because {0, n} ⊆ Ji and second equality
holds because (u, s) ∈ PQ implies thatui0 = si0 anduin = sin .Moreover, for all i and
j , ai0 ≤ ui j ′ for every j ′ ∈ {0, . . . , n} implies that ai0 ≤ ũi j . Last, for i ∈ {1, . . . , d},
ũi ≤ si follows because, for j ∈ {0, . . . , n}, we have ũi j ≤ conc(ξ)(ai j ; ui ) ≤
ξ̂ (ai j ; si ) = si j , where first inequality holds because the point (ai j , ũi j ) is expressible
as a convex combination of the hypograph of ξ(a; ui ), second inequality holds because,
by (ui , si ) ∈ PQi and Lemma 5, ξ̂ (a; si ) is a concave overestimator of ξ(a; ui ), thus,
of conc(ξ)(a; ui ), and the equality is by definition.
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Next, we show that inequality s ≥ ΓJ (s) defines the face FJ of Q. Since, for
every s ∈ Q, (s, s) ∈ PQ, the validity of s ≥ ΓJ (s) over Q follows from the
first result. We need to show that s = ΓJ (s) for s ∈ vert(FJ ) and s �= ΓJ (s) for
s ∈ vert(Q)\ vert(FJ ). Let s′ = (s′

1, . . . , s
′
d) ∈ vert(Q). Observe that s′ satisfies

s ≥ ΓJ (s) at equality if and only if, for i ∈ {1, . . . , d}, the associated extension
function ξ̂ (a; s′

i ) is linear over [ai j̄i , ai ĵi ] for every 0 ≤ j̄i ≤ ĵi ≤ n such that

j̄i , ĵi ∈ Ji and Ji ∩ { j̄i + 1, . . . , ĵi − 1} = ∅. Observe that ξ̂ (a; vi j ) is linear over
intervals that do not contain ai j . If, for each i , there exists j ′i ∈ Ji such that s′

i = vi j ′i
then ξ̂ (a; vi j ′) is linear over [ai j̄i , ai ĵi ] because j ′i , being in Ji , does not belong to

{ j̄i + 1, . . . , ĵi − 1}. Therefore, the point s′ satisfies s ≥ ΓJ (s) at equality. On the
other hand, assume that for some i ∈ {1, . . . , d}, there exists j ′′ /∈ Ji , so that s′

i = vi j ′′ .

Since {0, n} ⊆ Ji and j ′′ /∈ Ji , there exist j̄i , ĵi ∈ Ji such that j̄i < j ′′ < ĵi , ξ̂ (a; vi j ′′i )

is not linear over [ai j̄i , ai ĵi ], and s′ �= ΓJ (s′).
Last, we prove the third result. Let (ū, s̄) ∈ PQ′, and define (z̄1, . . . , z̄d) =(

Z1(s̄1), . . . , Zd(s̄d)
)
, where Zi is defined as in (12). Because s̄i ∈ Qi , 0 ≤ z̄in ≤

· · · ≤ z̄i1 ≤ z̄i0 = 1. We will show that that z̄i j+1 = z̄i j for all i and j /∈ J ′
i .

Thus, by (24), s̄ ∈ FJ ′ , and, therefore, s̄ = ΓJ ′(s̄) = ΓJ ′(ū), where first equality
holds by the second result and second equality holds by the definition of ΓJ ′ and
s̄i j = ūi j for all i and j ∈ J ′

i . Now, we show that z̄i j+1 = z̄i j for all j /∈ J ′
i . By

definition, there are j̄ , ĵ and γ ≥ 0 such that s̄i j = γ ūi j̄ + (1 − γ )ūi ĵ . Since j /∈ J ′
i ,

we can assume that 0 ≤ j̄ < j < ĵ ≤ n. If not, assume wlog that j = ĵ . Then,
0 = ai ĵ − ai j = γ (ai ĵ − ai j̄ ) implies that either γ = 0 or ai ĵ = ai j = ai j̄ . In either
case, s̄i j = ūi j , contradicting that j /∈ J ′

i . Then, it follows that (ai j , s̄i j ), (ai j̄ , ūi j̄ ),
and (ai ĵ , ūi ĵ ) are collinear. Let L(a) be the function passing through these points. It
follows that:

L(ai j ) ≥ γ ′ conc(ξ)(ai j−1, ūi ) + (1 − γ ′) conc(ξ)(ai j+1, ūi )

≥ γ ′L(ai j−1) + (1 − γ ′)L(ai j+1) = L(ai j ),

where γ ′ = ai j+1−ai j
ai j+1−ai j−1

. The first inequality is because L(ai j ) = conc(ξ)(ai j , ūi ) and

conc(ξ) is concave, second inequality is because γ ′ ∈ [0, 1] and concavity of conc(ξ)

implies that conc(ξ)(ai j−1, ūi ) ≥ L(ai j−1) and conc(ξ)(ai j+1, ūi ) ≥ L(ai j+1), and
the equality is because of linearity of L . Therefore, equality holds throughout and
s̄i j = L(ai j ) = γ ′ conc(ξ)(ai j−1, ūi )+ (1−γ ′) conc(ξ)(ai j+1, ūi ) = γ ′s̄i j−1 + (1−
γ ′)s̄i j+1, thereby showing that z̄i j+1 = z̄i j . 
�

Let 〈α, s〉+βφ +b ≥ 0 be a valid inequality generated for conv(ΦQ). We propose
an algorithm, Algorithm 2, to generate another valid inequality 〈α′, s〉 + βφ + b ≥ 0
for conv(ΦQ) such that α′

i j ≤ 0 for all i and j /∈ {0, n} and 〈α, s〉 ≥ 〈α′, s〉 for every
s ∈ Q. Inwords, given a valid inequality for conv(ΦQ), the algorithmgenerates a valid
inequality that dominates the original one over ΦQ and satisfies the sign condition
discussed above. The key step in Algorithm 2, the while-loop spanning Steps 13–26,
is to modify a positive coefficient to zero in a manner that this positive weight is
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allocated to its non-zero adjacent coefficients. In the next proposition, we show the
correctness of Algorithm 2 and discuss its complexity.

Algorithm 2 Sign Procedure
1: procedure Sign(α)
2: for i from 1 to d do
3: for j from 1 to n − 1 do
4: if αi j > 0 then
5: push( j, J+

i )

6: end if
7: end for
8: for j from 0 to n do
9: prev( j) = j − 1
10: succ( j) = j + 1
11: α′

i j = αi j ;
12: end for
13: while J+

i �= ∅ do

14: j = pop(J+
i )

15: ϑi j = aisucc( j)−ai j
aisucc( j)−aiprev( j)

16: for ( j ′, �) in
{(
prev( j), ϑi j

)
,
(
succ( j), 1 − ϑi j

)}
do

17: neg ← (α′
i j ′ ≤ 0);

18: α′
i j ′ = α′

i j ′ + �α′
i j ;

19: if neg = true and α′
i j ′ > 0 and 0 < j ′ < n then

20: push( j ′, J+
i )

21: end if
22: end for
23: prev

(
succ( j)

) = prev( j); succ
(
prev( j)

) = succ( j);
24: prev( j) = −1; succ( j) = n + 1;
25: α′

i j = 0;
26: end while
27: end for
28: return α′.
29: end procedure

Proposition 6 Given a valid inequality 〈α, s〉+βφ+b ≥ 0 for conv(ΦQ), Algorithm 2
takes O(dn) time to generate a valid inequality 〈α′, s〉 + βφ + b ≥ 0 for conv(ΦQ)

such that α′
i j ≤ 0 for all i and j /∈ {0, n} and 〈α, s〉 ≥ 〈α′, s〉 for every s ∈ Q.

