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Spatially resolved transcriptomics provides a new way to define spatial contexts and understand the
pathogenesis of complex human diseases. Although some computational frameworks can characterize
spatial context via various clustering methods, the detailed spatial architectures and functional zonation
often cannot be revealed and localized due to the limited capacities of associating spatial information. We
present RESEPT, a deep-learning framework for characterizing and visualizing tissue architecture from
spatially resolved transcriptomics. Given inputs such as gene expression or RNA velocity, RESEPT learns
a three-dimensional embedding with a spatial retained graph neural network from spatial transcrip-
tomics. The embedding is then visualized by mapping into color channels in an RGB image and seg-
mented with a supervised convolutional neural network model. Based on a benchmark of 10x
Genomics Visium spatial transcriptomics datasets on the human and mouse cortex, RESEPT infers and
visualizes the tissue architecture accurately. It is noteworthy that, for the in-house AD samples,
RESEPT can localize cortex layers and cell types based on pre-defined region- or cell-type-enriched genes
and furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer’s
disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, non-
tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic cancer

applications.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tissue architecture is the biological foundation of spatial
heterogeneity within complex organs like the human brain [1]
and is thereby essential in understanding the underlying patho-
genesis of human diseases, including cancer [2] and Alzheimer’s
disease (AD) [3]. Unlike healthy and well-organized tissue archi-
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tecture, tissues in a disease state such as cancer usually alternate
the organization and lead to cytoarchitectural abnormalities with
aberrant physiological processes [4-6]. Spatial transcriptomics is
especially well-positioned to study such an abnormal organization
and investigate its mechanism [7]. Recent advances in spatially
resolved technologies such as 10x Genomics Visium provide spatial
context together with high-throughput gene expression for explor-
ing tissue domains, cell types, cell-cell communications, and their
biological consequences [8].

Several computational methods have been developed for com-
putational analyses of spatial transcriptomics [7,9,10]. Seurat [11]
performs tissue architecture identification and interpretation
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based on variable gene selection, dimension reduction, and graph-
based clustering (i.e., Louvain), followed by differentially expressed
analysis. Giotto [12] is a comprehensive toolbox for spatial analysis
and visualization, including spatially variable gene (SVG) pattern
recognition, cell-cell communication inference, and tissue archi-
tecture identification, which uses a similar framework as Seurat.
STUtility [13] uses non-negative matrix factorization to perform
dimension reduction and then identifies tissue architecture based
on Seurat and can integrate consecutive samples to obtain a more
comprehensive three-dimensional view of tissue architectures. In
addition, several deep learning methods were also introduced.
SpaGCN [14] proposes a convolutional graph network to integrate
gene expression, spatial location, and histology to define metagene
(i.e., a group of genes sharing a common spatial pattern) and fur-
ther characterize tissue architecture. stLearn [15] is also a compre-
hensive toolbox for spatial data analysis, including implementing
the normalization method, performing tissue architecture identifi-
cation, inferring pseudo-time analysis, and investigating cell-cell
communication. Before clustering analysis for tissue architecture
identification, stLearn firstly normalizes expression value based
on the Spatial Morphological gene Expression normalization
method (SME), which integrates gene expression, spatial location,
and histology information via a transfer learning deep neural net-
work model.

Moreover, statistical frameworks also play a pivotal role in spa-
tial transcriptomics analysis. BayesSpace adopts a Bayesian statis-
tical framework, uses the low-dimensional representation (e.g.,
PCA) of gene expression as input, employs the spatial smoothing
(the Potts model) prior to model spatial correlation, and identifies
tissue architecture using latent clusters based on the Metropolis-
Hastings algorithm [10,16]. BayesSpace can also be extended to
computationally enhance resolution and bring insights at the
sub-spot level. The hidden Markov random field (HMRF) is another
approach to inform the organizational structure unbiasedly and
has been mainly applied to image-based spatial transcriptomics.
As the domain state of each cell spot (spot for short) was influenced
by its gene expression pattern and the domain states of neighbor-
ing spots [17], HMRF considers gene expression information and
spatial environment information simultaneously, which is essen-
tial to depict the heterogeneity and has been successfully inte-
grated into Giotto.

Although these methods have been successfully implemented
for tissue architecture identification, the prediction accuracy still
has room to be improved, and the learned low-dimensional repre-
sentations can seldom be visualized intuitively. The heterogeneity
of tissue architecture cannot be fully viewed and characterized due
to a lack of strong spatial representation for maximally retaining
tissue heterogeneity. Therefore, it is still challenging to represent
spatial heterogeneity, accurately characterize tissue architectures,
and understand the underlying biological functions from spatial
transcriptomics. We reasoned that three-dimensional embeddings
from spatial transcriptomics could be transformed into RGB values
for biologically-interpretable visualization and direct applications
of state-of-the-art computer vision methods. RGB in computation
graphics can resemble more than 16.7 million colors, while the
human eyes can distinguish 2.3 million colors [18]. That means
RGB values converted from three-dimensional embedding can
intrinsically and intuitively reflect the human-eye distinguishable
heterogeneity of tissue architecture. Moreover, we hypothesize
that tissue architecture can be visualized and segmented from an
RGB image converted by the low-dimensional representations
embedding gene expression profiles and spatial topology of spots.

To this end, we formulate tissue architecture identification as
an image segmentation problem in the computer vision field and
introduce RESEPT (REconstructing and Segmenting Expression
mapped RGB images based on sPatially resolved Transcriptomics),
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a framework for reconstructing, visualizing, and segmenting an
RGB image from spatial transcriptomics to reveal tissue architec-
ture and spatial heterogeneity. We highlight the unique features
of RESEPT as follows: (i) to the best of our knowledge, RESEPT is
a first-of-the-kind framework for identifying tissue architecture
using the computer vision technique (i.e., segmentation). In detail,
the image can also be sent to a pre-trained segmentation deep-
learning model and an optional segmentation quality assessment
protocol, which resists robustly to noises and artifacts. (ii) RESEPT
enhances the interpretability for low-dimensional representation.
Specifically, high-dimensional spatial transcriptomics data are
converted as a human-eye distinguishable RGB image by mapping
a low dimensional embedding to RGB color channels via a spatial
retained graph neural network. It is noteworthy that the image
intrinsically reflects tissue heterogeneity, and each RGB channel
can associate with SVGs, which supports the basis of tissue archi-
tecture. (iii) With a defined panel of gene sets representing specific
biological pathways or cell lineages, RESEPT can recognize the spa-
tial pattern and detect the corresponding active functional regions.
Specifically, the functional zonation boundaries of AD are deter-
mined effectively and flexibly by our segmentation model. (iv)
RESEPT is capable of recognizing tumor, non-tumor, and tumor
infiltration architectures in glioblastoma, and has demonstrated
its applicative power in defining spatial information of human
breast cancers and mouse brains.

2. Materials and methods
2.1. RESEPT pipeline

RESEPT is implemented in two major steps: (i) reconstruction of
an RGB image of spots using gene expression or RNA velocity from
spatial transcriptomics sequencing data; (ii) implementation of a
pre-trained image segmentation deep-learning model to recognize
the boundary of specific spatial domains and to perform functional
zonation. Figs. 1 and 2 demonstrate the pipeline with conceptual
description and technical details, respectively.

2.2. Construct RGB image for spatial transcriptomics

An RGB image is constructed to reveal the spatial architecture of
a tissue slice using three-dimensional embedding as the primary
color channels. Besides gene expression, RESEPT can accept RNA
velocity [19] as the input. RNA velocity unveils the dynamics of
RNA expression at a given time by distinguishing the ratio of
unspliced and spliced mRNAs, reflecting the kinetics and potential
influences of transcriptional regulations in the present to the
future cell state. The original BAM file of human studies is often
unavailable to public users due to ethical reasons, and hence, in
most cases, we only refer to expression-derived RGB images in
our study. The scGNN [20] package is used to generate spatial
embeddings for each spot based on the pre-processed expression
matrix or RNA velocity matrix, along with the corresponding meta-
data. In practice, RESEPT can adapt any type of low dimensional
representations, such as embedding from UMAP, SEDR [21], and
spaGCN [14]. On benchmarks, scGNN embedding obtained better
results in most cases, so RESEPT uses scGNN in default.

2.2.1. Positional variational autoencoder

After log-transformation and library size normalization by
count-per-million (CPM), the spatial transcriptome expression as
the input is embedded into a low dimensional vector through an
autoencoder. Both the encoder and the decoder consist of two sym-
metrically stacked layers of dense networks followed by the ReLU
activation function. The encoder learns the embedding X’ from the
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Fig. 1. The RESEPT schema. RESEPT takes gene expression or RNA velocity from spatial transcriptomics as the input. The input is embedded into a three-dimensional
representation by a spatially constrained Graph Autoencoder, then linearly mapped to an RGB color spectrum to reconstruct an RGB image for visualization. A CNN image
segmentation model is trained to obtain a spatially specific architecture (from whole-gene embedding) or spatial functional regions (from panel-gene embedding). Taking the
human dorsolateral prefrontal cortex as an example (sample 151,510 in Supplementary Table 1), the adjusted rand index (ARI) is 0.839, which means the predictive result can

faithfully reveal tissue architecture.

input gene expression matrix X(selecting top 2000 highly variable
genes by default), and the encoder reconstructs the matrix X from
the X'. In addition, a positional encoding [22] as Eq. (1) is incorpo-
rated in the learning process to characterize the spatial coordinates
and make the embedding X' space-aware.
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where D is set to the spot number along one dimension of the spa-
tial slide [22]; k is 2D Cartesian coordinates; i and j are coordinate
indices, PEx denotes the scale factor of positional encoding;

Xi’,‘?’ressm denotes embedding matrix from autoencoder learned from
ij

expression matrix only. X, X € RNM and X®#ression x' ¢ RN*M' | where
M is the number of input genes from the spatial transcriptome, M’ is
the dimension of the learned embedding (M’ < M). N is the number
of spots on the spatial slide. The objective of the training is to
achieve a maximum similarity between the original and recon-
structed matrices measured by minimizing the mean squared error

~\ 2
(MSE) > (X - X) as the loss function.

