
Contact Transfer: A Direct, User-Driven Method for Human to Robot
Transfer of Grasps and Manipulations

Arjun Lakshmipathy1 Dominik Bauer2 Cornelia Bauer2 Nancy S. Pollard1,2

Abstract— We present a novel method for the direct transfer
of grasps and manipulations between objects and hands through
utilization of contact areas. Our method fully preserves contact
shapes, and in contrast to existing techniques, is not dependent
on grasp families, requires no model training or grasp sampling,
makes no assumptions about manipulator morphology or kine-
matics, and allows user control over both transfer parameters
and solution optimization. Despite these accommodations, we
show that our method is capable of synthesizing kinematically-
feasible whole hand poses in seconds even for poor initializa-
tions or hard-to-reach contacts. We additionally highlight the
method’s benefits in both response to design alterations as well
as fast approximation over in-hand manipulation sequences.
Finally, we demonstrate a solution generated by our method
on a physical, custom-designed prosthetic hand.

I. INTRODUCTION
Transfer of human grasps and manipulation demonstra-

tions to robot hands has been a long standing and challeng-
ing problem in the robotics community. Though numerous
anthropomorphic hands have been developed (e.g., [1], [2],
[3], [4], [5], [6]), no current manipulator yet matches the
dexterous capabilities of the human hand. In addition, sim-
pler hands are often desired based on considerations such as
weight, cost, and ease of manufacture and control.

Towards this end, many research efforts have endeavored
to develop methods for robustly transferring dexterous ca-
pabilities to robot hands with characteristics that may differ
from the hand of the human demonstrator. The majority of
existing methods fall into pure learning, hand pose tracking
and retargeting, or a hybrid of both. Pure reinforcement
learning methods have produced convincing results even for
complex manipulations [7], [8], [9], but occasionally yield
policies with unexpected or undesirable behaviors due to the
abstract nature of the reward function. Tracking methods
instead capture the movements of both the human hand
and the object being manipulated with the intention of
grounding the learned policy [10] or directly transferring the
motion to the target manipulator [11], [12]; unfortunately,
occlusion and noise during the tracking process, as well
as morphological differences between the human and target
hand, complicate the process. Summarily, it is worth noting
that these techniques focus on matching observations in
hand or object space as opposed to the interaction interface
between the two bodies.

Contacts instead present an alternate and often com-
plementary means of encoding grasps and manipulations.
Historical works have used contact information to prune
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Fig. 1: High level overview of our framework. (a) Human demonstrations of
grasps and manipulations are collected and (b) reconstructed using existing
techniques. (c) Contact regions are then transferred from object to target
manipulator, and (d) the whole hand kinematic pose is computed from the
transferred contacts via optimization. (e) The robot hand then utilizes the
final articulated solution.

kinematically-infeasible solutions [13], match object and
hand shapes [14], [15], and drive physics based reasoning
[16]. Recent works exploit entire contact regions to synthe-
size grasps for morphologically diverse manipulators [17],
optimize coarse poses [18], and help train pose generation
models [19]. The catch, however, is that most existing
techniques incur one of three possible drawbacks: single
point approximation [13], [14], [15], [16], strong dependence
on grasp dependent hand shape priors [18], [19], or expensive
computation due to exhaustive grasp sampling [17].

In response to these drawbacks, we present a geometric
framework for the direct, intuitive, and rapid transfer of
contacts observed and collected from objects to morpholog-
ically diverse hands that fully preserves contact shape and
is not dependent on external hand pose datasets or grasp
sampling. More specifically, this paper makes the following
contributions:

1) a novel approach to directly transfer contact areas of
arbitrary shape to morphologically diverse manipula-
tors in a fast and fully customizable manner

2) a cheap optimization strategy to quickly synthesize
kinematically-feasible grasps and in-hand manipula-
tions by exploiting correspondences generated by the
transfer process

Our approach is illustrated in Figure 1. We demonstrate
that our method can accommodate hands with high degrees
of freedom and contact areas of widely varying shapes.
We also show that our framework produces solutions that
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are robust to poor initial conditions as well as difficult-
to-reach contacts. The plug-and-play capability awarded by
our transfer method makes it especially well suited for
manipulator prototyping, which we illustrate in concluding
experiments. Finally, we demonstrate a synthesized grasp
solution on a physical, custom-designed prosthetic hand.