Moreover, there exists an s̃ ∈ Q such that, for all i , s̃in = sin and 〈α, s̃〉 = 〈α′, s〉.
Proof In Step 5, we initialize J+

i as a stack of indices j such that αi j > 0 and in Steps
9 and 10, we initialize a queue that contains all the indices in {0, . . . , n}. In Step 14
of Algorithm 2, we pick j ∈ J+

i and remove it from the queue in Step 23. Indices
are added to J+

i only in Step 20 and the added index belongs to {1, . . . , n − 1}. We
argue that at the beginning of each iteration of the while loop starting at Step 13, if an
index j ∈ J+

i then α′
i j > 0, otherwise α′

i j ≤ 0. Further, no index in J+
i is repeated,

and if j ∈ J+
i then j is also in the queue. This is certainly true at first iteration after

initialization ends at Step 12. At Step 20, j ′ is added only if α′
i j ′ > 0 and was negative
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previously and, therefore, not already in J+
i . Moreover, j ′ is in the queue, being either

the predecessor or successor of an index j in the queue. At Step 18, it follows that
α′
i j ′ can only increase because Step 16 guarantees that � ∈ [0, 1] since ϑi j ∈ [0, 1]

and αi j > 0 because j was just removed from J+
i . Therefore, existing indices in J+

i
continue to satisfy the invariant regarding positive coefficients. Moreover, if αi j ′ turns
positive at Step 18, it is added to J+

i in Step 20. In Step 23, j is removed from the
queue, but its only copy in J+

i was removed already at Step 14. Since the size of the
queue reduces by one in each iteration of the while loop starting at Step 13 and {0, n}
remain in the queue throughout, the loop executes at most n − 1 iterations. Since the
outer for loop starting at Step 2 executes d iterations, the complexity of the algorithm
is O(dn). Further, α′

i j , for any j not in queue, is set to zero at Step 25 and never
updated at Step 18 because j has already been removed from the queue and its only
copy was removed from J+

i at Step 14. Observe that at termination J+
i is empty. Any

remaining index j in the queue is such that αi j ≤ 0 and any index j outside the queue
is such that αi j = 0.

We only need to establish the correctness of the i th iteration of the outer for loop
starting at Step 2. Let αk be the α′ at the start of kth iteration of the while-loop
spanning Steps 13–26, and, for notational convenience, assume α1 = α. It follows
easily that 〈αk, s〉 ≤ 〈αk−1, s〉, because s ∈ Q implies, by Lemma 2, that si j ≥
ϑi j siprev( j) + (1 − ϑi j )sisucc( j). Therefore, 〈α′, s〉 ≤ 〈α, s〉. To complete the proof,
we need to establish the validity of 〈α′, s〉 + βφ + b ≥ 0 over ΦQ . In particular, we
will show that for every (s, φ) ∈ ΦQ , there exists (s̃, φ) ∈ ΦQ such that, for all i ,
s̃in = sin and 〈α, s̃〉 = 〈α′, s〉. By assumption, 〈α, s̃〉 + βφ + b ≥ 0, thereby proving
that 〈α′, s〉+βφ+b ≥ 0. Let (s, φ) ∈ ΦQ , and define s̃0 = s. During the kth iteration,
at Step 14, j is popped from J+

i , we define s̃k such that, for prev( j) < j ′ < succ( j),
s̃ki j ′ = ϑi j ′ s̃

k−1
iprev( j) + (1 − ϑi j ′)s̃

k−1
isucc( j) and s̃ki j ′ = s̃k−1

i j ′ otherwise. In addition, let

Hk be the queue at the beginning of kth iteration. Since s̃ki and s̃k−1
i differ only

at indices not in Hk , it follows easily that s̃ki j ′ = si j ′ for j ′ ∈ Hk . This, together

with αk
i j = 0 for j /∈ Hk , implies that 〈αk, s〉 = 〈αk, s̃k〉. Next, we show that

〈αl+1, s̃k〉 = 〈αl , s̃k〉 for 1 ≤ l ≤ k − 1. In the l th iteration of the while loop, assume
that, during Step 14, j ′ is popped from J+

i , prev( j ′) = j̄ , and succ( j ′) = ĵ . Let

ϑ = ai ĵ−ai j ′
ai ĵ−ai j̄

. Since the queue becomes smaller with iterations and l ≤ k − 1, it

follows that j ′ /∈ Hk . Then, 〈αl+1, s̃k〉 = 〈αl , s̃k〉 − αl
i j ′

(
s̃ki j ′ − ϑ s̃k

i j̄
− (1 − ϑ)s̃k

i ĵ

)
,

where, by the definition of s̃k , { j̄ + 1, . . . , ĵ − 1} /∈ Hk , ξ̂ (a; s̃k) is linear between
[ai j̄ , ai ĵ ] and, so, the term in the parenthesis on right-hand-side is zero. Moreover, by

Proposition 5, s̃k ∈ Q, and by {0, n} ⊆ Hk , s̃ki j = sin . It follows by considering the
last iteration, say r , of the while-loop that there exists s̃r ∈ Q such that s̃rin = sin ,
α′ = αr , and 〈αr , s〉 = 〈αr , s̃r 〉 = 〈α, s̃r 〉. Hence, (s̃r , φ) ∈ ΦQ as s̃r ∈ Q and
φ = φ(s1n, . . . , sdn) = φ(s̃r1n, . . . , s̃

r
dn). 
�

Given (ū, s̄) ∈ PQ′ and a valid inequality 〈α, s〉 + βφ + b ≥ 0 for conv(ΦQ) sat-
isfying the sign condition guaranteed by Algorithm 2, the following lemma generates
an inequality 〈α′, u〉 + βφ + b ≥ 0 valid for conv(ΦP ) so that 〈α, s̄〉 = 〈α′, ū〉. In
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other words, if, for some φ̄ ∈ R, the inequality 〈α, s〉 + βφ + b ≥ 0 separates (s̄, φ̄)

from ΦQ then the modified inequality separates (ū, φ̄) from ΦP .

Lemma 6 Let 〈α, s〉 + βφ + b ≥ 0 be an inequality valid for conv(ΦQ). Let (ū, s̄) ∈
PQ′ and define J = (J1, . . . , Jd) such that Ji = { j | ūi j = s̄i j }. Consider a linear
function 〈α′, ·〉 such that 〈α′, u〉 = 〈

α, ΓJ (u)
〉
, where ΓJ is the linear transformation

defined in (23). If, for all i ∈ {1, . . . , d} and j /∈ {0, n}, αi j is non-positive then, for
every (u, s) ∈ PQ, 〈α, s〉 ≤ 〈α′, u〉 and equality is attained at (ū, s̄). Moreover, the
inequality 〈α′, u〉 + βφ + b ≥ 0 is valid for conv(ΦP ).

Proof Assume that αi j ≤ 0 for all i and j /∈ {0, n}. We first observe that, for every
(u, s) ∈ PQ, 〈α, s〉 ≤ 〈

α, ΓJ (u)
〉 = 〈α′, u〉, where the inequality holds because αi j ≤

0 for all i and j /∈ {0, n} and, by the first result in Proposition 5, (ΓJ (u), s) ∈ PQ, and
the equality holds by the definition of α′ in the statement of the result. In particular,
〈α, s̄〉 = 〈

α, ΓJ (ū)
〉 = 〈α′, ū〉, where first equality holds because, by the third result

in Proposition 5, s̄ = ΓJ (ū).
Now, we show that 〈α′, u〉 + βφ + b ≥ 0 is valid for conv(ΦP ). Observe that the

inequalities, 〈α′, u〉 ≥ 〈α, s〉 and 〈α, s〉+βφ+b ≥ 0, are valid for conv(ΦPQ), where
validity of the latter inequality follows since it is assumed to be valid for conv(ΦQ),
which, byLemma3, equals proj(s,φ)

(
conv(ΦPQ)

)
. This implies that 〈α′, u〉+βφ+b ≥

0 is valid for conv(ΦPQ) and, hence, for conv(ΦP ) since it does not depend on s and,
by Lemma 3, conv(ΦP ) = proj(u,φ)

(
conv(ΦPQ)

)
. 
�

Now, we are ready to prove that the main result.

Theorem 4 The separation problem of conv(ΦP ) can be solved inO(dn) time besides
a call to the separation oracle for conv(ΦQ).

Proof Let (ū, φ̄) ∈ R
d×(n+1)+1. We assume that ū ∈ P because, if not, we can

separate ū from P in O(dn) time by finding a facet-defining inequality of P that is
violated at ū. Let s̄ := (s̄1, . . . , s̄d), where s̄i is the point returned by Algorithm 1
when ūi is provided as input. Observe that this step takes O(dn) time. Clearly, we
have (ū, s̄) ∈ PQ′, where PQ′ is defined in (21). Now, we call the separation oracle
for conv(ΦQ). If the oracle asserts that (s̄, φ̄) ∈ conv(ΦQ) then, by equality in (16),
(ū, s̄, φ̄) ∈ conv(ΦPQ), and thus, by Lemma 3, (ū, φ̄) ∈ conv(ΦP ).