2.2.2. Generating Spatial retained Spot Graph

The cell graph is a powerful mathematical model to formulate
cell-cell relationships based on similarities between cells. In
single-cell RNA sequencing (scRNA-seq) data without spatial infor-
mation, the classical K-Nearest-Neighbor (KNN) graph is widely
applied to construct such a cell-cell similarity network in which
nodes are individual cells, and the edges are relationships between
cells in the gene expression space. With the availability of spatial
information in spots as the unit of observation arranged on the tissue
slice, our in-house tool scGNN adopts spatial relation in Euclidean
distance as the intrinsic edge in a spot-spot graph. Each spot in the
spatial transcriptomics data contains one or more cells, and the cap-
tured expression or the calculated RNA velocity is the summariza-
tion of these cells within the spot. Only directly adjacent spots in
contact in the 2D spatial plane have edges between them, and hence,
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the lattice of the spatial spots comprises the spatial spot graph. For
the generated spot graph G = (V,E), N = |V| denoting the number
of spots and E representing the edges connecting with adjacent
neighbors. A is its adjacency matrix and D is its degree matrix, i.e.,
the diagonal matrix of the number of edges attached to each node.
The node feature matrix is the learned embedding X’ from the dimen-
sional reduction autoencoder. In the 10x Visium platform, each spot
has six adjacent spots, so the spatial retained spot graph has a fixed
node degree of six for all the nodes. Similar to the KNN graph derived
from scRNA-seq, each node in the graph contains M’ attributes.

2.2.3. Graph autoencoder

Given the generated spatial spot-spot graph, a graph autoen-
coder learns a node-wise three-dimensional representation to
preserve topological relations in the graph. The encoder of the
graph autoencoder composes two layers of graph convolution
network (GCN) to learn the low dimensional graph embedding Z
in Eq. (2).

Z = GCN(GCN(X',A), A)

GCN(X',A) = ReLU(AX'W) @
where A = D"/2AD"'? is the symmetrically normalized adjacency
matrix and W is a weight matrix learned from the training. The out-
put dimensions of the first and second layers are set as 32 and 3,
according to the three color channels as RGB, respectively. The
learning rate is set at 0.001.

The decoder of the graph autoencoder is defined as an inner
product between the graph embedding Z, followed by a sigmoid
activation function:

(')
where A is the reconstructed adjacency matrix of A.

The goal of graph autoencoder learning is to minimize the
cross-entropy L between the input adjacency matrix A and the

A = sigmoid (3)

reconstructed matrix A.

. 1 . ~
L(A,A) = —WZLZL (az <log(ay) + (1 —ay) xlog(1—ay))
(4)
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Fig. 2. The RESEPT framework. (a) A spatial retained spot graph is established by spatial distances of spots and their expression or velocity matrix. The graph autoencoder
takes the adjacent distance matrix of the spot graph as the input. Its encoder learns a 3-dimensional embedding of a spatial cell graph. The decoder reconstructs the adjacent
correlations among all cells by dot products of the 3-dimensional embeddings followed by a sigmoid activation function. The graph autoencoder is trained by minimizing the
cross-entropy loss between the input spatial and the reconstructed graphs. The learned 3-dimensional embeddings are mapped to a full-color spectrum to generate an RGB
image revealing the spatial architecture. (b) The segmentation model takes the RGB image as the input, which may be processed with an imputation operation if missing spots
exist. Its backbone network ResNet101 consists of one convolutional layer and a series of residual blocks, in which one type of residual block named convolutional block
stacks three convolutional layers with a convolutional skip connection from the input signals to the output feature maps. The other type of residual block identity block stacks
three convolutional layers with a direct skip connection from the input signals to the output feature maps. This extra deep network firstly extracts rich visual features of the
input image. The encoder module further extracts multi-scale semantic features by applying four atrous convolutional with different rates and sizes of filters and one global
pooling layer to the basic visual feature maps. And the decoder module up-samples the multi-scale features to the same size with basic visual feature maps and then
concatenates them together. After a softmax activation function, the decoder module outputs a segmentation map classifying each spot into a specific spatial architecture.

where a; and @y are the elements of adjacency matrix A and A,
1 <i<N,1<j<N. As there are N nodes as the number of spots
in the slide, N x N is the total number of elements in the adjacency
matrix.

2.2.4. Reconstruct RGB Image

The learned embedding Z € R¥*3 is capable of representing and
preserving the underlying relationships in the modeled graph from
spatial transcriptomics data. Meanwhile, the three-dimensional
embedding can also be intuitively mapped to Red, Green, and Blue
channels in the RGB space of the image. Normalized to an RGB
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color space accordingly to a full-color spectrum (pixel range from
0 to 255) as Eq. (5), the embedding of each spot is assigned a
unique color for exhibiting the expression or velocity pattern in
space.

Zij — Zmin

Zmax -

=255x
Zmin

Yij (5)
where y € RV and y;; is its transformed color of the i-th spot in the
j-th channel, 1 <i<N, j€ {R,G,B}. Zne and Zp;, represent the
maximum and minimum of all embedding values in the RGB chan-
nels, respectively. With their coordinates and diameters at the full
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resolution provided from 10x Visium, we are able to plot all spots
with their synthetic colors on a white drawing panel and recon-
struct a full-size RGB image explicitly describing the spatial expres-
sion or velocity properties in the original spatial coordinate system.
For the spatial transcriptomic data sequenced in lattice from other
techniques, such as the ST platform, RESEPT allows users to specify
a diameter to capture appropriate relations between spots in the
RGB image accordingly.

2.3. RGB image segmentation model

The RGB image makes the single-cell spatial architecture per-
ceptible in human vision. With the constructed image, we treat
the potential functional zonation partition as a semantic segmen-
tation problem, which automatically classifies each pixel of the
image into a spatially specific segment. Such predictive segments
reveal the functional zonation of spatial architecture.

2.3.1. Image segmentation model architecture

We trained an image-segmentation model based on a deep
architecture DeepLabv3+[23,24], which includes a backbone net-
work, an encoder module, and a decoder module (Fig. 2).

Backbone network. The backbone network provides dense visual
feature maps for the following semantic extraction by any deep
convolutional network. Here, ResNet-101 [25] is selected as the
underlying model for the backbone network, which consists of a
convolutional layer with 64-channels in 7 x 7 size of filters and
33 residual blocks, each of which stacks one convolutional layer
with multi-channel (including 64, 128, 256, and 512) in 3 x 3 size
of filters and two convolutional layers with multi-channel (includ-
ing 64, 128, 256, 512, 1024 and 2048) 1 x 1 size of filters. The gen-
erated RGB image is mapped into a c-channel feature map by the
first convolutional layer and gradually fed into the following resid-
ual blocks to produce rich visual feature maps for describing the
image from different perspectives. Here, ¢ equals 64. In each resid-
ual block, the feature map generated from the previous block
y € RM3 is updated to y € RV*¢ in Eq. (5).

A_{ Fly, W;)+y i=1,4,831
a Fiy,Wi) + YW1 otherwise

where

(6)

F(x) is the activation function, and we use ReLU [26] in this
study.

W; represents the learning convolutional weights in the i
block,1 <i < 33.

W1, represents the learning weights of the convolutional layer
with 1 x 1 kernel size.

th

Element-wise addition operation F + y in Eq. (6) enables a direct
shortcut to avoid the vanishing gradient problem in this deep net-
work. In the 1st, 4th, 8th, and 31st blocks of the 33 residual blocks,
their input and output dimensions do not match up due to differ-
ent filter settings from their previous layers. Accordingly, the pro-
jection shortcut with an additional 1 x 1 convolution in Eq. (6) is
used to align dimensions in these blocks, which are also named
identity blocks. The rest blocks stacked on the previous blocks with
the same filter settings employ a direct shortcut. We leveraged
ResNet-101 as a basic visual feature provider and sent the most
informative feature maps from the last convolutional layer before
logits to the following encoder module.

2.3.2. Encoder module
The aim of the encoder module is to capture multi-scale contex-
tual information based on the dense visual feature maps from the
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backbone. To achieve the multi-scale analysis, atrous convolution
[23] is adopted in the encoder to extend the size of the respective
field. For the generated RGB image with width m and length n, the
total number of spots N = m x n. Given the input signal from Eq.
(6) as y € R™ ™ with a c’-channel filter w € R“***¢, the output
feature signal y» € R™™ is defined as follows:

K
Y =N"yli+rxk j+1x kwlk, k]

k=0

)
where

yli,j] represents the input signal at the location (i, j) with c-chan-
nel values. 0 <i<m, 0 <j<n.r is the stride rate in atrous
convolution.

wlk, k] represents the convolutional weights with c¢’-channel val-
ues, 0 < k < K. K is the kernel size of the convolutional filter.
y/[i,j] represents the output signal at the location (i, j) with c-
channel values.

Compared to the standard convolution, the atrous convolution
samples the input signal y with the stride r rather than using direct
neighbors inside the convolutional kernel. Therefore, the standard
convolution is a special case of atrous convolution with r = 1. By
using multiple rate value settings (rate = 1, 6, 12, and 18), we sep-
arately apply-one standard convolutional layer with 256-channel
1 x 1 size of filters (i.e., the atrous convolutional layer with rate =1),
three atrous convolutional layers with 256-channel 3 x 3 size of
filters and an additional average pooling layer to produce high-
level multi-scale features. These semantic features are then
merged into the decoder module.

