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Abstract

In this paper, we devise new relaxations for composite functions, which improve the
prevalent factorable relaxations, without introducing additional variables, by exploit-
ing the inner-function structure. We outer-approximate inner-functions using arbitrary
under- and over-estimators and then convexify the outer-function over a polytope P,
which models the ordering relationships between the inner-functions and their estima-
tors and utilizes bound information on the inner-functions as well as on the estimators.
We show that there is a subset Q of P, with significantly simpler combinatorial struc-
ture, such that the separation problem of the graph of the outer-function over P is
polynomially equivalent, via a fast combinatorial algorithm, to that of its graph over
Q. We specialize our study to consider the product of two inner-functions with one
non-trivial underestimator for each inner-function. For the corresponding polytope P,
we show that there are eight valid inequalities besides the four McCormick inequalities,
which improve the factorable relaxation. Finally, we show that our results generalize
to simultaneous convexification of a vector of outer-functions.
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1 Introduction

Mixed-integer nonlinear programs (MINLPs) are typically solved to global optimal-
ity using branch-and-bound (B&B) techniques, which construct successively tighter
relaxations over refined partitions of the feasible domain [4,49]. The prevalent tech-
niques adopted by most state-of-the-art solvers for relaxing mixed-integer nonlinear
programs are inspired by the factorable programming (FP) scheme [30]. Given a
library of univariate functions and their relaxations, factorable programs are MINLPs
that only use functions that can be expressed as recursive sums and products of library
functions. Factorable programs are relaxed by introducing a new variable to replace
each univariate function, which is then required to satisfy constraints that model some
relaxation of the graph of the associated univariate function. Variable products are
relaxed by introducing a new variable for each product restricted to satisfy McCormick
constraints, which describe the tightest convex outer-approximation of a bilinear term
over a rectangle [1,30].

The following three features of the FP scheme have resulted in its widespread
adoption. First, as the partition size is refined, the relaxation converges asymptotically
to the original function, a property needed for its successful use in convergent B&B
algorithms [24]. Second, the scheme imposes few restrictions on the types of functions
that can be relaxed, besides boundedness, making it suitable for automatically relaxing
large classes of MINLPs. Third, the number of variables introduced in the relaxation
is in direct correspondence with the nonlinearities in the problem, and, as a result, the
size of the relaxation is not much larger than the original MINLP formulation.

Nevertheless, the primary deficiency of FP is that it often produces weak relax-
ations [7,29]. Significant research has been devoted to improving the quality of
factorable relaxations by exploiting function structure. For various types of multilinear
functions [5,9,21,31,39,40], the fractional terms [46], and other useful functions [25—
27,45], envelopes have been derived. Tighter relaxations and cutting planes for
multilinear functions/sets have been proposed in [3,12-15,33,35,38,42]. Strong con-
vex relaxations for structured sets have been derived in [2,6,8,20,28,34,37,44]. These
techniques, however, do not directly improve the factorable programming scheme
itself.

Our framework shares the key properties of the FP but produces tighter relaxations.
We consider the composite function ¢ o( f1, ..., fq) where, we refer to ¢ : R? > R
as the outer function and (fi, ..., fz) as the inner-functions. Nonlinear expressions
in optimization problems are typically stored using expression trees, where each node
models a composition of a function and its children. Composite functions where
the outer-function is a product, radical, fraction, exp(-), log(-), and/or a trignomet-
ric function are commonly used to model nonlinear optimization problems [11,50].
We outer-approximate the graph of f;(-) with n estimators and derive bounds for esti-
mators. Then, we relax ¢ (-) over a polytope, P, that models the ordering relationship
between the functions, their estimators, and the bounds. Although P’s structure is
quite complex, it has as its subset a product of simplices, O, which captures all the
interesting structure of the convex hull of the graph of ¢(-) over P. We give a fast
combinatorial algorithm, with complexity O (dn) and a separation oracle call for the
graph of ¢ (-) over Q, that solves the separation problem for the graph of ¢ () over P.
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Moreover, when d is constant, and the convex hull of the graph of ¢ (-) is determined
by its value at extreme points of Q, we derive an LP formulation for the separation
problem, which is polynomially-sized in terms of the number of outer-approximators.

We derive the inequalities explicitly for the case when the outer-function is a bilinear
term, where d = 2, and there is only one non-trivial underestimator for each inner-
function. Instead of the four inequalities that describe the McCormick envelopes, we
obtain 12 non-redundant inequalities for the bilinear term. This result shows factorable
programming relaxations can be easily tightened without introducing new variables.
We also show that access to a separation oracle that generates facet-defining inequal-
ities for the graph of ¢ (-) over Q and its projections, which are affinely isomorphic
to Q and obtained by ignoring some of the estimators, can be used to generate facet-
defining inequalities that separate a point from the convex hull of graph of ¢ (-) over P.
Finally, we show that these results extend to simultaneous convexification of composite
functions.

Notation Throughout this paper, we use the following notation. We shall denote the
convex hull of a set S by conv(S), the projection of S to the space of x variables by
proj, (S), the extreme points of S by vert(S), the dimension of the affine hull of §
by dim(S), and the relative interior of S by ri(S). We denote the graph of a function
f by gr(f), the convex (resp. concave) envelope of f(x) over a convex set X by
convy (f) (resp. concx (f)), and the conjugate of f(x) over a set X by f¥(x*), i.e.,
fr(®) = sup{(x, x*) — f(x) | x € X}

2 Improving factorable relaxations using outer-approximations

FP expresses each function as a recursive sum and product of constituent functions,
where the key step involves relaxing a product of two functions. Consider the product
of two functions fj(x)f2(x), where f; : X — R and X is a convex set in R,
FP assumes that, for i = 1,2, there are a convex function cy,(x) and a concave
function C 7, (x) and constants fl.L and fl.U so that, forx € X, fiL < filx) < fiU and
cr(x) < fi(x) < Cp(x). Assume, without loss of generality, that fiL < ¢ (x) and
Cy (x) < fV. Then, FP relaxes the epigraph {(x, 1) € X x R | u > fi(x) (1)},
using additional variables f1 and f>, as follows:

{(x, ) ‘ 2 zmax{flsz + flsz - flszLv f1Uf2 + flfo - f1Uf2U}a

ch) < fi <Cp(x). x € X}.
Observe that, in order to make the relationship between variables and functions trans-
parent, we will use the same name for the variable and the function, when the variable
models the graph of the function. The relaxation technique currently used in most
global optimization solvers augments the above relaxation with results for specially
structured problems; see [4,16,32,48].

We begin by showing that the FP relaxation of f](x) f2(x) can be improved using a
two-step procedure. Assume that, besides bounds on f; (x), we may have access to an
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underestimator for f;(x). The factorable relaxation ignores this information, which,
as we show next, can be used to derive tighter relaxations.

Example 1 Consider the function x12x22 over [0, 2]% and, for i = 1,2 and for j € Ji,
let p(ji) € [0,2] for j; € J;. The epigraph of )cl.2 satisfies the tangent inequality
x? > vj, == p(j)? +2p(i)(xi — p(j)). The inequality x7x3 > vy, (x1)v2), (x2)
does not hold, in general. For example, x12 > 2x; — 1 and x% > 2xp — 1 but x%x% >
(2x1 — 1)(2x — 1) is violated at (0, 0). Nevertheless, if u;;; (x) = max{0, v;;; (x)}.
then x7x3 > uy j, (X)uzj, (x). From the definition of u;j, (x), 0 < u;j,(x) < p(ji)(4 —
p(ji))< 4. Leta; j, = p(ji)(4 — p(ji)). Then, McCormick inequalities can be used
to underestimate u 1 j, (x)uzj, (x) over [0, 2] to obtain:

uj (X)uzj, (x) = max{O, ayjuj,(x) +azjuj(x) — a1j1612j2}

>
> aijv2j,(x) + azj,vij,(x) —aijazj,.

For p(j1) = p(j2) = 1, thisreduces to x%x% > 6x146x2 —15. It can be easily verified
that x; = 1.5, xo = 1.5 and n = 2 satisfies the factorable relaxation, {(x, y, u) | 0 <
w, 4x2+4y2 —16<p, 0<x <2, 0<y<2},butnotpu > 6x; +6x2 —15. O

Example 1 uses a two-step procedure, where we first relaxed xl.2 using its lower bound
and a tangent inequality, and, in the second step, we relaxed the product of underesti-
mators using McCormick envelopes. We concluded that the resulting inequality is not
implied by using McCormick envelopes on the original product x12x22, the one-step
procedure typically used in factorable relaxations. It may appear surprising that the
first relaxation step in the two-step procedure could strengthen the relaxation obtained
by directly using McCormick inequalities. However, this can be explained by the fact,
that the upper bounds, g;;;, are in general strictly smaller than the upper bounds on
xl.z, and this helps strengthen the generated inequalities.

Now, we consider a generalization, where we no longer assume that the inner-
functions are nonnegative. More specifically, we consider the product fi(x) f2(x),
where each f;(x) has a non-trivial underestimator u; (x) so that for all x € X, fil‘ <
filx) < fl.U and fiL <u;(x) <a;.Fori =1, 2, we introduce variables f; and u; for
functions f;(x) and u;(x), respectively.

Theorem 1 Let flL <a < flU and fZL <a < fo. Then, consider the set:

P =, fiiuz, f2) | fE <ur < min{fr,ar}, fi < £,

fF <u; <min{fr, a0}, fo < fy }.
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The following linear inequalities are valid for the epigraph of f1 f2 over P:

e = flfo + f2f1U - f1Uf2U
er:= (Y —aur + (f —anur +ar fi + a1 f>
+arar —arfy — fla
fifr zmax § ey = (fy — four+ fi fi+arfr—afy
es:=(f' = fHhus+arfi + o — ffa
es = (ay — f)ur + (a1 — fOus + f fi + fL o —araz
e = fLf+ fiff — fLfF

Proof We show that e3, e4, and es are valid underestimators for f f> over P using the
procedure in Example 1. That e3 underestimates fi f> follows from:

hfr= = -+ h+ i -
> (uy — flL)(fZ - sz) + flLfZ + szfl - flszL
>y — [ = )+ @ = O — )
— (a1 — [ = O+ A+ R = A fF

= e3,
where the first equality shifts f; and f> so that we relax a product of non-negative
functions, the first inequality underestimates the product ( f; — f; Ly( fr - f%f), and
the second inequality uses the McCormick relaxation for (u; — f1")(f2 — f5°). The

derivation for e4 is symmetric, with the role of f; and f> is interchanged. Similarly,
to show that es is an underestimator:

hbh=U—-M-+r+Hh-
> (uy — [ — fE)+ fER+ fEf - R
>y — f)a — ) + (@1 — ) — f3) = (@1 — ) = )
+ szfl + f1Lf2 - flszL

= es5.

Observe that e and eg are derived by using the functions f; and f> themselves as
their underestimators.

s
To show the second inequality is valid, define s, = max{uz, f2L+ ;f, f;L (fa— sz)}
Ja =2
U
and note that ay — 52 + fo — fo = ﬁ, f;L (fo —ap) <0.Then, fifo =exy+ (s —
2 7 J2

w)(ff —ap+i—an(@—s2+ o= f; ) +(fi—un)(o=s2)+(fi1— [ ) (s2—a2) >
€3, completing the proof. O

Ifa; €{ f,.L, f,.U } for i € {1, 2}, the factorable relaxation is the convex hull of the
epigraph of fj f> over P. Thus, to improve the factorable relaxation using Theorem 1,
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werequirea; < fiU for atleast some i. Observe that the inequalities in Theorem 1 share
many properties of the FP relaxations. First, they apply to all factorable programming
problems. Second, the coefficients of u; in the inequalities are non-negative. Therefore,
u; can be substituted with any convex underestimator of their defining relation, u; (x),
to yield convex inequalities. Third, if there are n; estimators of f;(x), Theorem 1 yields
2n1ny +ny + ns 4 2 inequalities underestimating fi f> instead of the two inequalities
typically used in FP.

Observe that the underestimator e, is not obtained using the two-step procedure
in Example 1. In the next example, we demonstrate that underestimator e, is not
dominated by other inequalities obtained using the two-step procedure. In other words,
existence of e, shows that the epigraph of f] f> over P satisfies inequalities besides
those obtained using the two-step procedure.

Example 2 Consider the monomial x%x% over [0, 2]%. Then, let u; = max{0, 2x; — 1}.
Then, Theorem 1 yields the following relaxation, after substitutions:

> e =4x?4+4x2 — 16
/LZ€2=2)C1+2)C2+3)612+3X%—]7
2

> = —
(x,y,u)e[0,2]2xR+ n>e3=8x1+3x; — 16
,uze4=3x12+8x2—16
n>es =06x;+6x — 15

n>e =0

Observe that © > e3, ©# > e4, and u > es are the inequalities obtained by first
underestimating x12 and x22 and then using the McCormick inequalities. However, the
inequality pu > ej is not obtained using the two-step procedure and is not redundant.
For example, at (x1, x2) = (1.6, 1.6), the highest underestimator is e, which equals
4.76, while the remaining underestimators are below 4.5. We remark here that the new
inequalities we have derived still fail to describe the convex envelope of xl x2 over
[0, 212 since, at (x1, x2) = (1.6, 1.6), a convex underestimator 9.6x1 + 9.6x, — 24.96
equals 5.76 while as mentioned, the tightest inequality in the set above evaluates to
4.76 at this point. For completeness, we show thatx > 9.6x1+9.6x2—24.96. First,
assume that x;x+2x1+2xp > 4. Then, it follows thatx x% 9.6x1—9.6x2+24.96 =
(x1x2 +2x1 +2x2 — D) (x1 — 2)(x2 — 2) + (2x7 + 2x2 — 6.4)2 > (. Now, consider

the case when x1xp + 2x1 + 2x2 < 4. Then, x — 9.6x1 — 9.6xy + 24.96 =
& % — 4.8(x1x3 + 2x1 + 2x2 — 4) + 4.8x1x2 + 5 76 > 0. Therefore, we have
xix5 > 9.6x1 + 9.6x — 24.96. O

In the next example, we illustrate that inequalities obtained using Theorem 1 are
not implied by reformulation-linearization techniques (RLT) [41].

