
Telemetry Retrieval Inaccuracy in Programmable Switches:
Analysis and Recommendations

Hun Namkung¢, Daehyeok Kim¢, Zaoxing Liu†, Vyas Sekar¢, Peter Steenkiste¢
¢Carnegie Mellon University, †Boston University

Abstract
Sketching algorithms or sketches are attractive as telemetry capabil-
ities on programmable hardware switches since they o�er rigorous
accuracy guarantees and use compact data structures. However,
we �nd that in practice, their actual implementations can have
a signi�cant (up to 94⇥) accuracy drop compared to theoretical
expectations. We �nd that the delays incurred by pulling and reset-
ting the data plane state induce accuracy degradation. We design
and implement solutions to reduce the delays and show that our
solutions can help eliminate almost all the inaccuracy of existing
sketch work�ows.

CCS Concepts
• Networks! Programmable networks; Network monitor-
ing.

ACM Reference Format:
Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste .
2021. Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis
and Recommendations. In The ACM SIGCOMM Symposium on SDN Research
(SOSR) (SOSR ’21), October 11–12, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3482898.3483357

1 Introduction
Recent advances have made it possible to design and implement
various telemetry capabilities, such as sketches [15, 18, 19], counting
bloom �lters [20], and others [17] in programmable switches [1,
3]. At a high level, these network telemetry tasks maintain data
structures with arrays of counters in the data plane for tracking
tra�c �ows, which are then retrieved by the switch and network
control plane.

Our speci�c focus in this work is on sketches. The typical work-
�ow of sketch-based telemetry is as follows. For every (pre-de�ned)
measurement epoch (i.e., a periodic time window), the switch con-
trol plane fetches the counter arrays to compute statistics of interest
(e.g., heavy hitters, distinct �ows, entropy [10, 15, 18, 19, 26, 31, 39])
and resets the counter arrays. Essentially, the counter arrays are
shared state between the data plane and the control plane. The data
plane updates the state when processing packets, and the control

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’21, October 11–12, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9084-2/21/10. . . $15.00
https://doi.org/10.1145/3482898.3483357

plane reads the state per epoch and resets the state for the next
epoch.

While the �delity of the sketches is backed by theoretical analy-
sis [15, 18, 19], in practice when we implement and deploy sketches
using the above work�ow on programmable hardware switches
(e.g., Intel To�no-based switch), the empirical results are inaccurate
(§2). For instance, there is a signi�cant accuracy drop (e.g., up to
94⇥ error increase), when the epoch size is small (e.g., 5s to 1s). To
the best of our knowledge, we are the �rst to document this counter
retrieval problem and propose solutions.

We systematically investigate the state fetching and resetting
process implemented on an Intel To�no-based switch [1]. Our anal-
ysis shows that the time spent on pulling and resetting data plane
states is non-trivial. We decompose delays into the control and data
plane delays, identify a total of six potential delays, and quantify
the impact of each component. Our analysis reveals that two con-
trol plane delays can cause signi�cant impacts on the accuracy of
counters (§3).

Having identi�ed the key bottlenecks, we propose four correct-
by-construction solution building blocks, within the scope of sketch-
ing algorithms, with di�erent trade-o�s:
• Duplicating sketch instances in the data plane, one of which is
updated alternately in successive epochs.

• For sketches with a linearity property [20, 26, 30, 35], the control
plane can o�set the error by subtracting counter arrays between
previous and current epoch.

• Deferring a control plane read operation after a reset operation
to reduce the impact of the bottleneck delay.

• Using a faster bulk reset API.
We also propose guidelines on which building blocks are appropri-
ate for di�erent use cases (§4). We implement these building blocks
for �ve sketches [15, 18, 19, 21, 31] and evaluate them on a To�no-
based programmable switch [1]. We demonstrate that delays are
reduced by more than 95%, and error is reduced by more than 97%
(§5). While our focus is on sketches, our �ndings and solutions are
likely more broadly applicable to other telemetry tasks since they
often share work�ow interactions between the data and control
plane.

2 Background and Motivation
We �rst describe the common work�ow of sketches in Fig. 1. We
then highlight the sketch accuracy drop in an actual hardware im-
plementation compared to a software implementation and discuss
the implications of this observation.
TypicalWork�ow. Fig. 1 shows the common work�ow for deploy-
ing network telemetry tasks on programmable switches. Tra�c
is chunked into time intervals or epochs. On the data plane, net-
work telemetry tasks maintain counter arrays that are updated by

https://doi.org/10.1145/3482898.3483357
https://doi.org/10.1145/3482898.3483357

SOSR ’21, October 11–12, 2021, Virtual Event, USA Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

Switch Control Plane

Switch Data Plane
counter arrayspacket

stream

Epoch read_state()
reset_state()

read
req.

read
res.

reset
req.

ack

!"#$% !"&'

Figure 1: Work�ow of sketches.

