Telemetry Retrieval Inaccuracy in Programmable Switches:
Analysis and Recommendations

Hun Namkung*, Daehyeok Kim*, Zaoxing Liu’, Vyas Sekar*, Peter Steenkiste*
*Carnegie Mellon University, "Boston University

Abstract

Sketching algorithms or sketches are attractive as telemetry capabil-
ities on programmable hardware switches since they offer rigorous
accuracy guarantees and use compact data structures. However,
we find that in practice, their actual implementations can have
a significant (up to 94X) accuracy drop compared to theoretical
expectations. We find that the delays incurred by pulling and reset-
ting the data plane state induce accuracy degradation. We design
and implement solutions to reduce the delays and show that our
solutions can help eliminate almost all the inaccuracy of existing
sketch workflows.

CCS Concepts

+ Networks — Programmable networks; Network monitor-
ing.

ACM Reference Format:

Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste .
2021. Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis
and Recommendations. In The ACM SIGCOMM Symposium on SDN Research
(SOSR) (SOSR °21), October 11-12, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3482898.3483357

1 Introduction

Recent advances have made it possible to design and implement
various telemetry capabilities, such as sketches [15, 18, 19], counting
bloom filters [20], and others [17] in programmable switches [1,
3]. At a high level, these network telemetry tasks maintain data
structures with arrays of counters in the data plane for tracking
traffic flows, which are then retrieved by the switch and network
control plane.

Our specific focus in this work is on sketches. The typical work-
flow of sketch-based telemetry is as follows. For every (pre-defined)
measurement epoch (i.e., a periodic time window), the switch con-
trol plane fetches the counter arrays to compute statistics of interest
(e.g., heavy hitters, distinct flows, entropy [10, 15, 18, 19, 26, 31, 39])
and resets the counter arrays. Essentially, the counter arrays are
shared state between the data plane and the control plane. The data
plane updates the state when processing packets, and the control

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSR °21, October 11-12, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9084-2/21/10...$15.00
https://doi.org/10.1145/3482898.3483357

plane reads the state per epoch and resets the state for the next
epoch.

While the fidelity of the sketches is backed by theoretical analy-
sis [15, 18, 19], in practice when we implement and deploy sketches
using the above workflow on programmable hardware switches
(e.g., Intel Tofino-based switch), the empirical results are inaccurate
(§2). For instance, there is a significant accuracy drop (e.g., up to
94X error increase), when the epoch size is small (e.g., 5s to 1s). To
the best of our knowledge, we are the first to document this counter
retrieval problem and propose solutions.

We systematically investigate the state fetching and resetting
process implemented on an Intel Tofino-based switch [1]. Our anal-
ysis shows that the time spent on pulling and resetting data plane
states is non-trivial. We decompose delays into the control and data
plane delays, identify a total of six potential delays, and quantify
the impact of each component. Our analysis reveals that two con-
trol plane delays can cause significant impacts on the accuracy of
counters (§3).

Having identified the key bottlenecks, we propose four correct-
by-construction solution building blocks, within the scope of sketch-
ing algorithms, with different trade-offs:

e Duplicating sketch instances in the data plane, one of which is
updated alternately in successive epochs.

o For sketches with a linearity property [20, 26, 30, 35], the control
plane can offset the error by subtracting counter arrays between
previous and current epoch.

o Deferring a control plane read operation after a reset operation
to reduce the impact of the bottleneck delay.

o Using a faster bulk reset APL

We also propose guidelines on which building blocks are appropri-
ate for different use cases (§4). We implement these building blocks
for five sketches [15, 18, 19, 21, 31] and evaluate them on a Tofino-
based programmable switch [1]. We demonstrate that delays are
reduced by more than 95%, and error is reduced by more than 97%
(§5). While our focus is on sketches, our findings and solutions are
likely more broadly applicable to other telemetry tasks since they
often share workflow interactions between the data and control
plane.

2 Background and Motivation

We first describe the common workflow of sketches in Fig. 1. We
then highlight the sketch accuracy drop in an actual hardware im-
plementation compared to a software implementation and discuss
the implications of this observation.

Typical Workflow. Fig. 1 shows the common workflow for deploy-
ing network telemetry tasks on programmable switches. Traffic
is chunked into time intervals or epochs. On the data plane, net-
work telemetry tasks maintain counter arrays that are updated by

https://doi.org/10.1145/3482898.3483357
https://doi.org/10.1145/3482898.3483357

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Switch Control Plane

Epoch read_state()
@ > reset_state()
read read reset .

req. res. req.
_lAread : arst 1

=——tp| counter arrays —|sfe—
stream

Switch Data Plane

Figure 1: Workflow of sketches.