Example 3 Consider the following system of valid inequalities:
xi >0 2—-x;>0
x>0 4—x2>0¢ i=12 (1)
=25 —-1)=0 3-Qx—1)>0
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Clearly, applying RLT over these inequalities yields a relaxation for x%x% over [0, 2]°.
However, RLT does not exploit the inequality max{0, 2x; — 1} < xl.z, which we used in
Examples 1 and 2 to derive 6x1 4 6x3 — 15 < u. Therefore, it is perhaps not surprising
that RLT is unable to generate this inequality. Moreover, minimizing an affine function
w—(6x1+6x3 — 15) over the degree-4 RLT relaxation of (1) yields —0.36, while it has
been shown that i — (6x1+6x2 — 15) > 0is valid for the epigraph of x%x% over [0, 2]2.
Perhaps, more importantly, the inequality u > 2x1 4+ 2x + 3xf + 3x§ — 17 does not
have a two-step derivation and exploits 2y — 1 < 55 := max {2y — 1, % y?} < 3inthe
derivation, a construction that will play a central role in the subsequent development.

O

3 Arelaxation framework for composite functions

In this section, we introduce a generalized version of the setup in Theorem 1, which
will be subject of study for most of the remaining paper. Our setup will generalize
that of Theorem 1 in the following way. First, we replace the bilinear term with an
arbitrary function, ¢ : RY — R, and consider relaxations of po f : X € R" — R,
where f : X — R? is a vector of bounded functions over X. We shall write fx) =
( fix), ..., fd(x)) and refer to f(-) as inner-functions while ¢ (-) will be referred
to as the outer-function. Second, we allow a vector of under- and over-estimators,
instead of one underestimator, for each inner-function f; (-). Last, we will derive convex
relaxations for the graph of ¢ o f (instead of just the epigraph). Formally, we will relax
the set:

g@of)={0x.) |6 =o(f). xex}.

3.1 Polyhedral abstraction of outer-approximation

In this subsection, we formally generalize the construction in Theorem 1. First,
instead of using a single underestimator for each function, we consider a vector of
bounded under- and over-estimators for the inner-function f;(-). More specifically,
d .
let (n1,...,nq) € 2%, and consider a vector of functions u : R — Ri=1 (ni+1D)
defined as u(x) = (ul(x), R ud(x)), where u;(x) : R" — R%*! and consider
d

avector a = (ay,...,ay) € REi=1(i+D where q; € R+, Moreover, for each
ie{l,...,d}and for every x € X, the pair (ui(x), a,-) is assumed to satisfy

uio(x) = ajo, ajo < Uin;(x) = fi(x) < ain;,
foreach j € A; 1 ul <u;;(x) < min{ f;(x), a;;},

@

foreach j € B; : max]f;(x),a;;} < u;j(x) < uf,

L U
Uy =ajo =---dip; <U;,

where the pair (A;, B;) is a partition of {0, ..., n;} so that {0,n;} € A;. The first
requirement states that u;,, (-) is the inner-function f;(-), which is bounded from
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below (resp. above) by a;q (resp. d;,; ), and u;0(-) is a constant function matching the
lower bound a;g. The second (resp. third) requirement states that for j € A; (resp.
J € Bj), u;j(-) is an underestimator (resp. overestimator) for f;(-), which is bounded
from above (resp. below) by a;; and bounded from below (resp. above) by uiL (resp.
uiU). The last requirement that the elements of a; are ordered in a non-decreasing
order and contained within [uiL, ulu] is only for notational convenience. Notice that
we do not explicitly specify different lower bounds for the underestimators and upper
bounds for the overestimators. This is because they are not important in constructing
the relaxations and do not change the quality of the relaxations. In particular, we show
in Proposition 1 that, without loss of generality, ulL and ulU can be set to be the lower
bound a;o and the upper bound a;,, of f;(-) respectively. We also remark that, for
J € A; (resp. j € B;), a;;j need not be the tightest possible upper (resp. lower) bound
of u;j(-) over X although better bounds improve the quality of the relaxation. We
mention that there are several techniques to derive bounds for expressions defining
inner-functions and estimators including bound tightening and relaxation techniques;
see [17,36] for example. Last, although the number of estimators for each function can
be different, we will assume without loss of generality and for notational simplicity
that ny = - - - = ny. Since all n; are equal, we will use n to denote n;.

We now formally describe a generalization of P that was defined as in Theorem 1.
The polytope P is denoted, in general, as

d
P(a,u*,u", By :=[] Pilai, uf ,uf, By,
i=1

where B := ]_[flzl B;, ut = (ulL, . ué) and uY = (u?, el ug), and

- ) L
Vi€ A tujj < upp, ui <upj < agj

L U . ]y
Piai,ui ui , Bi) = qui €R"™ |\ Vj e B tupy <uyj, aij <uijj <u’ . 3)

ujo = ajg, aj0 < Uin = din

We will typically not write the arguments of P; and P since they will be apparent from
the context. We will refer to the polytope P; as the abstraction of outer-approximators
of function f;(-) and P as the abstraction of outer-approximators for the vector of
functions f(-). Essentially, the polytope P; is obtained by introducing a variable u;;
for the estimator u;; (-) and replacing the ordering relationships between the functions
with those between the introduced variables.

Last, we consider the graph, @ P of the outer-function ¢Win, ..., uqn) over the
abstraction P given as follows:

®" ={(u,¢) | ¢ =in.....uan), u € P}.
In the rest of the paper, we are interested in studying the graph @ and its convex
hull conv(®”). We remark that our construction treats estimators of inner-functions

abstractly, and exploits various bounding relationships while being oblivious of the
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precise dependence of the inner-functions f(-) on x. Thus, our methods apply to
general nonlinear programming problems while providing flexibility, which can be
tailored to exploit specific problem structure, e.g. properties of the outer-function

¢C).
3.2 An overview of the main polynomial-time equivalence result

Since P generalizes the standard hypercube [0, 1], by considering the special case
where ¢ (-) is a bilinear function, it follows that there does not exist a polynomial time
algorithm to solve the separation problem for ®”, unless P = NP. But, Theorem 1
shows that special instances of this problem are solvable, sometimes in closed-form,
which improve relaxations for nonlinear programs. We now describe the main struc-
tural insights, we derive for @ %, in this paper. We will show that separating @ is
polynomially equivalent to separating a simpler object @€, the graph of ¢ (-) over a
subset of P, which is termed Q here onwards and described formally in Sect. 4. We
remark that this equivalence is not just a mapping of hard instances of @ to hard
instances of @ <. Clearly, existence of such a mapping follows from NP-Hardness of
these problems. Rather, this equivalence is derived from an algorithm that separates
an instance of @ using an oracle to separate a specific related instance of @€,

To show this polynomial equivalence, we devise a separation oracle for ®* by
augmenting the separation oracle for @< with a fast-polynomial-time combinatorial
algorithm. The key ingredient of the combinatorial algorithm is a lifting procedure
that lifts @% into a higher dimensional space. We show such lifting procedure is
equivalent to solving d two-dimensional convexification problems separately. A direct
consequence of our results will be that for any fixed number of inner-functions d, the
problem of separating conv(®’), when its extreme points project to the extreme
points of P, is polynomially solvable in the number of estimators n. In contrast, a
direct LP-based separation formulation of conv(®*) would be exponential because,
even for a fixed d, the number of extreme points of P is exponential in n. This result
is interesting for practice because compositions often involve only a few functions or
can be recursively decomposed as such.

The resulting algorithm has many interesting features besides tractability. Assume,
for the purpose of illustration, that ¢ (-) is a multilinear function, which would imply
that conv(®*) and conv(® 9y are polyhedral sets [39]. If we have access to a separa-
tion oracle that separates conv(® <) by generating facet-defining inequalities and we
assume that this separation oracle can also be used when some of the estimators are
dropped from the construction, our combinatorial algorithm can be used to separate
points from conv(® ) using facet-defining inequalities. Moreover, the polynomial
equivalence carries over to the problem of simultaneously convexifying a collection
of functions and, so does the property of generating facet-defining inequalities.

3.3 Projecting out introduced estimator variables

We mentioned in the discussion following Theorem 1 that u; variables can be replaced
with convex functions, and illustrated this procedure in Example 2. To project out intro-
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duced variables, u; and u;, we relied on the fact that #; and u; have non-negative
coefficients in the inequalities derived in Theorem 1. In this subsection, we show a sim-
ilar result for conv(® %), and will utilize it to eventually substitute the underestimator
(resp. overestimator) variables u;; with convex functions (resp. concave functions).

The convex hull of @ ¥ is the intersection of the epigraph of the convex envelope
and hypograph of concave envelope of ¢ (u1,, ..., ug,) over P, that s,

conv(®’) = {(u, ) | convp(p)(u) < ¢ <concp(d)(u), u € P}. )

Observe that although the function ¢ (-) depends only on (u1,, ..., ugn), the func-
tions conv p (¢) and concp (¢) depend on all the variables u. In the following lemma,
we consider the concave envelope concp(¢)(-) and establish certain monotonicity
properties for it. A similar property, albeit reversed in direction, can be obtained for
convp(¢)(-) since convp(¢)(u) = —concp(—¢)(u) forevery u € P.

Lemma 1 If the concave envelope concp(¢)(u) is closed then it is non-increasing in
ujj foralli and j € A;\{0, n} and non-decreasing in u;; for all i and j € B;.

Proof We will only prove that concp(¢)(u) is non-increasing in u;; for all i and
J € A;\{0, n} since a similar argument shows that it is non-decreasing in u;; for
all i and j € B;. Let ¢ < (&, u) + b be a valid inequality of concp(¢)(u). Let
Ji = {j" € Ai\{0, n} | @;jy > 0}. By considering (&, b'), where &;; = 0 for all i and
j € Ji,@&j = a;j otherwise, and b’ = b + Y4 Y jes @ijal, itis easy to construct
a valid inequality ¢ < (&, u) + b’ of concp(¢)(u) such that &;; < 0 for all i and
Jj € Ai\{0,n}, and (@, u) + b < (o, u) + b forevery u € P.

Now assume that concp(¢)(u) is closed. We prove that concp(¢)(u) = ¥ (u),
where ¥ (1) := info {(or, u)+(—)h(—a) | aij <OVi € (1,....d} Vj € A;\{0,n}}
and (—¢)j§, denotes the Fenchel conjugate of —¢(uy,, ..., ug,) with its domain
restricted to P. This will show what we seek to prove since, by definition, v (u)
is non-increasing in u;; for alli and j € A;\{0, n}, being the infimum over « of linear
functions (a, u) + (—¢) (—a), all of which satisfy this property. Since conc p (¢)(u)
is assumed to be closed, by Theorem 1.3.5 in [23], we have

concp (¢)(u) = igf{<a, u) + (=¢)p(—a)}. (&)

It follows that ¥ (u) > concp(¢)(u) because ¥ (u) > infe (o, u) + (@)% (—a)}.
To show concp(¢)(u) > ¥ (u), we consider a point # € P. By (5), there exists a
sequence @* so that the inequality concp (¢) (1) < @k, u)+ (=)5 (—a*) is valid for
all k and 1imk_>oo(6¢k, u) + (—qﬁ)jﬁ,(—&k) = convp(¢p)(n). If &f/ > ( for some i and
j € A;j\{0, n}, we have shown that there exists a valid inequaﬁty ¢ < (dk, u) + b
of concp(¢)(u) such that (@*, u) + b < (@, u) + (—¢)>§J(—&k) for all u € P and
&l{‘j <Oforalli and j € A;\{0, n}. Therefore, we have

conep (¢) (@) = lim (@, ity + (—p)p (—ak)
> lim @, ay+»
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> lim @, ity + (—¢)p(—=a*) = v (@),

where first equality and first inequality are established above, second inequality fol-
lows because the validity of ¢ (u1p, ..., ugn) < (6/‘, u) + b’ for u € P implies
(=) (—=&") = sup,cp{d@) — (@, u)} < ¥/, and the last inequality holds since
@* < 0foralliand j € A;\{0, n} implies & is feasible in the optimization problem
defining v (). Therefore, the proof is complete. O

‘We now use monotonicity of conc p (¢) (u) and conv p (¢) (1) to construct relaxations
for gr(¢ o f) in the space of (x, ¢, u.,) variables, where u., = (U1, ..., Uan), by
substituting the convex underestimators and concave overestimators with their defining
relationships in the cuts valid for conv(PP).

Theorem 2 Let ¢ o f be a composite function, where ¢ : RY — R is a continuous
function and f : R™ — R? is a vector of functions which are bounded over X C R™.
Given a pair (a, u(x)) satisfying (2), we have gr(¢p o f) C proj(x’(p)(R), where

11X, 1), - g (X, Ugn), oP
R o= {(x’ s ) (’/ll(x Uln) ug(x, Udn) ¢) € conv( )} 6)
un, = f(x), x e X,
and i; (x, ui,) = (uio(x), co U=y (X)), u,-n). The relaxation is convex if u;j(x) is

convex for j € Ai\{n} and concave for j € B; and {(x, un) € X xR | Uy = f(x)}
is outer-approximated by a convex set.

Proof See “Appendix A.1”. O

3.4 Simplifying the structure of polyhedral abstraction

We start with simplifying P (a, u”, uV, B) to show that it suffices to consider the case
where u” = a9 and u¥ = a., to treat the general case, where a.g := (ajo, . . ., a40)
and a., = (@i, ..., adn).

Proposition 1 Define u’ so that u;j = min{max{uij,aio},ain}. Then, for any u €

P(a, ML, MU, B) and ¢ € R, (u, ¢) c COnv(@P(a,ML,uU,B)) lfand Only if(u/’ d)) _
Conv(qI)P(a,a‘o,a.,,,B)).