Now, suppose that (s̄, φ̄) /∈ conv(ΦQ) and the oracle returns a hyperplane 〈α, s〉 +
βφ + b = 0 such that, for all (s, φ) ∈ conv(ΦQ), 〈α, s〉 + βφ + b ≥ 0, whereas
〈α, s̄〉 + βφ̄ + b < 0. In this case, we will derive a hyperplane that separates (ū, φ̄)

from conv(ΦP ). Using Proposition 6, we can assume that αi j ≤ 0 for all i and
j /∈ {0, n}. Otherwise, we can satisfy this sign requirement by executing Algorithm 2,
with complexity O(dn), using the generated inequality. Now, we utilize Lemma 6
to derive the inequality 〈α′, u〉 + βφ + b ≥ 0, where α′ can easily be computed in
O(dn) time. Given arbitrary (u, φ) ∈ conv(ΦP ), it follows that 〈α′, ū〉 + βφ̄ + b =
〈α, s̄〉 + βφ̄ + b < 0 ≤ 〈α′, u〉 + βφ + b, where the first equality is by construction
of α′ and Lemma 6, the strict inequality is guaranteed by the separation oracle for
conv(ΦQ), and the last inequality follows Lemma 6. 
�

Next, we explore the strength of cuts that are generated by the procedure described
in Theorem 4. We will only discuss the strength of valid cuts for the hypograph of
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concP (φ)(u) since a similar argument applies for convP (φ)(u). Recall that we say
an inequality φ ≤ 〈α, u〉 + b, valid for conv(ΦP ), is tight at a given point ū ∈ P if
concP (φ)(ū) = 〈α, ū〉 + b.

Proposition 7 Assume that the concave envelope, concP (φ)(u), is closed. Given a
polynomial time separation oracle for concQ(φ)(s) which yields tight cuts, there
exists a polynomial time separation algorithm for concP (φ)(u) which generates tight
cuts.

Proof Let ū ∈ P and define s̄ = (s̄1, . . . , s̄d), where s̄i is the point returned by
Algorithm 1 when ūi is provided as the input. Suppose that the separation oracle
generates a valid inequality φ ≤ 〈α, s〉 + b of concQ(φ)(s), which is tight at s̄. We
assume without loss of generality that αi j ≤ 0 for all i and j /∈ {0, n} since otherwise
we apply Algorithm 2 to generate a new inequality which is tight at s̄ and satisfies
the sign requirement. Let φ ≤ 〈α′, u〉 + b be the inequality obtained using Lemma 6.
Then,

concQ(φ)(s̄) = 〈α, s̄〉 + b = 〈α′, ū〉 + b

≥ concP (φ)(ū) ≥ concP (φ)(s̄) ≥ concQ(φ)(s̄),

where the first equality is because φ ≤ 〈α, s〉 + b is tight at s̄, second equality holds
because, by third result in Proposition 5, s̄ = ΓJ (ū) and, by Lemma 6, 〈α′, ū〉 =〈
α, ΓJ (ū)

〉
, the first inequality holds because, by Lemma 6, φ ≤ 〈α′, u〉 + b is valid

for concP (φ)(u), second inequality holds because, by Lemma 1, the closedness of
concP (φ)(u) implies that it is non-increasing in ui j for all i and j /∈ {0, n} and
(ū, s̄) ∈ PQ implies that ū ≤ s̄ and ūi j = s̄i j for all i and j ∈ {0, n}, and the
last inequality follows because Q ⊆ P and thus concP (φ)(s) ≥ concQ(φ)(s) for
every s ∈ Q. Therefore, equalities hold throughout. In particular, we obtain that
〈α′, ū〉 + b = concP (φ)(ū) = concP (φ)(s̄) = concQ(φ)(s̄). 
�
We argued in the proof of Proposition 7 that, given a pair (ū, s̄) ∈ PQ′, we have
concP (φ)(ū) = concQ(φ)(s̄). We denote by L(ui ) the feasible region of (18) with ui
as the given input. It is easy to see that, for every u ∈ T (ū, s̄) := {u | ū ≤ u ≤ s̄},
we have (u, s̄) ∈ PQ′ because, for i ∈ {1, . . . , d}, L(ui ) ⊆ L(ūi ) and s̄i ∈ L(ui ).
Therefore, the following result follows from the proof of Proposition 7.

Corollary 1 Assume that the concave envelope concP (φ)(u) is closed. Then, given
(ū, s̄) ∈ PQ′, we have concP (φ)(u) = concQ(φ)(s̄) for every u ∈ T (ū, s̄), where
T (ū, s̄) = {u | ū ≤ u ≤ s̄}.

4.3 Application in factorable programming

In this subsection, we show that the factorable programming scheme can be improved
by considering a special case of the problem treated in Sects. 3 and 4. We consider the
case when φ(·) is a bilinear term and P is defined with d = n = 2.
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Theorem 5 Let f L1 ≤ a1 ≤ f U1 and f L2 ≤ a2 ≤ f U2 . Then, consider the set:

P = {
(u1, f1, u2, f2)

∣∣ f L1 ≤ u1 ≤ min{ f1, a1}, f1 ≤ f U1 ,

f L2 ≤ u2 ≤ min{ f2, a2}, f2 ≤ f U2
}
.

The following overestimators inequalities are valid for the epigraph of f1 f2 over P:

f1 f2 ≤ min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 := f L2 f1 + f U1 f2 − f U1 f L2

r2 := ( f L2 − a2)u1 + (a1 − f U1 )u2 + a2 f1 + f U1 f2 − a1 f
L
2

r3 := ( f L2 − f U2 )u1 + a1 f2 + f U2 f1 − a1 f
L
2

r4 := ( f L1 − f U1 )u2 + a2 f1 + f U1 f2 − f L1 a2

r5 := (a2 − f U2 )u1 + ( f L1 − a1)u2 + f U2 f1 + a1 f2 − f L1 a2

r6 := f1 f
U
2 + f L1 f2 − f L1 f U2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof To show that r2 is a valid overestimator, observe that f1 f2 = r2−(a1−u1)(u2−
f L2 ) − ( f1 − u1)(a2 − u2) − ( f2 − u2)( f U1 − f1) ≤ r2. Similarly, it follows that r3,
r4, and r5 are overestimators because f1 f2 = r3 − (a1 − u1)( f2 − f L2 ) − ( f1 −
u1)( f2 − f U2 ) ≤ r3, f1 f2 = r4 − ( f1 − f L1 )(a2 −u2)− ( f U1 − f1)( f2 −u2) ≤ r4, and
f1 f2 = r5 − (u1 − f L1 )(a2 − u2)− (a1 − u1)( f2 − u2)− ( f1 − u1)( f U2 − f2) ≤ r5. 
�
Observe that Theorems 1 and 5 use a slightly different notation to denote P than the
rest of Sects. 3–5. In particular, we hide the subscript j of ui j , as it is unnecessarywhen
there is a single underestimator. We also drop the subscript j of si j in the foregoing
discussion.

The proof of Theorems 1 and 5 provided a direct verification of the validity of these
inequalities and do not provide an intuition into how these inequalities were derived
in the first place. We use the results in Sect. 4 to show a constructive derivation
of one of the inequalities in Theorem 5. Incidentally, this construction also shows
that the inequality is a facet of conv(ΦP ). A similar argument can be constructed
for each of the inequalities showing that all the inequalities in Theorems 1 and 5
are facet-defining. Consider, for example, the inequality f1 f2 ≤ r3 and a point
p := (ū1, f̄1, ū2, f̄2) = (a1, 0.5a1 + 0.5 f U1 , 0.5 f L2 + 0.5a2, 0.25 f L2 + 0.75 f U2 ) that
belongs to P . Algorithm 1 maps this point to q := (s̄1, f̄1, s̄2, f̄2), a point in Q, with

s̄1 := ū1 and s̄2 := f U2 −a2
f U2 − f L2

f L2 + a2− f L2
f U2 − f L2

(0.25 f L2 +0.75 f U2 ) = 0.25 f L2 +0.75a2. Let

g3 := ( f L2 − f U2 )s1 + a1 f2 + f U2 f1 − a1 f L2 . The inequality f1 f2 ≤ g3 is tight at the
extreme points of Q given by ( f L1 , f L1 , f L2 , f L2 ), (a1, a1, f L2 , f L2 ), (a1, a1, a2, a2),
(a1, a1, a2, f U2 ), and (a1, f U1 , a2, f U2 ), where for each point, the variables are ordered
as in (s1, f1, s2, f2). Then, we obtain the inequality f1 f2 ≤ g3 by interpolating f1 f2
at the listed vertices. The validity of this inequality over Q uses the same argument
as the proof of validity of f1 f2 ≤ r3 in Theorem 5. Moreover, observe that q can
be written as a convex combination of the above extreme points with multipliers 0,
0.25, 0, 0.25, and 0.5 respectively. Since the coefficient of s1 in g3 is already non-
positive, we do not need to invoke Algorithm 2 to satisfy this sign-condition. Then, as
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in Lemma 6, we replace each si with its defining expression in terms of ui to obtain
an inequality that is valid for concP (φ) and defines one of its facets. We provide
more detail and illustrate the ideas involved. Normally, we would replace s1 (resp.