2.3.3. Decoder module

In the decoder, the high-level input features are bilinearly up-
sampled and concatenated with the basic visual features for recov-
ering the segment boundaries and spatial dimension. A standard
convolutional layer with 256-channel 3 x 3 size filters is applied
to outweigh the importance of the merged features and obtain
sharper segmentation results. Eventually, an additional bilinear
up-sampling operation forms the output of the decoder to a
m x n x 256 matrix, where m and n denote the width and height
of the input image, respectively. The following convolution layer
with predefined d-channel 1 x 1 size of filters squeezes the feature
matrix along the channel axis to m x n x d shape, where each pixel
is represented by a d-dimensional features for the following infer-
ence. In the training stage, the softmax [27] function is then
applied to generate a segment category of each pixel leading to a
m x n size segmentation map. The pixels falling into a certain cat-
egory in the segmentation map point to a segmented spatial
region. Our modeling objective is to minimize the cross-entropy

[28] between the predictive segmentation map S and labeled spa-
tial functional regions S:

L(S, §) = _m1x nzz] Z;:l (si  log (S5) + (1 —s;) xlog (1 —85))
(8)

where s;; and s;; are the segment categories of the pixel at the i-th
row and the j-th column for the input images with m x n pixels.
Sij € [1(’], §l] S [1,(@

2.3.4. Training set data preparation

We performed scGNN using various autoencoder dimensions
(Mr=3,10, 16, 32, 64, 128, and 254) and multiple positional encod-
ing intensity parameters (PEa = 0.1, 0.2, 0.3, 0.5, 1.0, 1.2, 1.5, and
2.0), resulting in 56 embeddings used to generate diverse RGB
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images for each sample in the training set (see image results in
“RGB image results” folder on https://github.com/OSU-BMBL/RES
EPT/). In this study, we performed 16-fold Leave-One-Out Cross-
Validation (LOOCV). In each fold, one sample was randomly
extracted as the testing data, and the rest samples were treated
as the training samples. For an unbiased evaluation, the mean of
16 ARIs from the 16-fold LOOCV was used as the comprehensive
assessment metric, as shown in Fig. 3.

Computational and Structural Biotechnology Journal 20 (2022) 4600-4617

2.3.5. Model training

We implemented the training procedure on the MMSegmenta-
tion platform [29], which is an open-source semantic segmentation
toolbox based on PyTorch. The weights of DeepLabv3 + were ini-
tialized by the pre-trained weights from the Cityscapes dataset
provided by MMSegmentation. To introduce diversity to the train-
ing data and improve the generalization of our model, we applied
transforms defined in MMSegmentation, including the random
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Fig. 3. The RESEPT workflow and performance. (a) Mean and standard deviation of sequencing reads of 17 human brain datasets on 10x Visium platform. CT1 to 151,508 have
manual annotations as the benchmark, CT2 & 151,674 for simulation for high mean and low standard deviations of read depth, G1, AD1, and AD2 for the case studies (more
details in Supplementary Tables 1-2). (b) Performance of tissue architecture (with 7 clusters pre-defined) identification by seven existing tools and RESEPT on criteria ARL (c)
Stability of tissue architecture identification across sequencing depths on samples CT2 using different tools. The Y-axis shows ARI performance, and the X-axis represents the
sequencing depth with subsampling. The lines are smoothed by the B-Spline smooth method. (d) Normalized performance vs sequencing depth on sample CT2. Performance
of full sequencing depth is set as 1.0. RESEPT_E1 using the scGNN embedding, RESEPT_E2 using the spaGCN embedding. (e) and (f) The stability of ARI and normalized
performance against the grid sequencing depth for samples CT2 and 151674. CT2 and AD2 results of HMRF were excluded due to failure to produce outcomes. (g) Ground
truth of AD2. (h) Spatial domains on AD2 detected by RESEPT. (i) - (n) Tissue architecture results based on BayesSpace, Seurat, Giotto, stLearn, and SpaGCN, respectively.
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cropping, rotation and photometric distortions, to augment the
training RGB images. 400 x 400 sized patches are randomly
cropped to provide different regions of interest from the whole
RGB images. A random rotation (range from —180 degrees to 180
degrees) was further conducted to fit the potential irregular layout
of spatial architectures. Some photometric distortions such as
brightness, contrast, hue, and saturation changes were also utilized
to augment training samples when loading to MMSegmentation.
Stochastic gradient descent (SGD) [30] was chosen as the optimiza-
tion algorithm, and its learning rate was set to 0.01. The training
procedure iterated 30 epochs, and the checkpoint among all epochs
with the best Moran’s | autocorrelation index [31] on the testing
data was selected as the final model.

2.3.6. Image segmentation inference

Once a model completes training, it is capable of predicting the
functional zonation on the tissue from its RGB images. On the
inference, RESEPT performs scGNN with the same parameter com-
binations with the training settings resulting in 56 candidate RGB
images for each input sample. The m x n x d dimensional feature
maps of each image before logits are extracted by DeepLabv3+
(see details in the encoder module). Then the k-means clustering
algorithm [32] is applied to segment all m x n pixels into k clusters
according to their d dimensional features. RESEPT infers all the seg-
mentation maps on these 56 images and scores them using the
Moran’s | metric to assess the quality of segmentations. The seg-
mentation maps of 5-top ranked images in terms of Moran’s I are
returned for user selection. We found that such a quality assess-
ment protocol results in segmentation results with higher accuracy
than the default one and enhances the robustness of RESEPT. By
setting the parameter k, users can specify the number of segments
to RESEPT. In the case of no user-specified k, RESEPT goes through a
range of candidates k € [2,20] and calculates their Moran’s I values
for assessing the quality of segmentation result with each candi-
date k. Eventually, the k corresponding to the highest Moran’s I
is selected as the default number of segments.

2.4. Experiment preparation, data generation, and processing

2.4.1. Experiment preparation and data generation

Four postmortem human brain samples of the middle temporal
gyrus [33] were obtained from the Arizona Study of Aging and
Neurodegenerative Disorders/Brain and Body Donation Program
at Banner Sun Health Research Institute [34] and the New York
Brain Bank at Columbia University Medical Center [35]. Two of
them are from non-AD cases at Braak stage I-II, namely Samples
CT1 and CT2 in the study, and the other two are from early-stage
AD cases at Braak stage III-IV, namely Samples AD1 and AD2 in
the study. The region of AD cases was chosen based on the pres-
ence of AB plaques and neurofibrillary tangles. Specifically, Visium
is a spatial barcode-based technology based on a glass microscope
slide with four capture areas (6.5 mm x 6.5 mm) [36]. Each capture
area can profile up to 4992 spots, and the diameter of each spot is
approximately 55 pm [9,36,37].

The 10x Genomics Visium Spatial Transcriptome experiment
was performed according to the User Guide of 10x Genomics Vis-
ium Spatial Gene Expression Reagent Kits (CG00239 Rev D). All
the sections were sectioned into 10 pm thick and mounted directly
on the Visium Gene Expression (GE) slide for H&E staining and the
following cDNA library construction for RNA-Sequencing. Besides
the section mounted on the GE slide, one of the adjacent sections
(20 pm away from GE section) from AD samples persevered for
the Ap immunofluorescence staining. The method of immunofluo-
rescence staining of AB on persevered section was the same as pre-
viously described [38]. The image of AB staining was used as the
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ground truth and was aligned to H&E staining on GE slides using
the “Transform/Landmark correspondences” plugin in Image] [39].

2.4.2. FASTQ generation, alignment, and count

BCL files were processed by sample with the SpaceRanger
(v.1.2.2) to generate FASTQ files via spaceranger mkfastq. The
FASTQ file was then aligned and quantified based on the reference
GRCh38 Reference-2020-A via spaceranger count. The functions
spaceranger mkfastq and spaceranger count were used for demulti-
plexing sample and transcriptome alignment via the default
parameter settings.

2.5. Data preprocessing

To standardize the raw gene expression matrix and spot meta-
data, the different spatial transcriptomics data were preprocessed
as follows.

For the 10x Visium data (Supplementary Table 1), the filtered
feature-barcode matrix (HDF5 file) was reshaped into a two-
dimensional dense matrix in which rows represent spots and col-
umns represent genes. The dense matrix was further added with
spots’ spatial coordinates by merging them with the ‘tissue_posi
tions_list’ file, containing tissue capturing information, row, and
column coordinates. The mean color values of the RGB channels
for each spot’s circumscribed square and annotation label were
also added to the dense matrix after processing the Hematoxylin-
Eosin (H&E) image. The gene expression as part of the dense matrix
was stored in a sparse matrix format. Other information describing
the spots’ characteristics was stored as individual metadata.

For the HDST data, the expression matrix and spots’ coordinates
were reshaped into the dense matrix, which was similar to 10x Vis-
ium preprocessing. The expression matrices from dense matrices
were formed into the individual sparse matrices, and other infor-
mation was stored as metadata.

For the ST data, the expression matrix was reshaped into the
two-dimensional dense matrix, and spots’ spatial coordinates were
added to the dense matrix by merging with the spot_data_selec-
tion file. The color values of each spot were added to the dense
matrix after processing the H&E image (if available). The remaining
steps were the same as for the 10x Visium data.