Proof Let P := P(a,u’,uY,B) and P’ := P(a,ay,an, B). In the following, we
will show that concp (¢p) (1) = concp/(¢)(u’). By considering —¢(-), a similar argu-
ment shows that conv p(¢) (1) = conv p/(¢) (1), completing the proof.

First, we argue thatconc p (¢) (1) = concp(¢)(u'). Forany j € Bj,uij > uin > ajo.
Therefore, u;j < u;j. Similarly, for j € A;, max{u;;, ajo} < ujn < a;n. Therefore,
ugj > ujj, and, in particular, u}; = u;o and u}, = wu;,. It follows from Lemma 1 that
concp(¢)(u') < concp(d)(u). Now, we argue that concp(¢)(u’) > concp(P)(u).
Let Ji(u) = {j | uij < ajo} and K;(u) = {j | uij > a;,}. We perform induction on

S (1: )| +1K; (w)]). The base case is trivial because 39, (1J; )|+ K; (u)]) = 0
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implies u” = u and the inequality is trivially satisfied. Let i’ be such that there exists
aj € Jy(u) UKy (u). Since ajrg < ujr, < ajry, it follows that j° # n. We assume
Jj' € Jy(u) as a similar argument applies when j* € K;/(u). Since u € P, by the
definition of concp (¢), there exist convex multipliers A¥ and points (uk, ¢k) e of

such that (u, concP(¢)(u)) =>4 WKk, p). Define ﬁ;‘,j, = a0 and ﬁfj = uf?j

otherwise. Since j’ # n, it can be verified easily that (i*, $*) € @%. Then, define
(12 , conc p(¢)(u)) => AWK @@k, ¢k) and observe that the representation shows that
concp(¢p) (i) > concp(e)(u), iy j» = ajr, and it;; = u;; otherwise. However, since
J' & Jir(i), it follows that Y5, (1; (@)| + 1K (@)]) = 20, (1: )] + | Ki (w)]) — 1.
Therefore, it follows that concp (¢p) (1) < concp(P)(it) < concp(¢)(u’), where the
last inequality is by the induction hypothesis.

Next, we show that concp(¢)(u’) = concp(¢)(u'). Clearly, concp (¢p)(u') <
concp (¢) () since P’ C P.Let ¢’ = concp(¢)(u’). Then, there exist (u, ¢') € @7
and convex multipliers ! so that . ¢)=13, y !, ¢"). Define

ﬁfj = min{max{ufj, aio}. din }
andleti = Y, y'i'. It follows that (!, ¢!) € @ %', and thus (i1, ¢') € conv(®*"). In
other words, ¢’ < concp/(¢)(it). Moreover, it;; > “;j for j € AiN(0, n}, itio = ujg

and it;, = u;,, and i;; < ugj for j € B;. Hence, by Lemma 1, we obtain that

concp(¢)(u') = ¢’ < concp (¢)(it) < concp(p)(u'). ]

By Proposition 1, it suffices to construct conv(@?@@0-anB)) to characterize

conv(@P(“’”L*”U*B)). The primary role played by u” and uY is to ensure that the

estimating functions u(-) are bounded. Therefore, without loss of generality, we will
assume in the foregoing discussion, unless specified otherwise, that u* = a.o and
uY = a,. In other words, we will use Proposition 1 to simplify P. Proposition 1
has another subtle value. It turns out that one of the main results in this paper can
be viewed as a sharpening of Proposition 1. This sharper version will show that
(u, @) € conv(®?) if and only if a certain point (s, ¢) € conv(®?), where s is
larger than the u’ constructed in the statement of Proposition 1. The transformation
from u to s is significantly more involved and is, arguably, one of the cornerstones
of the development later. The more general result will have much further reaching
consequences since it will enable a significant simplification of P.

We now further simplify the structure of polytope P. First, we show that we
may assume that the index set B; defining P; in (3) is empty. To do so, we trans-
form overestimators into underestimators (and vice-versa) and thus show that the
assumption B; = ¢} is without loss of generality. Consider an affine transformation
T : RO0HD 5 RIXHD defined as follows:

T(u)ij = Ujj fOl‘j (S Ai and T(u)ij = ajj — Ujj —+ uin forj € B,’. (7)

Recall that A; and B; are the index sets for underestimators and overestimators of f;
respectively. Let (u (x), a) be a pair satisfying (2). It follows that (T(u (x)))ij is an
underestimator of f; (x) bounded from above by a;; because a;; < u;;(x) for alli and
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J € B;.Clearly, the transformation 7; is invertible. More specifically, givena vector ¢ €
Rdx(n—&-l)’ we have 7! (l‘),'j =1ij for j € A; and 7! (t)ij = ajj —tijttin for j € B;,
where we have used n € A; to substitute ¢;,, for u;,. Since the transformation 7 is such

that T'(u);; depends only on u;; and u;,, we may write T (1) := (T1 (uy), ..., Td(ud)),
where 7; : R™! — R Similarly, we write 771(t) := (7,7 (11), ..., T; ' (t2).
Then,

- . L
Vje At <ty ui <tjj <a

P :=T(P) = {1 e R"*! Vj € B tij < tin, tin+aij —u’

P S lij = aij

tio = ai0, ai0 = tin =< ain
We further relax P; to P; as follows:
5 1 )
P = {fi eR"" } tij < tin, Ui = tij < ajj, io = a0, aio = tin = ain}v

where IZI-L = min{uiL, aio + ajj — ulU}. Let P = I—[fl=1 Piand P = ]_[fl=1 P;.

Proposition2 Let G := {(t,¢) | t € P, (t,¢) e conv(qbf’)}. Then, conv(®?) = G.
Moreover, conv(®F) = {(u, b) | uechkh, (T(u), qb) € conV(cDP)}. O

The proof of Proposition 2, which is included in “Appendix A.2”, considers a point,
t e Pand (t, ¢) € conv(@?), and shows that (¢, ¢) € conv(®F). This is is done by
changing each (tk , ¢k) € &%, whichisusedto express (f, ¢) as aconvex combination,
such that the tl.’j. is replaced with max{tl.kj, ub ik +a;j — ul}.

Since P is a special case of P with B; = ¢ for all i, Proposition 2 shows that
this special case is sufficient to treat the general case. Combined with Proposition 1,
it suffices to consider P with aiL = a;o. We may further assume that a;0 < a;1 <

- < ajp, l.e., we may assume that (qg; j)7:o are strictly increasing in j since we
may replace with u;; the maximum of all underestimators that share the same bounds.
Unless specified otherwise, we will, from here onwards, let P (a) denote ]_[?:1 P;(a;)
fora;o < --- < a;,, where

Pi(a;) = Ju; e R Ujj = Uin, i0 = Ujj = djj
L 1) — 1
Ui = ai0, 40 = Uin = din

®)

We showed in Example 1 that redundant underestimators of inner-functions can
help improve the relaxation of the composite function. However, when underestimators
are obtained using a convex combination derivation, we will show that they do not
improve the quality of the relaxation. For a pair (u (x), a) satisfying (2), we denote by
R(u(x), a) the relaxation of composite function ¢ o f obtained as in (6). In addition,
consider a vector of underestimators u’ : R” — R4+ and their upper bounds
d € RY*"+D obtained by taking convex combinations of u(x) and a, respectively,
where n’ > 0. More precisely, let A; be a nonnegative matrix in RO+D* (' +1) , where
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rows indexes are in {0, ..., n} and columns indexes are in {0, ..., n’} such that

A =0, "TTA; ="t AL 0)=(1,0,...,007, Ai(-.n)=(0,...,0,1)7,

)
where e is the all-ones row vector in R and A; (-, k) is the k™ column of the matrix
Aj. We let u; (x) (resp. ug(x)) denote a row vector of n + 1 (resp. n’ + 1) functions
(uio(x), o Uin (x)) (resp. (u;O(x), o u;n,(x))). Then, we define u(x) : R" —
R"*+! such that ul(x) = uj(x)A; and a] € R"”*+! such that al := a; A;. First two
conditions in (9) imply that, foralli and k € {0, ..., n'}, u}, (x) and the corresponding
bound a], are obtained by taking a convex combination of u;o(x), . .., u;, (x) and their
bounds ajg, . .., ai, respectively. The third (resp. fourth) requirement in (9) ensures
that u}(x) = u;o(x) and aj, = a;o (resp. u;, (x) = u;,(x) and a/,, = a;y). Therefore,
the new pair (u/ (x),a ) satisfies the requirements in (2), and thus, by Theorem 2,
R(u'(x),a’) is a valid relaxation for the composite function ¢ o f. In the following
proposition, we show that R(u(x), a) € R(u'(x), a’).

Proposition3  Let (u(x), a) be a pair which satisfies conditions in (2) and A;
be a matrix defined in (9). Define u'(x) € RY — RI*@HD uch that u;j (x)
ui(X)A; (-, j) and a’ € RIXC'HD such that alfj = a; A; (-, J). Then, R(u(x),a) C
R(u’(x), a’).

Proof See “Appendix A.3”.

O

4 Polynomial time equivalence of separations

To efficiently utilize conv(®*) for constructing relaxations, we must solve the sep-
aration problem of conv(®’), that is, given a vector (it, ¢) we need to determine if
(it, §) € conv(®’) and, if not, find a hyperplane that separates (i, ¢) from conv(®’).
The main goal of this section is to prove that the separation problem of conv(® ) can
be solved in polynomial time, given a polynomial time separation oracle for conv(® 2),
where Q = ]_[?:1 Q; for a certain subset Q; of P;, which will be formally defined in
Sect. 4.1, and

¢Q = {(s’ ¢) | ¢ = ¢(S]rl7 MR Sdn)a § = (S17 MR Sd) € Q}
4.1 A simplicial structure of polyhedral abstraction

Recall that ¢; is a strictly increasing vector in R"*!. Now, we consider a set of points

{uij¥iso € R™*! where vig = (ajo, . . ., aio) and:
Uij:(a,'(),...,aij_l,a,‘j,...,a,'j) j:l,...,n. (10)

N

n—j+1 terms
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Clearly, Q; := conv({vi j}’}:o) is a simplex in R+, Moreover, Q; is a subset of
P; since {vij}’}zo C P;. In the following, we first characterize the vertex set and

facet-defining inequalities of Q;. Then, we study the relation between conv(®*) and
conv(® 2). In particular, we show that a convex hull description of ® 2, together with
O(dn) number of inequalities, yields a convex hull description of @ in the space of
(u, s, ¢) variables.

To characterize the simplex Q;, we argue that it can be seen as an invertible affine
transform of a simpler simplex A; defined as:

Ai={z e R0 <z, < <21 <zio =1} (11)
Denote by ¢;; the vector Z?,:O ej forall j =0,...,n, where ¢; is the j™ principal
vector in R"*! with e = (1,0,..., O)T. It follows readily that points &g, ..., Cin
are affinely independent since the matrix ¢ € RUTDX0+D .— (r0 0 0y s

invertible, being the upper triangular matrix of all ones. Moreover, it can be verified
that vert(A;) = {{ij};fzo. This implies that dim(4;) = n.
Now, the affine transformation that maps Q; to A; is Z; : s; € R"T! > z; e R+
where
Si1— Si1_
zip=1 and zijzl]—l]l forj=1,...,n. (12)
dij — ajj—1
To verify that A; = Z;(Q;) observe that Z; maps v;; to ¢;;. Besides, the inverse Zl._1
is given by:

J
sij = aiozio + Y _(aix — aik-1)zik for j=0,....n, (13)
k=1
and Q; = Z; ](Ai). We now characterize the extreme points and facet-defining
inequalities of Q;.
Lemma2 Let a; := (ajo,...,ain) be a strictly increasing vector in R*™! and let

Q; = conv({v,-j}’}:o). Then, Q; is a simplex so that vert(Q;) = {v,-j}'J’.:O, and

S — s Si1 — S
in in—1 <... < il i0 Sl],
Ain — din—1 aj1 — 4o

0i = {5y | si0 = a0, 0 = (14)

where all the inequalities are facet-defining. For j, j', and j", satisfying 0 < j <
Sij”_sij’ < Sij/—Sij <1

., i .. .
< : <
j' < j" < n, each point in Q; satisfies 0 < ap—ay = ay—ay =

Proof See “Appendix A.4”. O

Next, we lift simplex Q; into the space of (u;, s;) variables by imposing ordering
constraints a;joe < u; <s;, ujo = s;0, and u;, = s;,. This yields a polytope

PQ;i = {(ui.si) | wio = sio = aio, win = sin. aioe <u; <si, s; € Qi}, (15)
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where e is the all-ones vector in R"*!. Let PQ := []/_, PQ; and

P =L, 5,8) | ¢ = P(s1n. ... 5an). (u,s) € PO}.

The next result establishes that @ and @€ are projections of @72,

Lemma3 Let a; := (ajo,...,ain) be a strictly increasing vector in R™ ! Then,
proj,,(PQ;) = P; and proj,, (PQ;) = Qi. Moreover, ®¥ = proj, 4 (®2) and
@9 = proj, 4 (272).