4K 8K 16K 32K 64K

counter array size

0

20

40

60

80

100

%
of

D
i�

er
en

t
C
ou

nt
er

s

Di�erent Counters

epoch 1s

epoch 5s

epoch 10s

epoch 20s

epoch 30s

(a) Di�erent Counters.

4K 8K 16K 32K 64K

counter array size

0

2000

4000

6000

8000

10000

N
or

m
al

iz
ed

E
rr

or
In

cr
ea

se
(%

)

Error Increase

epoch 1s

epoch 5s

epoch 10s

epoch 20s

epoch 30s

(b) Error Increase.

Figure 2: Di�erent counters cause accuracy degradation.

processing packets. At the end of every epoch, the control plane
periodically reads the counter arrays and resets them.

We implement �ve published sketches [15, 18, 19, 21, 31] on a
To�no-based programmable switch using the above work�ow and
observed a signi�cant discrepancy in accuracy compared with a
software implementation. We illustrate the problem using a simple
sketch called count-min sketch (CM) [18]. The CM uses a 2D array
of counters to detect heavy hitters from a packet stream for a
given �owkey (e.g., srcIP). We use srcIP as the �owkey for our
implementation.
Methodology. The sketch implementation on the hardware is par-
titioned across the data and control plane. In the data plane, we run
the CM written in P4 [13] and send the input packet stream (() to
the switch from a directly connected server using tcpreplay [6].
The control plane periodically reads and resets the counter arrays
using the control plane API provided by the To�no SDK [2]. The
SDK supports Python and C++, and we present results using C++
API.1 To obtain the theoretically expected accuracy, we use a soft-
ware implementation of CM sketch written in C++. We split an
input packet stream (into multiple subsets (8 corresponding to an
epoch with length !.2 The software implementation pauses packet
processing while it reads and resets the counter array. We measured
the accuracy of the sketch using both the software and hardware
implementations for di�erent epoch lengths (!) and counter array
sizes.
Findings. Fig. 2a shows the percentage of the number of di�er-
ent counters in the counter array between the software simula-
tion and the hardware measurement. We see that up to 98% of
counters are di�erent. This discrepancy problem reduces accu-
racy as shown in Fig. 2b. The normalized error increase is de�ned

1Based on the conversation with Barefoot, the Python API is not recommended for
latency critical applications because Python API is a RPC wrapper for the C++ API.
2For the input packet stream (, we sample ten one-minute packet traces from inter-ISP
packet trace captured on an OC-192 link [7].

as Erroractual�Errorexp

Errorexp
, where Errorexp is the expected error us-

ing software sketch implementation relative to ground truth and
Erroractual is the actual error using the hardware implementation.
The error increases up to 94⇥ at an array size of 64K and epoch
length of 1. We use an average relative error (§5.1) as the error of
CM.

Implications. At a high level, the discrepancy arises due to the
delays involved in the read and reset operation in Fig. 1, �read and
�rst . As we will see later (§3), they are not negligible. Note that the
above results focus on a simple sketch with a small counter array, a
relatively large epoch (1 to 30 seconds), and non-adversarial tra�c
conditions. In practice, the problem could be worse.
• First, richer network telemetry tasks that use more data plane
counters such as R-HHH [10] and UnivMon [31] will be im-
pacted more as the impact increases with the size of the counter
array.

• Second, network telemetry tasks with tighter timing deadlines
(shorter epochs) will be impacted more as the delay, relative to
the epoch length, becomes more signi�cant.

• Lastly, the worst case error can become unbounded; there can
be bursts of packets (e.g., anomalies or attacks) that coincide
with the �read or �rst intervals.

3 Problem Diagnosis
We take a closer look at the read and reset delays to understand the
discrepancy problem better.

3.1 A Closer Look at Sources of Error
We can logically decompose the read and reset delays into control
and data plane delays, as shown in Fig. 3. The read delay at Epoch8 ,
�read8 , consists of two control plane delays and one data plane
delay: �read8 = �read⇠1

8 +�read⇠2
8 +�read⇡8 , where �read⇡8 rep-

resents the duration of actual data transfer from the data plane.
Similarly, we can represent the the reset delay as �rst8 = �rst⇠1

8
+�rst⇠2

8 +�rst⇡8 , with similar control and data plane components.
Let � (() be the sketching function computed on a given set

of packets (. For Epoch8 , we want to measure � ((8). However,
the above delays result in a di�erent set of packets actually being
monitored; they are marked as epoch packets and measured packets
in Fig. 4.