s2) with u1 (resp.
f U2 −a2
f U2 − f L2

f L2 + a2− f L2
f U2 − f L2

f2). However, since s2 does not appear in the

expression defining g3, we obtain r3 simply by substituting u1 for s1 in g3, and thus
derive the inequality, f1 f2 ≤ r3, that is valid for concP (φ). Using the points tight in
Q, it follows easily that this inequality also defines a facet for concP (φ). We next show
that it is also tight at p, the point that was initially chosen for its derivation, thereby,
demonstrating the more general fact shown in the proof of Proposition 7. Consider the
point r := (s̄1, f̄1, f L2 , f̄2) that is a convex combination of tight points, as seen from the
expression, r = 0.25(a1, a1, f L2 , f L2 )+0.25(a1, a1, f L2 , f U2 )+0.5(a1, f U1 , f L2 , f U2 ).
Here, the points in the right hand side belong to P , are tight, andwere obtained from the
tight points in Q by substituting the s2 coordinate with f L2 . Then, since p = 1

3r + 2
3q,

we have expressed p as a convex combination of tight points and shown that f1 f2 ≤ r3
defines a facet for concP (φ) and is tight at p.

Remark 4 Consider the bilinear product f1(x) f2(x) and assume f1(x) ≤ o1(x) yields
an overestimator, o1(x). Then, Theorems 1 and 5 can be used by replacing f1 with
− f1. In this case, the more involved transformation discussed in (7) is not neces-
sary. Nevertheless, (7) is useful if besides the overestimator, o1(x), we also have an
underestimator, u1(x), available for f1(x) and wish to exploit both estimators in the
construction of cuts.

In the next example, we present a preliminary computational result that demonstrates
the computational benefits of using inequalities from Theorems 1 and 5 on randomly
generated problems.

Example 5 We consider a class of optimization problems of the form:

min
x,Y

〈c, x〉 + Q ◦ Y
s.t. x ∈ [1, 2]n,

y = (
x21 , x

3
1 , x

4
1 , x

2
2 , x

3
2 , x

4
2 , . . . , x

2
n , x

3
n , x

4
n

)
,

Y = y�y,

where ◦ denote the component-wise product of two matrices, and Q is a strictly
upper triangular matrix. Clearly, the number of nonlinear monomials in the problem
is determined by the number of variables n and the density ν of Q, i.e. the number
of nonzero elements divided by the number of strictly upper triangular entries, that is(
(3n)2 − 3n

)
/2. For a given pair (n, ν), we generated 50 problem instances, where

the problem data were randomly generated as follows. The coefficients (ci )ni=1 were
uniformly generated from the interval [−512,−2], while the strictly upper triangular
entries of Q were zero with a probability of 1 − ν and uniformly generated from the
interval [1, 2] with a probability of ν.

For each problem instance, we constructed two linear programming (LP) relax-
ations. For the first relaxation, we used factorable programming. Here, each monomial
xai x

b
j was relaxed using McCormick inequalities and each univariate function xai was
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Table 1 Factorable relaxation gap closed by Theorems 1 and 5. Each gap closed is an average over 50
problem instances

n = 5 n = 10 n = 20

ν Gap Closed (%) ν Gap Closed (%) ν Gap Closed (%)

0.1 67 0.05 65 0.025 61

0.2 59 0.1 53 0.05 49

0.3 45 0.15 44 0.075 40

outer-approximated using subgradient inequalities at 11 points {1, 1.1, . . . , 1.9, 2}.
In the second relaxation, for each monomial term xai x

b
j , we used Theorems 1 and 5

to generate inequalities for each pair of subgradient inequalities. Clearly, the second
relaxation is tighter than the first. Our computational results are presented in Table 1.
The table reports the percentage of factorable relaxation gap that is closed by using
the second relaxation, that is, we compute L2−L1

U−L1
, where L1 and L2 is the lower bound

obtained by using the first and second relaxation, respectively, while U is the best
upper bound obtained by SCIP [16] within a time limit of 500s. Observe that not all
problems were solved to global optimality in 500s by SCIP; therefore, the percentage
of gap closed reported is an underestimate of the actual gap closed. 
�

5 Extensions: simultaneous hull and facet-generation

In this section, we consider a vector of functions θ : Rd → R
k over the polytope P

and their graph

Θ P := {
(u, θ)

∣∣ θ = θ(u1n, . . . , udn), u ∈ P
}
.

We refer to conv(Θ P ) as the simultaneous hull of Θ P and are interested in solving
the separation problem associated with this set. We, similarly, define ΘQ := {

(s, θ)
∣∣

θ = θ(s1n, . . . , sdn), s ∈ Q
}
and generalize the results from Sect. 4.2 to this setting.

More specifically, we will show that, given a polynomial time separation oracle for
conv(ΘQ), the separation problem for conv(Θ P ) can also be solved in polynomial
time. We will also prove a sharper result when conv(ΘQ) is a polytope, such as is the
case when θ(·) is a vector of multilinear functions (see Corollary 2.7 in [43]). For this
setting, we will assume that we have access to a polynomial time oracle that generates
facet-defining cuts for a family of lower-dimensional polytopes of conv(ΘQ), using
which we will generate facet-defining cuts for conv(Θ P ) in polynomial time.

5.1 Polynomial time equivalence of separations for simultaneous hulls

In this subsection, we show that proof techniques for Theorem 4 can be general-
ized to establish polynomial time equivalence of separations between conv(Θ P ) and
conv(ΘQ). First, Lemma 3 and the equality in (16) can be easily generalized to the
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context of conv(Θ P ) using a similar argument. Let Θ PQ be the graph of θ over
polytope PQ, that is, Θ PQ := {

(u, s, θ)
∣∣ θ = θ(s1n, . . . , sdn), (u, s) ∈ PQ

}
.

Lemma 7 proj(u,θ)(Θ
PQ) = Θ P and proj(s,θ)(Θ

PQ) = ΘQ. Moreover, it holds that
conv(Θ P ) = {

(u, θ)
∣∣ (s, θ) ∈ conv(ΘQ), (u, s) ∈ PQ

} 
�
Now, observe that Algorithm 2 can be applied tomodify coefficients of a valid inequal-
ity for conv(ΘQ).

Proposition 8 Given a valid inequality 〈α, s〉 + 〈β, θ〉 + b ≥ 0 for conv(ΘQ), Algo-
rithm 2 generates a valid inequality 〈α′, s〉 + 〈β, θ〉 + b ≥ 0 for conv(ΘQ) so that
α′
i j ≤ 0 for all i and j /∈ {0, n} and 〈α′, s〉 ≤ 〈α, s〉 for every s ∈ Q.

Proof Let α′ be the vector returned by Algorithm 2 when α is given as input. Then,
for any (s, θ) ∈ ΘQ , there exists s̃ ∈ Q such that 〈α, s〉 ≥ 〈α′, s〉 = 〈α, s̃〉 ≥
−〈β, θ〉 − b, where the first inequality, first equality, and the existence of s̃ follow
from Proposition 6. The second inequality follows because (s̃, θ) ∈ ΘQ and 〈α, s〉 +
〈β, θ〉 + b ≥ 0 is assumed to be valid for conv(ΘQ). 
�
Theorem 6 The separation problem of conv(Θ P ) can be solved in polynomial time
given a polynomial separation oracle for conv(ΘQ).