Proof See “Appendix A.5”. O

Remark 1 In the following, it will be useful to interpret the point (#;, s;) € P Q; in the
following way. First, recall that in Sect. 3.1, polytope P; was introduced as an abstract
way of capturing the information about the underestimators of the inner-function f; (-).
The important property of the underestimator u;;(-) exploited in the construction of
P; is its upper bound a; ;. Observe now that u;; < s;; < min{a;;, u;,}. This is because
(ui,s;) € PQ; implies that u;; < s;; and s;, = u;n, and s;; < min{a;;, sin} is
satisfied by all the extreme points of Q;. Therefore, we may interpret s;; as a variable
corresponding to an underestimator of f;(-) that is tighter than u;; (-) and yet bounded
from above by a;;. Our constructions make significant use of this relationship. In short,
P; can be considered as the polytope abstraction of arbitrary underestimators of f;(-)
while Q; can be regarded as the polytope corresponding to the best underestimators
obtained by taking convex combinations of the provided underestimators. O

Observe that Lemma 3 implies that
conv(®?) = conv(proj(u’(z,)(d)PQ)) = Proj,.4) (conv(®"2)),

where the second equality holds because conv(AS) = A conv(S) for any affine map-
ping A and a set S. Similarly, conv(® ) = Projs.¢) conv(@PQ). In the following,
we will show that

conv(@”9) = {(u,s,9) | (s, ¢) € conv(@2), (u,s5) € PQ}. (16)

Therefore, the right hand side of (16) yields an extended formulation of conv(®?).
Next, we establish the equality in (16) in a more general setting, which is also useful
when we consider the convex hull of a vector of functions over P Q in Sect. 5. Let
X o= {(x,p) e R"™* | u = f(x),x € X} be the graph of a vector of functions
f : R™ — R¥ over a non-empty subset X of R”. Let/ : R” — R" and h : R" — R”
be vectors of affine functions. We consider a set Z defined as:

Z={0y,w e R™H ) <y <h(), (v, p) € X},
To express @€ in the form of Z, welety = u, X = @ h(s) = s, [;,(s) = sin,and
lij(s) = ajo if j < n. Interpreting Z as such, the following result implies the equality

in (16).
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Lemma4 Assume that [(x) < h(x) for all x € X. Then, we have conv(Z) =
{(oy ) | (k) € conv(X), I(x) <y < h(x)}.

Proof Let R := {(x,y,u) | (x, ) € conv(X), I(x) <y < h(x)}. The inclu-
sion conv(Z) C R follows from Z C R since R is convex. We now show that
R C conv(Z). Let (x',y’,u/) € R. Clearly, (x,y’, /) lies in the hypercube,
H = {x.y.pn | ;) = ' w), I(x) <y < h(x)}. So, it suffices to
show that the vertex set of H belongs to conv(Z). We only show that vertices of
the form (x/ D, w1 ) lie in conv(Z) since a similar argument applies to the remain-
ing vertices. Let Z' := {(x, v, L) | (x,n) € X, y = I(x); and express it as the
image of X under the affine transformation A : (x, u) — (x,/(x), n). Therefore,
conv(Z’) = conv(A(X)) = A(conv(X)) and, so, (x/,I(x"), 1) € Agconv(X)) =
conv(Z") C conv(Z), where the last containment follows because Z’ C Z is implied
by our assumption that /(x) < h(x) for all x € X. O

4.2 A combinatorial algorithm for polynomial equivalence

Before establishing that the separation problems of conv(®?) and conv(®9) are
polynomially equivalent, we give an application of this equivalence. For this, we con-
sider the case when the number of inner-functions is fixed and it suffices to restrict
¢ (-) to the extreme points of Q in order to construct the convex hull of P2 We
show that the separation problem for conv(®2) has a polynomial-sized LP formula-
tion in this case. Then, by the announced polynomial equivalence of the separation
of conv(®?) and conv(® 2), this yields a polynomial-time separation algorithm for
conv(®?®). Since vert(Q) = 1—[?1:1 vert(Q;) and |vert(Q;)| = n + 1, it follows that
[vert(Q)| = (n + 1)?. In other words, if d is a constant, the number of vertices of Q
is polynomial in n. More generally, assuming » and d are constants, the number of
r dimensional faces of Q is polynomial in n, being upper-bounded by (n + 1)?("9).
Since convex/concave-envelopes of many functions depend only on the function value
at the vertices or, more generally, low-dimensional faces of the domain over which
the function is convex, we can construct polynomial-sized formulations for separa-
tion of conv(®2) and, therefore, of conv(®?). For simplicity, we only discuss the
implication of the equivalence of separating concg(¢) and concp (¢) since a similar
discussion directly applies to conv g (¢) and convp(¢) by considering —¢ instead.

Definition 1 ([45]) A function ¢ : D — R, where D is a polytope, is concave-
extendable (resp. convex-extendable) from X C D if the concave (resp. convex)
envelope of g(x) is determined by X, that is, the concave envelope of g and g|x over
D are identical, where g|x is the restriction of g to X:

gx) xeX
glx = .
—o0 otherwise.
O
If ¢(s1n, ..., San) is concave-extendable from vertices of Q then, using Theorem 2.4

in [45], we can separate (s, ¢_>) e RI*X0HD S R from the hypograph of concg (¢)(s)
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by solving the following linear program:
min («,s) + b
(a.b)

st (a,v) +b = ¢(vin, ... van) Vv € vert(Q) (17)
a € R&X0HD p e R,

where a solution («*, b*) that is an extreme point of the feasible region yields a facet-
defining inequality of conco(¢)(s) tight at §, i.e. (a*, 5) + b* = concp(¢)(5). We
retain b although it can be absorbed in «;q if ;9 7# 0. Since |vert(Q)| = (n + 1)d, it
follows that the size of the LP (17) is polynomial in n for a fixed d. As an example of
the usefulness of this construction, observe that multilinear functions are convex and
concave extendable from the vertices of Q (see [39]). Then, as Theorem 3 shows, the
above LP gives a tractable approach to separate conv(® <), when ¢ is multilinear and
d is fixed. Techniques in [47] can be used to identify whether a function is concave-
extendable (convex-extendable) from vertices of Q.

Theorem 3 Assume that ¢ (s1, - - -, San) is concave-extendable from vert(Q) and d is
a fixed constant. For any given’s € R¥* "+ there exists a polynomial time procedure
to generate a facet-defining inequality of concg (¢)(s) that is tight at s.

Proof Givens € Q, the LP (17) can be solved in polynomial time by using an interior
point algorithm. Moreover, by Lemma 6.5.1 in [19], an optimal extreme point solution
of linear program (17) can be found in polynomial time. Then, the result follows from
Theorem 2.4 in [45]. O

Remark 2 Although the separation problem of conc g (¢) (s) can be directly formulated
as a LP of polynomial size, the similar LP formulation for concp(¢)(u) using the
construction of (17) is exponentially-sized in n because the |vert(P;)| is exponential
in n. To see this, for i € {1, ..., d}, consider the face of P; defined as F; := P; N
{u; | uin = ain}. Since F; coincides with the hypercube {i; | ui, = ain, aio <

uij < ajj, j=1,...,n—1}and a;0 < a;j for j = 1,...,n — 1, it follows
that |vert(F;)| = 2"~L. As vert(F;) C vert(P;), |vert(P;)| > 2"~!. Therefore, by
vert(P) = ]_[?zllvert(Pi)L we conclude that |vert(P)| > 2d(n—1) O

Remark 3 A convex program, similar to the above LP, can be written to treat the sep-
aration problem of concg(¢)(s) for more general cases. For example, consider the
case when concg(¢) is determined by its value over polynomially many faces of Q
(for example, faces of dimension r or less, for some constant ) and ¢ (s1,, - . ., San)
is concave over those faces. To treat this case, we replace the constraint in (17)
with b > supxeF{¢(x) — (a,x}} = (—¢)’;(—(x), for each face F of Q which is
required in the computation of concp (¢). Here, (—¢)7} denotes the Fenchel conjugate
of —¢(s1n, ..., Sqn) With its domain restricted to F'. O

In the rest of this subsection, we will focus on proving that separating conv(®’)
and conv(® ) are polynomially equivalent. In particular, we devise a combinatorial
algorithm that solves the separation problem of conv(® PYin O(dn) and a separation
oracle call for conv(®<). We start by presenting a brief preview of our construction.

@ Springer



A new framework to relax composite functions in nonlinear... 445
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Fig. 1 Illustration of the lifting procedure

Given a point (i, (]3) ¢ conv(®?), where it := (iiy, ..., iiq) € P, we first devise
a lifting procedure, Algorithm 1, to lift u#; to a particular point (&;,5;) € PQ; for
alli = 1,...,d. For this particular pair (u;,s;), we show in Proposition 5 that,
for j € {0,...,n}, §;; can be expressed as a convex combination of u;q, ..., Uj,.
Second, we show that (s, (Z'_)) ¢ conv(QP Q) where§ = (31, ..., 54). Third, we augment
the separation oracle for concg(¢)(s) to modify the cut that separates (s, (ﬁ) from
conv(® 2) into another cut which additionally satisfies a certain sign condition on the
coefficients. Last, given a cut for concg (¢) which satisfies these sign conditions, we
use the relationship between 5; and i; to derive an inequality valid for conv(® ) that
cuts off (u, q_ﬁ). The lifting procedure that maps i to (, §) is a cornerstone in our proof
architecture. Before presenting the lifting procedure formally, we illustrate, in the next
example, the main idea behind the procedure.

Example 4 Consider x2 where x lies in the interval [0, 2], and define ui(x) =
(ui0(x), ui1(x), uin(x)) where ujo(x) := 0, u;1(x) := 2x — 1, and ujp(x) = x2,
which are bounded from above by ajo = 0, a;1 = 3 and a;» = 4 respectively (see
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Fig. 1a). We derive the largest underestimator s;;(x) bounded from above by a;; by
taking convex combinations of the provided underestimators. More specifically, for
all j, s;;(x) := max{Z?zQ Wougjr (x) | Z?/:Q Maij = a;j}. In Fig. 1b, we tighten
uj1(x) to i1 (x) = max{0.75u;2(x), u;1 (x)}. This tightening gives an underestimator
si1(x) of x2 with an upper bound of 3 over [0, 2]. The derivation uses a convex com-
bination of u;2(x) and u1g(x), 0.75u;2(x) + 0.25u;9(x), to obtain 0.75u;>(x) and its
upper bound 3. We let s;0(x) = u;jp(x) and s;2(x) = uj2(x).

We will find it useful to visualize the evaluation of s;(x) as depicted in Fig. lc.
Consider x = 0.5 and let #; = u;(0.5). In order to evaluate s;1(x) at 0.5, we
compute concyo2](§)(a; u;) at a = a;; = 3, where £(a; u;) is a univariate dis-
crete function whose graph consists of the points, {(aio, uio), (aj1, ui1), (a2, uiz)},
which are depicted as black nodes in Fig. lc. In this way, the construction of
the envelope of this univariate function lifts u; = u;(0.5) = (0,0,0.25) to
(ui, si) = (ui(0.5),5:(0.5) = ((0,0,0.25), (0,0.1875,0.25)). The obtained pair
(ui, s;) belongs to PQ; = {(u, s) | uio = 0, u;j1 < si1, uin = i, s;i € Q;}, where
Qi :={s | si0 =10, 0 < Sl < SLS0 < 15 see Fig. 1d. Observe that in order to
be able to draw a 3-D figure, we do not show axes for the variables u;( and s;o which
are fixed to 0 and depict u;, and s;,, on the same axis by exploiting u;, = s;,. O

We now formally introduce the lifting operation illustrated in Example 4. Given a
point 4 = (i, ...,ug) € Py x--- x Pg,foreachi € {1,...,d}, weliftu; € P;toa
point (u;, 5;), where 5; is an optimal solution of the following LP:

min 377 _ ij
S.t. u; <s; (18)
S; € Ql‘.

By Lemma 3, the feasible region of the linear program (18) is non-empty. We will
show that (18) has an unique optimal solution and propose an algorithm, Algorithm 1,
to solve (18) in O(n) operations. This algorithm relies on representing points in P; as
discrete univariate functions in the following way. With a point u; € P;, we associate
a discrete univariate function &(a; u;) : [ao, ain] — R as follows:

gy ="M =i forj €{0,...,n}
I 1) —

. (19)
—o0 otherwise.

Moreover, let é(a; u;) : lajo,ain] — R be the piecewise-linear interpolation of
&(a; uj) such thatg(a; u;) = &(a;u;) fora € {ajp, ...,aip}and, forall j = 1,...,n,
the restriction of é (a; u;) to [ajj—1, a;;] is linear. In the next result, we show that this
representation leads to a characterization of points in the simplex Q; as a family of
univariate concave functions.

Lemma5 Given a point s; € Q;, the extension é(a; si) : laio, ain] — R of E(a; u;)
defined as in (19) is a non-decreasing concave function such that & (a; s;) < a for
a € lajo, ain] and &(ao; si) = aig. On the other hand, if a concave function ¥ :
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[aio, ain] — R satisfies
Y(a) < a fora € lajo, ain], Y(aio) = ajo, and Y is non-decreasing  (20)

then s; = (w(aio), R w(ain)) belongs to Q;.

Proof We start by proving the first part. Let s; € Q;. By Lemma 2, there exists an
unique non-negative vector A; € R™*! such that S; = Zl}zo Aijvij, where v;; is
defined as in (10). Then, there exists a j' € {1,...,n}and y € [0, 1] such that

E(a; si) = (1 — )Eaij—1; s1) + vE(aij; s)

=1-y) Z}\ijé(aile; vij) +y Z)»ijé(aij/; vij)

J=0 j=0

= Zlij((l — y)E(aij—1; vij) + vE(aij; vij)) = Zlijé(d; vij),

j=0 j=0

where the first equality is because for a € [a;o, a;,], there exists j* € {1, ..., n} and
y €[0, 1] suchthata = (1 —y)a;j—1 +yaij andé(a; s;) is linear over [a;;/ 1, a;j],
the second equality is by linearity of £(a; s;) with respect to s;, the third equality
is by rearrangement of terms, and last equality holds because é (a; s;) is linear in a
over [a;j—1, a;jr]. Since, for all j € {0,...,n}, é‘(a; vij) < afora € [aj,ain],
é(aio; vij) = ajo, é(a; v;;) is a non-decreasing concave function, and these properties
are closed under convex combination, it follows that é;A‘(a, s;) follows these properties
as well.