2.6. Data normalization and denoising

2.6.1. Data normalization

The raw read counts were used as formatted input to generate
normalization matrices. Seven normalization methods were used
in the study, including DEseq2 [40] (v.1.30.1), scran [41]
(v.1.18.5), sctransform [42] (v.0.3.2), edgeR [43] (v.3.32.1), tran-
scripts per million (TPM), reads per kilobase per million reads
(RPKM), and log-transformed counts per million reads [44]
(logCPM). We used Seurat (v.4.0.1) to generate the sctransform
and the logCPM normalized matrices. edgeR was used to generate
TMM [43] normalized matrices. The gene length was used for cal-
culating TPM, and RPKM was obtained from biomaRt (v.2.46.3) by
using useEnsemble function and parameters setting as dataset="hsa
piens_gene_ensembl” and GRCh = 38. All normalized matrices for
whole transcriptomics were eventually calculated via the default
settings and converted into sparse matrices. RNA velocity was cal-
culated for the whole transcriptomics via velocyto [19] (v.0.17.17)
and scVelo [45] (v.0.1), followed by their default settings. RNA
velocity matrices were converted into sparse matrices.

2.6.2. Missing spots imputation

In practice, several spots may have a missing expression in
some tissue slices due to imperfect technology, which leads to
blank tiles at the locations of these spots on the RGB images. Such
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blank tiles as incompatible noises may skew the following bound-
ary recognition of spatial architecture. We assume the near neigh-
bors are more likely to have similar values to the missing spot and
impute them by applying the weighted average to the pixels of
their valid six neighboring spots. Since these missing spots are col-
ored while in default as the same as the background out of tissue,
we need to distinguish them from all-white pixels according to a
topological structural analysis [46]. Firstly, all contours (including
outer contours of tissue and inner contours caused by missing
spots) of tissue are detected from the border following the proce-
dure in [46]. The contour with the largest area is determined as
the outer contour of tissue. Then, all pixels in white inside the tis-
sue contour are replaced by imputations from their neighbors.
Given missing spot coordinates, we search their nearest k valid
spots s; (i =1, 2,.. ., k) to calculate the imputation value x; of target
missing spot s as:

k

X, =) softmax 9)
i=1

1

(dis(s,», s)) X Si
where dis(s;,s) represents the Euclidean distance between target
spot s and a certain neighbor s; in spatial space. The softmax func-
tion normalizes all distance reciprocals of s and its k (we set k = 6 by
default) neighbors s; to the weights ranging from O to 1. The impu-
tation of s is the weighted average on all s;. If a tissue slice is
detected without missing spots, RESEPT skips this imputation
process.

2.6.3. Parameter setting

Parameters in scGNN to generate embedding are referred to in
the previous study [20]. In the case study of the AD sample, in anal-
ysis on cortical layers 2 & 3, the expressions of 8 well-defined mar-
ker genes were log-transformed and embedded by spaGCN with
0.65 resolution. In the analyses of cortical layer 2 to layer 6, PCA
(n.PCs = 3) was firstly utilized to extract the principal components
of their expressions of marker genes for highlighting the dominant
signals, and then they were embedded by spaGCN with 0.65 reso-
lution. In the exploration of tumor regions in glioblastoma sam-
ples, their marker gene expressions were preprocessed by
logCPM normalization and PCA (n.PCs = 50). The processed data
was embedded by spaGCN with 0.35 resolution. In the analyses
of AD-associated critical cell types, marker gene expressions were
preprocessed by log-transform and PCA (n.PCs = 3) as well and then
embedded by spaGCN with 0.65 resolution. For investigating AB
pathological regions, log-transform to the expressions of validated
20 upregulated genes was applied, and their embedding was gen-
erated by spaGCN with 0.65 resolution.

2.7. Benchmarking method

All the benchmarking tasks were run on a Red Hat Enterprise
Linux 8 system with 13 T storage, 2x AMD EPYC 7H12 64-Core Pro-
cessor, 1 TB RAM 1 TB DDR4 3200 MHz RAM, and 2x NVIDIA A100
GPU with 40 GB RAM. The usage of the existing tools and their
parameter settings in our benchmarking evaluation are described
below.

Seurat (v.4.0.1) identifies tissue architecture based on graph-
based clustering algorithms (e.g., the Louvain algorithm). Creating
a Seurat object, identification of highly variable features, and scal-
ing of the data were performed using default parameters. The PCs
were set to 128 to match our framework’s default setting. The
FindNighbors and FindClusters functions with default parameters
were used for tissue architecture identification. To further evaluate
the robustness of the combination of the different parameters, we
used 16 samples and selected three important parameters, includ-
ing the number of PCs (dims = 10, 32, and 64), the value of k for the
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FindNeighbor function (k.parm = 20, 50 and 100), and the resolution
in the FindClusters function (res = 0.1 to 1, step as 0.1).

BayesSpace (v.1.0.0) identifies tissue architecture based on the
Gaussian mixture model clustering and Markov Random Field at
an enhanced resolution of spatial transcriptomics data. Creating
the SingleCellExperiment object is implemented in the following
analysis by loading normalized expression data and position infor-
mation for barcodes. Then, we set 128 as the number of PCs in spa-
tialPreprocess function and parameter log.normalize was set FALSE
due to the normalized data input. Lastly, tissue architecture was
identified by running qTune and spatialCluster functions. We fol-
lowed the official tutorial and adopted k-means as the initial
method, while other parameters were from the default based on
prior information. In assessing the robustness of BayesSpace, we
set the cluster number as seven, the parameter n.PCs in spatialPre-
process function (n.PCs = 10, 64, and 128), and the parameter nrep
in spatialCluster function (nrep = 5000, 10000, and 150000) for 16
samples.

SpaGCN (v.0.0.5) can integrate gene expression, spatial location,
and histology to identify spatial domains and spatially variable
genes by graph convolutional network. SpaGCN was used to gener-
ate three-dimensional embedding and tissue architecture and
includes three procedures, including loading data, calculating adja-
cent matrix, and running SpaGCN. In the first step, both expression
data and spatial location information were imported. Second, adja-
cent matrices were calculated using default parameters. Lastly, we
selected 128 PCs, the initial clustering algorithm as Louvain, and
other parameters used default settings. To evaluate the robustness
of the parameters and enable comparison with other tools, three
parameters, the number of PCs (num_pcs = 20, 30, 32, 40, 50, 60,
64), the value of k for the k-nearest neighbor algorithm (n_neigh-
bors = 20, 30, and 40), and the resolution in the Louvain algorithm
(res = 0.2, 0.3, and 0.4) for 16 samples were adjusted.

stLearn (v.0.3.2) is designed to comprehensively analyze ST data
to investigate complex biological processes based on Deep Learn-
ing. stLearn highlights innovation to normalize data. Therefore,
we input expression data, location information as well as images.
stLearn consists of two steps, i.e., preparation and running stSME
clustering. In preparation, loading data, filtering, normalization,
log-transformation, preprocessing for spot image, and feature
extraction were implemented. In the following module, PCA
dimension reduction was set to 128 PCs, applying stSME to nor-
malize log-transformed data and Louvain clustering on stSME nor-
malized data using the default parameters. To evaluate the
robustness of the parameters and enable comparison with other
tools, three parameters were considered to be adjusted for 16 sam-
ples, the number of PCs (n_comps = 10, 20, 30, 32, 40, and 50), the
value of k for the kNN algorithm (n_neighbors = 10, 20, 30, 40, and
50), and the resolution in the Louvain algorithm (resolution = 0.7,
0.8,0.9 and 1).

STUtility (v0.1.0) can be used to identify spatial expression pat-
terns alignment of consecutive stacked tissue images and visual-
izations. We implemented STUtility as a tissue architecture tool
based on the Seurat framework. RunNMF was carried out as the
dimension reduction method. The number of factors was set to
128 to match our framework’s default setting. FindNeighbors and
FindClusters were used to identify tissue architecture. To further
evaluate the robustness of the combination of the different param-
eters, we used 16 samples and selected three important parame-
ters for tuning, including the number of factors (nfactors = 10, 32,
and 64), the value of k for FindNeighbor function (k.parm = 20, 50,
100, 200, and 250), and the resolution in FindClusters function
(res = 0.05, 0.1, 0.2, 0.3, 0.5, and 0.7, 0.9).

Giotto (v.1.0.3) is a comprehensive and multifunction computa-
tional tool for spatial data analysis and visualization. We imple-
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mented Giotto as the issue architecture identification tool in this
study via using default settings. Giotto first identified highly
variable genes via calculateHVG function, then performed PCA
dimension reduction using 128 PCs, constructed the nearest neigh-
bor network via createNearestNetwork, and eventually identified
tissue architecture via doLeidenCluster. To further evaluate the
robustness of the combination of the different parameters, we used
16 samples and selected three important parameters for tuning,
including the number of PCs (npc = 10, 32, and 64), the value of
k for createNearestNetwork function (k = 20, 50 and 100), and the
resolution in doLeidenCluster function (resolution = 0.1, 0.2, 0.3,
0.4, and 0.5).

smfishHmrf (v.1.3.3) can distinguish between intrinsic and
extrinsic effects on global gene expression to dissect the cell-
type- and spatial-domain-associated heterogeneity. smfishHmrf
builts on the hypothesis that tissue is divided into domains with
coherent gene expression patterns. To begin with the analysis, fil-
tering genes, and selecting highly variable genes were performed
using scanpy. Then, the gene expression matrix was used to com-
pute the neighbor graph and calculate the silhouette score for each
gene using the default parameters or recommended parameters,
and the significant genes were preserved for the following analysis.
After this preprocessing, HRMF is performed to assign a domain for
each spot. To evaluate the robustness of the parameters and enable
comparison with other tools, three parameters were considered to
be adjusted according to silhouette score (n_genes = 40, 60, 80, 100,
120, and 140), the cutoff values in computing neighbor graph (cut-
off = 0.3, 0.5, 0.7 and 1), and the beta values in the HRMF model
(beta = 6,9, 12 and 15).