II. RELATED WORK

Numerous prior efforts have targeted the problem of
recovering and optimizing manipulator pose from contacts,
the majority of which can be broadly classified under either
single point or area based approaches.

Single point methods use individual object points as the
basis for extracting the corresponding hand configuration.
Mapping individual object and hand contact points allows for
the use of traditional inverse kinematics [13], [20]; however,
in grasps that contain a large number of contacts, the problem
is generally overconstrained and may instead be best solved
using an optimization approach where the user can specify
the importance of different tradeoffs (e.g., match contacts,
match hand pose, etc.). Optimization approaches can addi-
tionally incorporate kinematic constraints and endeavor to
find least-squares [20] or force-closure inducing [21], [16]
solutions. But while these approaches are fast and straight-
forward, single point contacts are an idealized representation
of real-world situations. Additionally, approximating contact
areas as single points sacrifices useful information.

Consequently, some recent research efforts have turned
instead to utilizing contact regions. Though a number of
existing works have considered contacts purely through
geometric reasoning, including independent contact regions
[22], [23] and directly mapping individual links to mesh
slices [24], recent data driven works have produced high
fidelity contact maps by instead capturing contacts directly
from human demonstrations [25], [26] or synthesizing them
from vision based retargeting and simulation [19]. These
maps have subsequently been utilized to synthesize grasps
for morphologically diverse manipulators [17] as well as
optimize coarse estimates [18], [19]; however, owing to the
difficulty of mapping contact regions to articulated manipu-
lators, these methods are dependent on priors or exhaustive
grasp sampling, which thus limit their robustness and speed.

This paper directly addresses the mapping problem by
proposing a method to transfer object contact areas to any
manipulator in a manner that fully preserves relative contact
point distances regardless of underlying geometry, making
it possible to combine the benefits of single point and area
based techniques. We show that the resulting contact area
correspondence enables the use of a simple, yet robust
optimization to compute the best matching, kinematically-
feasible hand pose. Our technique does not require sampling
or external datasets and can be used on any hand design, and
is intentionally designed to allow full user control over both
the transfer and optimization process, which we show leads
to fast, robust, and qualitatively reasonable results for both
static grasps and in-hand manipulations. We demonstrate

(a) (b) (c)

Fig. 2: The (a) articulated Barrett Hand can be (b) approximately skinned by
stitching together primitive collision geometries. (c) The projection process
partitions the skin into groups based on the link locations of the articulated
hand.

results for a range of simulated robot hands, a graphical
human hand, and a real custom-designed prosthetic hand.

III. PROCEDURE
Our algorithm consists of several stages, roughly illus-

trated in Figure 1. First, thermal traces of contact patches
generated from human grasps and manipulations are captured
and reconstructed onto object meshes using techniques from
prior works [25], [27]. The process outlined in this paper
then transfers contact patches from object surfaces onto a
“skin” of the manipulator, and subsequently projects contacts
from the skin onto the articulated hand. Finally, we utilize
the mapping to compute grasps and manipulations with the
target manipulator that best match the correspondence. Each
stage is described in detail in the proceeding subsections.

A. Contact Capture, Reconstruction, and Tracing
Contact regions resulting from human grasps are first cap-

tured using a combination of thermochromic spray painted
objects and RGBD imaging, and subsequently mapped onto
object mesh surfaces using a reconstruction process detailed
in existing works [25], [27]. Regions are then annotated
and processed into patches, which are represented by a
single root (PR) mesh vertex and collection of boundary
(PB) mesh vertices. Boundaries are then down-sampled to
produce interpolation boundary (IB) sets of 20-30 mesh
vertices, which are then traced from initial to final positions
in the case of manipulations. Detailed definitions and process
descriptions are available in [27].