Assume that v (a) is a univariate concave function satisfying (20). Let s; =
(¥ (aio), ..., ¥(ain)) andletz; = Z;(s;), where Z; is as defined in (12). By the discus-
sion preceding Lemma 2, to prove thats; € Q;,itsufficesto show thatz; € A;. Clearly,
we have z;; > 0 because ¥ is non-decreasing. Moreover, we have z;; = 17500 <

a1 —a; —
because ¥ (a;0) = ajp and ¥ (a;1) < a;;. Finally, we show that the concalvityoof v
implies that z;, < --- < z;;. Let j/ € {I,...,n — 1}, and let ¢y (a) < L(a) be a

supergradient inequality of v at a; ;. It follows readily that

Y(ajr+1) — ¥aij) - L(a;jr41) — L(a;jr)

aij'+1 — dij’ aij'+1 — dij’

_ L(ajj) — L(ajj—1) - Vaij) — Ylaij—1) .

= < = zij/,
aijr — ajjr—1 ajjr — ajjr—1

where first equality and last equality follow by definition, first inequality holds because
Y(ajj41) < L(a;jr41) and ¥ (a;jr) = L(a;jr), second equality is the linearity of L(a),
second inequality holds because v/ (a;;/) = L(a;;) and ¥ (a;jr—1) < L(ajj—1). m]

Now, we present Algorithm 1 to lift a point in P; to another in P Q;. To lift, the
algorithm constructs the concave envelope of the discrete one-dimensional function
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defined in (19). Formally, given a point u; € P;, let £(a; u;) be a discrete func-
tion associated with the point u;. The graph of &(a; u;) consists of (n 4+ 1) points
(@0, #i0), - - -, (@in, @in) in R2, which are sorted using the first coordinate. The con-
cave envelope of & (a; u;) over [a;o, ain] can be found using two-dimensional convex
hull algorithms (see [10,18]). In particular, since points of the graph of &(a; u;) are
sorted in terms of the first coordinate, Graham scan [18] takes O(n) to derive the
envelope.

Algorithm 1 Lifting procedure

1: procedure LIFTING(i; )

2:  construct function & (a; i)
3 apply Graham scan to obtain conc(§)(a; u;)

40 (5i0s -+ -5 Sin) < (conc(§)(ajo; ), - . ., conc(§)(ap; u;))
5:  returns;.

6: end procedure

Proposition 4 Givenu; € P; Algorithm 1 returns the unique optimal solution s; of (18)
in O(n).

Proof We first show that §; is a feasible solution to (18). Clearly, u; < §; as
E(a; u;j) < conc(&)(a; u;). Next, we show that conc(£)(a; u;) satisfies the three con-
ditions in (20), and, therefore, by the second result in Lemma 5, 5; € Q;. First,
conc(&)(ajo; u;) = &(ajo; u;j) = ujo = ajo. Second, observe that &(a; u;) < a since,
foralli and j, u;; < a;;. This implies that conc(§)(a; ;) < a because by definition
conc(&)(a; u;) is the smallest concave overestimator of &(a; u;) over [a;o, a;,]. Last,
we show the monotonicity of conc(§)(a; u;). Observe that, for every a € [aig, @inl,
conc(é)(a; u;) < ujn, = &(ajn, u;) = conc(&)(ain; u;), where first inequality holds
because it;; < i;, implies that & (a; i;) < it;,. Consider two points a’, a” such that
a < a’ < ap. Let A € [0, 1] such that a” = (1 — A)a’ + Aa;,. Observe that
conc(§)(a”; ;) = (1 — A)conc(§)(a’; ;) + A conc(§)(aiy; ;) > conc(§)(a’s it;),
where the first inequality is by concavity of conc(£) and the second inequality is
because conc(§)(a’; it;) < conc(€)(a;y; ;).

Next, we prove by contradiction that s; is the optimal solution of (18). Suppose that
5] is a feasible solution so that Z;l':o S{j < Z;l':o sijands] # 5;. Ass] € Q; itfollows
from the first statement of Lemma 5 that é (a; sl.’ ) is a concave function over the interval
[aio, ain]. Moreover, we have &(a; u;) < é‘(a; slf) because u; < slf. In other words,
é‘(a; s;) is a concave overestimator of &(a; ;) over [a;¢, ain]. By the hypothesis,

Yicoblaijis) = Y osi; = Yisosij = Xj—oconc(§)(aij; ;). Since s # 5,

there exists a j' € {0, ..., n} such that é—'(aij/; s = sl.’j, < 5;j = conc(&)(a;jr; it;),
contradicting that conc(&)(a; u;) is the smallest concave overestimator of &(a; u;)
over [a;jo, ain]. |

@ Springer



A new framework to relax composite functions in nonlinear... 449

To further understand the output of Algorithm 1, we study the following set

PQ = {(u, s) | S;i = (conc(é)(a,-o; uj),...,conc(&)(ajn; ui)), i=1,..., d}.

(21)
In particular, for a point (i1, 5) € PQ’, we will recover a mapping from i to § that
is implicit in the construction of conc(€), and, geometrically, we show that s lies in
a face of Q. In order to do so, we observe that the envelope, conc(§)(-; i;), gives a
representation of (;;, §;;) as a convex combination of points (a;o, #;0), - . . , (@in, Uin)-
To explicitly characterize such a representation, we consider a collection of d-tuples
defined as follows:

T ={(J1,.. ., J) | 10,n} ST 0, ...on), i =1,....d}, (22)

and, for each tuple J € J, we define a linear map, I'; : RAX(+D _ Rdxnt+l) a4
follows:

ﬂ,‘jZM,’j fOI‘iE{l,...,d} jGJi,

wij = vijuiG,j) + A —vipuira,jy  foriel{l,....d} jé¢&J, @3
where I(i, j) := max{j’ € J; | j/ < j}, r(i,j) := min{j’ € J; | j/ > j}, and
vij = @irG,j) — aij)/(@iri,jy — airg,j)) for j ¢ J;. With each tuple J € J we
associate a subset Fy := Fyj, x --- x Fyy, of Q, where F;;, := conv({v,-j | j € J,'})
and v;; is defined as in (10). Clearly, F; is a face of Q since Fjy, is a face of the
simplex Q;. It is also useful to observe that the face F; , can also be described as the
set of points of Q; that satisfy the following at equality:

Sij+1 = Sij _ Sij — Sij-1

< for j ¢ J;. (24)
Aij+1 = Gij — Gij — Gjj—1

In the next result, we show that, there exists a J € J such that s = I'; (i) and § lies
in the face F.

Proposition 5 For each tuple J € J and for each (u,s) € PQ, (FJ(u), s) e PO.
Moreover, inequalities 'y (s) < s define the face Fy. If (u,5) € PQ' then's = I'y ()
and s € Fp, where J' = (J{, ..., J}) such that J := {j | u;; = 5;;}.

Proof We start by showing that (F](M), s) € PQ forevery (u,s) € PQ.Let (u,s) €
P Q and define u := I'j(u). Clearly, fori € {1,...,d} and j € {0, n}, we have
jj = u;jj = s;j, where first equality holds because {0, n} C J; and second equality
holds because (u, s) € P Q implies thatu;o = s;o and u;,, = s;,,. Moreover, for alli and
J»aio < u;j for every j €10, ..., n}implies that a;p < u;j. Last, fori € {1,...,d},
i; < s; follows because, for j € {0,...,n}, we have it;; < conc(§)(a;j; u;) <
é(aij; s;) = sij, where first inequality holds because the point (a;;, it;;) is expressible
as a convex combination of the hypograph of £ (a; u; ), second inequality holds because,
by (u;, s;) € PQ; and Lemma 5, é—‘(a; s;) is a concave overestimator of & (a; u; ), thus,
of conc(€)(a; u;), and the equality is by definition.
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Next, we show that inequality s > I';(s) defines the face F; of Q. Since, for
every s € Q, (s,s) € PQ, the validity of s > I;(s) over Q follows from the
first result. We need to show that s = I';(s) for s € vert(Fy) and s # [;(s) for
s € vert(Q)\vert(Fy). Let s = (s}, ...,s)) € vert(Q). Observe that 5" satisfies
s > Iy (“i) at equality if and only if, for i € {1,...,d}, tlle assgciated extension

function & (a; s;) is linear over [q; 7 aif,-] for every 0 < j; < ji < n such that

Jis jl € Jiand J; N {j; +1,...,j; — 1} = @. Observe that é‘(a; v;j) is linear over

intervals that do not contain a;;. If, for each 7, there exists jl./ € J; such that slf = ;)

then é(a; v;jr) is linear over [q; 7 aij',«] because ji’, being in J;, does not belong to
Gi+1,..., f,- — 1}. Therefore, the point s’ satisfies s > I';(s) at equality. On the
other hand, assume that for some i € {1, ..., d}, there exists j” ¢ J;, sothats] = v;jn.
Since {0, n} € J; and j” ¢ J;, there exist j;, ji € J; suchthat j; < j” < ji,&(a; vijr)
is not linear over [a; 7, al.fi], and s" # I';(s).

Last, we prove the third result. Let (iz,5) € PQ’, and define (Z1,...,Z4) =
(21(51), e, Zd(Ed)), where Z; is defined as in (12). Because 5; € Q;,0 < 7zj, <

- < Zi1 < Zio = 1. We will show that that z;;;1 = Zz;; forall i and j ¢ J/.
Thus, by (24), s € Fj, and, therefore, s = I';/(s) = I';(u), where first equality
holds by the second result and second equality holds by the definition of Iy and
5ij = u;j for all i and j € J/. Now, we show that z;;;1 = z;; for all j ¢ J/. By
definition, there are j, f and y > O such that 5;; = yﬁi.; + (1 — y)ﬁi;.. Since j ¢ J/,

we can assume that 0 < j < j < f < n. If not, assume wlog that j = f Then,
0= a;; — ajj = y(al.jc — aij) implies that either y = 0 or a;; = aij = a;;. In either
case, §;j = u;j, contradicting that j ¢ Ji’. Then, it follows that (a;;, $;;), (aijf, IZZ-]T),
and (a;> u; +) are collinear. Let L(a) be the function passing through these points. It
follows that:

L(aij) = y'conc(&)(ajj—1, 4;) + (1 — y) conc(§)(aijy1, it;)
> y'L(ajj—1) + (1 — y)L(ajj+1) = L(aij),

dij+1—dij
Ajj+1—ajj—1
conc(€) is concave, second inequality is because y’ € [0, 1] and concavity of conc(&)
implies that conc(§)(a;j—1, ;) > L(a;j—1) and conc(§)(a;j+1,u;) > L(ajj+1), and
the equality is because of linearity of L. Therefore, equality holds throughout and
5ij = L(aij) = y'conc(§)(aij—1, u;) + (1 —y") conc(§)(ajj+1, ;) = y'Sij—1 + (1 —
)//)Eij-l,-l, thereby showing that Zij+1 = Zij- O

where ' = . The first inequality is because L(a;;) = conc(§)(a;j, u;) and

Let (a, s) + B +b > 0 be a valid inequality generated for conv(® ¢). We propose
an algorithm, Algorithm 2, to generate another valid inequality (&', s) + B¢ +b > 0
for conv(® <) such that alfj <Oforalliand j ¢ {0,n} and (o, s) > (¢, s) for every
s € Q.Inwords, given a valid inequality for conv(® €), the algorithm generates a valid
inequality that dominates the original one over @< and satisfies the sign condition
discussed above. The key step in Algorithm 2, the while-loop spanning Steps 13-26,

is to modify a positive coefficient to zero in a manner that this positive weight is
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allocated to its non-zero adjacent coefficients. In the next proposition, we show the
correctness of Algorithm 2 and discuss its complexity.

Algorithm 2 Sign Procedure

1: procedure SIGN(«)
2:  fori from1tod do

3: for j from 1 ton — 1 do
4: if o;; > 0 then
5: push(j, J;")
6: end if
7. end for
8: for j from O to n do
9: prev(j) =j—1
10: suce(j) =j + 1
11: Oll{j = 0j;
12: end for
13: while J;" # ¢ do
. s _ +
14: Jj=pop(J;")
. L Gisuce(j)—Yij
15: ﬁl] - Aisucc(j) ~%iprev(j)
16: for (j', 0) in {(prev(j). ¥;;). (succ(j), 1 — )} do
17: neg < (alfj, <0);
. ’o_ /.
18: ai_j’ = o:ij, + 0w s
19: ifneg:trueandalfj, > 0and 0 < j/ < n then
20: push(j’, J;")
21: end if
22: end for
23: prev(succ(j)) = prev(j); succ(prev(j)) = succ(j);
24: prev(j) = —1;suce(j) =n + 1;
25: oz;j =0;
26: end while
27:  end for

28:  returno’.
29: end procedure

Proposition 6 Given a valid inequality (., s)+Bp+b > 0 forconv(® 2), Algorithm 2
takes O(dn) time to generate a valid inequality (', s) + B¢ + b > 0 for conv(P2)
such that al{j < Oforalliand j ¢ {0,n} and {a,s) > {(a’,s) for every s € Q.
Moreover, there exists an § € Q such that, for all i, §;, = s;, and {a, §) = (¢, 5).

Proof In Step 5, we initialize Jl.+ as a stack of indices j such that ¢;; > 0 and in Steps
9 and 10, we initialize a queue that contains all the indices in {0, ..., n}. In Step 14
of Algorithm 2, we pick j € ]i+ and remove it from the queue in Step 23. Indices
are added to Ji+ only in Step 20 and the added index belongs to {1,...,n — 1}. We
argue that at the beginning of each iteration of the while loop starting at Step 13, if an
index j € Jl.+ then alf ;> 0, otherwise alf ; < 0. Further, no index in Jl.+ is repeated,
andif j € Jl.+ then j is also in the queue. This is certainly true at first iteration after
initialization ends at Step 12. At Step 20, j’ is added only if ozlfj, > 0 and was negative
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previously and, therefore, not already in Ji+. Moreover, j’ is in the queue, being either
the predecessor or successor of an index j in the queue. At Step 18, it follows that
ozlf ;o can only increase because Step 16 guarantees that o € [0, 1] since ¥;; € [0, 1]

and «;; > 0 because j was just removed from J l.+. Therefore, existing indices in Jl.+
continue to satisfy the invariant regarding positive coefficients. Moreover, if ;- turns
positive at Step 18, it is added to J,.Jr in Step 20. In Step 23, j is removed from the
queue, but its only copy in Jl.+ was removed already at Step 14. Since the size of the
queue reduces by one in each iteration of the while loop starting at Step 13 and {0, n}
remain in the queue throughout, the loop executes at most n — 1 iterations. Since the
outer for loop starting at Step 2 executes d iterations, the complexity of the algorithm
is O(dn). Further, o] i for any j not in queue, is set to zero at Step 25 and never
updated at Step 18 because j has already been removed from the queue and its only
copy was removed from JiJr at Step 14. Observe that at termination Jl.+ is empty. Any
remaining index j in the queue is such that o;; < 0 and any index j outside the queue
is such that o;;; = 0.