Downsampling simulation for read depth. Comparing the mean
and standard deviation of 16 10x Visium datasets, samples CT2
and 151,674 were selected to generate simulation data with
decreasing sequencing depth. Let matrix C be the N x M expres-
sion count matrix, where N is the number of spots and M is the
number of genes. Define the spot-specific sequencing depths

Ci= Zj"llcij, i.e., the column sums of C. Thus, the average sequenc-

ing depth of the experiment is ¢ = % Let t < ¢ be our target
downsampled sequencing depth, and let C* be the N x M down-
sampled matrix. We perform the downsampling as follows:

For each spoti=1,--- N :

Define the total counts to be sampled in the spot i as t;

Construct the character vector of genes to be sampled

_ txg
=

asG; = <1,..,1,2,..,2...M,....M
S——

N —
Cin Ci2 Cim
Sample t; elements from G; without replacement and define N;
as the number of times gene j was sampled from G; forj =1,.... M.
Let C; = Nj.
Using this method, the average downsampled sequencing depth
is:
to+tot . +la G t
N N c

E’*: xc=t

as desired. Note also that this method preserves the relative
total counts of each spot, i.e., spots with higher sequencing depths
in the original matrix have proportionally higher depths in the
downsampled matrix.

2.8. Benchmark performance evaluation criteria

Adjusted Rand Index (ARI), Rand index (RI), Fowlkes—Mallows
index (FM), and Adjusted mutual information (AMI) are used to
evaluate the performances between the ground truth and pre-
dicted results.
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Adjusted Rand index (ARI) measures the agreement between
two partitions. Given a set S consisting of n elements,
F1=1{X1,X2,---,X:} and 7, = {Y1,Y,,---, Y} are two partitions
of S; that is, § = U;X; and X; N X; = &, so does #,. X; can be inter-
preted as a cluster generated by some clustering method. In this
way, ARI can be described as follow:

(%) - [Z5(%)]/®
(=@ +5(%)] - @)/
where n; = X;nY;, denotes the number of objects in common
between X; and Y;; a;=3m; and b;=>;n; Besides,
ARI € [-1, 1], the higher ARI reflects the higher consistency. The
bs function of the splines package (v.4.0.3) was used for smoothing
ARI generated from grid effective sequencing depth data via default
settings.

Rand index (RI) is also a measure of the similarity between two
data clustering results. If the ground truth is available, the R can be
used to evaluate the performance of one cluster method by calcu-
lating R between the clustering produced by this method and the
ground truth. Let S be a set containing n elements, which repre-
sents n barcodes in this paper, and two partitions of S,
Fq1= {X]7X27 cee ,X,-}, Fy = {Y17Y27 s Ys}, that is, § = UiXi and
XiNX; = ¢J; so does #,. X; and Y; are the subset of S, representing
one cluster produced by some clustering method and the ground

truth, respectively. R can be computed using the following
formula:

1

2

(10)

_a+b  a+b
S a+b+c+d (9

RI (11)

n
2

where:

a, b, c, d denote the number of pairs of elements in S in the
same subset in .#; and in the same subset in %, in different
subsets in .#; and in different subsets in %, in the same subset
in #; and in different subsets in % ,, and in different subsets in
Z1 and in the same subset in 7 ,, respectively.

(3) is the binomial coefficient. In addition, the range of Rl is [0, 1],
and the higher RI, the higher similarity of the two partitions is.

The Fowlkes-Mallows index (FM) is an external evaluation
method, which can measure the results’ consistency of two cluster
algorithms. Not only can FM be implemented on two hierarchical
clusterings, but also the clusters and the benchmark classifications.
For the set S of n objects, A; and A, denote two clustering results
(generated by two cluster algorithms, one for the clustering
algorithm, one for the ground truth). In this paper, A; is produced
by a clustering algorithm while the ground truth contributes A,. If
the clustering algorithm performs well, then A; and A, should
be as similar as possible. The calculation of FM can be described
as:

TP TP
FM = VPPV -TPR =\l 75— Fp TP+ EN

where

(12)

TP is the number of true positives, representing the number of
pair objects that are present in the same cluster in both A; and
A,.
FP is the number of false positives, representing the number of
pair objects that are present in the same cluster in A; but not in
A,.
TN is the number of false negatives, representing the number of
pair objects that are present in the same cluster in A, but not in
A;.
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PPV is so-called precision, while TPR refers to recall. In addi-
tion, FM € [0, 1]. Therefore, in our cases, the closer it is to 1,
the better the clustering algorithm will be.

Adjusted mutual information (AMI) is driven by probability the-
ory and information theory and can be used for comparing cluster-
ing results. To introduce adjusted mutual information, the
preliminary is necessary to present two conceptions of mutual
information (MI) and entropy. Given a set S = {s{,Sz,--,Sn},
F1=1{X1,X2,---,X;} and 7, = {Y1,Y,,---, Y} are two partitions
of S, that is, § = U;X; and X; N Xj = &, so does #,. MI between par-
tition # 1 and #, is defined as:

MI((,%, 7)) = Zi':lzjzlpﬂﬂ (i.j)log P, 7, (i.j) (13)
where

. XinY;
P 7 (1j) = %

measures the probability of one object belonging to X; and Y;
simultaneously.
The entropy associated with the partitioning # is defined as:

=2 P

JlogP, (D), P, (i) =

] (14

where

P I refers to the probability that the object falls into the clus-
ter X;.
H(7,) and P, (j) have analogous definitions.

The following formula shows the expected mutual information
between two random clustering results:

min n,b n;; nn
E{MI F1,72 } Zl 12} 1an a,+; n T 0g<a bu>
y a;'b;!(n — a;)!(n — by)!
ning!(a; — ny)!(b; — ny)!(n — a; — b; — ny)
(15)
where  (a; +b; — n)+ =max(1,a;+b;—n); a=)mn; and

b; = >";n;;, nj = X; NYj, represents the number of objects in com-
mon between X; and Y;. Finally, AMI can be obtained by
W F) = MI(Z1,7,) — E{MI(F 1,7 )}
’ max(H(71).H(7>)) — E{MI(7 1, 75)}
It should be pointed out that AMI € [0, 1], the similarity
between the two clusterings increases with the augment of AMIL

AMI(F7

(16)

2.9. Predicted segmentation map quality assessment

Differing from the Moran’s I auto-correlation index [31] used
for revealing a single gene’s spatial auto-correlation, we modified
Moran'’s | in Geo-spatiality [47] to evaluate a predictive segmenta-
tion map without known ground truth. The metric analyzes the
heterogeneity of predictive inter-segments by measuring the pixel
contrast across any two predicted adjacent segments per channel.
And then, the mode of Moran’s I from three RGB channels is
computed:

3
Moran's [ = Z
=1

(17)
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where
a; is the binary spatial adjacency of the i th segment and j" seg-
ment. 1 <i<N,1<j<N
Vi € R® denotes the mean pixel values at ¢ channels in Red,
Green, and Blue of the i ™" segment, 1 < ¢ < 3,

¥, € R® denotes the mean pixel values at channels Red, Green,
and Blue of the whole image.

2.10. RGB image and three-dimensional embedding evaluation

We reused the concept of Moran’s I to assess the color distribu-
tion of an RGB image and its annotated tissue architecture. In this
case, a; defined in equation(17) is calculated according to a labeled
segmentation map rather predicted one. Hence, such a Moran’s |
score reflects the heterogeneity between any two adjacent regions
on annotated tissue architectures. The larger Moran’s I from an
RGB image illustrates that the better this RGB image can display
biological tissue structures, and further implies the better quality
its corresponding three-dimensional embedding can achieve.

2.11. Pixel correlation analysis between RGB channels and SVGs

SpatialDE [48] is used to detect the sample’s SVG, the SVGs with
g-value < 0.0001 and Bayesian information criterion (BIC) greater
than 0 are kept. Then k-means is conducted to cluster these SVGs
into three groups, each of which is expected to contribute to a sin-
gle R/G/B channel. Samples disentangling each group of genes are
treated as the inputs and reconstructed as RGB images using
RESEPT. These RGB images are further converted into gray-level
images, which were treated as the encoding expression profile of
the SVG groups in a single channel. Then, the pixel correlations
(the Pearson correlation over the pixels from two images) cross
each SVG expression profile image, and each of the three RGB
channels was measured to observe their corresponding
relationships.

2.12. Mouse cortex region annotation

Nine mouse brain cortex regions were cropped by Loupe Brow-
ser (V.5.0.1) manually. Following the SpaGCN’s annotation method
[14], our neuroscience specialist referred to the Allen Brain Refer-
ence Atlases (https://atlas.brain-map.org/) [49], observed the cell
density of the expected region (layers) based on the H&E image,
and generated the mouse cortex architecture of nine samples for
training the model and performance comparison.

2.13. Module score calculation and differential expression analysis

The module score for specific marker genes was calculated
based on the Seurat function AddModuleScore. This function pro-
duces the gene module score to indicate whether the gene module
has a higher mean expression in a group of spot subsets. The first
step is to calculate the mean expression values of the input gene
list as the targeted gene module for each spot. The second step is
to generate a null distribution of gene module scores as the back-
ground. For this purpose, the average expression values across all
spots for whole genes are calculated, sorted, and binned into 24
bins. Same as the targeted gene module size (i.e., number of genes
in this targeted gene module), the null distribution of gene module
scores will be generated by randomly selecting 100 times based on
previously ranked and binned average expression values and then
calculating the mean expression value as we did in the first step.

