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Abstract 

Most crystalline materials present a highly heterogeneous response at the microscale, 
which can be affected by both internal factors (such as microstructural parameters) and external 
factors (such as loading). Relating microscale inhomogeneities to the macroscale response of a 
material requires the use of homogenization techniques, usually based on the concept of a 
Representative Volume Element (RVE) – the smallest volume of material that represents the global 
average response. In this work we present a new and robust experimental method of measuring the 
size of a strain-based RVE from high-resolution grain-scale strain fields obtained using Digital 
Image Correlation (DIC). The proposed method is based on the statistical (stereological) nature of 
the RVE, which has been widely adopted in numerical studies, and involves dividing a strain field 
into randomly selected regions of varying sizes and statistically analyzing the distributions of 
average strains within them. To validate the new method, we generate a large number of synthetic 
strain fields from a fractional Gaussian noise algorithm. The proposed stereological method is 
shown to be capable of producing reliable RVE measurements from a very large range of possible 
microscale strain fields while at the same time being robust in that it can produce RVE 
measurement results even in cases where other existing methods may be unable to do so. The 
proposed method has a low field-of-view requirement, only needing a field-of-view about 1.2 
times as large as the RVE to produce reliable measurements. In addition, the stereological method 
offers significant flexibility since its statistical nature allows for control over how strict the RVE 
measurement should be in each case. 
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Introduction 

It is well established that strain heterogeneities at microscale are closely related to material 

response at the macroscale in crystalline metals [1, 2], with many studies exploring formation and 

development of strain heterogeneities in polycrystals subjected to various loading conditions. For 

example, under plastic deformation Sachtleber et al. [3] used a photogrammetry-based digital 

image correlation (DIC) method to measure surface strains in aluminum polycrystal samples with 

columnar coarse grains and identified triple-points as preferential for strain localization. In fatigue, 

Abuzaid et al. [4] used a high-resolution DIC technique to measure strain inhomogeneities at the 

grain scale and their correlations to micro-crack nucleation in a nickel superalloy. During creep, 

Chen et al. [5] used an in situ neutron diffraction technique to measure the axial internal strains for 

different family of grains in a pre-strained austenitic stainless steel loaded at varying temperatures, 

reporting no change in the axial internal strains during creep at 550°C. 

On the numerical side, many of the studies that investigate heterogeneous strain 

development at the microscale have as their goal the validation of micromechanical and/or crystal 

plasticity models, e.g., [6], where microscale behavior is simulated and then homogenized in some 

fashion to predict macroscopic response. Such homogenization methods must be performed within 

a volume of material that has been described by Hill [7] as being able to reproduce the average 

value of some property of the bulk material, forming the basis of the concept of a Representative 

Volume Element (RVE). Many authors have recognized the existence of multiple RVEs, coining 

the terms microstructural volume element or property volume element, to respectively describe an 

RVE capable of reproducing macroscale average microstructural properties (e.g., grain size, twin 

density, misorientation distribution) or mechanical properties (e.g., moduli, yield strength, strain 

distribution) [8]. Bagri et al. [9] recognized the existence of different types of RVE, highlighting 
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the inherently statistical nature of the RVE. Earlier, Swaminathan et al. [10, 11], described the 

RVE as the smallest microstructural domain for which statistical distributions of morphological 

parameters, or material properties, converge to those for the entire microstructure, introducing the 

term “statistically equivalent RVE”. With this understanding, the RVE is required to reflect not 

only the average macroscale property, but also its statistical distribution. Experimentally, these 

distributions can be thought of as the natural variations on the response from a series of samples 

cut from the same bulk material, i.e., material-induced scatter. These variations are inherently 

present in polycrystals because of the random nature of the process of crystal formation and can 

vary in severity depending on the property of interest, for example, material-induced scatter of 

fatigue life will be much larger than scatter in elastic modulus, and on material texture. 

With the RVE playing such a central role in homogenization methods, it is only natural 

that there has been much study concerning the estimation of RVE sizes for different materials and 

properties. Bargmann et al. [12] made an extensive review of numerical methods for RVE 

estimation, including many statistical approaches for a range of different materials. Githens et al. 