More speci�cally (see Fig. 3), let (�read8 and (�rst8 denote the
sets of packet streams during the read and reset operation inEpoch8 .
Let (�read⇠1

8
, (�rst⇠1

8
denote the sets of packets during �read⇠1

8

and �rst⇠1
8 . (�read⇡

8
, (�rst⇡8 are more subtle because the control

plane and data plane access the counter array simultaneously. We
de�ne (�read⇡

8
(similarly (�rst⇡8) as the set of packets in the tra�c

stream during �read⇡8 (�rst⇡8) where packets in this set update
the counter array before the read and reset operation is executed.

Themeasured packets (the dotted line in Fig. 4) is � (((8�((�read8

[(�rst⇠1
8

[(�rst⇡8
))[((�read⇠1

8+1
[(�read⇡

8+1
)). Note that the ef-

fect of �read⇠2
8 is included in (�read8 . Next, we quantify the delays

that cause the loss in accuracy.

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations SOSR ’21, October 11–12, 2021, Virtual Event, USA

!"#$%!
!"#$%!"#

Ctl
plane

data
plane

set of
packets

!"#$%!"$

counter array

!"&'!
!"&'!"# !"&'!"$

!"#$ℎ!

(∆&'()!"# (∆&*+!"#(∆&'()!$ (∆&*+!$
(∆&'()!

counter array

(∆&*+!

…
!"#$%!, !"&'!,

Figure 3: Decomposition of the read and reset delays into control
plane and data plane delays at Epoch8 .

!"#$ℎ!

&'()!&'*+,! &'()!"#&'*+,!"#

-! -!"#

… …

!"#$ℎ!"#

: measured packets (HW): epoch packets (SW)

-∆%&'!"# -∆%&'!$ -∆%()*!%#"# -∆%()*!%#$-∆%()*! -∆%&'!

Figure 4: Di�erent input packet sets between software and hardware
create the discrepancy problem.

3.2 Quantifying Sources of Error
To understand the magnitude of impact from each source of delay,
we measure these next.

Methodology. At a high level, we measure the delays by sending
packets at a controlled rate to the switch data plane and reading the
counter values into the control plane. To this end, we use custom
benchmarking programs in addition to the sketch implementations—
data plane program using P4 language and the control plane using
C++ API. Our measurements use e�cient control plane read and
reset operations. For the read operation, we utilize table sync opera-
tion which uses bulk DMA transfer from data plane counter arrays
into control plane bu�er so that the control plane can read counters
more quickly. For the reset operation, we use the transaction API,
which accelerates the individual write operations.

To measure �read⇡8 we need to measure the time between when
the control plane reads from the �rst counter 2>D=C4A [0] to the
last counter 2>D=C4A [N-1] of a counter array. This is done by syn-
thesizing a packet stream that contains two packets every 100`B
and using them to increment (+1) 2>D=C4A [0] and 2>D=C4A [N-1] re-
spectively. In this way, �read⇡8 can be measured by (2>D=C4A [N-1]
�2>D=C4A [0]) ⇥100`B . The server uses tcpreplay to send this syn-
thesized packet stream to the directly connected switch while the
control plane executes the read operation.

We use the same setup to measure the duration of the data
plane reset operation �rst⇡8 . However, since the reset operation
resets counter values incrementally starting with the �rst one,
the control plane executes the reset operation during tcpreplay
and then executes the read operation after tcpreplay is �nished.
(2>D=C4A [0] �2>D=C4A [N-1]) ⇥100`B then represents �rst⇡8 . To mea-
sure�read⇠1

8 and�read⇠2
8 , the control plane reads the �rst counter

4K 8K 16K 32K 64K
counter array size

0

100

200

300

400

500

D
el

ay
(m

s)

�readi

1 bit counter

32 bit counter

64 bit counter

4K 8K 16K 32K 64K
counter array size

0

100

200

300

D
el

ay
(m

s)

�rsti

1 bit counter

32 bit counter

64 bit counter

Figure 5: The read and reset delays (ms).

Delays 4K 16K 64K

�read8

�read⇠1
8 0.30 0.97 3.62

�read⇡
8 0.01 0.07 0.31

�read⇠2
8 22.21 66.70 244.49

Total 22.53 67.74 248.43

�rst8

�rst⇠1
8 16.45 41.69 145.53

�rst⇡8 0.09 0.36 1.49
�rst⇠2

8 0.02 0.02 0.03
Total 16.56 42.08 147.06

�read8 + �rst8 39.10 109.81 395.48
Table 1: Six delay measurement (ms).

value before and after the read operation and we can then calcu-
late those values using subtraction. We apply the same ideas for
measuring �rst⇠1

8 and �rst⇠2
8 .