Finally, the gene module score is the targeted gene module
mean expression value subtracted by the mean expression value
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of the null distribution. The DEG analysis was conducted by the
Seurat function FindAllMarkers based on RESEPT predicted seven
segments via default settings. Based on the identified DEGs, the
enrichment analyses of GO terms (Biological Process) and KEGG
were performed via the R package clusterProfile (v.3.18.0) using
the functions of enrichGO and enrichKEGG. The enrichment analy-
sis results were filtered out if the adjusted p-value was greater
than 0.05. For KEGG analysis, gene database Org.Hs.eg.Db was used
for transferring SYMBOL to ENREZID via function bitr. R package
ggplot2 (v.3.3.2) was used for the visualizations.

3. Results

3.1. The architecture of RESEPT comprises representation learning and
segmentation

We choose graph neural network (GNN)[50] to learn the low
dimensional representation as a dimensional reduction step since
GNN has demonstrated its power in modeling relations between
cells in single-cell RNA-seq [20] and spots in spatial transcrip-
tomics [14]. The learned low dimensional embedding in RESEPT
enables reconstructing the graph’s topology and inherently con-
serves the ambient gene expression relations in the 2D space of
the sample slice, which empowers the reconstructed RGB image
to faithfully depict the tissue heterogeneity. Compared to the tra-
ditional method of determining architectures of the human cere-
bral cortex by observing cell morphology and the density of
high-resolution Hematoxylin-Eosin (H&E)-stained images, the
RESEPT framework produces two major outputs describing tissue
architectures from different angles. One is a reconstructed visualiz-
able RGB image to display tissue heterogeneity using the low-
dimensional representations of spatial transcriptomics. The other
is a segmented image based on the reconstructed RGB, where the
segmented regions reveal the tissue architecture of unknown sam-
ples with a similar structure (Fig. 1).

In RESEPT, spatial transcriptomics data are represented as a spa-
tial spot-spot graph. Each observational unit within a tissue sample
containing a small number of cells, i.e., “spot,” is modeled as a
node. The measured gene expression values of the spot are treated
as the node attributes, and the neighboring spots adjacent in the
Euclidean space on the tissue slice are linked with an undirected
edge. This lattice-like spot graph is modeled by a modified GNN
framework, which learns a three-dimensional embedding to pre-
serve the topological relationship between all spots in the spatial
space of transcriptomics. The three-dimensional embedding of
gene expression and cells’ spatial topology facilitates the visualiza-
tion of tissue architecture by three RGB color channels Red, Green,
and Blue in an RGB image, where spots in the same cell type tend
to have similar colors. Then a semantic segmentation can be per-
formed on the image to identify the spatial architecture by classi-
fying each spot into a spatially specific segment with a supervised
convolutional neural network (CNN) model.

In the 10x Visium Genome platform, each spot has six adjacent
spots, so the spatial retained spot graph has a fixed node degree of
six for all the nodes. On the generated spatial spot-spot graph, a
graph autoencoder learns a node-wise three-dimensional repre-
sentation to preserve topological relations in the graph. The enco-
der of the graph autoencoder composes two layers of graph
convolution network (GCN) to learn the 3-dimensional graph
embedding. The decoder of the graph autoencoder is defined as
an inner product between the graph embedding, followed by a sig-
moid activation function. The goal of graph autoencoder learning is
to minimize the difference between the input and the recon-
structed graph (Fig. 2a).
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The segmentation architecture is comprised of a backbone net-
work, an encoder module, and a decoder module. The backbone
network employs an extra deep network ResNet101 [51].
ResNet101 consists of one convolutional layer and 33 residual
blocks, each of which cascades three convolutional layers with a
convolutional skip connection from the input signals to the output
feature maps for extracting fine-grained features. The encoder
module utilizes atrous convolutional layers with various rates
and sizes of filters and one global pooling layer to detect multi-
scale semantic features from ResNet101 feature maps. And the
decoder module aligns the multi-scale features to the same size
and outputs a segmentation map classifying each spot into a speci-
fic spatial architecture (Fig. 2b).

3.2. RESEPT accurately characterizes the spatial architecture of the
human brain cortex region

Using manual annotations as the ground truth on 12 published
samples [52] and four in-house samples [33] sequenced on the 10x
Genomics Visium platform, RESEPT was benchmarked on both raw
and normalized expression matrices of the 16 samples (not includ-
ing the sample G1 in Supplementary Table 1 and Fig. 3a) following
the leave-one-out cross-validation strategy. Our results demon-
strate RESEPT outperforms six existing tools, namely Seurat [11],
BayesSpace [16], SpaGCN [14], stLearn [15], STUtility [13], HMRF
[17], and Giotto [12] on tissue architecture identification of which
ARI is 0.706 + 0.163 (Fig. 3b) based on tuned parameters (Supple-
mentary Data 1). Additional benchmarking results in the default
parameter settings with the other three evaluation matrices (i.e.,
Rand index (RI), Fowlkes—-Mallows index (FM), and adjusted
mutual information (AMI)), visualization of RESEPT outcome, run-
ning time, and memory usage can be referred to Supplementary
Figs. 1, 2, and Supplementary Data 2, 3. The overall conclusion is
that RESEPT outperforms the other seven tools regarding ARI
(0.706 + 0.163), RI (0.706 = 0.05), FM (0.780 + 0.127), and AMI
(0.69 £ 0.126) evaluation scores based on the LogCPM normaliza-
tion and original data. To validate the stability of our model, we
generated simulation data with gradient decreasing sequencing
depth based on two selected datasets, CT2 and 151674. The RGB
images at low read depth presented more intra-regional diversity
in their color distributions (Supplementary Fig. 3 and Supplemen-
tary Data 4). To further demonstrate the RESEPT performance on
different read depth data, we simulated two data with varying
depths from samples CT2 and 151,674 by downsampling a gradi-
ent number of reads from the total transcripts across all spots. In
the downsampling read depth gradients from low depth to full
depth, RESEPT demonstrated its robustness by ARI 0.454 4+ 0.014
on CT2, and ARI 0.809 + 0.006 on 151,674 (Fig. 3c-3f). On the same
sample, RESEPT reveals better tissue architecture than the other
tools in ARI 0.409 (Fig. 3g-3n). More visualization results from dif-
ferent normalization methods can be referred to Supplementary
Fig. 1 and Supplementary Data 5. All the data used in the study
are summarized in Supplementary Tables 1-2, while datasets on
10x Genomics, Spatial Transcriptomics (ST), and High-Definition
Spatial Transcriptomics (HDST)[53] platforms without manual
annotations were analyzed by RESEPT detailed in Supplementary
Fig. 4.

RESEPT also benefits from different embeddings using various
dimension-reduction methods such as scGNN, SpaGCN, UMAP,
and SEDR [21] (Supplementary Figs. 5 and 6 and Supplementary
Table 3). Besides learned embeddings, the pre-trained segmenta-
tion model based on the sufficiently diverse training images with
different parameters (Supplementary Fig. 7) and fine-gained visual
features extracted from the extra deep CNN network also gives
strong discerning power to our segmentation model. We then
hypothesized and validated the performance improvement with
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an increasing number of annotated training data (Supplementary
Fig. 8). This improvement implied that as more annotated spatial
transcriptomic data comes out, RESEPT will enhance its robustness
accordingly.

3.3. Reconstructed RGB image has biological interpretability and
model generalizability

Both gene expression and RNA velocity [19,45] are accepted by
RESEPT to generate low dimensional embeddings as RGB images.
These reconstructed images reveal spatial separation between seg-
ments from the identified architecture on AD2 (Moran’s 1 0.920 for
RNA velocity and 0.787 for gene expression), which is consistent
with the cortical architecture of the human brain (Fig. 4a, b). More
comparison results between gene expression and RNA velocity
using various computational tools can be found in the Discussion
section.

Herein, to explore how the RGB image can derive biological
insight from spatial transcriptome, we explored the association
between the reconstructed RGB images and the underlying SVG
patterns in sample 151,673 (Fig. 4c). First, the RGB image con-
structed from the whole transcriptome (Fig. 4d) was split into
the Red channel (Fig. 4e), the Green channel (Fig. 4f), and the Blue
channel (Fig. 4g). Then, 836 significant SVGs were identified using
spatialDE [48] from this dataset (see Supplementary Data 6). The k-
means clustering confirmed three main SVG clusters based on
expression patterns, where each cluster has 60, 594, and 179 SVGs.
Each of the three SVG clusters was used for dimensional reduction
and visualization, giving rise to three grayscale images (Fig. 4h-4j)
with mono-color values. Finally, the pixel correlation, calculating
the Pearson Correlation over the pixels from two images, analysis
(Fig. 4k and Supplementary Fig. 9) indicates cluster 1 (60 SVGs)
correlates with the Red channel (Pearson’s correlation
(PCC) = 0.726), cluster 2 (594 SVGs) has a high correlation with
the Green channel (PCC = 0.916), and cluster 3 (179 SVGs) also cor-
relates with the Blue channel (PCC = 0.88).

Furthermore, the GO enrichment analysis results also supported
that the channel-correlated SVGs are enriched with biological
functions associated with specific human brain cortex architecture
(Supplementary Data 6). For instance, the Red channel (Fig. 4e)
visually corresponds to layers 2, 4, 5, and 6; and the Red-
channel-correlated SVGs are enriched with ATP and ribonucleotide
metabolic processes, which reflect the biological functions of layers
4 and 5 [33]. Similarly, the Green channel (Fig. 4f) can be mapped
to layers 2, 3, and 4. And we observed that Green-channel-
correlated SVGs are enriched in the synaptic vesicle cycle and mod-
ulation of chemical synaptic transmission, which matched the
functions of the three layers (2-4)[54]. Finally, the Blue channel
image was split into two regions, one corresponds to layers 1, 2,
and 3, and the other region can be mapped to white matter
(Fig. 4g). Interestingly, the Blue-channel-correlated SVGs are
enriched with two kinds of pathways: (i) synaptic vesicle cycle
and synaptic transmission representing the biological functions
of layers 1, 2, and 3 [54]; and (ii) protein targeting to ER supporting
the biological functions of white matter [33].