Different Counters Error Increase

100
801

— 10000

== epoch 1s
AT I B .
3 | —*— epoch 10s
6000 1 o <P o8
4000 4 = epoch 30s ~=--=-mmmnfoeann

60 7 = epoch 1s
epoch 5s
101 e epoch 10s
90 4 —*— epoch20s _________________|
—— epoch 30s

Normalized
Error Increase (%

2000 F--=-====-=-=n==mmmamofenmanan

0 —4

4K 8K 16K 32K 64K 4K 8K 16K 32K 64K
counter array size counter array size

% of Different
Counters

(a) Different Counters. (b) Error Increase.

Figure 2: Different counters cause accuracy degradation.

processing packets. At the end of every epoch, the control plane
periodically reads the counter arrays and resets them.

We implement five published sketches [15, 18, 19, 21, 31] on a
Tofino-based programmable switch using the above workflow and
observed a significant discrepancy in accuracy compared with a
software implementation. We illustrate the problem using a simple
sketch called count-min sketch (CM) [18]. The CM uses a 2D array
of counters to detect heavy hitters from a packet stream for a
given flowkey (e.g., srcIP). We use srcIP as the flowkey for our
implementation.

Methodology. The sketch implementation on the hardware is par-
titioned across the data and control plane. In the data plane, we run
the CM written in P4 [13] and send the input packet stream (S) to
the switch from a directly connected server using tcpreplay [6].
The control plane periodically reads and resets the counter arrays
using the control plane API provided by the Tofino SDK [2]. The
SDK supports Python and C++, and we present results using C++
APL! To obtain the theoretically expected accuracy, we use a soft-
ware implementation of CM sketch written in C++. We split an
input packet stream S into multiple subsets S; corresponding to an
epoch with length L.? The software implementation pauses packet
processing while it reads and resets the counter array. We measured
the accuracy of the sketch using both the software and hardware
implementations for different epoch lengths (L) and counter array
sizes.

Findings. Fig. 2a shows the percentage of the number of differ-
ent counters in the counter array between the software simula-
tion and the hardware measurement. We see that up to 98% of
counters are different. This discrepancy problem reduces accu-
racy as shown in Fig. 2b. The normalized error increase is defined

!Based on the conversation with Barefoot, the Python API is not recommended for
latency critical applications because Python API is a RPC wrapper for the C++ APL
For the input packet stream S, we sample ten one-minute packet traces from inter-ISP
packet trace captured on an OC-192 link [7].

Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

Error actual = ETTOT cap
Error g,
ing software sketch implementation relative to ground truth and

Error gctyq 18 the actual error using the hardware implementation.
The error increases up to 94x at an array size of 64K and epoch
length of 1. We use an average relative error (§5.1) as the error of
CM.

, where Error qyy is the expected error us-

Implications. At a high level, the discrepancy arises due to the
delays involved in the read and reset operation in Fig. 1, Aread and
Arst. As we will see later (§3), they are not negligible. Note that the
above results focus on a simple sketch with a small counter array, a
relatively large epoch (1 to 30 seconds), and non-adversarial traffic
conditions. In practice, the problem could be worse.

o First, richer network telemetry tasks that use more data plane
counters such as R-HHH [10] and UnivMon [31] will be im-
pacted more as the impact increases with the size of the counter
array.

e Second, network telemetry tasks with tighter timing deadlines
(shorter epochs) will be impacted more as the delay, relative to
the epoch length, becomes more significant.

e Lastly, the worst case error can become unbounded; there can
be bursts of packets (e.g., anomalies or attacks) that coincide
with the Aread or Arst intervals.

3 Problem Diagnosis

We take a closer look at the read and reset delays to understand the
discrepancy problem better.

3.1 A Closer Look at Sources of Error

We can logically decompose the read and reset delays into control
and data plane delays, as shown in Fig. 3. The read delay at Epoch;,
Aread;, consists of two control plane delays and one data plane
delay: Aread; = Areaclic1 +A7"eadic2 +AreadiD, where AreadiD rep-
resents the duration of actual data transfer from the data plane.
Similarly, we can represent the the reset delay as Arst; = Ar&tic1
+Ar5tic2 +Arst? , with similar control and data plane components.

Let F(S) be the sketching function computed on a given set
of packets S. For Epoch;, we want to measure F(S;). However,
the above delays result in a different set of packets actually being
monitored; they are marked as epoch packets and measured packets
in Fig. 4.

More specifically (see Fig. 3), let Sareqq; and Sars¢; denote the
sets of packet streams during the read and reset operation in Epoch;;.