Result. Fig. 5 shows the �read8 and �rst8 delays for di�erent
counter array sizes and counters (e.g., 1-bit, 32-bit). The read delay
�read8 can be up to 488 ms and the reset delay �rst8 can be up to
291 ms. Both delays increase linearly as the size of the counter array
increases. For di�erent counter sizes, a 64-bit counter takes 1.97⇥
more delay than a 32-bit counter because the switch maintains
a 64-bit counter as a pair of 32-bit counters. However, the delay
di�erence between 32-bit and 1-bit counter is marginal (1.01⇥).3

Next, we look at six decomposed delays for 32-bit counters in
Table 1. Surprisingly, �read⇡8 and �rst⇡8 take less than 0.1%, 0.4% of
the total read and reset delays. Meanwhile, we can see that �read⇠2

8
and �rst⇠1

8 are the dominant factors as they take up more than
98% of the sum of the read and reset delays.

Key takeaways.Out of six delays, two control plane delays�read⇠2
8

and �rst⇠1
8 are dominant factors. For example, �read⇠2

8 (�rst⇠1
8)

of 16K array size takes 61% (38%) of the total sum of delays. Across
all sizes of counter arrays, both bottleneck delays together account
for 99% of the total delay.

4 Building Blocks and Solution Guidelines
In this section, we propose four solution building blocks to mask
or reduce the delays identi�ed in the previous section. These have
varying trade-o�s regarding the epoch size they can support, re-
source usage, general applicability across tasks. Table 2 summarizes

3We cannot measure the delays for 1-bit counters with the described methodology
because 1-bit counter can not store an integer value. Instead, we used a timer in the
control plane program to measure delays for the 1-bit counter in Fig. 5.

SOSR ’21, October 11–12, 2021, Virtual Event, USA Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

Building
Blocks �read⇠2

8 �rst⇠1
8 Epoch Gen. Res.

B1 hide hide smallest � 2x
B2 hide hide small ⇥ 1x
B3 hide ⇥ med � 1x
B4 ⇥ reduce med � 1x

Table 2: Tradeo�s for solution building blocks in di�erent metrics
such as hiding/reducing two bottleneck delays, epoch size it can
support, generality, resource usages.

these trade-o�s. We also provide some general guidelines for com-
bining building blocks as solutions appropriate for di�erent use
cases.

4.1 Building Blocks
B1: Use duplicate counters. A simple idea is to duplicate sketch
instances in the data plane and alternately use them for odd/even
epochs. At Epoch8 , counter array in sketch instance 1 can be up-
dated in the data plane while the control plane reads and resets
sketch instance 2. Then at Epoch8+1, counter array in sketch in-
stance 2 can be updated in the data plane while the control plane
reads and resets instance 1.
Trade-o�. This idea masks all delays and the key bottleneck delays.
However, this idea requires 2⇥ the data plane memory. Realizing it
also requires some data plane code (P4) change.
B2: O�set counter errors in the control plane. Some sketches
have a linearity property [33]. That is, counter arrays can be com-
bined in a mathematical sense by addition and subtraction of each
counter. In such cases, the control plane can avoid explicitly reset-
ting the counters or duplicating the counters. Instead, it stores the
counter arrays reported from the previous epoch (in the control
plane) and obtains the counters for the current epoch by subtracting
the previous counter arrays from counter arrays reported at the
current epoch.4

Trade-o�. This idea masks the key bottleneck delays of the reset
and does not incur any additional data plane resources. It only
requires small control plane code updates to subtract counter arrays.
However, this idea is only applicable to sketches satisfying the
linearity property. Fortunately, we’ve seen a range of linear sketches
such as [15, 20, 26, 30, 35] for various measurements. We do see
one caveat that some sketches for tracking heavy hitters in the
data plane [18] need to access per-epoch counters to identify heavy
�owkeys. Since the data plane only stores accumulated values, we
cannot obtain per-epoch values directly in the data plane.
B3: Defer control plane read operation.We observe that during
�read⇠2

8 , most of the time is spent on reading counter arrays from
an internal bu�er in the control plane. That is, data is already
transferred from the data plane using bulk DMA transfer as in
Fig. 6. Thus, we can defer this operation of reading data from the
bu�er after the reset operation. We can implement this idea because

4The idea of not resetting the counters across epochs can bring up a concern of
over�ow. However, subtracting two counter array still works as long as there is at
most 1 over�ow per epoch. Empirically, the 32-bit counter is large enough to avoid
two over�ows.

read

read

reset

reset
DMA msg

CP

DP

transfer

CP read

read

read

bulk
reset

buffer

DMA msg

counter array counter array

buffer

reset

defered
read

buffer

CP read

: B3. defer the CP read operation hides !"#$%!"#
: B4. bulk reset API reduces !"&'!"$

callback callback

transfer

Figure 6: B3: Defer control plane read operation and B4: Use bulk
reset API.