[13] characterized microscale deformation mechanisms of a high strength magnesium rare-earth 

alloy using crystal plasticity simulations and homogenization. Motaman et al. [14] conducted a 

study on anisotropic polycrystal plasticity on additively manufactured metallic materials by 

modeling the microstructure through homogenization techniques. Ranganathan and Ostoja-

Starzewski [15] used stochastic boundary value problems to estimate the size of an RVE in random 

polycrystals. Salahouelhadj and Haddadi [16] estimated RVE sizes for copper polycrystals using 

homogenization techniques and finite element simulations. Among many other such studies, of 

special relevance to the present effort is the recent stereological approach of Critchfield and 

Johnson [17] where they select multiple random samples from within a numerically simulated 
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domain in order to statistically estimate the RVE size. On the experimental side, a few studies have 

developed methods of measuring RVE size, with one of the earliest being by Liu [18] who 

introduced the idea of using full-field strain measurements to determine the size of a strain-based 

RVE. Efstathiou et al. [19] present another method of experimentally determining the size of a 

strain-based RVE, using the standard deviation of the average strains in different regions of the 

strain field as a measure of the homogenization of strains. More recently, Ravindran et al. [20] 

proposed a method of experimentally measuring a strain-based RVE based on the average strain 

of an increasing square portion of the microstructure. A few other studies have made attempts at 

measuring the RVE size experimentally [21, 22], with most of them making use of full-field strain 

measurement techniques to estimate the size of the strain-based RVE. 

The objective of the present work is to develop a robust stereological methodology of 

measuring the size of an RVE based on experimental grain-level strain fields which will provide 

not only an average single-valued RVE size, but a statistical variation based on specific 

microstructural distributions of strain. We will draw from the advantages of existing techniques 

that have been proposed for measuring average RVE size combining them with approaches for the 

numerical estimation of RVEs that are statistically based. The proposed method of experimentally 

measuring strain-based RVEs will thus account for its statistical nature. 

High Resolution DIC Grain Scale Strain Fields 

 The experimental data from which the RVE size will ultimately be obtained consist of 

digital image correlation (DIC) measurements of residual plastic strains at the grain scale of a 

polycrystalline material. Through the correlation of undeformed and deformed images of a surface 

covered by a random speckle pattern, DIC provides full-field displacement and strain 

measurements on the surface [23]. These measurements have no inherent length scale, which 
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means that as long as the correlated images have sufficiently high resolution and appropriately 

scaled speckle pattern, DIC can be used to measure strains across multiple length. Depending on 

optical magnification and material grain size, the high-resolution DIC (HiDIC) technique [24] is 

capable of discerning non-uniformities in the strain field at the microstructural level through the 

use of images taken under an optical microscope. One disadvantage of this approach is the reduced 

field-of-view resulting from the high magnification needed to obtain grain-level information. A 

larger field-of-view can be achieved by taking a series of images in a grid covering a larger region 

of interest and stitching the images together [24]. If this image-stitching approach is followed, 

measurements are then limited to capturing residual strains left in the material after unloading 

since the sample would have to be removed from the loading fixture in order to be placed under 

an optical microscope (i.e., an ex situ measurement approach). 

The experimental results shown here were obtained using such an ex situ approach under 

an optical microscope with ~0.1 μm/pixel resolution images after loading the sample under creep 

conditions. Creep loading was selected in order to allow for a convenient way to introduce plastic 

strains amenable to an ex situ measurement methodology. A grid of 6 by 6 images was taken of 

the sample surface (with an overlap of 50%), using a 2000 by 2000 pixel detector, to cover a region 

of interest of about 400 by 400 μm. These images were then stitched together using the built-in 

stitching function in Fiji ImageJ [25], and the resulting sets of stitched images were used for 

correlation with a subset size of 61 pixels (~6 μm) and a step size of 10 pixels (~1 μm). More 

details of the experimental method are given in [26, 27]. Here we will restrict ourselves to 

presenting only a sampling of the experimental results and rather we will concentrate on describing 

the methodology for stereological extraction of RVE size. Fig. 1 shows examples of the resulting 

axial strain field obtained measured using HiDIC for two austenitic stainless steel 709 samples. 
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Sample 1 (Fig. 1a) was loaded to 80 MPa for 1 hour at 800°C (~25% below yield stress at 800°C), 

while sample 2 (Fig. 1b) was loaded to 215 MPa for 1 hour at 300°C (~25% below yield stress at 

300°C). The strain fields have been overlaid with the grain boundaries obtained through an electron 

backscatter diffraction (EBSD) scan of the same area of the samples before loading. The resulting 

strain fields for both samples show very pronounced inhomogeneity, and although both instances 

correspond to conditions of 1 hour creep at a stress of 25% below their corresponding yield point, 

at least visually, appear very different from one another when plotted on the same contour scale. 