We only need to establish the correctness of the i™ iteration of the outer for loop
starting at Step 2. Let of be the o at the start of k™ iteration of the while-loop
spanning Steps 13-26, and, for notational convenience, assume al = a. It follows
easily that (ak, s) < (ak’l, s), because s € Q implies, by Lemma 2, that 5;; >
VijSiprev(j) + (1 — Bij)Sisuce(j)- Therefore, (@', s) < {(a,s). To complete the proof,
we need to establish the validity of (o/, s) + B¢ + b > 0 over ®<. In particular, we
will show that for every (s, ¢) € @2 there exists (5, ¢) € @2 such that, for all i,
Sin = sin and (o, §) = (&’, s). By assumption, {(«, §) + B¢ + b > 0, thereby proving
that (o, s)+Bp+b > 0.Let (s, ¢) € @<, and define §° = 5. During the k™ iteration,

at Step 14, j is popped from ]+ we define §% such that, for prev(j) < j’ < succ(j),

~k ~k 1 ~k—1 . ..
S = = 08 iprev(j) T 1 - ,]/)slsucc(]) and § s = S otherwise. In addition, let

H* be the queue at the beginning of k™ 1terat10n. Since Elk and 5;‘_1 differ only

at indices not in H¥, it follows easily that Ef‘j, = s;y for j' € H k. This, together

with afj =0 forj ¢ H*, implies that (o, s) = (o, §%). Next, we show that

(a1 55y = (o, 5y for 1 <1 <k — 1. In the ™ iteration of the while loop, assume

that, during Step 14, j’ is popped from Jl+, prev(j’) = j, and succ(j') = ]. Let
a.:—a

9 = —a,-.,- / Since the queue becomes smaller with iterations and I < k — 1, it
LV
follows that j/ ¢ H¥. Then, (/1! §%) = (o, §%) — o// ( k s = (1— z9)§k)

where, by the definition of 5, {j + 1, ..., f — 1} ¢ HY, S(a sk) is linear between
[a i a ] and, so, the term in the parenthesis on right-hand-side is zero. Moreover, by
Proposmon 5,5% € Q, and by {0, n} € H*, 5 sk = Sin- It follows by considering the
last iteration, say r, of the while-loop that there exists s € Q such that §], = s,
o =o', and (&', s) = («",5") = (,§"). Hence, (5", ¢) € ®< as §" E QO and

& =P(S1ns - Sdn) = GG, -5 8y,)- o
Given (i, §) € P Q' and a valid inequality (e, s) + B¢ + b > 0 for conv(P ) sat-

isfying the sign condition guaranteed by Algorithm 2, the following lemma generates
an inequality (o', u) + B¢ + b > 0 valid for conv(®?) so that (o, 5) = (o, it). In
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other words, if, for some ¢ € R, the inequality («, s) + B¢ + b = 0 separates (5, o)
from @€ then the modified inequality separates (it, ¢) from @ %

Lemma 6 Let (o, s) + B¢ + b > 0 be an inequality valid for conv(®92). Let (i1, 5) €
P Q' and define J = (Ji, ..., Jq) such that J; = {j | u;j = 5;j}. Consider a linear
function (&, -) such that (&', u) = (a, Iy (u)), where I'y is the linear transformation
defined in (23). If, for alli € {1,...,d} and j ¢ {0, n}, a;; is non-positive then, for
every (u,s) € PQ, {a,s) < (&', u) and equality is attained at (i1, 5). Moreover, the
inequality (&', u) + B¢ + b > 0 is valid for conv(®T).

Proof Assume that o;; < O for alli and j ¢ {0, n}. We first observe that, for every
(u,s) € PQ,(a,s) < (o, I'y(u)) = (¢, u), where the inequality holds because oj; <
Oforalli and j ¢ {0, n} and, by the first result in Proposition 5, (I"y(u), s) € PQ, and
the equality holds by the definition of o’ in the statement of the result. In particular,
(o, §) = (ot, Iy (12)) = (o, it), where first equality holds because, by the third result
in Proposition 5, 5 = Iy (ir).

Now, we show that (&', u) + B¢ + b > 0 is valid for conv(®*). Observe that the
inequalities, (o', u) > (a, s) and (@, s) + B +b > 0, are valid for conv(® ), where
validity of the latter inequality follows since it is assumed to be valid for conv(®2),
which, by Lemma 3, equals proj ;4 (conv(@ P Q)). This implies that (o', u)+Bp+b >
0 is valid for conv(®”?) and, hence, for conv(® ) since it does not depend on s and,
by Lemma 3, conv(® ") = proj, 4 (conv(@72)). O

Now, we are ready to prove that the main result.

Theorem 4 The separation problem of conv(® ') can be solved in O(dn) time besides
a call to the separation oracle for conv(® Q).

Proof Let (i1, ¢) € RA*+D+1 We agsume that # € P because, if not, we can
separate u from P in O(dn) time by finding a facet-defining inequality of P that is
violated at u. Let 5 := (51, ..., 54), where §; is the point returned by Algorithm 1
when u; is provided as input. Observe that this step takes O(dn) time. Clearly, we
have (i, 5) € PQ’, where P Q' is defined in (21). Now, we call the separation oracle
for conv(® 2). If the oracle asserts that (5, (Z'_)) € conv(®9) then, by equality in (16),
(u, s, ¢_)) € conv(®2), and thus, by Lemma 3, (i, ¢_)) € conv(®P).

Now, suppose that (s, &) ¢ conv(QP Q) and the oracle returns a hyperplane («, s) +
Bé + b = 0 such that, for all (s, ¢) € conv(®9), (a,s) + Bp + b > 0, whereas
(a,5) + Bp + b < 0. In this case, we will derive a hyperplane that separates (it, ¢)
from conv(@P ). Using Proposition 6, we can assume that o;; < 0 for all i and
J ¢ {0, n}. Otherwise, we can satisfy this sign requirement by executing Algorithm 2,
with complexity O(dn), using the generated inequality. Now, we utilize Lemma 6
to derive the inequality (', u) + B¢ + b > 0, where &’ can easily be computed in
O(dn) time. Given arbitrary (u, ¢) € conv(®?), it follows that (o, it) + fp + b =
(@,5)+ Bp +b <0< (,u) + Bp + b, where the first equality is by construction
of &’ and Lemma 6, the strict inequality is guaranteed by the separation oracle for
conv(®2), and the last inequality follows Lemma 6. O

Next, we explore the strength of cuts that are generated by the procedure described
in Theorem 4. We will only discuss the strength of valid cuts for the hypograph of
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concp (¢)(u) since a similar argument applies for convp (¢)(u). Recall that we say
an inequality ¢ < (o, u) + b, valid for conv(®?), is tight at a given point ii € P if
concp(¢)(u) = (o, u) + b.

Proposition 7 Assume that the concave envelope, concp(¢)(u), is closed. Given a
polynomial time separation oracle for concg(P)(s) which yields tight cuts, there
exists a polynomial time separation algorithm for concp (¢)(u) which generates tight
cuts.

Proof Let u € P and define 5§ = (51,...,54), where 5; is the point returned by
Algorithm 1 when u; is provided as the input. Suppose that the separation oracle
generates a valid inequality ¢ < (o, s) 4+ b of concg(¢)(s), which is tight at 5. We
assume without loss of generality that ;; < O foralli and j ¢ {0, n} since otherwise
we apply Algorithm 2 to generate a new inequality which is tight at 5 and satisfies
the sign requirement. Let ¢ < (@', u) + b be the inequality obtained using Lemma 6.
Then,

conco(@)(5) = (,5) + b= (o, i) + b
> concp(¢) (i) > concp(p)(s) > concg(P)(5),

where the first equality is because ¢ < (o, s) + b is tight at §, second equality holds
because, by third result in Proposition 5, § = I';(iz) and, by Lemma 6, (o', 1) =
(a, Iy (12)), the first inequality holds because, by Lemma 6, ¢ < (o', u) + b is valid
for concp(¢)(u), second inequality holds because, by Lemma 1, the closedness of
concp(¢)(u) implies that it is non-increasing in u;; for all i and j ¢ {0,n} and
(#,5) € PQ implies that u < § and u;; = §;; for all i and j € {0, n}, and the
last inequality follows because Q@ € P and thus concp(¢)(s) > concg(¢)(s) for
every s € Q. Therefore, equalities hold throughout. In particular, we obtain that
(o, it) + b = concp(¢)(it) = concp(p)(5) = concy(P)(5). O

We argued in the proof of Proposition 7 that, given a pair (#,5) € PQ’, we have
concp(¢) (i) = concp(¢)(s). We denote by L(u;) the feasible region of (18) with u;
as the given input. It is easy to see that, forevery u € T(u,s) :={u | u < u <5},
we have (u,5) € PQ’ because, fori € {1,...,d}, L(u;) € L(i;) and §; € L(u;).
Therefore, the following result follows from the proof of Proposition 7.

Corollary 1 Assume that the concave envelope concp(p)(u) is closed. Then, given
(1,5) € PQ', we have concp(¢)(u) = concg(¢)(s) for every u € T (i1, 5), where
Tw,s)={u|u<u<s}

4.3 Application in factorable programming
In this subsection, we show that the factorable programming scheme can be improved

by considering a special case of the problem treated in Sects. 3 and 4. We consider the
case when ¢ (+) is a bilinear term and P is defined withd = n = 2.
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Theorem 5 Let flL <a < flU and fZL <a < fo. Then, consider the set:

= {(Ml, f17’42s f2) |f1L S up S min{flaal}7 fl S f]Ua

fF <u <min{fr, a0}, o < ).

The following overestimators inequalities are valid for the epigraph of f1 f over P:

ry = szf1 +f1Uf2 —f1Uf2L

= (ff —aur + (@1 — fuz +arfi + 7 fr —ar fy
r3i=(fy = fui+afat fy fr —arfy

ra = (ff = D +arfi + U o = fla

rs = (ay — fy w1+ (ff —aDua+ £y fi +arfo— fla
re = fify + fEfr— fEFY

f1f2 < min

Proof To show that r- is a valid overestimator, observe that f] fo = rp— (a1 —uy) (up —
sz) —(fi —u(ap —u2) — (fo — uz)(flU — f1) < ry. Similarly, it follows that r3,
r4, and rs5 are overestimators because f1f2 = r3 — (a1 — u1)(fr — fQL) - (fi —
un(fo=fy) <3 fifa =ra—(fi = [ @ —u2) = (f' = f)(f2—u2) < ra, and
fifr=rs— @i — f)ar —u2) — (a1 —u))(fr—u2) — (fi —u)(fy — fo) <rs.0

Observe that Theorems 1 and 5 use a slightly different notation to denote P than the
rest of Sects. 3-5. In particular, we hide the subscript j of u;;, as itis unnecessary when
there is a single underestimator. We also drop the subscript j of s;; in the foregoing
discussion.

The proof of Theorems 1 and 5 provided a direct verification of the validity of these
inequalities and do not provide an intuition into how these inequalities were derived
in the first place. We use the results in Sect. 4 to show a constructive derivation
of one of the inequalities in Theorem 5. Incidentally, this construction also shows
that the inequality is a facet of conv(®”). A similar argument can be constructed
for each of the inequalities showing that all the inequalities in Theorems 1 and 5
are facet-defining. Consider, for example the inequality fif> < r3 and a point

= (i1, f1.i2, f>) = (a1, 0.5a, —+-05f1 ,05f2 +0. 5612,025]’2 +075f2 ) that
belongs to P. Algorlthm 1 maps this point to g := (51, f1, 52, f2), a point in Q, with
51 :=ujand s ;= fU fL f2 ;?jiffz; (0.25f2 —i—0.75f2 ) = O.25f2 +0.75a;. Let
g3 = (f2 - f2 )s1+ar fr+ f2 fi —alsz. The inequality fi f> < g3 is tight at the
extreme points of Q given by (ff, fE, fF, £5), (a1, ar, f£, £5), (a1, a1, a2, a2),
(ay,ay,ay, fo), and (aq, flU, a, fo), where for each point, the variables are ordered
asin (s1, f1, 52, f2). Then, we obtain the inequality f; f> < g3 by interpolating f} f>
at the listed vertices. The validity of this inequality over Q uses the same argument
as the proof of validity of fj f> < r3 in Theorem 5. Moreover, observe that g can
be written as a convex combination of the above extreme points with multipliers 0O,
0.25, 0, 0.25, and 0.5 respectively. Since the coefficient of 51 in g3 is already non-
positive, we do not need to invoke Algorithm 2 to satisfy this sign-condition. Then, as
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in Lemma 6, we replace each s; with its defining expression in terms of u; to obtain
an inequality that is valid for concp(¢) and defines one of its facets. We provide
more detail and illustrate the ideas involved. Normally, we would replace s; (resp.