Resource is sufficient and/or high accuracy with
small epoch length is required?

Sketch has a property of a linear combination and
counter arrays are not used in the data plane?

yes

Solution 1 (B1)

no

Solution 2 (B2)

yes

no

Solution 3 (B3 + B4)

Figure 7: Decision tree for selecting solutions.

1) the reset operation does not reset the internal bu�er and 2) the
read operation can be divided into separate API calls: bulk DMA
transfer and reading data from the internal bu�er.
Trade-o�. This idea does not require additional resources and it can
be applied to sketches without linearity property. However, it only
reduces the e�ect of �read⇠2

8 .
B4: Use bulk reset API. This solution building block directly
reduces �rst⇠1

8 as in Fig. 6. We observed that the basic control
plane support for reset updates counters one at a time. This is
e�ectively a write operation and provides a more general capability
to write an arbitrary value at a speci�c location. However, we note
that there is also a clear API that su�ces for our needs well since
it resets all of the counter arrays to zero with much lower delay
(18⇥ faster).5

Trade-o�. This idea only reduces the e�ect of �rst⇠1
8 , thus it still

can su�er accuracy degradation for a small epoch length.

4.2 Guidelines for Sketch Developers
Based on the above building blocks, we suggest a guideline for
sketch developers on which solution is appropriate for di�erent
use cases summarized in the decision tree (Fig. 7):
• Solution1 (B1)would �t for small sketches and/or resources are
su�cient. B1 provides the highest �delity, especially for small
epoch length.

• Solution2 (B2) uses low resource footprint. It is a simple solu-
tion for sketches satisfying linearity when counter arrays are
not used in the data plane.

• Solution3 (Combine B3 and B4). These two building blocks
can be combined to tackle two bottleneck delays. The combined

5According to the conversation with Intel, To�no2 supports an even faster bulk reset
API.

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations SOSR ’21, October 11–12, 2021, Virtual Event, USA

solution requires some implementation e�ort but is general and
is appropriate when resource overhead is critical.

5 Evaluation
Our evaluation demonstrates that (a) all solutions signi�cantly
reduce the error of the hardware implementation relative to the ex-
pected accuracy and (b) the implementation e�ort for the solutions
is marginal in terms of additional lines of code.

5.1 Experimental Setup
Testbed. We use an Edgecore Wedge 100BF To�no-based pro-
grammable switch and a server equipped with dual Intel Xeon
Silver 4110 CPUs, 128GB RAM, and a 100Gbps Mellanox CX-4 NIC
connected to the switch. We use To�no SDE version 9.1.1 in our ex-
periment. We send the trace to the switch from a directly connected
server using tcpreplay.
Traces.We use sampled ten one-minute packet traces from CAIDA
backbone traces capture at 1/21/16 Chicago [7].6

Sketches. We implement �ve sketches, MRB [19], HLL [21], count
sketch (CS) [15], count-min sketch (CM) [18], andUnivMon (UM) [31]
using P4 language. MRB uses 1-bit counters and the rest of the
sketches use 32-bit counters. MRB and HLL use one counter array
and CS, CM, UM use four counter arrays. MRB, HLL estimate cardi-
nality, CS, CM estimate the average relative error of top-100 heavy
hitter �ow counts, and UM estimates entropy. Note that out of �ve
sketches, CS, CM, UM satisfy the linearity property. We assume
that we know all of the �owkeys for CS, CM, UM since identifying
heavy �owkeys on the data plane is orthogonal to this work. We
use P4 version of %416.
Metrics of di�erence.We consider three types of metrics:
• Raw counters:We consider both the total counter value di�er-
ence =

Õ
8 |4G?42C43 [8] � 02CD0; [8] | and the relative counter

di�erence =
Õ

8 (4G?42C43 [8]!=02CD0; [8])
0AA0~_B8I4 .

• Sketch Errors: Average Relative Error (ARE) is 1
:
Õ:
8=1

|58�5̂8 |
58

,

where : is 100. 58 is true �ow count, 5̂8 is �ow count estimate, and
58 � 58+1 for any 8 . This metric is used for CS and CM. Relative
Error (RE) is |True�Estimate |

True , where TAD4 is true statistic value
and EBC8<0C4 is estimated value. This metric is used for MRB,
HLL, UM.

• Delay:We measure the sum of delays that corresponds to union
and subtraction components in §3.1: �read8 + �rst⇠1

8 + �rst⇡8
+ �read⇠1

8+1 + �read⇡8+1.