The next section will go over the use of two existing experimental methods of measuring the strain-

based RVE sizes for these samples and discuss the applications of each one. 

 

Fig. 1. Residual strains along the vertical loading direction (εyy) obtained for two stainless steel 

samples loaded to 25% below yield strength for 1 hour at (a) 800°C  and (b) 300°C, overlaid 

with grain boundaries (black lines) obtained from EBSD. 



7 
 

Application of Two Experimental RVE Measurement Methods 

Standard deviation method 

What we will refer to as the “standard deviation method” follows closely the method 

developed by Efstathiou et al. [19]: dividing the strain field into a grid of boxes of the same size 

and observing the variation of the standard deviation of the box averages vs. the size of the boxes. 

First, the field is divided into a grid of boxes of the same size, starting from the top-left corner the 

strain field is divided into a grid, with the portion to the right and bottom where another box 

wouldn’t fit being left out of the calculations. Then the average strain of each box is calculated, 

and finally, the standard deviation of these averages is computed. This is repeated for each box 

size, varying from the size of the entire field of view to a 1x1 pixel “box”. The RVE size is then 

determined by fitting a line to the trailing points and assuming a large deviation from linearity to 

be a result of a box size considerably smaller than the RVE. Fig. 2a shows the plot for the standard 

deviation of box average strains vs. the box size for sample 1. In this case, a large deviation from 

linearity is observed for a box size around 100 μm, and this value is taken as the RVE size for 

sample 1. The inset in Fig. 2a shows the strain field with the obtained RVE size box drawn in the 

upper left corner. Note that from this point forward, the RVE sizes will be reported as a single 

length value, which should be understood as the side of a 2D square box, i.e., in this case the RVE 

shown is 100 μm by 100 μm box on the surface. In fact, since only surface measurements are used 

in this computation, a limitation of 2D DIC, perhaps it is more appropriate to call this region a 

Representative Surface Element (RSE), but as is common in the literature we will assume that the 

size of the RVE into the third dimension mimics its size on the surface (i.e., the RVE is assumed 

to be a 100 μm by 100 μm by 100 μm box).  
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A limitation of this method is already apparent by looking at the box sizes from 200 to 400 

μm in the plot of Fig. 2a. Since these boxes are larger than half the size of the entire field, only a 

single box can fit inside of it, hence the standard deviation of the averages for all box sizes from 

200 to 400 μm falls to 0. Ultimately this means that this method is only able to measure an RVE 

that is considerably smaller than the field of view. In other words, this method requires strain 

measurements spanning relatively large areas of the surface that far exceed the (expected) RVE 

size. This limitation is illustrated in Fig. 2b which shows the equivalent plot obtained for sample 

2, where it is clear that the standard deviation method is not well suited to measuring the RVE size 

for this sample, since the trailing points would result in a very poorly fitted line. This happens 

because sample 2 has an RVE size close to half the field of view (as will be seen below). 

 

Fig. 2. Standard deviation method plots for (a) sample 1 and (b) sample 2; insets show the 

respective strain fields with the obtained RVE sizes drawn (this method is not suited for 

measuring the RVE of sample 2). 
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Centered box growth method 

The second method explored here follows Ravindran et al. [20], and will be referred to as 

the “centered box growth method”. As the name suggests, the method uses a single box grown 

from the center point of the strain field and plots the average strain inside the box vs. box size. The 

RVE size is then determined by evaluating convergence of the average strain within some margin 

of error. Although this range can be varied, following [20] a ±5% margin is used here to check for 

convergence of the average strain to the global average of the strain field. Note that in the 

experiments the average macroscale axial strain is measured from lower-resolution in-situ DIC. 

The point beyond which the box average strains converges to within 5% of the global average is 

taken as the RVE size. Fig. 3 shows how this method can be applied to (a) sample 1 and (b) sample 

2, with insets showing the respective strain fields overlaid by the obtained RVE sizes. 