Let SAreadl.Cl’ SArstiCl denote the sets of packets during Areadic1

and ArstiCI. SATeadiD, SArstiD are more subtle because the control

plane and data plane access the counter array simultaneously. We
define S, 4o (similarly S, . p) as the set of packets in the traffic

stream during AreadiD (ArstiD) where packets in this set update
the counter array before the read and reset operation is executed.

The measured packets (the dotted line in Fig. 4) is F((Si—(SAread;
U SATstic'l U SMstiD NV (SMeadichll v SAreadiDH))' Note that the ef-
fect of Areadic2 is included in Spyeqq, - Next, we quantify the delays

that cause the loss in accuracy.

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Aread;

—>— 1 bit counter
4004 32 bit counter
| —&— 64 bit counter

200 //
100 X
// 3¢

4K 8K 16K 32K 64K
counter array size

Arst;

—— 1 bit counter
32 bit counter
—&— 64 bit counter

4K 8K

16K 32K 64K

counter array size

Aread; i Arst; |
Ctl ‘ ‘ ‘_ ‘ !
plane |areadf!| |Areadf? i Arstft] 1Arstf? i
------------- f'"";T""'"("""P""ﬂ'""'}""'
data iAread; ! D|
i il ! lArstl | !
plane I I
[counterarray | | [counterarray | !
T : 8 ,
------------- il B el e Bt R
| |
set of SAreudiC‘}SArsadlD i } SA‘rstiC1 }SArStf’ } }
packets SAreadL } SArstl 1‘
Y
Epoch;

Figure 3: Decomposition of the read and reset delays into control

Figure 5: The read and reset delays (ms).

plane and data plane delays at Epoch;.

+~———: epoch packets (SW)

« - - - measured packets (HW)

. AreadiI Arst; Aread; 4 | Arstiyq |
i T EEFEEEE ===
Saread; SArstiC1 ‘SArstfJ SAreadﬁll ‘SAreadﬁrl Sarst;
— Si D— Si+1 —
Epoch; Epochitq

Delays 4K 16K 64K
Aread$t 030 097 3.62
Aread? 001 0.07 0.31
Aread; Eo
AreadS® 2221 6670 244.49
Total 2253 67.74 24843
ArstCT 1645 4169 14553
Arst; ArstP 009 036 1.49
Arstt? 002 002 003
Total 1656 42.08 147.06
Aread; + Arst; 3910 109.81 395.48

Figure 4: Different input packet sets between software and hardware
create the discrepancy problem.

3.2 Quantifying Sources of Error

To understand the magnitude of impact from each source of delay,
we measure these next.

Methodology. At a high level, we measure the delays by sending
packets at a controlled rate to the switch data plane and reading the
counter values into the control plane. To this end, we use custom
benchmarking programs in addition to the sketch implementations—
data plane program using P4 language and the control plane using
C++ APL Our measurements use efficient control plane read and
reset operations. For the read operation, we utilize table sync opera-
tion which uses bulk DMA transfer from data plane counter arrays
into control plane buffer so that the control plane can read counters
more quickly. For the reset operation, we use the transaction API,
which accelerates the individual write operations.

To measure Aread? we need to measure the time between when
the control plane reads from the first counter counter[0] to the
last counter counter[N-1] of a counter array. This is done by syn-
thesizing a packet stream that contains two packets every 100us
and using them to increment (+1) counter[0] and counter[N-1] re-
spectively. In this way, AreadiD can be measured by (counter[N-1]
—counter[0]) X100us. The server uses tcpreplay to send this syn-
thesized packet stream to the directly connected switch while the
control plane executes the read operation.

We use the same setup to measure the duration of the data
plane reset operation ArstiD . However, since the reset operation
resets counter values incrementally starting with the first one,
the control plane executes the reset operation during tcpreplay
and then executes the read operation after tcpreplay is finished.
(counter[0] —counter[N-1]) x100us then represents Arst?. To mea-

sure Areadic1 and AreadiCQ, the control plane reads the first counter

Table 1: Six delay measurement (ms).

value before and after the read operation and we can then calcu-
late those values using subtraction. We apply the same ideas for
measuring Arstic1 and ArstiCQ.

Result. Fig. 5 shows the Aread; and Arst; delays for different
counter array sizes and counters (e.g., 1-bit, 32-bit). The read delay
Aread; can be up to 488 ms and the reset delay Arst; can be up to
291 ms. Both delays increase linearly as the size of the counter array
increases. For different counter sizes, a 64-bit counter takes 1.97x
more delay than a 32-bit counter because the switch maintains
a 64-bit counter as a pair of 32-bit counters. However, the delay
difference between 32-bit and 1-bit counter is marginal (1.01x).3

Next, we look at six decomposed delays for 32-bit counters in
Table 1. Surprisingly, Aread? and ArstiD take less than 0.1%, 0.4% of
the total read and reset delays. Meanwhile, we can see that AreadiC2
and ArstiCl are the dominant factors as they take up more than
98% of the sum of the read and reset delays.