Next, we investigated the model’s generalizability by collecting
additional mouse data to test the RESEPT model. According to pre-
vious studies [14], nine mouse brain datasets were collected from
the 10x official website [55]. Our neuroscience specialist manually
annotated the mouse cortex region based on the Allen Brain Atlas
and histological features (Fig. 41-4n)[49]. With 12 healthy human
brain cortex and nine healthy mouse brain cortex, the newly
trained RESEPT model could identify both human and mouse cor-
tex tissue architecture (Supplementary Fig. 10). The mouse cortex
(Sagittal posterior 2), its RGB image, and the segmentation results
are shown in Fig. 40-q, respectively. Finally, one of the triple-
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negative human breast cancer samples (i.e., 1160920F)[56] was
applied to test the generalizability of RESEPT on the non-brain
sample. Due to the high heterogeneity of cancer tissue and for
fairly comparing benchmarking tools, the number of the output
clusters (or segments) is set from 3 to 8. RESEPT outperformed
the other five tools on this well-annotated human breast cancer
sample (Fig. 4r). Overall, the above results indicate RESEPT has
good model generalizability in different tissue types and species,
which showcases great potential in broad biological visualization
and interpretability.

3.4. RESEPT interprets and discovers spatially related biological
insights in AD

With two AD brain samples [33], human postmortem middle
temporal gyrus (MTG) from AD cases (Sample AD1 and AD2) was
spatially profiled on the 10x Visium platform, and RESEPT success-
fully identified the main architecture of the MTG compared with
the manual annotation as the ground truth (AD1 ARI = 0.474;
AD2 ARI = 0.409). With the RGB image generated from specific
gene expression, we distinguished cortical layers 2 & 3 from other
layers and identified regions enriched with excitatory neurons and
amyloid-beta (AB) plaques. For the AD1 sample on cortical layers 2
& 3 (ground truth [33] as Fig. 5a), well-defined marker genes
(C1QL2, RASGRF2, CARTPT, WFS1, HPCAL1 for layer 2, and CARTPT,
MFGES, PRSS12, SV2C, HPCAL1 for layer 3) from the previous study
[52] were embedded and transformed to an RGB image instead of
using whole transcriptomes (a full gene list in Supplementary
Table 4). To validate the spatial specificity, module scores from
Seurat [11] showed that these marker genes are statistically signif-
icantly enriched only on cortex layers 2 & 3 among all the layers
(p < 0.0001 by Wilcoxon signed-rank test, Fig. 5b). Furthermore,
RESEPT visually provided consistent colors for cortical layers 2 &
3 (Fig. 5c¢). These spatial patterns (Fig. 5d) were strengthened by
selecting a specific segmentation number (set as 3). More RGB
images from other layer-specific marker genes can be found in
Supplementary Fig. 11.

To reveal critical cell-type distribution (i.e., excitatory neuron)
associated with selective neuronal vulnerability in AD [38], five
well-defined excitatory neuron marker genes (SLC17A6, SLC17A7,
NRGN, CAMK2A, and SATB2) in the cortex were obtained from
our in-house database scREAD [58] (other cell-type marker genes
in Supplementary Table 4). The excitatory neuron will majorly dis-
tribute in layer 2 to layer 6 (Fig. 5e). The module score and opti-
mized RGB image (Fig. 5f) showed statistically significant
enrichment of excitatory neuron marker genes in cortical layers
2-6 (p < 0.0001 by Wilcoxon signed-rank test), and the original
and improved RGB image also localized the excitatory neurons
(Fig. 5g, other cell types can be found in Supplementary Fig. 12).
RESEPT model can also segment the excitatory neuron distribution
pattern by selecting the segmentation number as 2 (Fig. 5h). We
also performed similar analyses on the AD2 sample to visualize
and segment layers 2 & 3 and the excitatory neuron region. The
results can be reproduced as the same as AD1 (Fig. 5i-p).

Moreover, the RGB image can reflect an important AD
pathology-associated region, i.e., AR plaques-accumulated region.
We conducted an immunofluorescence staining of Ap on the adja-
cent AD2 brain section and identified the brain region with Ap pla-
ques [33] (Fig. 5q-t). Among the gene module containing 57 Ap
plaque-induced genes discovered from the previous study [2], we
validated those 20 upregulated genes showed specific enrichment
in the AB region compared to the non-A region in terms of layers 2
& 3 (p < 0.0001 by Wilcoxon signed-rank test, Fig. 5u). By compar-
ing the color in AB region-associated spots with the RGB image
(Fig. 5v and Supplementary Fig. 12), we observed AB region-
associated spots behaved a consistent color in layers 2 & 3. These
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Fig. 4. Model interpretation and generalizability for RESEPT. (a) RGB image generated from expression value (Moran’s I = 0.787). (b) RGB image generated from RNA velocity
(Moran’s I = 0.920). (c) The figure Shows the ground truth of the 151,673 sample. (d) The RGB image was reconstructed from whole transcriptomics. (e) Visualization of Red
channel from sample 151673's reconstructed RGB image. (f) Visualization of Green channel from sample 151673's reconstructed RGB image. (g) Visualization of Blue channel
from sample 151673's reconstructed RGB image. (h-j) Grayscale images reconstructed from genes in clusters 1-3 by k-means clustering, respectively. (k) Number of SVGs
mapped on RGB channels, where the Red channel corresponds to 60 genes from cluster 3, the Green channel corresponds to 594 genes from cluster 1, and the Blue channel
corresponds to 179 genes from cluster 2. (1) Mouse brain sagittal section from the Allen Brain Atlas [57]. (m) The mouse brain cortex region was cropped from the mouse brain
sagittal posterior at the 10x official website (the region in black line). (n) The cropped mouse cortex was labeled based on annotation from the Allen Brain Atlas in figure panel
I, where Blue represents layer 1, orange represents layers 2 and 3, Green represents layers 4 and 5, and Red represents layer 6 [14]. (o) The RGB image was reconstructed
based on the mouse cortex transcriptome. (p) RESEPT's results as a segmented image from the mouse brain cortex (ARI 0.336). (q) The figure shows ARI and spot-level RESEPT
segmentation results. (r) The figure shows the impact of cluster numbers in human breast cancer (1160920F) results, where the x-axis is the number of predicted clusters and
the y-axis indicates the ARI score. HMREF, stLearn, and STutility were excluded because of failing to find 3 to 8 clusters. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

predicted results are consistent with our experimental observa- Ap region (Fig. 5v). The result showed that the AB region had a rel-
tions, which showed Ap region has a relatively higher proportion atively tighter dispersion than the non-Ap region (p-value < 0.0001
in layers 2 and 3 in the AD1 and AD2 samples (Supplementary by F-test), which proved the RGB image could indicate the patho-

Tables 5-6 and Supplementary Fig. 13). logical regions with AP plaques. Overall, with the evidence of
To evaluate RGB value variation quantitatively, we investigated images generated from hallmark panel genes, RESEPT can well
the value range of channels R, G, and B for the Ap region and non- reflect layer-specific, cell-type-enriched, and pathological region-
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specific architecture with marker genes and disease-associated
genes. Overall, we concluded that, given a gene module with a
known function, RESEPT could visually present the activity region
of the gene module and potentially localize the important spatial
architecture contributing to AD pathology.

3.5. The clinical and prognostic applications of RESEPT in cancer

To demonstrate the clinical and prognostic applications of
RESEPT in oncology, we analyzed a public glioblastoma dataset
generated from the 10x Visium platform (Sample G1 in Fig. 6a)
with 4,326 genes per spot, 43 million transcripts in total, and
33.7 Root Mean Square contrast (RMS contrast) over pixel intensi-
ties of H&E image. Glioblastoma, a grade IV astrocytic tumor with a
median overall survival of 15 months [59], is characterized by
heterogeneity in tissue morphologies which range from highly
dense tumor cellularity with necrosis to other areas with single
tumor cell permeation throughout the neuropil. Assessment of tis-
sue architecture represents a key diagnostic tool for patient prog-
nosis and diagnosis. RESEPT identified eight Segments (Fig. 6b-6¢
and Supplementary Fig. 14) and distinguished tumor-enriched,
non-tumor, and regions of neuropil with infiltrating glioblastoma
cells. These segmented areas show similarities to secondary struc-
tures of Scherer [60]. Based on the morphological features of Seg-
ment 3 in the H&E image (Fig. 6¢), we observed cells with large
cytoplasm and nuclei with prominent nucleoli, a morphology con-
sistent with cortical pyramidal neurons, and many tumor cells
located in this Segment showing neuronal satellitosis (Supplemen-
tary Fig. 15). Differentially expressed gene (DEG) analysis demon-
strated that a pre-defined glioblastoma marker CHI3L1 [61,62],
which has been validated by the Allen brain atlas website(Supple-
mentary Fig. 16), was highly expressed in most of the spots in Seg-
ment 3 (Fig. 6d, differentially expressed gene of each Segment can
be found Supplementary Data 7).