 

Fig. 3. Centered box growth method plots for (a) sample 1 and (b) sample 2; insets show the 

respective strain fields with the obtained RVE sizes drawn (horizontal lines show the global 

average strain far-field measured from in-situ DIC, and ±1% and ±5% bands from the average).  
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An advantage of this method is that it will produce an estimate of the RVE size as long as 

the field of view is slightly larger than the size of an RVE (the estimated field of view requirement 

is about 1.2 times the RVE size). Because of this, the centered box growth method was able to 

produce a result for sample 2 (Fig. 3b) even though the standard deviation method was unable to 

do so. This means that the centered box growth method can be applied with a field of view about 

half the size of that required by the standard deviation method. However, using a single box grown 

from the center of the field of view also makes the method highly dependent on the starting location 

and the distribution of strains directly surrounding this starting location – issues which ultimately 

can result in unreliable RVE size estimates in some cases. Fig. 3a shows the resulting RVE size 

obtained for sample 1 using the centered box growth to be 10 μm, which appears unrealistic (recall 

that the standard deviation method obtained an RVE size of 100 μm for this same case). The 

distribution of the strains within the field of view, as well as the fact that the center pixels of the 

strain field for sample 1 happen to be close to the average value, cause this erroneous measurement 

of a 10 μm RVE, because the average box strains converged to the global average strain (as 

measured from in-situ DIC) at a very small box size. Statistically speaking, finding an RVE size 

of 10 μm for this sample is an anomaly that happens because of the random nature of 

microstructural distributions, especially given the fact that the average grain size in this material 

is about 25 μm. In fact, these two samples were chosen to illustrate that although each of these 

methods have specific advantages, they do not always converge to a reasonable measurement of a 

single-valued RVE size. In the next section we propose a new method that takes into account these 

statistical variations by considering the RVE as an inherently statistical entity, i.e., a probability 

distribution rather than a fixed value. 
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Stereological RVE Measurement Method 

The method proposed here will be able to measure the RVE from fields of the order of the 

RVE size and also account for the dependence on the location and strain distributions. As discussed 

earlier, previous authors [10, 11] have recognized the statistical characteristic of the RVE, although 

less effort has been made to incorporate this feature in experimental studies. In order to develop a 

new method that takes the statistical aspect of the RVE into account, a large quantity of strain data 

for which the RVE size is controllable is necessary. Such a large number of separate datasets is 

extremely difficult, if not impossible, to obtain experimentally. Therefore, here we will first 

generate highly controllable synthetic “strain fields” that are qualitatively and quantitatively 

similar to those obtained by HiDIC, but for which we can control geometric features so as to 

control the resulting RVE size. The proposed method will be developed and verified based on 

these synthetic strain fields, and will then be validated on experimentally measured data. 

Controllable synthetic “strain” fields 

The procedure used here to generate controllable synthetic strain fields consists of a 

simplified version of the fractional Gaussian noise introduced by Mandelbrot and van Ness [28]. 

Different frequencies of Gaussian noise are generated by taking n by n matrices of random values 

obtained from the standard normal distribution (using the randn Matlab function which uses a 

Mersenne twister generator [29] to produce random values from the standard normal distribution) 

and interpolating them through a cubic spline with not-a-knot end conditions to span the size of 

the final image (the interpolation was done using the Matlab function interp2 with the ‘method’ 

parameter set to ‘spline’). Fig. 4 shows how single-frequency Gaussian noise can be obtained by 

a spline interpolation of a 31 by 31 matrix of random values, from the standard normal distribution, 

to a 500 by 500 pixel image. Then, a synthetic strain field is obtained by adding different frequency 
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Gaussian noises together, multiplied by a weight factor inversely proportional to the frequency 

(i.e., higher frequencies have lower weights). Fig. 5 shows schematically how Gaussian noise 

obtained from varying squared matrix sizes of 500, 250, 125, 62 and 31 pixels can be multiplied 

by increasing weights of 1x, 2x, 3x, 4x and 5x respectively, and added together to obtain a synthetic 

strain field. 

 

Fig. 4. Obtaining one frequency Gaussian noise by spline-interpolating a 31 by 31 matrix of 

random values, from the standard normal distribution, to a 500 by 500 pixel image. 

 

Fig. 5. Different Gaussian noise frequencies are added together, multiplied by inversely 

proportional weights, to obtain a synthetic strain field. 
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The geometric scale (which is closely related to the RVE size) of the final synthetic strain 

field can be controlled by choosing what frequencies of Gaussian noise are added together. A scale 

factor was introduced as a single parameter that controls the geometric scale of the synthetic strain 

fields, as a way to summarize the noise frequencies from which it was composed. The procedure 

to obtain a synthetic strain field of a given scale factor (SF) can be more rigorously described by 

equation 1. 