5.2 Error and Delay Reduction
Counter di�erence reduction.We �rst look at the counter di�er-
ence reduction in Table 3. We use a �xed epoch length of 1 second.
We can see that all solutions reduce almost all of the total counter
value di�erence compared to unoptimized hardware implementa-
tion. Speci�cally, Sol 1 incurs no counter di�erence, and Sol 2, Sol
3 incur little counter di�erences. Note that the total counter value
di�erence has a more direct e�ect on sketch accuracy than the
relative counter di�erence.
6We also run experiments with other traces such as data center traces [12] and attack
traces [8]. Results are similar thus, they are not shown.

MRB HLL CS CM UM
A.size 64K 4K 64K 64K 128K

Unopt 1273/2% 91/1% 618K/73% 700K/76% 1030K/26%
Sol 1 0/0% 0/0% 0/0% 0/0% 0/0%
Sol 2 ⇥ ⇥ 10K/7% 10K/7% 16K/5%
Sol 3 5/0% 3/0% 22K/12% 22K/13% 33K/8%

Table 3: Total counter value di�erence / relative counter di�erence
for �ve sketches and three solutions using epoch=1s.

MRB HLL CS CM UM
Array size 64K 4K 64K 64K 128K

Expected
Errors

Ideal
sketch 1.6% 4.8% 0.7% 0.4% 2.8%

Actual
Errors

Unopt 20.1% 6.2% 35.4% 34.8% 64.7%
Sol 1 1.6% 4.8% 0.7% 0.4% 2.8%
Sol 2 ⇥ ⇥ 1.0% 0.7% 2.8%
Sol 3 1.7% 4.8% 1.5% 1.1% 3.6%

Table 4: Expected errors vs. actual errors using epoch=1s.

4K 16K 64K
Unopt 39.39 110.84 399.39
Sol 1 0 (100%) 0 (100%) 0 (100%)
Sol 2 0.32 (99.20%) 1.04 (99.06%) 3.94 (99.01%)
Sol 3 1.53 (96.11%) 4.66 (95.79%) 16.67 (95.83%)

Table 5: The sum of delays after applying solutions in ms (% of
reduction compared to unoptimized).

Error reduction. Next, we look at the error reduction in Table 4.
Compared to errors on unoptimized implementation, actual errors
on all solutions are almost close to expected errors measured on
software implementation.
Delay reduction. Table 5 shows that all solutions reduce delays
signi�cantly. Sol 1 does not incur any delays. Sol 2 can reduce delays
by 99% across all counter array sizes. Sol 3 also reduces delays by
95%. Note that the delays after applying solutions are still linear to
the counter array size.
Detailedmeasurement.Weobserve reductions for �xed array size
and epoch length. We pick one sketch (CS) and look at the counter
di�erences and error reductions for di�erent array sizes and epoch
lengths. Fig. 8 shows that as array size increases, the total counter
value di�erence increases linearly, but it is constant over epoch
lengths. Note that Sol 1 does not incur any counter di�erences
across all array sizes and epoch lengths. Fig. 9 shows that the error
gap between expected and un-optimized measurement is increasing
as array size increases and epoch length decreases. All solutions
e�ectively reduce this gap and they show similar errors as expected.

5.3 Implementation E�ort
Table 6 shows additional lines of code for implementing solutions.
Sol 1 requires P4 code change for duplicating instances and C++
control plane program change for reading instances alternatively.
Code change for Sol 2 is in an o�ine processing program written

SOSR ’21, October 11–12, 2021, Virtual Event, USA Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

4K 8K 16K 32K 64K

array size

104

105

106

T
ot

al
C
ou

nt
er

V
al

ue
D

i�
er

en
ce

CS (epoch length 1s)

Unopt

Sol 2

Sol 3

1s 5s 10s 20s 30s

epoch length

104

105

106

T
ot

al
C
ou

nt
er

V
al

ue
D

i�
er

en
ce

CS (array size 64K)

Figure 8: Total counter value di�erence for CS.

4K 8K 16K 32K 64K

array size

0

10

20

30

A
R
E

(%
)

CS (epoch length 1s)

Unopt

Sol 1

Sol 2

Sol 3

Expected

1s 5s 10s 20s 30s

epoch length

0

10

20

30

A
R
E

(%
)

CS (array size 64K)

Figure 9: Average relative error for CS.

Additional
Lines of code

Sol 1 Sol 2 Sol 3
B1 B2 B3 B4

Data Plane P4 Code 29 0 0 0
Control Plane Program (C++ API) 63 0 0 19
O�ine Processing 0 9 0 0

Table 6: Additional lines of code for implementing solutions.

in Python for subtracting counter arrays. B3 in Sol 3 does not
incur any additional lines of code since it just swaps the order of
the control plane read and reset operation. B4 in Sol 3 requires
additional control plane program code for bulk reset API.