B. Skinning and Projection
Geometry processing algorithms are typically designed to

operate over connected surfaces; however, the large majority
of robotic systems are articulated, comprised instead of
independent surface links connected by joints. These surfaces
may also exhibit degenerate characteristics, including non-
manifold edges, obtuse triangles, and near-zero area faces,
which, combined with articulation, render many geometry
processing algorithms useless.

Therefore, we instead construct a fully manifold “skin”
of each manipulator and then project vertices from the skin
back on to the original articulated geometry using KD tree
[28] approximation. Figure 2 illustrates the skinning and
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Custom Prosthetic Hand
Fig. 3: Illustration of our logmap-based contact patch transfer process.
Accurate relative distances and angles at all mesh vertices enable transfer
of even large, irregularly shaped patches (outlined by white dots) to widely
differing hand geometries.

projection process. In particular, we note that skins can be
constructed from even coarse mesh approximations such as
primitive collision geometries. Post projection, points on the
skin which have no nearby articulated vertex below threshold
✏ are ignored during optimization. We use Blender [29] with
the Phobos attachment to construct skins and the Open3d
library [30] to perform the projection.

C. Contact Patch Transfer

The key idea of our transfer process is that patch shapes
on the object and manipulator are equivalent, regardless of
the surface on to which they are projected. More formally,
the distance and direction of the IB points from the root
should be preserved under a geometry independent discrete
logarithmic map Lr,� [31], [32]. We therefore require four
parameters, all of which are visually adjustable by the user:
the patch’s root vertex on the hand skin vr,h and object vr,o,
as well as the tangent vector direction from the hand ~vr,h and
object ~vr,o in which to begin the sweep. The corresponding
IB set on the hand can then be entirely computed as:

v⇤
IBi,h = argmin

vh

kLr,�(vh)� Lr,�(vo) ||22
s.t. Lr,�(vh) = f(vr,h; ~vr,h)

Lr,�(vo) = f(vr,o; ~vr,o)

(1)

Finding these correspondences thus requires computation
of logmap coordinates (r,�) for all vertices on both object
and skin. Naively, these quantities can be computed by
tracing geodesics from the root to all vertices (r) and propa-
gating the root tangent vector via parallel transport (�) [33];
unfortunately, these operations are notoriously expensive.
The Vector Heat Method proposed by Sharp et. al. [32],
however, reduces to seconds the parallel transport of both
divergence and root tangent vectors through the use of short
time heat diffusion. As Figure 3 illustrates, this method can
successfully transfer patches of arbitrary shape on to widely
differing surface geometries, can be performed in seconds,
and guarantees both relative distance and angle preservation.
We use the Polyscope viewer [34] and Geometry Central
library [35] to enable user selection of (vr,h;vr,o; ~vr,h; ~vr,o),
solve Eq. 1, and export the final mapping.

D. Extension to Manipulations

We note that the aforementioned procedure can only trans-
fer static grasps; however, manipulations require dynamic
contacts capable of moving, appearing, or disappearing from
the hand at any time. To account for this behavior, we first
transfer initial and final grasps and then adopt the procedure
of Lakshmipathy et. al. [27] to evolve patches on the hand
in conjunction with evolution of patches on the object.

E. Optimization Procedure

Computing the associated IB mappings between the ob-
ject and hand enabled use of a straightforward, three-term
optimization problem to determine the best kinematic hand
pose ✓⇤:

✓⇤ = argmin
✓

PM
i (�d�D

i + �n�N
i ) +

PJ
j �p�P

j

s.t. ✓L  ✓  ✓U

(2)

where ✓ is the degree of freedom vector, M is the total
number of corresponding contact vertices, J = |✓|, ✓L

and ✓U are the lower and upper bounds of each degree
of freedom respectively, �D

i , �N
i , and �P

j are the distance,
normal, and prior pose deviation penalty terms for each
corresponding pair of points i and joint j respectively, and
�d, �n, and �p are weighting hyperparameters. Each penalty
term is elaborated upon in the proceeding paragraphs.