!"#$ℎ&$'()'&*+(!)) = / (16 − #) · 4#$(5!)
"#

!$%&'"
	 (1) 

, where fn are the components of f=[2,3,4,5,6,7,8,9,10,15,31,62,125,250,500] and Int(fn) is the 

500 x 500 matrix interpolated from the fn x fn matrix of random values from the standard normal 

distribution. 

 

For example, if a scale factor of 14 was used, the synthetic strain field generated would 

consist of only the 500 by 500 interpolated matrix multiplied by a weight of 1, while for a scale 

factor of 8, interpolated matrices of sizes 500, 250, 125, 62, 31, 15 and 10 would be interpolated 

and added together with the corresponding weights of 1, 2, 3, 4, 5, 6 and 7. 

The final step in obtaining synthetic fields comparable to the strain fields shown in Fig. 1 

is to normalize their values (so that average strain values of the synthetic fields have values of the 

order of the real experimental fields with similar distributions) and re-plot the synthetic strain 

fields with the same contour limits. Equation 2 shows the normalization and rescaling procedure 

to obtain a synthetic “strain” field (similar to the real experimental strain fields) from the synthetic 

fields obtained in equation 1. 
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!"#$ℎ&$'(!$78'#)'&*+(!)) = 0.02 · 	!"#$ℎ&$'()'&*+(!))!"#$ℎ&$<()<&*+(!))========================== (2) 

,where 0.02 is the average strain from all the real experimental data and  !"#$ℎ&$<()<&*+(!))==========================	is 

the average value of the synthetic field obtained from Equation 1. 

Representative synthetic fields for scale factors 6, 8, and 10 are shown in Fig. 6, illustrating 

how the scale factor can be used to control the geometric scale of these fields, which is directly 

related to the size of the RVE. Fig. 6 also shows histograms of the “strain” values for each of the 

three synthetic “strain” fields (d, e and f), as well as the histogram of the strain distribution obtained 

for sample 2, for comparison (Fig. 6g). All these distributions look very similar to one another, 

which is what we need, since we would want the only real difference between them to be the 

geographical distribution of the “strains” within the field. Note that we do not have an a priori 

closed form mathematical result of what this RVE size would be, although it is clear from the 

figure that the RVE size varies with scale factor. In addition, these images resemble different 

variations of strain field similar to those seen in Fig. 1, although the numerical values do not 

represent actual strains since there is no guarantee that these “strain” fields are compatible. These 

synthetic strain fields should be treated as mathematical entities capable of providing images with 

controllable length scales (and resulting RVE sizes), and thus should not be used to generate any 

mechanical evaluation of real strain or material behavior. However, their usefulness lies in that 

very large numbers of unique “strain” fields, similar to the ones obtained from real experimental 

data, can be generate and used to develop and verify the proposed RVE measurement method. 
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Fig. 6. Representative synthetic strain fields and histograms of the strains found for scale factors 

(a) 6; (b) 8; (c) 10. For comparison, (g) shows the histogram of strains from sample 2. 

Stereological approach 

The proposed stereological method consists of taking a large number of randomly 

distributed boxes from within the field of view and plotting a histogram of the average box strains 

for each box size. Then, the RVE size can be determined, similarly to the centered box growth 

method, through the use of a margin around the global average strain (as measured from lower-

resolution in-situ DIC), also allowing for a choice on how strict the measurement should be, by 

choosing what percentage of the boxes should fall within the margin. Fig. 7a shows a synthetic 

strain field with a scale factor of 8, superimposed by a few randomly distributed boxes of size 191 
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pixels. Fig. 7b shows the histograms obtained by taking 10,000 randomly distributed boxes of sizes 

10, 191 and 350 pixels. From Fig. 7b it is possible to see that for a box size of 10 pixels, few (less 

than 10%) of the boxes fall within the ±5% margin from the global average strain. With a box size 

of 191 pixels, 80% of the boxes fall within the ±5% margin, while for a box of 350 pixels 80% of 

the boxes fall within a ±1% margin of the global average strain. These two ranges can be 

understood as a confidence level and a margin of error: 80% of the time a box of size 191 pixels 

will be a strain-based RVE (i.e., will reflect the global average strain), considering a margin of 

error of ±5% on the strains, or 80% of the time a box of size 350 pixels will be a strain-based RVE, 

considering a margin of error of ±1% on the strains. Using this inherently statistical approach, we 

can see how the statistically anomalous result obtained from the centered box growth method for 

sample 1 (Fig. 3a) could be possible (it would be one of the few boxes in the 10-pixel histogram 

that fall within the ±5% margin in Fig. 7b). 