6 Related work
Sketch-based telemetry. Sketches have emerged as a promising
telemetry solution for �ow-level measurements, including heavy
hitters [15, 18, 31, 37, 39], entropy estimation [31, 34, 36], change
detection [30, 40], and distinct �ows [21, 31]. While recent ef-
forts [14, 41] propose to maintain more light-weight sketches per
device, they still su�er from the incorrect counter retrieval issue in
programmable switches and can bene�t from our solutions.
Other work in network telemetry. There are complementary
telemetry capabilities that focus on packet-level and path-level
monitoring (e.g., INT [29] and PINT [11]), higher-order telemetry
(e.g., performance statistics [16, 22, 32], application level moni-
toring [38]), diagnosis [25, 28], as well as network-wide adaptive
telemetry [23, 24]. A not hard extension is to explore if these teleme-
try tasks can su�er from a similar incorrect state retrieval and reset
problem.
Other programmable platforms. In addition to the switches
discussed in this paper, SmartNICs such as multicore SoCNICs [4, 5]
and FPGA NICs [9] are platforms for telemetry. Recent work [27] in
measuring the performances of various SmartNICs demonstrated
a similar bottleneck between the data plane and the control plane.
A future direction is to explore the telemetry retrieval inaccuracy
problem in SmartNICs.

7 Conclusions
We consider a practical problem of deploying network telemetry
tasks on programmable switches. We identify and quantify the
causes of an accuracy degradation in sketches. Our solutions in-
formed by our analysis can eliminate almost all the inaccuracy for
�ve sketches. We believe our insights are more broadly applicable
to other network telemetry tasks with similar control-data plane
interactions.

Acknowledgement
We would like to thank the anonymous SOSR reviewers, Jeongkeun
Lee, and Georgios Nikolaidis for their constructive feedback. This
work was supported in part by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, and by NSF awards 1565343 and
1700521.

References
[1] Barefoot To�no. https://barefootnetworks.com/products/brief-to�no/.
[2] Barefoot P4 Studio. https://www.barefootnetworks.com/products/brief-p4-

studio/.
[3] Broadcom Trident 4. https://www.broadcom.com/products/ethernet-

connectivity/switching/strataxgs/bcm56880-series.
[4] Mellanox DPU. https://www.nvidia.com/en-us/networking/products/data-

processing-unit/.
[5] Netronome Agilio SmartNICs. https://www.netronome.com/products/nfe/.
[6] tcpreplay. https://tcpreplay.appneta.com/wiki/tcpreplay-man.html.
[7] The CAIDA UCSD Anonymized Internet Traces. https://www.caida.org/data/

passive/passive_dataset.xml.
[8] The U.S. National CyberWatch Mid-Atlantic Collegiate Cyber Defense Competi-

tion (MACCDC). https://www.netresec.com/?page=MACCDC.
[9] Xilinx FPGA. https://www.xilinx.com/products/silicon-devices/fpga.html.
[10] B�� B����, R., E�������, G., F�������, R., L�������, M. C., ��� W�������,

E. Constant time updates in hierarchical heavy hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (2017).

[11] B�� B����, R., R���������, S., L�, Y., A������, G., Y�, M., ���M�����������,
M. Pint: probabilistic in-band network telemetry. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication
(2020), pp. 662–680.

[12] B�����, T., A�����, A., ��� M����, D. A. Network tra�c characteristics of
data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement (2010), pp. 267–280.

[13] B�������, P., D���, D., G���, G., I�����, M., M�K����, N., R������, J.,
S����������, C., T������, D., V�����, A., V�������, G., ���W�����, D. P4:
Programming protocol-independent packet processors. SIGCOMM Comput. Com-
mun. Rev. (2014).

[14] B������, V., B����, R. B., L��, Z., A������, G., B������, G., ���M�����������,
M. Discovering the heavy hitters with disaggregated sketches. In Proceedings
of the 16th International Conference on emerging Networking EXperiments and
Technologies (2020), pp. 536–537.

[15] C�������, M., C���, K., ��� F������C�����, M. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming
(2002), Springer, pp. 693–703.

[16] C���, X., K��, H., A���, J. M., C����, W., L��, M., ��� R������, J. Measuring
tcp round-trip time in the data plane. In Proc. of SIGCOMM SPIN Workshop (2020).

[17] C���, X., L������F������, S., B��������, M., ��� R������, J. Beaucoup:
Answering many network tra�c queries, one memory update at a time. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication (2020), pp. 226–239.

[18] C������, G., ���M������������, S. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms 55, 1 (2005), 58–75.

[19] E����, C., V�������, G., ��� F���, M. Bitmap algorithms for counting active
�ows on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference
on Internet measurement (2003), pp. 153–166.

[20] F��, L., C��, P., A������, J., ��� B�����, A. Z. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM transactions on networking 8, 3
(2000), 281–293.