First, we introduce �D,i to minimize the L2 distance be-
tween each pair i of corresponding hand and object contacts:

�D,i = ||po,i � ph,i(✓)||22 (3)

and �N,i to encourage anti-alignment of vertex normals:

�N,i = (1 + nh,i(✓) · no,i)
2 (4)

where each pair of object and hand contact points are
denoted by o, i and h, i respectively, and hand point locations
as well as vertex normal orientations are determined by the
current hand pose ✓.

We additionally introduce a third term to penalize devia-
tion from ✓P , a hand pose prior:

�P,i = ||✓ � ✓P ||22 (5)

The prior is initialized in the same way for all examples
and serves as a user control for customization. At the start
of the optimization, ✓P is set to the default pose, thereby
penalizing rest pose deviation. During subsequent calls, ✓P

is set to the optimal solution from the last set of iterations;
however, if the user edits the default guess (e.g. moves a
finger, drags the palm, etc.), ✓P is instead set to the user
edited pose. As a result, �P,i evolves as the optimization
proceeds to reflect current progress and user direction.

It is worth noting that Eq. 2 does not contain a collision
penalty term as suggested by several prior works [17], [36],
[37]. Omission of this term is intentional and ultimately led
to both substantial drops in solution discovery time as well
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Fig. 4: Optimization progress for finding a feasible box power grasp at (a) 0, (b) 250, (c) 800, and (d) 1,000 iterations.

as improvements in the proposal of solutions for difficult
contact maps (see Figure 8).

The fully differentiable nature and cheap computation cost
of Eq. 2 allows utilization of fast, gradient based solvers even
using numerical gradient approximation; however, we empir-
ically found that different solvers provided slightly different
solutions. We ultimately settled on the Method of Moving
Asympototes [38] for generating the majority of our results,
but advocate implementing multiple solvers and allowing the
user to choose between results. Each method was capped at
1,000 iterations per optimization call to intermittently update
✓P and allow the user to edit intermediate estimates using
IK. Figure 4 illustrates successive guesses over the course of
a single optimization call. We used the NLOpt library [39]
for defining and solving Eq. 2.

IV. RESULTS
Similar to Brahmbhatt et. al. [17], we performed a series of

experiments using four different manipulators - a 20 degree
of freedom human hand [40], an Allegro hand [1], a Barrett
hand [41], and a custom-made anthropomorphic prosthetic
hand - across several static grasps and manipulations of com-
mon household items. Items and contact maps were borrowed
from several existing datasets, including ContactDB [25],
Contact Tracing [27], and YCB [42]. The primary desiderata
were speed and scalability, robustness, and flexibility to
accommodate design or intermediate optimization modifi-
cations. Only results for qualitatively reasonable grasps are
reported. All simulations were conducted using the Dynamic
Animation and Robotics Toolkit (DART) [43].

A. Grasps and Manipulations
Figure 5 provides a collage of static grasps generated using

our contact transfer procedure, while Figure 6 illustrates a
manipulation sequence used to pull a box of sugar off a
kitchen shelf. Note that in a number of cases the manipu-
lator does not possess the required dexterity to successfully
reach the contacts; however, the combination of our contact
transfer and optimization procedure, along with ability to
accommodate interactive user refinement during the process,
results in kinematically-feasible “best effort” solutions across
a variety of manipulators and objects.

B. Computation Speed
To test the speed and scalability of our algorithm, we

examined the time taken by each manipulator to reach a
qualitatively reasonable solution across objects containing
variable numbers of contact patches. Each trial of four hands

was performed with respect to a single object averaged over
three separate initial object placements. The same object was
used for each patch set (3: scissors, 4: wineglass, 5: box,
6: lemon). All grasps had at most one contact patch per
finger and one on the palm. As a result, the three-fingered
Barrett hand could not be tested for 5 or 6-contact patches,
and the 4-patch Barrett hand trial was conducted using the
lemon, which had a palm contact patch available. All hands
were initialized to their default start positions. Parenthetical
quantities indicate degrees of freedom, and no more than 6
patches were used (1 per human finger + palm). Each hand
includes 6 additional degrees of freedom due to a free root
joint. We model the Barrett hand’s breakaway distal joints
as independent degrees of freedom as a simplification due
to the fact that the optimization does not model the time
sequence of the grasping process. All tests were run on a
single Intel Xeon W-1250 3.3 Ghz processor without the use
of GPU acceleration or parallel computation.