 

Fig. 7. (a) Synthetic strain field with scale factor 8 superimposed by randomly distributed boxes 

of size 191 pixels; (b) Histograms of average strains for a box sizes of 10 pixels, 191 pixels, 

when 80% of the boxes fall within a ±5% margin from the global average strain, and 350 pixels, 

where 80% of the boxes fall within a ±1% margin of the global average 
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Number of boxes selection 

 Apart from the margin of error and the confidence level (or threshold level), that should be 

selected according to the noise level of experimental data and the desired strictness of the 

measurement (see discussion of Fig. 11), one other parameter that that can be varied when applying 

the stereological method is the number of randomly selected boxes that are taken from within the 

strain field. In the example of Fig. 7, 10,000 boxes were selected, which allowed the threshold 

value of 80% to be evaluated as 8,000 out of the 10,000 boxes. This lowers the probability that for 

a given strain field, by chance, the selected boxes end up converging to the global average at a 

much smaller box size, resulting in an erroneous RVE size measurement. 

 It is important to note that by taking 10,000 randomly selected boxes from the strain field, 

overlap of sampling boxes is to be expected for larger box sizes. This might introduce some 

systematic error, but it also guarantees that the entire strain field will be covered. In contrast, for 

example the sampling method used in the standard deviation method, where dividing the field into 

a regular non-overlapping grid, is bound to leave some strain field data unaccounted for when the 

box size does not exactly tessellate the region of interest. The requirement that the entire strain 

field data be represented for all box sizes considered is of course dependent on the strain field 

develop and thus the number of boxes used is not a universally fixed quantity, but rather is a 

parameter that could be adjusted depending on the relative scale of image, microstructure and 

resulting strain field. 

 For the fields considered here, a study on the influence of the number of boxes on the 

resulting RVE size was conducted and is shown in Fig. 8. The RVE size of synthetic “strain” fields 

of scale factors of 0, 3, 6, 8 and 10 was measured using the stereological method with a margin of 

±5%, a threshold of 80% and different number of boxes (100, 1,000, 5,000, 10,000 and 20,000). 
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For each point in Fig. 8, 1,000 different synthetic “strain” fields were generated, and the median 

RVE size measured was plotted. The error bars show the maximum and minimum RVE sizes 

measured out of those 1,000 runs. 

 

Fig. 8. Plot of median RVE size measured vs Number of boxes used. Each point was obtained 

from applying the stereological method to 1,000 different synthetic “strain” fields and 

calculating the median RVE size measured. Error bars show the maximum and minimum RVE 

sizes obtained. 

 This result shows how the number of boxes can affect the results for RVE size. With lower 

number of boxes, there is a higher probability that for a single strain field the method gives an 

erroneous result, which happens when, by chance, 80% of the randomly selected boxes fall within 

the margin from the global average strain. This is made clear from the lower values for the median 

and minimum RVE sizes measured with fewer boxes (mainly 100 and 1,000 boxes in Fig. 8). 

Accordingly, with higher number of randomly selected boxes, the chance that the method gives an 
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erroneous result becomes much lower, which can be seen from the tighter margin between the 

minimum and maximum RVE size results. 

 The main observation from Fig. 8 that highlights the statistical nature of the RVE comes 

from the fact that for all number of randomly selected boxes the maximum RVE size measured 

was fairly constant. What that shows is that even with a very low number of boxes, from 1,000 

runs of the method, at least one of them was able to produce a realistic result for the RVE size. In 

fact, the maximum measured RVE size should be considered the “real” RVE size for each scale 

factor, with the median and minimum giving an idea of how likely the method is to produce a good 

result from a single run. From these results, a number of boxes of 10,000 was selected as a good 

number for strain fields within the studied range of RVE sizes, and is therefore the number of 

boxes used in all further examples. Nonetheless, it is also clear that for some situations fewer boxes 

could be used, reducing the overlapping that is bound to happen for larger number of boxes.  