U_ L
s2) with uy (resp. 1{2%/—;; sz + Zf, _‘%L f2). However, since s> does not appear in the

expression defining g3, we obtain r3 simply by substituting u; for s; in g3, and thus
derive the inequality, f] f> < r3, that is valid for concp (¢). Using the points tight in
Q, it follows easily that this inequality also defines a facet for conc p (¢). We next show
that it is also tight at p, the point that was initially chosen for its derivation, thereby,
demonstrating the more general fact shown in the proof of Proposition 7. Consider the
pointr := (51, fl , sz, fz) that is a convex combination of tight points, as seen from the
expression, r = 0.25(ay, ay, fZL, sz)—i-O.ZS(al, ai, fZL, fo)—i—O.S(al, flU, sz, fo).
Here, the points in the right hand side belong to P, are tight, and were obtained from the
tight points in Q by substituting the s, coordinate with sz. Then, since p = %r + %q,
we have expressed p as a convex combination of tight points and shown that f; f> < r3
defines a facet for concp(¢) and is tight at p.

Remark 4 Consider the bilinear product fi(x) f2(x) and assume fi(x) < o (x) yields
an overestimator, o1 (x). Then, Theorems 1 and 5 can be used by replacing f; with
— f1. In this case, the more involved transformation discussed in (7) is not neces-
sary. Nevertheless, (7) is useful if besides the overestimator, o1 (x), we also have an
underestimator, u1(x), available for f}(x) and wish to exploit both estimators in the
construction of cuts.

In the next example, we present a preliminary computational result that demonstrates
the computational benefits of using inequalities from Theorems 1 and 5 on randomly
generated problems.

Example 5 We consider a class of optimization problems of the form:

min (¢, x) + QoY
x,Y

st xe[l,2]",
_ 2 .3 .4 .2 3 4 2 .3 .4
y= (xl,xl,xl,xz,xz,xz,...,xn,xn,xn),
Y=yly,

where o denote the component-wise product of two matrices, and Q is a strictly
upper triangular matrix. Clearly, the number of nonlinear monomials in the problem
is determined by the number of variables n and the density v of Q, i.e. the number
of nonzero elements divided by the number of strictly upper triangular entries, that is
((311)2 — 3n)/ 2. For a given pair (n, v), we generated 50 problem instances, where
the problem data were randomly generated as follows. The coefficients (c;)!_; were
uniformly generated from the interval [—512, —2], while the strictly upper triangular
entries of Q were zero with a probability of 1 — v and uniformly generated from the
interval [1, 2] with a probability of v.

For each problem instance, we constructed two linear programming (LP) relax-
atim;s. For the first relaxation, we used factorable programming. Here, each monomial

xix ; was relaxed using McCormick inequalities and each univariate function x;" was
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Table 1 Factorable relaxation gap closed by Theorems 1 and 5. Each gap closed is an average over 50
problem instances

n=>5 n=10 n =20

v Gap Closed (%) v Gap Closed (%) v Gap Closed (%)
0.1 67 0.05 65 0.025 61

0.2 59 0.1 53 0.05 49

0.3 45 0.15 44 0.075 40
outer-approximated using subgradient inequalities at 11 points {1, 1.1,...,1.9,2}.

In the second relaxation, for each monomial term xi“x’?, we used Theorems 1 and 5

to generate inequalities for each pair of subgradient inequalities. Clearly, the second
relaxation is tighter than the first. Our computational results are presented in Table 1.
The table reports the percentage of factorable relaxation gap that is closed by using
the second relaxation, that is, we compute Ii}__LLl‘ , where L and L is the lower bound
obtained by using the first and second relaxation, respectively, while U is the best
upper bound obtained by SCIP [16] within a time limit of 500s. Observe that not all
problems were solved to global optimality in 500s by SCIP; therefore, the percentage
of gap closed reported is an underestimate of the actual gap closed. O

5 Extensions: simultaneous hull and facet-generation

In this section, we consider a vector of functions 6 : R? — R¥ over the polytope P
and their graph

OF :={w,0) |0 =0, ..., uam), uc P}.

We refer to conv(@F) as the simultaneous hull of @F and are interested in solving
the separation problem associated with this set. We, similarly, define 02 .= {(s, 0) |
0 =0(s1n,...,54n), S € Q} and generalize the results from Sect. 4.2 to this setting.
More specifically, we will show that, given a polynomial time separation oracle for
conv(®9), the separation problem for conv(®?) can also be solved in polynomial
time. We will also prove a sharper result when conv(© ) is a polytope, such as is the
case when 6(+) is a vector of multilinear functions (see Corollary 2.7 in [43]). For this
setting, we will assume that we have access to a polynomial time oracle that generates
facet-defining cuts for a family of lower-dimensional polytopes of conv(®2), using
which we will generate facet-defining cuts for conv(®?) in polynomial time.

5.1 Polynomial time equivalence of separations for simultaneous hulls
In this subsection, we show that proof techniques for Theorem 4 can be general-

ized to establish polynomial time equivalence of separations between conv(®”) and
conv(®9). First, Lemma 3 and the equality in (16) can be easily generalized to the
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context of conv(@F) using a similar argument. Let @FC be the graph of 6 over
polytope P Q, thatis, ®7C := {(u,5,0) | 0 = O(s1n, ..., 5an), (u,s) € PQ}.

Lemma?7 proj(u’e)(@PQ) =0F and proj(s’e)(@PQ) = ©2. Moreover; it holds that
conv(©F) = {(u,0) | (5.0) € conv(®9), (u,s) € PO} o

Now, observe that Algorithm 2 can be applied to modify coefficients of a valid inequal-
ity for conv(® Q).

Proposition 8 Given a valid inequality (o, s) + (B,0) + b > 0 for conv(©2), Algo-
rithm 2 generates a valid inequality (o', s) + (B,0) + b > 0 for conv(©2) so that
alfj <O0foralliand j ¢ {0,n} and (&', s) < {a, s) for every s € Q.

Proof Let o’ be the vector returned by Algorithm 2 when « is given as input. Then,
for any (s,0) € @2, there exists § € Q such that (a,s) > (a/,s) = (a,§) >
—(B, 0) — b, where the first inequality, first equality, and the existence of § follow
from Proposition 6. The second inequality follows because (5, ) € ©® Q and («, s) +
(B,60) + b > 01is assumed to be valid for conv(@Q). O

Theorem 6 The separation problem of conv(©F) can be solved in polynomial time
given a polynomial separation oracle for conv(©2).

Proof The proof is similar to that of Theorem 4. We construct s using Algorithm 1
with u as input. If (s, 0) € conv(®2) then, since (i1, 5) € P Q, Lemma 7 shows that
(i1, 0) € conv(®F). If (5, 0) ¢ conv(® Q). we use the separation oracle of conv(® Q)
and Algorithm 2 and Proposition 8 to obtain an inequality («, s) + (8, 6) +b > 0 valid
for conv(®2) that separates (5, 6) from conv(@ €). Then, we use the transformation
of Lemma 6 to obtain o’ and observe that, for all («, 6) € conv(®F) and (u, s) € PO,
(@', u)+{B,0)+b > {a,s)+(B,0)+b > 0. Since, by Lemma 6, {¢’, it) = (@, 5) <
— (B, 9_) — b, the inequality is not satisfied at (u, 0) and, thus, separates (i, 0) from
conv(d?F). O

5.2 Polynomial time equivalence of facet generations for simultaneous hulls

In the following, we will show that the facet generation problem of conv(© ) can be
solved in polynomial time, given a facet generation oracle for conv(®2/) for J € J.
By a facet generation problem for a polyhedron S, we mean that in addition to the
separation problem of S, we return a hyperplane that contains S and does not contain
x if x ¢ aff(S), or return a facet-defining inequality of S that is not satisfied at x.
We start by formally defining a family of polytopes of the form Q that result
when subsets of the outer-approximators of f;(x) are considered. Consider J =
(J1,...,Jq) € J, where J is defined as in (22). For any y € RA*(+D et yj =
1ns - -5 Ydu,), where y; ;. are the components of y; corresponding to the index J;. Let
J = (J_l, el fd), where j, is the complement of J;, i.e., f, ={0,...,n}\J;. Using
these definitions, we can now write, up to reordering of variables, that y = (y,, yj).
Leta = (ay, ..., ay) be avector in RI*"+D g6 that a; is strictly increasing for every
iefl,...,d}).Forany J = (Ji, ..., Jg) € J,wedefine Q; := Q1j; x -+ x Qqy,>
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where Q; . is the simplex defined in (10) with parameter a; j, € R/l and consider the
graph of 0(-) over Q; defined as @27 := {(s;,0) | 0 = O(sin, ..., San). 57 € Qs}.
With the collection of d-tuples 7, we also associate a family of faces of Q, that is,
foreach J € J, Fj = Fyy; x --- x Fyy,, where F;j, = conv({vl-j | j e Jl-})
and v;; = (ajo,...,aij—1,0ij,...,a;;) for all i and j. Similarly, we consider the
graph of (-) over F; defined as @7 := {(s,0) | 0 = O(sin, ..., 5qn), s € Fy}.
In the next result, we will provide the invertible affine isomorphism relating points in
polytopes conv(® Q7Y with those in conv(©@ 7). Recall that two polytopes X C R™
and Y C R" are affinely isomorphic if there is an affine map f : R” — R”" that
is a bijection between the points of the two sets. Let f : R” — R and X be a
convex subset of R"™. For any valid inequality (o, x) + (8, u) + b > 0 of the convex
hull of {(x, 1) | & = f(x), x € X}, we shall denote by T}“’B’b)(X) the face of

conv({(x, 1) | w = f(x), x € X}) defined by the valid inequality.

Lemma 8 Assume that conv(© Q) is a polytope. Let J = (Ji, ..., J;) € J and let
(o, ) + (B, 0) + b > 0 be a valid inequality ofconv(@Q) so that aj = 0. Then, the
face Te(a’ﬂ’b)(FJ) of conv(®F7) is affinely isomorphic to the face Te(a”ﬁ’h)(QJ) of
conv(® Q/).

Proof Let J = (Ji,...,Jq) € J. Since F; is a face of Q and conv(®9) is a
polytope, it follows readily that conv(©® ) is a polytope. We first show that conv(® /)
is affinely isomorphic to conv(® Q7). Consider an affine map A : s; — t such
that tjj = sij for j € J; and tij = (1 - Vij)sil(i,j) + VijSirG,j) for j ¢ J;, where
1G, j) = max{j’ € J; | j' < j},rG,j) = min{j’ € J; | j/ = j}, and y;j =
(aij —ai, jy)/(@ir, j) —aiii, j))- It follows from second result in Proposition 5 that A
maps the polytope Q ; into the face F';. The inverse of A is defined as s — s; and maps
the face F; into the simplex Q. This is because, for any s; € vert(F;,), there exists
ak € J; such that s;j = min{a;;, aj} forall j € J;. Thus, 5;;, € vert(Q;y,). Consider
the affine transformation, IT, defined as (s, 60) — (A (s7), 9) and its inverse, IT !,
(s,0) — (s,0). Note that, in calling the projection operation as an inverse of I7,
we are interpreting IT as a transformation into the affine hull of @7 rather than into
©€ . In other words, [TO2/ = @7 and T~ '©F7 = ©®27. Therefore, conv(®@F7) =
conv(ITO27) = I conv(®<’) and, similarly, conv(® 07y = T~ 'conv(®F7). 1t
follows that conv(©®£7) is affinely isomorphic to conv(®@2/).

Now, let (a, s) 4 (B8, 8) +b > 0 be a valid inequality for conv(@ <) so that aj=0.
Then, the validity of the inequality (s, s;) + (8, 6) + b > 0 for conv(©® Qy ) follows
since o j = 0. Clearly, the corresponding faces, To(a’ﬂ ’b)(F 7) and Tg(o” A ’b)(Q J), are
affinely isomorphic under the mapping I7. O

As a consequence of Proposition 8, we obtain the following monotonic property
for a facet-defining inequality of conv(@2).

Lemma 9 Assume that conv(®2) is a polytope. Let (a,s) + (,0) +b > 0 be a
face-defining inequality of conv(© ). Then, a;j <0foralliand j ¢ {0, n}. O

Assume that conv(©@2) is a polytope and observe that conv(®”2) is a poly-
tope since, by the second part of Lemma 7, conv(©F2Q) = {(u, s,0) ‘ (s,0) €

@ Springer



460 T.He, M. Tawarmalani

conv(©9), (u,s) € PQ}. Consequently, by the first part of Lemma 7, conv(©7) is
a polytope.

Theorem 7 Assume that conv(© L) is a polytope. The facet generation problem of
conv(@F) can be solved in polynomial time if there exists a polynomial time facet
generation oracle of conv(®27) for every J € J.

Proof Let (ii,0) € RY*"TD+k and assume that i € P. Let § be the point returned
by Algorithm 1 with u as input, and define J = {Ji,..., Jg}, where J; := {j |
u;j = 5;j}. We assume that (s, 0) ¢ ©2; otherwise (i1, 0) € @F as in the proof of
Theorem 6. We only consider the case when the facet-generation oracle produces a
non-vertical facet-defining inequality, (acy, s7) + (8, 0) + b > 0, of conv(©@</) with
(ay,57) + (B,0) + b < 0. Instead, if the oracle returns a hyperplane which contains
© 27 asimilar proof without the need for the point (5, 5), which we define later, can
be constructed easily. By Lemma 9, o;; < O foralli and j ¢ J;\{0,n}. Leta; = ay
and @7 = 0. Then, it suffices to show that (e, u) + (8, 60) + b > 0 is facet-defining
for conv(®F) since (&, it) + (B,0) + b < 0.

To prove the validity of the inequality, we consider a point (u, s,6) € @F2 and
observe that (&, u) > (@, s) = (ay,s;) > —(B,0) — b, where the first inequality
holds because, for all i and j ¢ {0, n}, &;; < 0 and s;; > u;;, and s;, = u;y, the first
equality is because &7 = 0, and the second inequality is because of the validity of
(@y,s7) 4+ (B,6) + b > 0 for @2/, Therefore, the inequality is valid for @€, and
hence, by Lemma 7, for er.