Grasp Synthesis Speed Comparison - Favorable Initialization
3 patches 4 patches 5 patches 6 patches

Human
Hand (26)

0.688 s /
0 edits

0.884 s /
0.33 edits

0.422 s /
1 edit

1.036 s /
1 edit

Allegro
Hand (22)

0.135 s /
0 edits

0.303 s /
0 edits

0.278 s /
1 edit

N/A

Barrett Hand
(13)

0.081 s /
0 edits

0.089 s /
0 edits

N/A N/A

Prosthetic
(22)

0.288 s /
0 edits

0.346 s /
0.33 edits

0.284 s /
0.67 edits

0.394 s /
1 edit

TABLE I: Speed test comparison of 4 different manipulators of varying
degrees of freedom with favorable initialization.

Grasp Synthesis Speed Comparison - Poor Initialization
3 patches 4 patches 5 patches 6 patches

Human
Hand (26)

1.115 s /
0 edits

1.752 s /
0.67 edits

1.406 s /
1.33 edits

2.032 s /
2.33 edits

Allegro
Hand (22)

0.397 s /
0 edits

0.721 s /
0.67 edits

0.522 s /
1 edit

N/A

Barrett Hand
(13)

0.137 s /
0 edits

0.183 s /
0 edits

N/A N/A

Prosthetic
(22)

0.441 s /
0 edits

1.443 s /
0.67 edits

0.564 s /
1.33 edits

1.267 s /
1.67 edits

TABLE II: Speed test comparison of 4 different manipulators of varying
degrees of freedom with poor initialization.

Tables I and II tabulate both the average total times taken
across all optimization calls as well as the number of inter-
mediate user edits made to ✓P during the process. Note that
these reported values only consider a small sample size and
that variance between different objects and regions of contact
is high; however, they do reveal some interesting trends.
As expected, greater computation time and interventions are
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Fig. 5: Grasps synthesized as a result of our transfer procedure across a variety of kinematically diverse manipulators, objects, and grasps.

I I I

I I I
Fig. 6: Demonstration of using the method to quickly approximate a kinematic grasp time series spanning a full simple manipulation of pulling a box of
sugar off a kitchen shelf. Poses for successive manipulation steps can be generated at real-time speeds due to the inclusion ✓p and contact evolution time
series data.

(a) (b)

Fig. 7: Results of our method in a configuration where the target object is
inverted and placed behind the manipulator. Despite poor initialization (a),
our method still finds an acceptable solution after only a few optimization
calls (b).

generally required for higher degree of freedom manipu-
lators; however, it is surprising that solution search time
did not necessarily increase with more contacts. A possible
explanation is that additional contacts may heavily favor
certain classes of solutions, and by doing so enable faster
local minima convergence; however, additional experiments
over larger numbers of objects and contact distributions are
required to thoroughly test the conjecture.

C. Robustness to Poor Initialization
Figure 7 shows the start state and ending grasp of the

human hand after running our optimization framework for

exactly two optimization calls comprised of 1,000 maximum
iterations each, with each round converging and terminating
in seconds with no edits. We repeated the procedure for
several other poor object and hand initial states and found
the behavior to be relatively consistent regardless of the
manipulator and object used. As a result, our method is well
suited to support dynamic object placement in a plug-and-
play manner.

D. Robustness to Difficult Grasps
Figure 8 illustrates the outcome of synthesizing a

kinematically-feasible grasp in between the holes of a pair of
scissors. All solutions were found starting from default rest
poses, and no edits were made to ✓P between calls. While
the human hand and custom prosthetic produced reasonable
solutions, the Allegro and Barrett Hand noticeably appear
too large to find a feasible solution.