Key takeaways. Out of six delays, two control plane delays AreadiC2
and Arst?l are dominant factors. For example, Aread?2 (ArstiCl)
of 16K array size takes 61% (38%) of the total sum of delays. Across
all sizes of counter arrays, both bottleneck delays together account

for 99% of the total delay.

4 Building Blocks and Solution Guidelines

In this section, we propose four solution building blocks to mask
or reduce the delays identified in the previous section. These have
varying trade-offs regarding the epoch size they can support, re-
source usage, general applicability across tasks. Table 2 summarizes

3We cannot measure the delays for 1-bit counters with the described methodology
because 1-bit counter can not store an integer value. Instead, we used a timer in the
control plane program to measure delays for the 1-bit counter in Fig. 5.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Building c2 c1
Blocks Aread; Arst; Epoch Gen. Res.
B1 hide hide smallest v 2x
B2 hide hide small X 1x
B3 hide X med v 1x
B4 X reduce med v 1x

Table 2: Tradeoffs for solution building blocks in different metrics
such as hiding/reducing two bottleneck delays, epoch size it can
support, generality, resource usages.

these trade-offs. We also provide some general guidelines for com-
bining building blocks as solutions appropriate for different use
cases.

4.1 Building Blocks

B1: Use duplicate counters. A simple idea is to duplicate sketch
instances in the data plane and alternately use them for odd/even
epochs. At Epoch;, counter array in sketch instance 1 can be up-
dated in the data plane while the control plane reads and resets
sketch instance 2. Then at Epoch;,q, counter array in sketch in-
stance 2 can be updated in the data plane while the control plane
reads and resets instance 1.

Trade-off. This idea masks all delays and the key bottleneck delays.
However, this idea requires 2X the data plane memory. Realizing it
also requires some data plane code (P4) change.

B2: Offset counter errors in the control plane. Some sketches
have a linearity property [33]. That is, counter arrays can be com-
bined in a mathematical sense by addition and subtraction of each
counter. In such cases, the control plane can avoid explicitly reset-
ting the counters or duplicating the counters. Instead, it stores the
counter arrays reported from the previous epoch (in the control
plane) and obtains the counters for the current epoch by subtracting
the previous counter arrays from counter arrays reported at the
current epoch.*

Trade-off- This idea masks the key bottleneck delays of the reset
and does not incur any additional data plane resources. It only
requires small control plane code updates to subtract counter arrays.
However, this idea is only applicable to sketches satisfying the
linearity property. Fortunately, we’ve seen a range of linear sketches
such as [15, 20, 26, 30, 35] for various measurements. We do see
one caveat that some sketches for tracking heavy hitters in the
data plane [18] need to access per-epoch counters to identify heavy
flowkeys. Since the data plane only stores accumulated values, we
cannot obtain per-epoch values directly in the data plane.

B3: Defer control plane read operation. We observe that during
Areadl.cz, most of the time is spent on reading counter arrays from
an internal buffer in the control plane. That is, data is already
transferred from the data plane using bulk DMA transfer as in
Fig. 6. Thus, we can defer this operation of reading data from the
buffer after the reset operation. We can implement this idea because

4The idea of not resetting the counters across epochs can bring up a concern of
overflow. However, subtracting two counter array still works as long as there is at
most 1 overflow per epoch. Empirically, the 32-bit counter is large enough to avoid
two overflows.

Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

read bulk defered

reset s reset | read

cal‘lbaic Dilg Md
» buffer_l |_buffer
I i Bl i L

reset

yleset
counter arra ‘

<«—>: B3. defer the CP read operation hides 4read|?
<«--»: B4. bulk reset AP reduces Arstf*

| counter array |

Figure 6: B3: Defer control plane read operation and B4: Use bulk
reset APL

Resource is sufficient and/or high accuracy with
small epoch length is required?

yef/ \ no
Solution 1 (B1) | | Sketch has a property of a linear combination and

counter arrays are not used in the data plane?

v/ \

[solution 2(82) | | Solution 3 (83+84) |

Figure 7: Decision tree for selecting solutions.

1) the reset operation does not reset the internal buffer and 2) the
read operation can be divided into separate API calls: bulk DMA
transfer and reading data from the internal buffer.

Trade-off. This idea does not require additional resources and it can
be applied to sketches without linearity property. However, it only
reduces the effect of Aread?z.

B4: Use bulk reset APIL This solution building block directly
reduces Arstic1 as in Fig. 6. We observed that the basic control
plane support for reset updates counters one at a time. This is
effectively a write operation and provides a more general capability
to write an arbitrary value at a specific location. However, we note
that there is also a clear API that suffices for our needs well since
it resets all of the counter arrays to zero with much lower delay
(18x faster).”