Statistical equivalence between stereological method and box growth method 

In order to validate the proposed stereological method, it must be shown that it can predict 

similar RVE sizes as the existing methods, as well as their statistical variation. Although with the 

proposed method we can generate histograms from one dataset by subdividing it randomly in the 

desired number of boxes, in the centered box growth method only one RVE measurement can be 

made per dataset. To this end, the centered box growth method was applied to 10,000 different 

synthetic strain fields with scale factors from 0 to 10 (using a ±5% margin from global average 

strains to judge convergence as in [20]), with the results obtained for fields of scale factor 8 being 

plotted in the histogram shown in Fig. 9a as an example. For this case, vertical lines in Fig. 9a 

indicate the values of the median, average, and 80% threshold level, the latter defined as the 

location (232 pixels in this case) where for 8,000 of the 10,000 synthetic strain fields the centered 
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box growth method predicts an RVE size of at most that pixel value (i.e., for 80% of cases 232 

pixels is an RVE or lower). With this result (obtained through the use of 10,000 different synthetic 

strain fields), it is possible to compare the statistical predictions from the centered box growth 

method to the proposed stereological method. Fig. 9b shows a plot comparing the results obtained 

from the 80% threshold of both the centered box growth (with 10,000 different synthetic strain 

fields being analyzed for each point) and the stereological method (with 10,000 boxes taken from 

a single synthetic strain field for each point) for scale factors from 0 to 10. The single synthetic 

field to which the stereological method was applied was selected at random from the pool of 10,000 

different synthetic strain fields to which the centered box growth method was applied. 

 

Fig. 9. (a) Histogram of the results obtained from the centered box growth method (±5% margin 

on strains) for 10,000 different synthetic strain fields of scale factor 8; b) Plot of the RVE sizes 

measured by the stereological method vs. the centered box growth method, both using the 80% 

threshold and a ±5% margin on strains. 
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The data points of Fig. 9b show that the stereological method produces statistically 

equivalent results to the centered box growth method, while requiring far less data to do so (a 

single image vs. 10,000 different images). Thus, one advantage of the stereological method is that 

by taking into account the statistical variance of the RVE size, the method is able to consistently 

predict a wide range of strain-based RVE sizes from a single strain field regardless of the particular 

random distribution of strains within the field of view of each sample. 

Application to experimental results 

Here we will apply the stereological method to the same experimental data, namely those 

of Fig. 1a, where the standard deviation method produced reasonable results but the centered box 

growth method did not, and those of Fig. 1b where the opposite occurred. Fig. 10 shows the 

histograms obtained for (a) sample 1 and (b) sample 2, using the 80% threshold and a ±5% margin 

on strains (80% of the randomly selected boxes fall within the ±5% margin from global average 

strains, as measured from lower-resolution in-situ DIC). The insets show the respective strain 

fields overlaid by a box of size equal to the strain-based RVE measured using the stereological 

approach, namely 94 μm and 152 μm respectively. 
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Fig. 10. Stereological method plots for (a) sample 1 and (b) sample 2; insets show the respective 

strain fields with the obtained RVE sizes drawn (the RVE size was taken at the 80% threshold 

considering a ±5% margin on strains). 

Table 1 shows the strain-based RVE sizes measured for each sample from each of the three 

discussed experimental methods. Note that the stereological method was successful in measuring 

a reasonable (i.e., comparable to the other method(s)) RVE size for both samples, while the 

standard deviation method failed entirely to produce an estimate for sample 1 and the centered box 

growth method resulted in an unrealistic prediction for sample 2. These results show that the 

stereological method is a robust way of experimentally measuring the size of the strain-based RVE. 
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The method is also more flexible since it is capable of being adjusted to match the desired strictness 

level of the measurement, by for example choosing a different threshold value, as seen in the 90% 

and 99% columns of the stereological method in Table 1, or a tighter margin for the strains. 

Table 1. Strain-based RVE sizes measured for two samples using each of the three discussed 

methods. 

 

For the purposes of comparing the stereological method with the two prior methods which 

offer deterministic single-valued RVE results, all the strain-based RVE sizes quoted above in 

Table 1 were taken using fixed thresholds of 80%, 90% or 99% and a ±5% margin from the global 

average strain. However, the stereological method can in fact also be used to generate a probability 

distribution for the size of the strain-based RVE. If instead of choosing a priori a threshold and 

interrogating the strain field to determine what box size converges to the global average (within a 

chosen margin which, for example, can be based on experimental noise levels), we do the opposite 

and calculate what percentage of the randomly selected boxes fall within the chosen margin, then 

a probability distribution can be plotted. Fig. 11 shows the probability that the box average strain 

falls within a ±5% or a ±1% margin from the global average strain for each box size in sample 2 

(Fig. 1b). The 80%, 90% and 99% threshold lines are shown, for reference, but this plot makes it 

clear how the stereological method could be used with different combinations of threshold and 

margin to produce more (or less) strict strain-based RVE size measurements. Furthermore, it is 
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clear from Fig. 11 that the variation of the RVE size probability with the ±1% margin on strains 

appears noisier than that with ±5% margin, indicating that the margin should be selected according 

to the expected noise level of the experimental results (i.e., 1% is too tight of a margin for the 

present HiDIC results).  