Proof The proof is similar to that of Theorem 4. We construct s̄ using Algorithm 1
with ū as input. If (s̄, θ̄ ) ∈ conv(ΘQ) then, since (ū, s̄) ∈ PQ, Lemma 7 shows that
(ū, θ̄ ) ∈ conv(Θ P ). If (s̄, θ̄ ) /∈ conv(ΘQ), we use the separation oracle of conv(ΘQ)

and Algorithm 2 and Proposition 8 to obtain an inequality 〈α, s〉+〈β, θ〉+b ≥ 0 valid
for conv(ΘQ) that separates (s̄, θ̄ ) from conv(ΘQ). Then, we use the transformation
of Lemma 6 to obtain α′ and observe that, for all (u, θ) ∈ conv(Θ P ) and (u, s) ∈ PQ,
〈α′, u〉+〈β, θ〉+b ≥ 〈α, s〉+〈β, θ〉+b ≥ 0. Since, by Lemma 6, 〈α′, ū〉 = 〈α, s̄〉 <

−〈β, θ̄〉 − b, the inequality is not satisfied at (ū, θ̄ ) and, thus, separates (ū, θ̄ ) from
conv(ΦP ). 
�

5.2 Polynomial time equivalence of facet generations for simultaneous hulls

In the following, we will show that the facet generation problem of conv(Θ P ) can be
solved in polynomial time, given a facet generation oracle for conv(ΘQJ ) for J ∈ J .
By a facet generation problem for a polyhedron S, we mean that in addition to the
separation problem of S, we return a hyperplane that contains S and does not contain
x if x /∈ aff(S), or return a facet-defining inequality of S that is not satisfied at x .

We start by formally defining a family of polytopes of the form Q that result
when subsets of the outer-approximators of fi (x) are considered. Consider J =
(J1, . . . , Jd) ∈ J , where J is defined as in (22). For any y ∈ R

d×(n+1), let yJ :=
(y1J1, . . . , yd Jd ),where yi Ji are the components of yi corresponding to the index Ji . Let
J̄ := ( J̄1, . . . , J̄d), where J̄i is the complement of Ji , i.e., J̄i = {0, . . . , n}\Ji . Using
these definitions, we can now write, up to reordering of variables, that y = (yJ , yJ̄ ).
Let a = (a1, . . . , ad) be a vector in Rd×(n+1) so that ai is strictly increasing for every
i ∈ {1, . . . , d}. For any J = (J1, . . . , Jd) ∈ J , we define QJ := Q1J1 × · · · × QdJd ,
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where Qi Ji is the simplex defined in (10) with parameter ai Ji ∈ R
|Ji |, and consider the

graph of θ(·) over QJ defined as ΘQJ := {
(sJ , θ)

∣∣ θ = θ(s1n, . . . , sdn), sJ ∈ QJ
}
.

With the collection of d-tuples J , we also associate a family of faces of Q, that is,
for each J ∈ J , FJ := F1J1 × · · · × Fd Jd , where Fi Ji := conv

({vi j | j ∈ Ji }
)

and vi j = (ai0, . . . , ai j−1, ai j , . . . , ai j ) for all i and j . Similarly, we consider the
graph of θ(·) over FJ defined as ΘFJ := {

(s, θ)
∣∣ θ = θ(s1n, . . . , sdn), s ∈ FJ

}
.

In the next result, we will provide the invertible affine isomorphism relating points in
polytopes conv(ΘQJ ) with those in conv(ΘFJ ). Recall that two polytopes X ⊆ R

m

and Y ⊆ R
n are affinely isomorphic if there is an affine map f : R

m → R
n that

is a bijection between the points of the two sets. Let f : R
m → R

k and X be a
convex subset of Rm . For any valid inequality 〈α, x〉 + 〈β,μ〉 + b ≥ 0 of the convex
hull of

{
(x, μ) | μ = f (x), x ∈ X

}
, we shall denote by T (α,β,b)

f (X) the face of

conv
({

(x, μ)
∣∣ μ = f (x), x ∈ X

})
defined by the valid inequality.

Lemma 8 Assume that conv(ΘQ) is a polytope. Let J = (J1, . . . , Jd) ∈ J and let
〈α, s〉 + 〈β, θ〉 + b ≥ 0 be a valid inequality of conv(ΘQ) so that α J̄ = 0. Then, the

face T (α,β,b)
θ (FJ ) of conv(ΘFJ ) is affinely isomorphic to the face T (αJ ,β,b)

θ (QJ ) of
conv(ΘQJ ).

Proof Let J = (J1, . . . , Jd) ∈ J . Since FJ is a face of Q and conv(ΘQ) is a
polytope, it follows readily that conv(ΘFJ ) is a polytope.Wefirst show that conv(ΘFJ )

is affinely isomorphic to conv(ΘQJ ). Consider an affine map A : sJ → t such
that ti j = si j for j ∈ Ji and ti j = (1 − γi j )sil(i, j) + γi j sir(i, j) for j /∈ Ji , where
l(i, j) = max{ j ′ ∈ Ji | j ′ ≤ j}, r(i, j) = min{ j ′ ∈ Ji | j ′ ≥ j}, and γi j =
(ai j −ail(i, j))/(air(i, j) −ail(i, j)). It follows from second result in Proposition 5 that A
maps the polytope QJ into the face FJ . The inverse of A is defined as s → sJ andmaps
the face FJ into the simplex QJ . This is because, for any si ∈ vert(Fi Ji ), there exists
a k ∈ Ji such that si j = min{ai j , aik} for all j ∈ Ji . Thus, si Ji ∈ vert

(
Qi Ji

)
. Consider

the affine transformation, Π , defined as (sJ , θ) → (
A(sJ ), θ

)
and its inverse, Π−1,

(s, θ) → (sJ , θ). Note that, in calling the projection operation as an inverse of Π ,
we are interpreting Π as a transformation into the affine hull of ΘFJ rather than into
ΘQ . In other words, ΠΘQJ = ΘFJ and Π−1ΘFJ = ΘQJ . Therefore, conv(ΘFJ ) =
conv(ΠΘQJ ) = Π conv(ΘQJ ) and, similarly, conv(ΘQJ ) = Π−1 conv(ΘFJ ). It
follows that conv(ΘFJ ) is affinely isomorphic to conv(ΘQJ ).

Now, let 〈α, s〉+〈β, θ〉+b ≥ 0 be a valid inequality for conv(ΘQ) so that α J̄ = 0.
Then, the validity of the inequality 〈αJ , sJ 〉 + 〈β, θ〉 + b ≥ 0 for conv(ΘQJ ) follows
since α J̄ = 0. Clearly, the corresponding faces, T (α,β,b)

θ (FJ ) and T (αJ ,β,b)
θ (QJ ), are

affinely isomorphic under the mapping Π . 
�
As a consequence of Proposition 8, we obtain the following monotonic property

for a facet-defining inequality of conv(ΘQ).

Lemma 9 Assume that conv(ΘQ) is a polytope. Let 〈α, s〉 + 〈β, θ〉 + b ≥ 0 be a
face-defining inequality of conv(ΘQ). Then, αi j ≤ 0 for all i and j /∈ {0, n}. 
�

Assume that conv(ΘQ) is a polytope and observe that conv(Θ PQ) is a poly-
tope since, by the second part of Lemma 7, conv(Θ PQ) = {

(u, s, θ)
∣∣ (s, θ) ∈
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conv(ΘQ), (u, s) ∈ PQ
}
. Consequently, by the first part of Lemma 7, conv(Θ P ) is

a polytope.

Theorem 7 Assume that conv(ΘQ) is a polytope. The facet generation problem of
conv(Θ P ) can be solved in polynomial time if there exists a polynomial time facet
generation oracle of conv(ΘQJ ) for every J ∈ J .

Proof Let (ū, θ̄ ) ∈ R
d×(n+1)+k and assume that ū ∈ P . Let s̄ be the point returned

by Algorithm 1 with ū as input, and define J = {J1, . . . , Jd}, where Ji := { j |
ūi j = s̄i j }. We assume that (s̄, θ̄ ) /∈ ΘQ ; otherwise (ū, θ̄ ) ∈ Θ P as in the proof of
Theorem 6. We only consider the case when the facet-generation oracle produces a
non-vertical facet-defining inequality, 〈αJ , sJ 〉 + 〈β, θ〉 + b ≥ 0, of conv(ΘQJ ) with
〈αJ , s̄J 〉 + 〈β, θ̄〉 + b < 0. Instead, if the oracle returns a hyperplane which contains
ΘQJ , a similar proof without the need for the point (s̃J , θ̃ ), which we define later, can
be constructed easily. By Lemma 9, αi j ≤ 0 for all i and j /∈ Ji\{0, n}. Let α̃J = αJ

and α̃ J̄ = 0. Then, it suffices to show that 〈α̃, u〉 + 〈β, θ〉 + b ≥ 0 is facet-defining
for conv(Θ P ) since 〈α̃, ū〉 + 〈β, θ̄〉 + b < 0.