Despite the grasp’s irregularity and the fact that contacts
are in hard-to-reach places, our framework still does a
reasonable job in finding solutions quickly and reliably. In
the case of the Barrett and Allegro Hand, the framework also
provides useful information through fast failure, which can
immediately prompt design changes during early stages of
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(a) (b)

(c) (d)

Fig. 8: Results of our method in finding solutions for a difficult grasp
in between the holes of a pair of scissors. The (a) human hand and (c)
custom prosthetic found plausible solutions, while the (b) allegro hand and
(d) barrett hand failed due to the dimensions being too large for the object.

(a) (b)

Fig. 9: Custom human hand prosthesis demonstration during a box manip-
ulation in which (a) the index finger, middle finger, and thumb joints are
allowed to overextend with negative joint limits and (b) when stricter limits
are imposed. Note that this alteration changes the whole hand solution rather
than only the impacted joints.

prototyping. Finally, due to the irregularity of the grasp and
hard-to-reach contact locations, we note that grasp sampling
methods would typically fail to find a solution, in contrast
to our method which still manages to do so.

E. Fast Reaction to Alterations
Figure 9 illustrates the results of running the same op-

timization procedure with our custom prosthesis, in which
the joint limits are changed on-the-fly. In particular, we
note the impact of joint limit adjustments not only on the
impacted kinematic chains, but on the entire hand pose. We
especially highlight the value of the latter observation within
prototyping contexts since it amplifies the impact of even
small design changes, which would otherwise be difficult
and time-consuming to identify through existing methods.

F. Robot Demonstration
To demonstrate the utility of our approach with respect

to prototyping real robot hand designs, we built a cus-
tom prosthesis using only a 3d FDM-printer, Thermoplastic
Polyurethane (TPU) filament and brushless DC motors. We
use a Flashforge Creator Pro 2 [44] retrofit with Flexion
Extruders [45] to print the hand in one single part from soft
and flexible filaments of varying shore hardness (Ninjatek
Cheetah = 95A and Ninjatek Chinchilla = 75A) [46], [47].
The fingers are actuated by tendons (monofilament nylon
fishing line) that are routed through channels printed inside
the hand. Joint-like kinematics are achieved either by a

combination of more rigid and soft materials or by creating
local geometric features such as bumps or creases on the
hand. For instance, a good approximation of revolute joints
is given by a crease coinciding with the joint-axis that runs
across the finger or the palm. To accommodate more complex
joints with more than one DoF we create rigid-soft-rigid
layered features where the softer material acts as cartilage
to allow for deformation along multiple axes. We place
these features along the kinematic chain and investigate the
potential of the hand to successfully grasp or manipulate
objects. Discrepancies between simulated and real prosthesis
resulting from under-actuation and soft material deformation
can be reduced by selecting reasonable joint limits as shown
in Figure 9. We show that we can successfully transfer a
grasp generated by our method to the real hand in Figure 1
(e). Further grasps are provided in the supplemental video.

V. CONCLUSIONS AND FUTURE WORK
In summary, we have presented a direct, multi-contact

transfer framework that can accommodate arbitrary contact
regions, objects, and manipulators. We have also presented
an optimization procedure that utilizes the transferred results
to produce both static grasps and manipulations quickly,
reliably, and reactively to user interaction. Our method
provides kinematically-feasible solutions without the use of
grasp sampling or trained models, and by incorporating
user feedback also enables discovery of better solutions
without getting stuck in local minima. We have intentionally
designed our approach to augment user capabilities, enabling
full control over both the transfer and optimization process
with responsive adaptation. Finally, we have shown that our
method is especially useful for early stage manipulator pro-
totyping, providing the first ground truth data-driven means
of testing the impact of design parameters on the kinematics
of whole hand grasps in a plug-and-play manner, while at
the same time being robust to difficult to reach contacts and
dynamic object placement.

However, because this paper only considers hand kine-
matics, it is possible that our solutions will not work in the
real world. As such our next research thrust would be to
extend the framework to incorporate physical properties of
the hand, object, and environment in an effort to increase the
sim2real fidelity of our solutions. Additionally, enabling our
algorithm to work directly on point clouds, perhaps similar
that of [48], would enable greater applicability to real world
environments. We are confident that the foundations laid by
this paper will assist in both endeavors, and are excited to
showcase the results of both thrusts in the future.
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