Trade-off. This idea only reduces the effect of Arst?l, thus it still
can suffer accuracy degradation for a small epoch length.

4.2 Guidelines for Sketch Developers

Based on the above building blocks, we suggest a guideline for
sketch developers on which solution is appropriate for different
use cases summarized in the decision tree (Fig. 7):

e Solution1 (B1) would fit for small sketches and/or resources are
sufficient. B1 provides the highest fidelity, especially for small
epoch length.

¢ Solution2 (B2) uses low resource footprint. It is a simple solu-
tion for sketches satisfying linearity when counter arrays are
not used in the data plane.

e Solution3 (Combine B3 and B4). These two building blocks
can be combined to tackle two bottleneck delays. The combined

5 According to the conversation with Intel, Tofino2 supports an even faster bulk reset
APL

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations

solution requires some implementation effort but is general and
is appropriate when resource overhead is critical.

5 Evaluation

Our evaluation demonstrates that (a) all solutions significantly
reduce the error of the hardware implementation relative to the ex-
pected accuracy and (b) the implementation effort for the solutions
is marginal in terms of additional lines of code.

5.1 Experimental Setup

Testbed. We use an Edgecore Wedge 100BF Tofino-based pro-
grammable switch and a server equipped with dual Intel Xeon
Silver 4110 CPUs, 128GB RAM, and a 100Gbps Mellanox CX-4 NIC
connected to the switch. We use Tofino SDE version 9.1.1 in our ex-
periment. We send the trace to the switch from a directly connected
server using tcpreplay.

Traces. We use sampled ten one-minute packet traces from CAIDA
backbone traces capture at 1/21/16 Chicago [7].6

Sketches. We implement five sketches, MRB [19], HLL [21], count
sketch (CS) [15], count-min sketch (CM) [18], and UnivMon (UM) [31]
using P4 language. MRB uses 1-bit counters and the rest of the
sketches use 32-bit counters. MRB and HLL use one counter array
and CS, CM, UM use four counter arrays. MRB, HLL estimate cardi-
nality, CS, CM estimate the average relative error of top-100 heavy
hitter flow counts, and UM estimates entropy. Note that out of five
sketches, CS, CM, UM satisfy the linearity property. We assume
that we know all of the flowkeys for CS, CM, UM since identifying
heavy flowkeys on the data plane is orthogonal to this work. We
use P4 version of P41¢.

Metrics of difference. We consider three types of metrics:
e Raw counters: We consider both the total counter value differ-

ence =); |expected|i] — actual[i]| and the relative counter
Yi(expected[i]'=actualli])

array_size

difference =

e Sketch Errors: Average Relative Error (ARE) is % Z?:l M

fi
where k is 100. f; is true flow count, f; is flow count estimate, and
fi = fi+1 for any i. This metric is used for CS and CM. Relative

Error (RE) is w, where T'rue is true statistic value
and F'stimate is estimated value. This metric is used for MRB,

HLL, UM.

e Delay: We measure the sum of delays that corresponds to union

and subtraction components in §3.1: Aread; + Arstl.c1 + Arst?

C1

D
+ Aready,; + Aread; ;.

5.2 Error and Delay Reduction

Counter difference reduction. We first look at the counter differ-
ence reduction in Table 3. We use a fixed epoch length of 1 second.
We can see that all solutions reduce almost all of the total counter
value difference compared to unoptimized hardware implementa-
tion. Specifically, Sol 1 incurs no counter difference, and Sol 2, Sol
3 incur little counter differences. Note that the total counter value
difference has a more direct effect on sketch accuracy than the
relative counter difference.

®We also run experiments with other traces such as data center traces [12] and attack
traces [8]. Results are similar thus, they are not shown.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

MRB HLL CS CM UM
A.size 64K 4K 64K 64K 128K
Unopt 1273/2% 91/1% 618K/73% 700K/76% 1030K/26%
Sol 1 0/0% 0/0% 0/0% 0/0% 0/0%
Sol 2 X X 10K/7% 10K/7% 16K/5%

Sol 3 5/0% 3/0% 22K/12% 22K/13% 33K/8%

Table 3: Total counter value difference / relative counter difference
for five sketches and three solutions using epoch=1s.

MRB HLL CS CM UM

Array size 64K 4K 64K 64K 128K
Expected Ideal
1.6% 4.8% 0.7% 0.4% 2.8%
Errors sketch

Unopt 20.1% 6.2% 354% 34.8% 64.7%

Actual Sol 1 1.6% 4.8% 0.7% 0.4% 2.8%
Errors Sol 2 X X 1.0% 0.7% 2.8%
Sol 3 1.7% 4.8% 1.5% 1.1% 3.6%

Table 4: Expected errors vs. actual errors using epoch=1s.