To prove the validity of the inequality, we consider a point (u, s, θ) ∈ Θ PQ and
observe that 〈α̃, u〉 ≥ 〈α̃, s〉 = 〈α̃J , sJ 〉 ≥ −〈β, θ〉 − b, where the first inequality
holds because, for all i and j /∈ {0, n}, α̃i j ≤ 0 and si j ≥ ui j , and sin = uin , the first
equality is because α̃ J̄ = 0, and the second inequality is because of the validity of
〈α̃J , sJ 〉 + 〈β, θ〉 + b ≥ 0 for ΘQJ . Therefore, the inequality is valid for Θ PQ , and
hence, by Lemma 7, for Θ P .

For simplicity of notation, for any set S we abbreviate T (α̃,β,b)
θ (S) as T (S). We will

show that dim
(
T (P)

) = dim
(
Θ P

) − 1, and thus, conclude that (α̃, β, b) defines a
facet of conv(Θ P ).

First, we construct a subset H of T (P) so that, for i ′ ∈ {1, . . . , d} and j ′ /∈ Ji , there
exist twopoints, (ŝ, θ̂ ) and (š, θ̌ ), in H whichdiffer only in coordinate corresponding to
si ′ j ′ , that is, (ŝ, θ̂ )−(š, θ̌ ) = (δei ′ j ′, 0)where δ �= 0 and ei ′ j ′ is the j ′th principal vector
in the i ′th subspace. Consider (ŝJ , θ̂ ) ∈ ri

(
T (QJ )

)
and observe that ŝJ ∈ ri(QJ ). If

not, one of the inequalities defining QJ is tight at all points in T (QJ ) contradicting
that (αJ , β, b) defines a non-vertical facet of conv(ΘQJ ). Now, we extend the point
ŝJ to the point ŝ of FJ using the transformation A defined as in the proof of Lemma 8.
By Lemma 8, ŝ ∈ ri(FJ ) and (ŝ, θ̂ ) ∈ ri

(
T (FJ )

)
. It follows that ŝi j > ai0 for all

i and j �= 0. Moreover, there exist a set of points
{
(sk, θk)

}
k∈K ⊆ T (FJ ) ∩ ΘFJ

and convex multipliers λ ∈ R
|K | such that (ŝ, θ̂ ) = ∑

k∈K λk(sk, θk). Now, let šk

be a point so that ški j = ski j for (i, j) �= (i ′, j ′) and ški j = ai0 otherwise. Since

α̃i ′ j ′ = 0 and j ′ �= n, it follows that, for all k ∈ K , (šk, θk) ∈ T (P) ∩ Θ P . Then,
we define (š, θ̌ ) := ∑

k λk(šk, θk). Therefore, by construction, (š, θ̌ ) ∈ T (P) and
(ŝ, θ̂ ) ∈ T (FJ ) ⊆ T (P), and (ŝ, θ̂ ) − (š, θ̌ ) = (

(ŝi ′ j ′ − ai ′0)ei ′ j ′, 0
) �= 0.

Second, we argue that whenever (s, θ) ∈ ΘQ and δi j ∈ R, i ∈ {1, . . . , d} and
j /∈ {0, n}, the point (s+∑d

i=1
∑

j /∈{0,n} ei jδi j , θ
)
belongs to aff

(
T (P)∪ (A(s̃J ), θ̃ )

)

for some (s̃J , θ̃ ) ∈ ΘQJ . We start with the case when δi j = 0 for all i and j �= {0, n}.
It follows from Lemma 2 that the point (sJ , θ) ∈ ΘQJ . Thus, there exists a point
(s̃J , θ̃ ) ∈ ΘQJ , not dependent on (sJ , θ), such that (sJ , θ) can be expressed as an
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affine combination of points in T (QJ ) ∪ (s̃J , θ̃ ). Let Π be an affine mapping so that
Π(sJ , θ) = (

A(sJ ), θ
)
. Then,

Π(sJ , θ) ∈ Π
(
aff

(
T (QJ ) ∪ (s̃J , θ̃ )

)) = aff
(
T (FJ ) ∪ (A(s̃J ), θ̃ )

)

⊆ aff
(
T (P) ∪ (A(s̃J ), θ̃ )

)
,

where first inclusion holds because (sJ , θ) ∈ aff
(
T (QJ )∪ (s̃J , θ̃ )

)
, the equality holds

by Lemma 8 and by the fact that A, as an affine transformation, commutes with affine
combinations, and the containment holds due to T (FJ ) ⊆ T (P). Because the point
(s, θ) differs from

(
A(sJ ), θ

)
only in coordinates corresponding to variables of the

type si j for i ∈ {1, . . . , d} and j /∈ Ji , it follows from the existence of H that (s, θ)

can be expressed as an affine combination of points in T (P) ∪ (
A(s̃J ), θ̃

)
. Next, we

prove the general case. Let i ′′ ∈ {1, . . . , d} and j ′′ /∈ {0, n}. Then, consider the point
(s′′, θ ′′), where s′′

i = vi0 for i �= i ′′, s′′
i ′′ = vi ′′ j ′′ (see Lemma 2 for the definition of

vi j ), and θ ′′ = θ(s′′
1n, . . . , s

′′
dn). Clearly, there exists ε > 0 so that two distinct points,

(s′′, θ ′′) and (s′′ − εei ′′ j ′′ , θ ′′), belong to ΘQ and are, as shown above, expressible as
affine combinations of points in T (P) and

(
A(s̃J ), θ̃

)
. Since these points differ only in

the variable si ′′ j ′′ , it follows that we can change the variable si ′′ j ′′ for any (s, θ) ∈ ΘQ

arbitrarily while remaining in the affine hull of T (P) ∪ (
A(s̃J ), θ̃

)
.

Last, let (u̇, θ̇ ) ∈ Θ P and define (ṡ, θ̇ ) as a point so that ṡi is the point returned by
Algorithm 1 when u̇i is provided as input. Then, it follows that (ṡ, θ̇ ) ∈ ΘQ Since
u̇i j = ṡi j for all i ∈ {1, . . . , d} and j ∈ {0, n}, it follows that there exists (s̃J , θ̃ ) so
that (u̇, θ̇ ) is expressible as an affine combination of T (P) ∪ (

A(s̃J ), θ̃
)
. This shows

that dim
(
T (P)

) = dim(Θ P ) − 1. 
�

Corollary 2 Assume that concQ(φ)(s) is a polyhedral function. Let ū ∈ P and let
s̄ = (s̄1, . . . , s̄d), where s̄i is returned by Algorithm 1 when it is provided with ūi
as input. Define J = (J1, . . . , Jd), where Ji = { j | ūi j = s̄i j }. Assume that there
is an oracle that, given s̄J , generates a facet-defining inequality, φ ≤ 〈αJ , sJ 〉 + b
of concQJ (φ) tight at s̄J . Define α̃ ∈ R

d(n+1) so that α̃J = αJ and α̃ J̄ = 0. Then,
φ ≤ 〈α̃, u〉 + b is a facet-defining inequality for concP (φ) that is tight at ū. Besides
the call to the oracle, this inequality is generated in O(dn) time.

Proof By Theorem 7, φ ≤ 〈α̃, s〉 + b is facet-defining inequality for concP (φ)(u).
The proof is complete by observing that

concP (φ)(ū) = concQ(φ)(s̄) = concFJ (φ)(s̄) = 〈α̃, s̄〉 + b = 〈α̃, ū〉 + b,

where first equality holds by Corollary 1, second equality follows from s̄ ∈ FJ ,
third equality holds by the assumed tightness property of the oracle and the affine
isomorphism of ΘQJ and ΘFJ shown in Lemma 8, and the last equality follows by
α̃ J̄ = 0 and ū J = s̄J . 
�
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6 Conclusions

In this paper, we tightened the factorable relaxation by proposing a new relaxation
framework for mixed-integer nonlinear programs. The framework gives the first struc-
tured approach to relax composite functions using the inner-function structure. This
is achieved by relaxing the outer-function over a polytope P that encapsulates infor-
mation about the inner-functions implicit in their estimators. The structure of P is
relatively complex in that its extreme points grow exponentially with the number of
estimators, even when the number of inner-functions is fixed. Instead, we devised a
fast combinatorial algorithm to solve the separation problem over P using an oracle
to separate over Q, a much simpler subset of P . For vertex-generated outer-functions,
with a fixed number of inner-functions, we gave a tractable polyhedral representa-
tion for the convex hull over P . When the outer-function is a bilinear term, and each
inner-function has one estimator, we developed closed-form expressions for new valid
inequalities, generalizing the factorable programming scheme. More specifically, if
the inner-functions have n1 and n2 estimators, we derived 4n1n2 +2n1 +2n2 inequal-
ities besides the four McCormick inequalities. The new relaxations do not introduce
variables beyond those used in the factorable scheme. In [22], we consider specially
structured outer-functions for which convexification of the graph over Q is tractable,
and using our results here, devise tractable algorithms for convexification over P . If
the convex hull of the graph of outer-function over Q is polyhedral and there is a
facet-generation oracle for this graph and some of its subsets, we constructed a facet-
generation separation algorithm for this graph over P . Finally, we generalized our
results to the setting involving a vector of outer-functions.