Moreover, we observed that other tumor marker genes were
also significantly enriched in Segment 3 based on DEGs results,
including CD44 [62], SOD2 [63], and MALAT1 [64] (Fig. 6e-6 g).
By exploring the H&E image of Segment 6, we found this promi-
nent area of the Segment with erythrocytes, likely representing
an area of acute hemorrhage during the surgical biopsy. This mor-
phological observation was in line with the GO enrichment analy-
sis, where DEGs were enriched in blood functionality pathways,
such as oxygen transportation (Fig. 6h). Most interestingly, from
the morphological features of Segment 7, we observed that this
Segment belongs to infiltrating glioblastoma cells characterized
by elongate nuclei admixed with non-neoplastic brain cells.
Glioblastoma cells showing elongated nuclei are characteristic of
invasion along white matter tracts [60]. Comparing DEGs with
pre-defined infiltrating markers [65], we found that infiltrating
tumor marker genes KCNN3 and CNTN1 were expressed specifi-
cally in Segment 7 (Fig. 6i). Furthermore, we found that the biolog-
ical insights derived from this dataset (tumor, non-tumor, and
infiltrating tumor regions) were robust and stable when changing

Computational and Structural Biotechnology Journal 20 (2022) 4600-4617

the number of segments in the RESEPT framework (e.g., segmenta-
tion number equals 5 in Supplementary Fig. 17). Overall, RESEPT
successfully recognized tumor architecture, non-tumor architec-
ture, and infiltration tumor architecture. This tool augments the
morphological evaluation of glioblastoma by enabling an improved
understanding of glioblastoma heterogeneity. This objective char-
acterization of the heterogeneity will ultimately improve oncolog-
ical treatment planning for patients.

4. Discussion

Regarding tissue architecture identification tools for spatial
transcriptomics, emerging computational tools have been devel-
oped based on either the statistical framework (BayesSpace [16])
or the deep learning framework (SpaGCN [14]). Unlike other spatial
transcriptomics, the segmentation model of RESEPT is trained from
the samples with known architectures in a supervised manner. The
supervised image segmentation usually offers more accurate pre-
dictions with human guidance, while sufficiently diverse labeled
data are required to increase its generalizability. In this study, we
reduced the data-hunger of the supervised learning by applying
the image augmentation strategy and a segmentation quality
assessment protocol. Nevertheless, with the growth of available
spatial transcriptomic data for training, the generalization of
RESEPT is expected to be further enhanced. In practice, the pre-
trained segmentation model of RESEPT as a base model paves the
path for further model refinement with emerging annotated spatial
data. When significant annotated spatial data are available, we will
also explore classifying samples into different types and train a
model for each type.

Regarding visualization, the core concept of converting three-
dimensional representations to RGB images and being associated
with SVGs may enable explainable Al. Such improvement may ben-
efit from bench to bedside (e.g., clinical and prognostic purpose),
visually and intuitively showing the natural tissue heterogeneity
and architecture. In addition, RESEPT can be adjusted to most mix-
ing color pallets in graphic design, such as CMYK (Cyan, Magenta,
Yellow, and blacK), HSV (Hue, Saturation, and Value), and hexadec-
imal colors. These alternative color systems, as our future work,
may provide a wide color spectrum and sufficient variation in
hue and brightness to present more complex tissue and help
color-blind users. With these styles of visualization layouts as
options, tissue architectures might be more accessible and distin-
guishable in some cases.

As we observed in Fig. 4a and Fig. 4b, RNA velocity plays a com-
plementary role with gene expression and sometimes brings more
distinguishable features compared to gene expression in tissue
architecture identification. With more in-depth analyses, we
observed an enhanced performance from RNA velocity compared
to gene expression on the 16 AD and control samples, if we assem-
bled all the prediction results from the six different tools (Supple-
mentary Fig. 18). However, when we targeted one specific tool
(e.g., RESEPT, BayesSpace, or SpaGCN), the enhancement does not

<

Fig. 5. RESEPT identifies spatial cellular patterns in the human postmortem middle temporal gyrus (MTG). (a) Layers 2 and 3 (cyan) of sample AD1. (b) The module score of
the cortical layers 2 and 3 and other layers from sample AD1, where the x-axis shows layer categories and the y-axis represents scores. (c) RGB images where the yellow line
points out the ground truth of layers 2 and 3 for samples AD1. (d) The segmented images were reconstructed by setting the number of segments as three for AD1. (e) Layers 2
to 6 architecture (yellow) of AD1, where excitatory neuron cells are distributed. (f) The module score of the cortical layers 2 to 6 and white matter for sample AD1, where the
x-axis shows layer categories and the y-axis represents scores. (g) RGB images of AD1 were reconstructed from excitatory neuron cell markers. (h) The segmentation images
via selecting the number of segments as two for samples AD1. (i)-(p) Similar analyses for AD2. (q) Ap plaques are located by immunofluorescence assay. (r) The spots with the
accumulation of AB plaques in red color. (s) Reconstructed RGB image from 20 genes relevant to the AB region. (t) Reconstructed RGB image cropped according to the A
region and marked by layers 2&3 (encircled by the red line). (u) The module score regarding the AB region and non-Ap region for each layer, where red color represents the Ap
region, and gray color represents the non-Ap region. (v) RGB channels show the color value dispersion, where the violin in the blue color represents RGB values in the AR
region, and the violin in the orange color represents RGB values in the non-Ap region. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 6. RESEPT identifies tumor regions in glioblastoma samples (Sample G1). (a) Original H&E staining image from the 10x Genomics. (b) Tissue architecture was identified
via the RESEPT pipeline. (c) Labeled segmentation by RESEPT and Segments 3, 6, and 7 are cropped according to the segmentation result. Based on morphological features, our
physiologist found Segment 3 contains large tumors from morphological features; Segment 6 contains a large number of blood cells; Segment 7 contains infiltrating tumor
cells. (d), (e), (f), and (g) show the expression of Glioblastoma markers CHI3L1, CD44, SOD2, and MALATT1 in all spots based on the logCPM normalization value. (h) The bar
plot shows the results of GO enrichment analysis, indicating Segment 6 has a large proportion of blood cells with blood signature genes for gas transport. (i) Infiltrating
glioblastoma signature marker genes KCNN3 and CNTN1 are highly expressed in Segment 7 based on the logCPM normalization.

always apply. Although we do not have a large dataset to answer
when and why velocity should be used instead of gene expression,
we will carry out a full investigation of this interesting and chal-
lenging topic in the future.

In addition, RESEPT has a promising predictive power on lattice-
based sequencing technologies (i.e., Visium) but may be limited by

4615

irregular distribution of fluorescence in situ hybridization (FISH)
technology [66] and low-resolution spatial transcriptomics [67].
To overcome this limitation, we will investigate a granularity-
based self-supervised graph framework, which diminishes the
effects caused by the spot arrangement and resolution. With the
availability of more tissue samples and spatial multi-omics,
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RESEPT can integrate more samples and other multi-modals of
information as histology image pixels together with the spatial
coordinates and gene expression to pursue a three-dimensional
tissue architecture atlas. Meanwhile, RESEPT will be colorblind
accessible with a ‘colorblind safe’ mode in visualization, in which
all output images will be replaced with predefined color-blind pal-
ettes to avoid problematic color combinations. For different types
of color blindness, RESEPT will offer corresponding narrow-down
palettes accordingly. In addition, different patterns/labels instead
of colors can be mapped in the image to distinguish among
clusters.

RESEPT is also open to integrating other spatial transcriptomic
features, especially cell morphological features from histology.
Pathologists usually recognize functional zones by observing cell
morphology on histology. In addition, recent research demon-
strates that integrating morphological features and transcriptional
features can identify novel cell types [68]. Hence, morphological
features are expected to be complemented by gene expression to
generate more informative RGB images reflecting tissue architec-
tures. SpaGCN [14] has demonstrated the contributions of histolog-
ical pixels to tissue identification and SVG detection. In the next
version of RESEPT, we will define morphological descriptors of his-
tology and integrate them into our graph encoder to upgrade the
current RGB embedding.

5. Conclusions

Our results show that RESEPT is a robust and accurate tool for
spatial transcriptomics data analysis, visualization, and interpreta-
tion. Empowered by GNN representation learning in a spatial spot-
spot graph model, spatial transcriptomics is visualized as an RGB
image. RESEPT formulates the problem as image segmentation
and uses a deep-learning model to detect the tissue architecture.
For best practice, RGB images can be used for visualizing tissue
heterogeneity, especially for heterogeneous tissue. In another case,
RESEPT also offers a pre-trained model for tissue segmentation and
returns a clear boundary among different heterogeneous regions.
As our trained model is based on the healthy human brain (cortical
region), RESEPT has a promising performance on human brain
architecture identification. Overall, RESEPT can provide specific
spatial architectures in broad applications, including neuroscience,
immuno-oncology, and developmental biology.

Data and Code Availability.

The 10x Visium datasets (10 from Spatial Gene Expression
1.0.0; 14 from Spatial Gene Expression 1.1.0, 13 from Spatial Gene
Expression 1.2.0; including G1) can be accessed from https://www.
10xgenomics.com/products/spatial-gene-expression. The datasets
(12 samples) used for the training model and benchmarking can
be accessed via endpoint “jhpce#HumanPilot10x” on the Globus
data transfer platform at http://research.libd.org/globus/. The
HDST datasets are available as accession number SCP420 in the
Single Cell Portal via the link https://singlecell.broadinstitute.org/
single_cell. The ST and 10x Visium data (squamous cell carcinoma)
can be accessed from the GEO database with an accession number
GSE144239. More details of datasets can be found in Supplemen-
tary Tables 1-2. The human breast cancer data (1160920F) can
be downloaded at https://doi.org/10.5281/zenodo.4739739.
RESEPT is freely available as an open-source Python package at
https://github.com/OSU-BMBL/RESEPT.
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