4K 16K 64K
Unopt 39.39 110.84 399.39
Sol 1 0 (100%) 0 (100%) 0 (100%)

Sol2 032(99.20%) 1.04(99.06%) 3.94 (99.01%)
Sol3 153(96.11%) 4.66 (95.79%) 16.67 (95.83%)

Table 5: The sum of delays after applying solutions in ms (% of
reduction compared to unoptimized).

Error reduction. Next, we look at the error reduction in Table 4.
Compared to errors on unoptimized implementation, actual errors
on all solutions are almost close to expected errors measured on
software implementation.

Delay reduction. Table 5 shows that all solutions reduce delays
significantly. Sol 1 does not incur any delays. Sol 2 can reduce delays
by 99% across all counter array sizes. Sol 3 also reduces delays by
95%. Note that the delays after applying solutions are still linear to
the counter array size.

Detailed measurement. We observe reductions for fixed array size
and epoch length. We pick one sketch (CS) and look at the counter
differences and error reductions for different array sizes and epoch
lengths. Fig. 8 shows that as array size increases, the total counter
value difference increases linearly, but it is constant over epoch
lengths. Note that Sol 1 does not incur any counter differences
across all array sizes and epoch lengths. Fig. 9 shows that the error
gap between expected and un-optimized measurement is increasing
as array size increases and epoch length decreases. All solutions
effectively reduce this gap and they show similar errors as expected.

5.3 Implementation Effort

Table 6 shows additional lines of code for implementing solutions.
Sol 1 requires P4 code change for duplicating instances and C++
control plane program change for reading instances alternatively.
Code change for Sol 2 is in an offline processing program written

SOSR ’21, October 11-12, 2021, Virtual Event, USA

CS (epoch length 1s) CS (array size 64K)

108 106

8 Unopt L 8
2 g —&— Sol 2 2 g
S@p L SO So
S& SE 10°
c°a 28
33 _— s
e 3 10 al o3 —
> ‘___.——/- >
T T T T T 10 T T T T T
4K 8K 16K 32K 64K 1s 5s 10s 20s 30s
array size epoch length
Figure 8: Total counter value difference for CS.
CS (epoch length 1s) CS (array size 64K)
. Unopt ~ —#— Sol 3
30T —h— Sol1 = Expected "/ 301"
§ —— Sol 2 ;\3
=20 = 20 4----2
w w
4 o
R (U e | < 10
045 . ; e W —i X il
4K 8K 16K 32K 64K 1s 5s 10s 20s 30s

array size epoch length

Figure 9: Average relative error for CS.

Additional Sol1 | Sol2 Sol 3
Lines of code ‘ B1 B2 B3 B4
Data Plane P4 Code 29 0 0 0
Control Plane Program (C++ API) 63 0 0 19
Offline Processing 0 9 0 0

Table 6: Additional lines of code for implementing solutions.

in Python for subtracting counter arrays. B3 in Sol 3 does not
incur any additional lines of code since it just swaps the order of
the control plane read and reset operation. B4 in Sol 3 requires
additional control plane program code for bulk reset APL

6 Related work

Sketch-based telemetry. Sketches have emerged as a promising
telemetry solution for flow-level measurements, including heavy
hitters [15, 18, 31, 37, 39], entropy estimation [31, 34, 36], change
detection [30, 40], and distinct flows [21, 31]. While recent ef-
forts [14, 41] propose to maintain more light-weight sketches per
device, they still suffer from the incorrect counter retrieval issue in
programmable switches and can benefit from our solutions.

Other work in network telemetry. There are complementary
telemetry capabilities that focus on packet-level and path-level
monitoring (e.g., INT [29] and PINT [11]), higher-order telemetry
(e.g., performance statistics [16, 22, 32], application level moni-
toring [38]), diagnosis [25, 28], as well as network-wide adaptive
telemetry [23, 24]. A not hard extension is to explore if these teleme-
try tasks can suffer from a similar incorrect state retrieval and reset
problem.

Other programmable platforms. In addition to the switches
discussed in this paper, SmartNICs such as multicore SoC NICs [4, 5]
and FPGA NICs [9] are platforms for telemetry. Recent work [27] in
measuring the performances of various SmartNICs demonstrated
a similar bottleneck between the data plane and the control plane.
A future direction is to explore the telemetry retrieval inaccuracy
problem in SmartNICs.

Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

7 Conclusions

We consider a practical problem of deploying network telemetry
tasks on programmable switches. We identify and quantify the
causes of an accuracy degradation in sketches. Our solutions in-
formed by our analysis can eliminate almost all the inaccuracy for
five sketches. We believe our insights are more broadly applicable
to other network telemetry tasks with similar control-data plane
interactions.

Acknowledgement

We would like to thank the anonymous SOSR reviewers, Jeongkeun
Lee, and Georgios Nikolaidis for their constructive feedback. This
work was supported in part by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, and by NSF awards 1565343 and
1700521.

References
[1] Barefoot Tofino. https://barefootnetworks.com/products/brief-tofino/.
[2] Barefoot P4 Studio. https://www.barefootnetworks.com/products/brief-p4-

studio/.

[3] Broadcom Trident 4. https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56880-series.

[4] Mellanox DPU. https://www.nvidia.com/en-us/networking/products/data-
processing-unit/.

[5] Netronome Agilio SmartNICs. https://www.netronome.com/products/nfe/.

[6] tcpreplay. https://tcpreplay.appneta.com/wiki/tcpreplay-man.html.

[7] The CAIDA UCSD Anonymized Internet Traces. https://www.caida.org/data/
passive/passive_dataset.xml.

[8] The U.S. National CyberWatch Mid-Atlantic Collegiate Cyber Defense Competi-
tion (MACCDC). https://www.netresec.com/?page=MACCDC.

[9] Xilinx FPGA. https://www.xilinx.com/products/silicon-devices/fpga.html.

[10] BEen Basart, R., EINZIGER, G., FRIEDMAN, R., LuizerLi, M. C., AND WAISBARD,
E. Constant time updates in hierarchical heavy hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (2017).

[11] Ben Basar, R, RAMANATHAN, S., L1, Y., ANTICHI, G., YU, M., AND MITZENMACHER,

M. Pint: probabilistic in-band network telemetry. In Proceedings of the Annual

conference of the ACM Special Interest Group on Data Communication on the

applications, technologies, architectures, and protocols for computer communication

(2020), pp. 662-680.

BENsoN, T., AKELLA, A., AND MALTZ, D. A. Network traffic characteristics of

data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement (2010), pp. 267-280.

BossHART, P., DALy, D., GiBB, G., Izzarp, M., McKEowN, N., REXFORD,]J.,

SCHLESINGER, C., TALAYCO, D., VAHDAT, A., VARGHESE, G., AND WALKER, D. P4:

Programming protocol-independent packet processors. SIGCOMM Comput. Com-

mun. Rev. (2014).

BruscHy, V., Basar, R. B, Liu, Z., ANTICHI, G., BIANCHI, G., AND MITZENMACHER,

M. Discovering the heavy hitters with disaggregated sketches. In Proceedings

of the 16th International Conference on emerging Networking EXperiments and

Technologies (2020), pp. 536-537.

CHARIKAR, M., CHEN, K., AND FARACH-CoLTON, M. Finding frequent items in data

streams. In International Colloquium on Automata, Languages, and Programming

(2002), Springer, pp. 693-703.

[16] CHEN, X, KiM, H,, AMAN, J. M., CHANG, W., LEE, M., AND REXFORD, J. Measuring
tep round-trip time in the data plane. In Proc. of SGCOMM SPIN Workshop (2020).

[17] CHEN, X., LANDAU-FEIBISH, S., BRAVERMAN, M., AND REXFORD, J. Beaucoup:

Answering many network traffic queries, one memory update at a time. In

Proceedings of the Annual conference of the ACM Special Interest Group on Data

Communication on the applications, technologies, architectures, and protocols for

computer communication (2020), pp. 226-239.

CORMODE, G., AND MUTHUKRISHNAN, S. An improved data stream summary: the

count-min sketch and its applications. Journal of Algorithms 55, 1 (2005), 58-75.

EstaN, C., VARGHESE, G., AND FIsk, M. Bitmap algorithms for counting active

flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference

on Internet measurement (2003), pp. 153-166.

[20] Fan, L., Cao, P., ALMEIDA,]., AND BRODER, A. Z. Summary cache: a scalable

wide-area web cache sharing protocol. IEEE/ACM transactions on networking 8, 3

(2000), 281-293.

FLAJOLET, P., RIC FUsY, GANDOUET, O., AND ET AL. Hyperloglog: The analysis of

a near-optimal cardinality estimation algorithm. In AOFA (2007).

[12

[13

=
&

[15

[18

=
2

[21

https://barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.netronome.com/products/nfe/
https://tcpreplay.appneta.com/wiki/tcpreplay-man.html
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://www.netresec.com/?page=MACCDC
https://www.xilinx.com/products/silicon-devices/fpga.html

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations

[22]

[23]

[24

[25]

[26]

[27

[28]

[29]

[30

[31]

GHASEMI, M., BENSON, T., AND REXFORD, J. Dapper: Data plane performance
diagnosis of tep. In Proceedings of the Symposium on SDN Research (2017), pp. 61—
74.