[21] F�������, P., ��� F���, G�������, O., ��� �� ��. Hyperloglog: The analysis of
a near-optimal cardinality estimation algorithm. In AOFA (2007).

https://barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.netronome.com/products/nfe/
https://tcpreplay.appneta.com/wiki/tcpreplay-man.html
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://www.netresec.com/?page=MACCDC
https://www.xilinx.com/products/silicon-devices/fpga.html

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations SOSR ’21, October 11–12, 2021, Virtual Event, USA

[22] G������, M., B�����, T., ��� R������, J. Dapper: Data plane performance
diagnosis of tcp. In Proceedings of the Symposium on SDN Research (2017), pp. 61–
74.

[23] G����, A., H�������, R., C�����, M., F�������, N., R������, J., ���W��������,
W. Sonata: Query-driven streaming network telemetry. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication (2018),
pp. 357–371.

[24] H�������, R., C��, Q., G����, A., ��� R������, J. Network-wide heavy hitter
detection with commodity switches. In Proceedings of the Symposium on SDN
Research (2018), pp. 1–7.

[25] H���������, T., M�����, E. C., A���������, M., D�������, A., V���������, S.,
��� V�������, L. Blink: Fast connectivity recovery entirely in the data plane.
In Proc. of NSDI (2019).

[26] H����, Q., L��, P. P., ��� B��, Y. Sketchlearn: Relieving user burdens in
approximate measurement with automated statistical inference. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication
(2018), pp. 576–590.

[27] K�������, G. P., B�������, T., C�����, M., K�����, D., ��� M������ J�, G. Q.
What you need to know about (smart) network interface cards. In PAM (2021).

[28] K���������, A., A������, R., ��� S�����, I. Con�uo: Distributed monitoring
and diagnosis stack for high-speed networks. In Proc. of USENIX NSDI (2019).

[29] K��, C., S��������, A., K����, N., B��, A., D����, A., ���W�����, L. J. In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM Demo
Session (2015).

[30] K������������, B., S��, S., Z����, Y., ��� C���, Y. Sketch-based change
detection: methods, evaluation, and applications. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement (2003), pp. 234–247.

[31] L��, Z., M�������, A., V��������, G., S����, V., ��� B��������, V. One
sketch to rule them all: Rethinking network �ow monitoring with univmon. In
Proceedings of the 2016 ACM SIGCOMM Conference (2016), pp. 101–114.

[32] L��, Z., Z���, S., R������������, O., B��������, V., ��� R������, J. Memory-
e�cient performance monitoring on programmable switches with lean algo-
rithms. In Proc. of APoCS (2020), SIAM.

[33] M������������, S. Data streams: Algorithms and applications. Now Publishers
Inc, 2005.

[34] N�����, G., S����, V., A�������, D. G., K��, H., ��� Z����, H. An empirical
evaluation of entropy-based tra�c anomaly detection. In ACM IMC, 2008.

[35] N�����, G., S����, V., A�������, D. G., K��, H., ��� Z����, H. An empirical
evaluation of entropy-based tra�c anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (2008), pp. 151–156.

[36] N�����, G., S����, V., A�������, D. G., K��, H., ��� Z����, H. An empirical
evaluation of entropy-based tra�c anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (2008), pp. 151–156.

[37] S��������, V., N�������, S., R������������, O., M������������, S., ���
R������, J. Heavy-hitter detection entirely in the data plane. In Proceedings of
the Symposium on SDN Research (2017), pp. 164–176.

[38] W���, L., K��, H., M�����, P., ��� R������, J. Programmable in-network
obfuscation of dns tra�c (work-in-progress).

[39] Y���, T., J����, J., L��, P., H����, Q., G���, J., Z���, Y., M���, R., L�, X., ���
U����, S. Elastic sketch: Adaptive and fast network-wide measurements. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (2018), pp. 561–575.

[40] Y�, M., J���, L., ��� M���, R. Software de�ned tra�c measurement with opens-
ketch. In Proc. of USENIX NSDI (2013).

[41] Z���, Y., Y���, K., L��, Z., Y���, T., C���, L., L��, S., Z����, N., W���, R.,
W�, H., W���, Y., �� ��. Lightguardian: A full-visibility, lightweight, in-band
telemetry system using sketchlets. In 18th USENIX Symposium on Networked
Systems Design and Implementation (2021).

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Problem Diagnosis
	3.1 A Closer Look at Sources of Error
	3.2 Quantifying Sources of Error

	4 Building Blocks and Solution Guidelines
	4.1 Building Blocks
	4.2 Guidelines for Sketch Developers

	5 Evaluation
	5.1 Experimental Setup
	5.2 Error and Delay Reduction
	5.3 Implementation Effort

	6 Related work
	7 Conclusions
	References