A Appendix

A.1 Proof of Theorem 2

Proof First, we show that R = proj(x,u·n ,φ)(R̃), where

R̃ :=
{

(x, u, φ)

∣∣∣∣∣
convP (φ)(u) ≤ φ ≤ concP (φ)(u), x ∈ X , u·n = f (x), ui0 = ai0
ui j (x) ≤ ui j ∀ j ∈ Ai j\{n}, ui j ≤ ui j (x) ∀ j ∈ Bi j , u ∈ P

}

.

Obviously, R ⊆ proj(x,u·n ,φ)(R̃). To show that proj(x,u·n ,φ)(R̃) ⊆ R, we consider a

point (x, u, φ) ∈ R̃. It follows readily that u·n = f (x) and x ∈ X . Moreover, we have
φ ≤ concP (φ)(u1, . . . , ud) ≤ concP (φ)

(
ũ1(x, u1n), . . . , ũd(x, udn)

)
, where the sec-

ond inequality holds due to the monotonicity of concP (φ)(u) shown in Lemma 1, and
ui j (x) ≤ ui j for j ∈ Ai j\{n}, ui j ≤ ui j (x) for j ∈ Bi j and ũin(x, uin) = uin . A sim-
ilar argument shows that convP (φ)

(
ũ1(x, u1n), . . . , ũd(x, udn)

) ≤ φ. Then, by (4),(
ũ1(x, u1n), . . . , ũd(x, udn), φ

) ∈ conv(ΦP ). Hence, (x, u·n, φ) ∈ R.
Next, we show that gr(φ ◦ f ) ⊆ proj(x,φ)(R̃), thus proving that gr(φ ◦ f ) ⊆

proj(x,φ)(R). Let (x, φ) ∈ gr(φ ◦ f ) and define u = u(x), where, in particular,
u·n = f (x). It follows readily that u ∈ P because, by construction, we have
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{u | u = u(x), x ∈ X} ⊆ P . Moreover, since (x, φ) ∈ gr(φ ◦ f ), we have φ =
φ
(
f (x)

) = φ(u·n), which implies that (u, φ) ∈ ΦP and, thus, (u, φ) ∈ conv(ΦP ). In
other words, convP (φ)(u) ≤ φ ≤ concP (φ)(u). Therefore, (x, u, φ) ∈ R̃ and, thus,
gr(φ ◦ f ) ⊆ proj(x,φ)(R̃).

Last, assume that {(x, u·n) | u·n = f (x), x ∈ X} is outer-approximated by a
convex set, and ui j (x) is either a convex underestimator or concave overestimator for
all i and j < n. Then, R̃ is convex, and therefore, R is convex being a projection of
R̃. 
�

A.2 Proof of Proposition 2

Proof Since Φ P̂ ⊆ G and G is convex, it follows that conv(Φ P̂ ) ⊆ G. Now, we
show that conv(Φ P̂ ) ⊇ G. Let (t, φ) ∈ G. It follows that t ∈ P̂ and there exist
convex multipliers λk and (tk, φk) ∈ Φ P̄ such that (t, φ) = ∑

k λk(tk, φk). Let t̄ ki j =
max

{
tki j , u

L
i , tkin + ai j − uUi

}
. We show that (t̄ ki j )

n
j=0 ∈ P̂i . This is easily verified since

t̄ kin = tkin , t̄
k
i0 = tki0, and max

{
tki j , u

L
i , tkin + ai j − uUi

} ≤ min
{
tkin, ai j

}
. Since tkin = t̄ kin ,

it follows that (t̄ k, φk) ∈ conv(Φ P̂ ). Then, (t̄, φ) := ∑
k λk(t̄ k, φk) ∈ conv(Φ P̂ ).

However, t̄ ∈ P̂ and t̄ ≥ t . Therefore, conv(Φ P̂ ) ⊇ G because t ∈ P̂ and

conv P̂ (φ)(t) ≤ conv P̂ (φ)(t̄) ≤ φ ≤ concP̂ (φ)(t̄) ≤ concP̂ (φ)(t).

The second and third inequality follow from (t̄, φ) ∈ conv(Φ P̂ ). We will now show
the first inequality, and the argument for the last inequality is similar. To see that
conv P̂ (φ)(t) ≤ conv P̂ (φ)(t̄), let ū = T−1(t̄) and u = T−1(t) and observe that

conv P̂ (φ)(t) = convP (φ)(u) ≤ convP (φ)(ū) = conv P̂ (φ)(t̄),

where the first and last equality is because convex envelopes do not change when
the domain and argument undergo the same invertible affine transformation and the
inequality follows from Lemma 1 for −φ because, for j ∈ Ai\{0, n} (resp. j ∈ Bi ),
ui j ≤ ūi j (resp. ui j ≥ ūi j ), ui0 = ūi0, and uin = ūin . The last statement in the result
follows since T is an affine transformation and T (u) ∈ P̂ if and only if u ∈ P . 
�

A.3 Proof of Proposition 3

Proof Let (x, u·n, φ) ∈ R
(
u(x), a

)
. Define u = u(x) and thus (u, φ) ∈ conv

(
ΦP(a)

)
.

Let u′ = u′(x). By the definition of u′(x), u′
i = ui (x)Λi . To show that R

(
u(x), a

) ⊆
R
(
u′(x), a′), we only need to show that (u′, φ) ∈ conv

(
ΦP(a′)). Let A be the affine

transform used to obtain (u′, φ) from (u, φ). Then, the result follows because:

(u′, φ) = A(u, φ) ∈ A conv
(
ΦP(a)

) = conv
(AΦP(a)

) ⊆ conv
(
ΦP(a′)),
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where the first equality is by definition, the second equality is because A, being an
affine transform, commutes with convexification. All that remains to show is the final
containment. This follows ifwe show that, for each (ū, φ̄) ∈ ΦP(a), the point (ū′, φ̄) :=
A(ū, φ̄) ∈ ΦP(a′), where we recall that A is such that ū′

i = ūiΛi . Observe that

ai0en+1Λi ≤ ūiΛi ≤ aiΛi shows that ai0en
′+1 ≤ ū′

i ≤ a′
i and ūiΛi ≤ ūin+1en+1Λi

shows that ū′
i ≤ ūin+1en

′+1 = ū′
in+1e

n′+1. Finally, since ūin = ū′
in , it follows that

φ̄ = φ(ū1n, . . . , ūdn) = φ(ū′
1n, . . . , ū

′
dn). Therefore, (ū

′, φ̄) ∈ ΦP(a′) and the result
follows. 
�

A.4 Proof of Lemma 2

Proof The inequality description follows from the preceding discussion since Qi and
Δi are relatedby an invertible affine transform,whichmapsvi j to ζi j and the constraints
in (14) transform those in (11). Now, we show the last statement in the result. For any

0 ≤ j < j ′ ≤ 1, it follows that
si j ′−si j
ai j ′−ai j

= ∑ j ′
k= j+1

sik−sik−1
aik−aik−1

aik−aik−1
ai j ′−ai j

, which is a

convex combination of sik−sik−1
aik−aik−1

for k = j +1, . . . , j ′. Therefore, it follows from (14)

that 0 ≤ si j ′′−si j ′
ai j ′′−ai j ′

≤ si j ′−si j
ai j ′−ai j

≤ 1. 
�

A.5 Proof of Lemma 3

Proof We first show that projsi (PQi ) = Qi . Clearly, projsi (PQi ) ⊆ Qi since for
every (ui , si ) ∈ PQi we have si ∈ Qi . To show Qi ⊆ projsi (PQi ), we consider a
point si ∈ Qi and observe (si , si ) ∈ PQi . Second, we argue that projui (PQi ) = Pi .
To show Pi ⊆ projui (PQi ), let ui ∈ Pi and define si j = min{ai j , uin} for all j . We
will show (ui , si ) ∈ PQi . It follows readily that, for j ∈ {0, n}, ui j = si j and ui ≤ si .
In addition, observe that there exists a j ′ such that ai j ′−1 ≤ uin ≤ ai j ′ . By direct

computation, si = λvi j ′−1+(1−λ)vi j ′ , where λ = ai j ′−uin
ai j ′−ai j ′−1

. In other words, si ∈ Qi .