GUPTA, A., HARRISON, R., CANINI, M., FEAMSTER, N., REXFORD, J., AND WILLINGER,
W. Sonata: Query-driven streaming network telemetry. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication (2018),
pp. 357-371.

HARRISON, R., CAL Q., GUPTA, A., AND REXFORD, J. Network-wide heavy hitter
detection with commodity switches. In Proceedings of the Symposium on SDN
Research (2018), pp. 1-7.

HorTERBACH, T., MOLERO, E. C., APOSTOLAKI, M., DAINOTTI, A., VISSICCHIO, S.,
AND VANBEVER, L. Blink: Fast connectivity recovery entirely in the data plane.
In Proc. of NSDI (2019).

Huang, Q., LEE, P. P., AND Bao, Y. Sketchlearn: Relieving user burdens in
approximate measurement with automated statistical inference. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication
(2018), pp. 576-590.

Kartsikas, G. P., BARBETTE, T., CHIESA, M., KosTic, D., AND MAGUIRE JR, G. Q.
What you need to know about (smart) network interface cards. In PAM (2021).
KHANDELWAL, A., AGARWAL, R., AND Stoica, I. Confluo: Distributed monitoring
and diagnosis stack for high-speed networks. In Proc. of USENIX NSDI (2019).
Kim, C., SIVARAMAN, A., KATTA, N., Bas, A, DIXIT, A., AND WOBKER, L. J. In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM Demo
Session (2015).

KRISHNAMURTHY, B., SEN, S., ZHANG, Y., AND CHEN, Y. Sketch-based change
detection: methods, evaluation, and applications. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement (2003), pp. 234-247.

Liu, Z., MaNousis, A., VORSANGER, G., SEKAR, V., AND BRAVERMAN, V. One
sketch to rule them all: Rethinking network flow monitoring with univmon. In
Proceedings of the 2016 ACM SIGCOMM Conference (2016), pp. 101-114.

(32]

(33]

(34

[35

'w
o

[37

(38]

[39

[40]

[41]

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Liu, Z., ZHou, S., ROTTENSTREICH, O., BRAVERMAN, V., AND REXFORD, J. Memory-
efficient performance monitoring on programmable switches with lean algo-
rithms. In Proc. of APoCS (2020), STAM.

MUTHUKRISHNAN, S. Data streams: Algorithms and applications. Now Publishers
Inc, 2005.

NycHis, G., SEKAR, V., ANDERSEN, D. G., Kim, H., AND ZHANG, H. An empirical
evaluation of entropy-based traffic anomaly detection. In ACM IMC, 2008.
NycHis, G., SEKAR, V., ANDERSEN, D. G, Kim, H., AND ZHANG, H. An empirical
evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (2008), pp. 151-156.
NycHis, G., SEKAR, V., ANDERSEN, D. G., Kim, H., AND ZHANG, H. An empirical
evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (2008), pp. 151-156.
SIVARAMAN, V., NARAYANA, S., ROTTENSTREICH, O., MUTHUKRISHNAN, S., AND
REXFORD, J. Heavy-hitter detection entirely in the data plane. In Proceedings of
the Symposium on SDN Research (2017), pp. 164-176.

WANG, L., Kim, H., MITTAL, P., AND REXFORD, J. Programmable in-network
obfuscation of dns traffic (work-in-progress).

Yang, T, J1aNG,], L1y, P., HuaNg, Q., GoNg, J., ZHoU, Y., M1ao, R,, L1, X., AND
UHLIG, S. Elastic sketch: Adaptive and fast network-wide measurements. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (2018), pp. 561-575.

Yu, M., Josk, L., AND M1ao, R. Software defined traffic measurement with opens-
ketch. In Proc. of USENIX NSDI (2013).

ZHAO, Y., YANG, K, L1u, Z., YANG, T., CHEN, L., L1u, S., ZHENG, N., WANG, R.,
Wu, H., WANG, Y., ET AL. Lightguardian: A full-visibility, lightweight, in-band
telemetry system using sketchlets. In 18th USENIX Symposium on Networked
Systems Design and Implementation (2021).

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Problem Diagnosis
	3.1 A Closer Look at Sources of Error
	3.2 Quantifying Sources of Error

	4 Building Blocks and Solution Guidelines
	4.1 Building Blocks
	4.2 Guidelines for Sketch Developers

	5 Evaluation
	5.1 Experimental Setup
	5.2 Error and Delay Reduction
	5.3 Implementation Effort

	6 Related work
	7 Conclusions
	References