For simplicity of notation, for any set S we abbreviate Te(a’ﬁ b (S) as T(S). We will
show that dim(7(P)) = dim(©") — 1, and thus, conclude that (&, 8, b) defines a
facet of conv(® 7).

First, we construct a subset H of T'(P) so that, fori’ € {1,...,d}and j' ¢ J;, there
exist two points, (S, 0 Yand (5, 6 ),in H which differ only in coordinate corresponding to
sitjr, thatis, (S, é) —(s, é) = (8e;7j7, 0) where § # Oand e;r s is the 7™ principal vector
in the ;"™ subspace. Consider (5, 0) € ri(T(QJ)) and observe that §; € ri(Qy). If
not, one of the inequalities defining Q is tight at all points in 7(Q ) contradicting
that («y, B, b) defines a non-vertical facet of conv(® Q7). Now, we extend the point
57 to the point § of F; using the transformation A defined as in the proof of Lemma 8.
By Lemma 8, § € ri(Fy) and (5, 0) € ri(T(FJ)). It follows that §;; > a;o for all
i and j # 0. Moreover, there exist a set of points {(s*,6%)} _. € T(F;))n e
and convex multipliers 1 € RIXI such that (3, ) = Y kek Ar(sk, 6%). Now, let 5%
be a point so that Elkj = slkj for (i, j) # (i’,j") and 511‘1 = a;o otherwise. Since
&y = 0and j/ # n, it follows that, for all k € K, (§%,6%) € T(P) N ©F. Then,
we define (5, 0) := >k Ak (5%, 6%). Therefore, by construction, (§, §) € T(P) and
(5,0) € T(Fy) C T(P),and (§,0) — (5,6) = (Girj — aip)er 7, 0) # 0.

Second, we argue that whenever (s, 0) € ©<2 and sij e R,i e {l,...,d} and
J ¢ {0, n}, the point (s + Zflzl Zj%{O,n} €ijdij, 9) belongs to aff(T(P) U(A(Sy), 5))
for some (57, 6) € ®27. We start with the case when 8;j =O0foralli and j # {0, n}.
It follows from Lemma 2 that the point (s;,6) € ©%27 . Thus, there exists a point
5y, é) e ©®27 not dependent on (s;, 0), such that (s;, 0) can be expressed as an
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affine combination of points in 7(Q ) U (s, 6). Let IT be an affine mapping so that
M(s;,0) = (A(sy). 0). Then,

O(sy,0) € (aff(T(Q)) U (5, 0))) = aff (T (Fy) U (AG)), 0))
C aff(T(P) U (AG)). 0)),

where first inclusion holds because (s;, 6) € aff (T(Q UGy, é)), the equality holds
by Lemma 8 and by the fact that A, as an affine transformation, commutes with affine
combinations, and the containment holds due to T (Fy) € T (P). Because the point
(s, 0) differs from (A(s 7), 9) only in coordinates corresponding to variables of the
type s;; fori € {1,...,d} and j ¢ J;, it follows from the existence of H that (s, 0)
can be expressed as an affine combination of points in 7 (P) U (A(§ 7), 5). Next, we

prove the general case. Leti” € {1, ...,d} and j” ¢ {0, n}. Then, consider the point
(s”,0"), where s = v;o for i # i”,s], = vj»j» (see Lemma 2 for the definition of
vij),and 0" = 6(s}, . ..., sy,). Clearly, there exists € > 0 so that two distinct points,

(s”,0") and (s” — ee;»jn, 6"), belong to ©¢ and are, as shown above, expressible as
affine combinations of points in 7'(P) and (A (s7), 6 ) Since these points differ only in
the variable s;» j», it follows that we can change the variable s; ;» for any (s, 6) € © Q
arbitrarily while remaining in the affine hull of 7' (P) U (A ), é).

Last, let (i1, ) € ®F and define (5, 6) as a point so that s; is the point returned by
Algorithm 1 when i; is provided as input. Then, it follows that (5,6) € ©¢ Since
ujj = s;j foralli € {1,...,d} and j € {0, n}, it follows that there exists (5, 8) so
that (i1, 6) is expressible as an affine combination of 7 (P) U (A(Sy), #). This shows
that dim (7' (P)) = dim(©%) — 1. m]

Corollary 2 Assume that concg(¢)(s) is a polyhedral function. Let i € P and let
s = (S1,...,5q), where 5; is returned by Algorithm 1 when it is provided with u;
as input. Define J = (J1, ..., Jq), where J; = {j | ujj = 5;j}. Assume that there
is an oracle that, given 5j, generates a facet-defining inequality, ¢ < (ay,sj) + b
of concg, (¢) tight at 5. Define a € RYHD g0 that @y = ay and aj = 0. Then,
¢ < (&, u) + b is a facet-defining inequality for concp (¢) that is tight at u. Besides
the call to the oracle, this inequality is generated in O(dn) time.

Proof By Theorem 7, ¢ < (&, s) + b is facet-defining inequality for concp (¢)(u).
The proof is complete by observing that

concp (¢) (i) = concg(P)(s) = concr, (@)(5) = (@, 5) +b = (@, u) + b,

where first equality holds by Corollary 1, second equality follows from s € Fy,
third equality holds by the assumed tightness property of the oracle and the affine
isomorphism of @€/ and ®f7 shown in Lemma 8, and the last equality follows by
&J-:Oandﬁjzij. O
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6 Conclusions

In this paper, we tightened the factorable relaxation by proposing a new relaxation
framework for mixed-integer nonlinear programs. The framework gives the first struc-
tured approach to relax composite functions using the inner-function structure. This
is achieved by relaxing the outer-function over a polytope P that encapsulates infor-
mation about the inner-functions implicit in their estimators. The structure of P is
relatively complex in that its extreme points grow exponentially with the number of
estimators, even when the number of inner-functions is fixed. Instead, we devised a
fast combinatorial algorithm to solve the separation problem over P using an oracle
to separate over Q, a much simpler subset of P. For vertex-generated outer-functions,
with a fixed number of inner-functions, we gave a tractable polyhedral representa-
tion for the convex hull over P. When the outer-function is a bilinear term, and each
inner-function has one estimator, we developed closed-form expressions for new valid
inequalities, generalizing the factorable programming scheme. More specifically, if
the inner-functions have n| and n, estimators, we derived 4n1n; +2n1 + 2n, inequal-
ities besides the four McCormick inequalities. The new relaxations do not introduce
variables beyond those used in the factorable scheme. In [22], we consider specially
structured outer-functions for which convexification of the graph over Q is tractable,
and using our results here, devise tractable algorithms for convexification over P. If
the convex hull of the graph of outer-function over Q is polyhedral and there is a
facet-generation oracle for this graph and some of its subsets, we constructed a facet-
generation separation algorithm for this graph over P. Finally, we generalized our
results to the setting involving a vector of outer-functions.

A Appendix
A.1 Proof of Theorem 2

Proof First, we show that R = proj, , ¢)(I§), where

convp(p)(u) < ¢ < concp(P)(u), x € X, un = f(x), ujo = ajo

R:= {0 u ) : ,
{ uij(x) <uij Vj € Ajj\{n}, ujj <ujj(x) Vj € Bjj, u€ P

Obviously, R € proj(x’u_n,qb)(ﬁ). To show that proj(xﬁu'n’(p)(ﬁ) C R, we consider a
point (x, u, @) € R. 1t follows readily thatu.,, = f(x) and x € X. Moreover, we have
¢ <concp(P)(uy,...,ug) < concP(qb)(zZl(x, Ulp), ..., Ug(x, ud,,)),where the sec-
ond inequality holds due to the monotonicity of concp (¢)(«) shown in Lemma 1, and
uij(x) = ujj fOl‘j € A,-j\{n}, ujj = uij(x) fOI'j € Bij and i;, (x, Uip) = Ujp. A Sim-
ilar argument shows that convp(¢) (i1 (x, u1n), . .., Ua(x, ugn)) < ¢. Then, by (4),
(i1 (x, win), - .., lia(x, ugn), @) € conv(®). Hence, (x, u.,, ¢) € R.

Next, we show that gr(¢o f) C proj(x,qs)(lé), thus proving that gr(¢o f) <
proj(x’d))(R). Let (x,¢) € gr(¢po f) and define u = wu(x), where, in particular,
u, = f(x). It follows readily that u € P because, by construction, we have
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{u | u =ulx),x € X} € P.Moreover, since (x,®) € gr(¢po f), we have ¢p =
@(f (x)) = ¢ (u.,), which implies that (u, ¢) € @* and, thus, (u, ¢) € conv(P”). In
other words, convp (¢)(u) < ¢ < concp(¢)(u). Therefore, (x, u, ¢) € R and, thus,

gr(¢o f) € proji 4)(R).
Last, assume that {(x,u.,) | u., = f(x), x € X} is outer-approximated by a
convex set, and u;; (x) is either a convex underestimator or concave overestimator for

a~ll i and j < n. Then, R is convex, and therefore, R is convex being a projection of
R. O

A.2 Proof of Proposition 2

Proof Since q§ﬁ C G and G is convex, it follows that c:onv(@lﬂ3 ) € G. Now, we
show that conv((;bﬁ) 2 G. Let (t,¢9) € G. It follows that ¢ € P and there exist
convex multipliers A; and (¥, %) € ®@* such that (1, ) = Dok Ak (%, 9%). Let t_lkj =
max{tikj, uiL, tl-kn +aij — ulU } We show that (i!;)?:o € 13i. This is easily verified since
it o=tk 1 =1tk and max{tl-kj, ukb, tk v a;j}. Since tf, =¥,
it follows that (7, ¢*) € conv(®”). Then, (7, ¢) = Y, Ax(. ¢¥) € conv(®?P).
However, 7 € P and 7 > ¢. Therefore, conv(@ﬁ ) D G because ¢ € P and

} < min{tk

+aij —u in’

conv 5 ($)(1) < conv 5 ($)(P) < ¢ < cone () (7) < cone () (0).

The second and third inequality follow from (7, ¢) € conv(cbﬁ ). We will now show
the first inequality, and the argument for the last inequality is similar. To see that
conv 5 (¢)(t) < conv 5(p) (1), letit = T—1(7) and u = T~ (¢) and observe that

conv 5 (¢)(t) = convp(¢)(u) < convp(¢)(it) = conv 5(#) (1),

where the first and last equality is because convex envelopes do not change when
the domain and argument undergo the same invertible affine transformation and the
inequality follows from Lemma 1 for —¢ because, for j € A;\{0, n} (resp. j € B;),
uij < ujj (resp. u;j > u;j), ujo = u;0, and u;, = u;,. The last statement in the result
follows since T is an affine transformation and 7' (u) € P ifand only ifu € P. O

A.3 Proof of Proposition 3

Proof Let (x, u.,, ¢) € R(u(x), a). Define u = u(x) and thus (u, ¢) € conv(@7@).
Let u’ = u’(x). By the definition of u’(x), u; = u;(x)A;. To show that R(u(x), a) <
R(u/(x), a/), we only need to show that (u', ¢) € COHV(GDP(a/)). Let A be the affine
transform used to obtain (u’, ¢) from (u, ¢). Then, the result follows because:

W', ¢) = A, ¢) € .Aconv((bp(“)) = conv(.Aq)P(“)) C conv(q§P(“,)),
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where the first equality is by definition, the second equality is because .A, being an
affine transform, commutes with convexification. All that remains to show is the final
containment. This follows if we show that, for each (u, ¢_>) € @P@ the point (it’, d;) =
A, ¢) € ®P@) | where we recall that A is such that i, = u; A;. Observe that

_ ’ _ _ _
aioe"+1Ai < u;A; < a;A; shows that a;pe” +1 < u; < alf and u; A; < uin+1e”+1A,~

shows that i < Hingre” T = ﬁ;n+]e"/+1. Finally, since ii;, = it},, it follows that
¢ = GG, ... i) = ¢}, ..., it,,). Therefore, (@', ) € &) and the result
follows. O

A.4 Proof of Lemma 2

Proof The inequality description follows from the preceding discussion since Q; and
A; arerelated by an invertible affine transform, which maps v;; to ;; and the constraints
in (14) transform those in (11). Now we show the last statement in the result. For any

0<j < j <1,itfollows that L0 Zk ]HMM which is a

a-j —a,j Ajk—aik—1 d;jr—a;
S Ay
convex combination of ”A‘T”;]l fork = j+1, ..., j . Therefore, it follows from (14)
Siin—s —Sij
< ij ij’ < lj J <
that 0 < ar—ary = apmay = 1. O

A.5 Proof of Lemma 3

Proof We first show that projs, (P Qi) = Q;. Clearly, proj,, (PQ;) S Q; since for
every (u;,s;) € PQ; we have s; € Q;. To show Q; C projSi(PQ,'), we consider a
point s; € Q; and observe (s;, s;) € P Q;. Second, we argue that projui (PQ;) = P;.
To show P; C projui(P 0i), let u; € P; and define s;; = min{a;;, u;,} for all j. We
will show (u;, s;) € P Q;.Itfollows readily that, for j € {0, n}, u;; = s;j and u; <'s;.

In addition, observe that there exists a j’ such that a; =1 < uin < a;j. By direct
a;:r—Uip

computation, s; = Av;jr—1+(1—=2A)v;j,, where A = WZ/J—T'IH other words, s; € Q;.
ij ij/—

To prove projui (PQ;) C P;, we consider a point (u;, s;) € PQ; and show u; € P;.

Clearly, ujo = a;o. Also,for j = 1,...,n,a;0 < u;; < s;; < min{u;,, a;;}, where the

first two inequalities hold by the definition of P Q; and the last inequality holds because
Ui, = Sin and the inequality, s;; < min{a;;, s;,}, is satisfied by all extreme points of
Q;. The last two statements follow similarly because P, &2 dPCQ are obtained
from P, Q, and P Q respectively, by adding a coordinate ¢ which depends only on
coordinates shared by P, Q, and P Q, namely (u1y, ..., Udn) = (Stny--.,8qan). 0O
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