To prove projui (PQi ) ⊆ Pi , we consider a point (ui , si ) ∈ PQi and show ui ∈ Pi .
Clearly, ui0 = ai0. Also, for j = 1, . . . , n, ai0 ≤ ui j ≤ si j ≤ min{uin, ai j }, where the
first two inequalities hold by the definition of PQi and the last inequality holds because
uin = sin and the inequality, si j ≤ min{ai j , sin}, is satisfied by all extreme points of
Qi . The last two statements follow similarly because ΦP , ΦQ , ΦPQ are obtained
from P , Q, and PQ respectively, by adding a coordinate φ which depends only on
coordinates shared by P , Q, and PQ, namely (u1n, . . . , udn) = (s1n, . . . , sdn). 
�

References

1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–
286 (1983)

2. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional
quadratic forms. Math. Program. 124(1–2), 33–43 (2010)

3. Bao,X., Khajavirad,A., Sahinidis, N.V., Tawarmalani,M.:Global optimization of nonconvex problems
with multilinear intermediates. Math. Program. Comput. 7(1), 1–37 (2015)

123



A new framework to relax composite functions in nonlinear… 465

4. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques
for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

5. Benson, H.P.: Concave envelopes of monomial functions over rectangles. Naval Res. Logist. 51(4),
467–476 (2004)

6. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets.
SIAM J. Optim. 24(2), 643–677 (2014)

7. Boland, N., Dey, S.S., Kalinowski, T., Molinaro, M., Rigterink, F.: Bounding the gap between the
McCormick relaxation and the convex hull for bilinear functions. Math. Program. 162(1–2), 523–535
(2017)

8. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex
quadratic. Math. Program. 162(1–2), 393–429 (2017)

9. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Global Optim. 47(4),
661–685 (2010)

10. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete
Comput. Geom. 16(4), 361–368 (1996)

11. CMU-IBMCyber-Infrastructure forMINLP collaborative site (2019). http://www.minlp.org.Accessed
10 Oct 2019

12. Crama, Y., Rodríguez-Heck, E.: A class of valid inequalities formultilinear 0–1 optimization problems.
Discrete Optim. 25, 28–47 (2017)

13. Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs. Math. Oper. Res.
42(2), 389–410 (2016)

14. Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs. SIAM J. Optim. 28(2),
1049–1076 (2018)

15. Del Pia, A., Khajavirad, A., Sahinidis, N.V.: On the impact of running intersection inequalities for
globally solving polynomial optimization problems. Math. Program. Comput. 12(2), 165–191 (2020)

16. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny,
C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert,
C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M.,
Wegscheider, F.,Witt, J.T.,Witzig, J.: The SCIPOptimization Suite 6.0. Technical report, Optimization
Online (2018)

17. Gleixner, A.M., Berthold, T.,Müller, B.,Weltge, S.: Three enhancements for optimization-based bound
tightening. J. Global Optim. 67, 731–757 (2017)

18. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process.
Lett. 1(4), 132–133 (1972)

19. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol.
2. Springer, Berlin (2012)

20. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indi-
cator variables. Math. Program. 124(1–2), 183–205 (2010)

21. Gupte, A., Kalinowski, T., Rigterink, F., Waterer, H.: Extended formulations for convex hulls of some
bilinear functions. Discrete Optim. 36, 100569 (2020)

22. He, T., Tawarmalani, M.: Tractable relaxations of composite functions. Working paper (2018)
23. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2012)
24. Horst, R., Tuy, H.: Global Optimization—Deterministic Approaches. Springer, Berlin (1996)
25. Jach, M., Michaels, D., Weismantel, R.: The convex envelope of (n-1)-convex functions. SIAM J.

Optim. 19(3), 1451–1466 (2008)
26. Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave

functions. J. Global Optim. 52(3), 391–409 (2012)
27. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets.

Math. Program. 137(1–2), 371–408 (2013)
28. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1–

2), 463–491 (2015)
29. Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relaxations of multilinear

functions. Math. Program. 136(2), 325–351 (2012)
30. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part i Convex

underestimating problems. Math. Program. 10(1), 147–175 (1976)
31. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and

concave envelopes. J. Global Optim. 29(2), 125–155 (2004)

123

http://www.minlp.org


466 T. He, M. Tawarmalani

32. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for continuous/integer global optimization of
nonlinear equations. J. Global Optim. 59(2–3), 503–526 (2014)

33. Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting planes for mixed-integer
quadratically constrained quadratic programs and their incorporation intoGloMIQO2.Optim.Methods
Softw. 30(1), 215–249 (2015)

34. Modaresi, S., Vielma, J.P.: Convex hull of two quadratic or a conic quadratic and a quadratic inequality.
Math. Program. 164(1–2), 383–409 (2017)

35. Muller, B., Serrano, F., Gleixner, A.: Using two-dimensional projections for stronger separation and
propagation of bilinear terms. SIAM J. Optim. 30(2), 1339–1365 (2020)

36. Najman, J., Mitsos, A.: Tighter McCormick relaxations through subgradient propagation. J. Global
Optim. 75(3), 565–593 (2019)

37. Nguyen, T.T., Richard, J.P.P., Tawarmalani, M.: Deriving convex hulls through lifting and projection.
Math. Program. 169(2), 377–415 (2018)

38. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program.
45(1), 139–172 (1989)

39. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10(4), 425–437
(1997)

40. Sherali, H.D.: Convex envelopes ofmultilinear functions over a unit hypercube and over special discrete
sets. Acta mathematica vietnamica 22(1), 245–270 (1997)

41. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Con-
tinuous Nonconvex Problems, vol. 31. Springer, Berlin (2013)

42. Speakman, E., Lee, J.: Quantifying double McCormick. Math Oper Res 42(4), 1230–1253 (2017)
43. Tawarmalani, M.: Inclusion certificates and simultaneous convexification of functions. Working paper

(2010)
44. Tawarmalani, M., Richard, J.P.P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and

bilinear covering sets. Math. Program. 124(1–2), 481–512 (2010)
45. Tawarmalani,M., Richard, J.P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral

subdivisions. Math. Program. 138(1–2), 531–577 (2013)
46. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexi-

fication techniques. J. Global Optim. 20(2), 133–154 (2001)
47. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous func-

tions. Math. Program. 93(2), 247–263 (2002)
48. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theo-

retical and computational study. Math. Program. 99(3), 563–591 (2004)
49. Tawarmalani,M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization.Math.

Program. 103(2), 225–249 (2005)
50. Vigerske, S.: MINLPLIB 2. In: Proceedings of the XII Global Optimization Workshop MAGO 2014,

pp. 137–140 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A new framework to relax composite functions in nonlinear programs
	Abstract
	1 Introduction
	2 Improving factorable relaxations using outer-approximations
	3 A relaxation framework for composite functions
	3.1 Polyhedral abstraction of outer-approximation
	3.2 An overview of the main polynomial-time equivalence result
	3.3 Projecting out introduced estimator variables
	3.4 Simplifying the structure of polyhedral abstraction

	4 Polynomial time equivalence of separations
	4.1 A simplicial structure of polyhedral abstraction
	4.2 A combinatorial algorithm for polynomial equivalence
	4.3 Application in factorable programming

	5 Extensions: simultaneous hull and facet-generation
	5.1 Polynomial time equivalence of separations for simultaneous hulls
	5.2 Polynomial time equivalence of facet generations for simultaneous hulls

	6 Conclusions
	A Appendix
	A.1 Proof of Theorem 2
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 3
	A.4 Proof of Lemma 2
	A.5 Proof of Lemma 3

	References