 

Fig. 11. Probability that the average strain from a random box falls within the global average 

strain vs. box size, for ±5% and ±1% margins. The 80%, 90% and 99% threshold lines are 

shown, for reference. 

For simulation purposes, where the RVE is to be used as a simulation box to save on 

computational costs, a single-valued RVE size would be necessary, and thus a specific value for 

the threshold must be selected. This selection of threshold value should be done by taking into 

account the variability of the microstructure in question and the desired strictness level of the 

measurement (i.e., more uniform microstructures could use higher thresholds while more 

heterogeneous microstructures would require lower thresholds). Not only that, but the selection of 



25 
 

threshold could also take into account possible boundary condition effects, which will always be 

present in any simulation. The application of RVE sizes experimentally measured using the 

proposed stereological method is beyond the scope of the present work, and shall be the focus of 

future studies. 

Conclusions 

The review of two experimental methods from the literature (namely the standard deviation and 

the centered box growth methods) made it clear that there is still a lack of robustness when it comes 

to experimentally measuring the size of a strain-based RVE. Although based on the sound 

argument, that the standard deviation of strain averages within boxes should change with box size 

and that for boxes larger than an RVE this standard deviation should be much lower than for boxes 

smaller than the RVE, the standard deviation method has one major flaw that affects its robustness. 

The somewhat arbitrary selection of the linear fit for larger box sizes, which is used to define the 

size of the RVE, is bound to produce unrealistic results in a few cases (as is clear from Fig. 2). Not 

only that, but the methodology described by Efstathiou et al. [19] for the linear fit makes it hard to 

automate the method. On the other hand, the centered box growth method presents a much more 

well-defined methodology to measure the size of the RVE, making it easier to automate and thus 

consistently produce results. In order to do that, the method proposed by Ravindran et al. [20] 

treats the RVE size as a deterministic quantity, instead of observing the inherently statistical nature 

of the RVE. Through its heuristic analysis, the centered box growth method is bound to produce 

(by chance) erroneous results in situations where the spatial distribution of strains around the 

center point of the field of view results in an early convergence to the global average strain.    

 The objective behind the development of the proposed stereological method was to 

circumvent the disadvantages of each of these two methods, while using the advantages of both. 
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The stereological method recognizes the statistical nature of the RVE (similar to the standard 

deviation method) and uses the ideas of a margin and a threshold (derived from the centered box 

growth method) to arrive at a robust methodology to measure the size of the strain-based RVE. In 

fact, it could be argued that the theory behind the stereological and the standard deviation methods 

is very similar, and that both methods are based on the resulting quasi-normal distribution of 

average strains that arises from the sampling of boxes from the field of view. The added robustness 

of the stereological method comes from the methodology used to study this distribution, which 

was inspired in the centered box growth method, and also gives it the added capability to adapt the 

measurement to the experimental data in question (as seen in Fig. 11). 

 Using controllable synthetic strain fields generated through a fractional Gaussian noise 

algorithm, the proposed stereological method was shown to produce robust RVE size results 

accompanied by a statistical measure of how often the strain measurements actually converge to 

the global average. The method was then applied to real DIC experimental measurements and RVE 

sizes were obtained for two samples loaded at different creep conditions. The following points 

summarize the findings of this study: 

1) The synthetic strain fields obtained from Gaussian noise allow the generation of large 

quantities of data, similar to the experimental strain fields, with an easily adjustable 

scale parameter that directly correlates with the resulting RVE size; 

2) The proposed stereological method uses the statistical nature of the RVE and builds 

upon the centered box growth method to produce equivalent RVE measurements along 

with a statistical measure of how strict the measurement is; 

3) The stereological method was shown to produce reliable single-valued RVE size 

measurements for two very different experimental strain fields obtained using the 
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HiDIC technique from creep-loaded samples, by using fixed values for the threshold 

and strain margin; 

4) The generalization of the stereological method was showcased by generating a 

probability distribution for the RVE size of one of the experimental results, with the 

threshold levels relating to microstructural variability and the strain margin relating to 

the expected measurement noise levels.  
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