
Open camera or QR reader and
scan code to access this article

and other resources online.

Algorithms for Colinear Chaining

with Overlaps and Gap Costs

CHIRAG JAIN,1 DANIEL GIBNEY,2 and SHARMA V. THANKACHAN3

ABSTRACT

Colinear chaining has proven to be a powerful heuristic for finding near-optimal alignments
of long DNA sequences (e.g., long reads or a genome assembly) to a reference. It is used as
an intermediate step in several alignment tools that employ a seed-chain-extend strategy.
Despite this popularity, efficient subquadratic time algorithms for the general case where
chains support anchor overlaps and gap costs are not currently known. We present algo-
rithms to solve the colinear chaining problem with anchor overlaps and gap costs in ~O(n)

time, where n denotes the count of anchors. The degree of the polylogarithmic factor depends
on the type of anchors used (e.g., fixed-length anchors) and the type of precedence an optimal
anchor chain is required to satisfy. We also establish the first theoretical connection between
colinear chaining cost and edit distance. Specifically, we prove that for a fixed set of anchors
under a carefully designed chaining cost function, the optimal ‘‘anchored’’ edit distance
equals the optimal colinear chaining cost. The anchored edit distance for two sequences and a
set of anchors is only a slight generalization of the standard edit distance. It adds an addi-
tional cost of one to an alignment of two matching symbols that are not supported by any
anchor. Finally, we demonstrate experimentally that optimal colinear chaining cost under the
proposed cost function can be computed orders of magnitude faster than edit distance, and
achieves correlation coefficient >0.9 with edit distance for closely as well as distantly related
sequences.

Keywords: alignment, colinear chaining, edit distance.

1. INTRODUCTION

One of the most fundamental problems in computational biology is computing the optimal

alignment of two sequences. Unfortunately, conditional lower bounds suggest that an algorithm for

computing an optimal alignment, or edit distance, in strongly subquadratic time is unlikely (Backurs and

1Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, India.
2School of Computational Science and Engineering, Georgia Institute of Technology Atlanta, Georgia, USA.
3Department of Computer Science, University of Central Florida, Orlando, Florida, USA.
A preliminary version of this article appeared in RECOMB 2022.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 29, Number 11, 2022

Mary Ann Liebert, Inc.

Pp. 1237–1251

DOI: 10.1089/cmb.2022.0266

1237

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Indyk, 2015; Hoppenworth et al, 2020). This lower bound indicates a challenge for scaling the computation

of edit distance to high-throughput sequencing data. Instead, heuristics are often used to obtain an approx-

imate solution in less time and space. One such popular heuristic is colinear chaining.

This technique involves precomputing fragments between the two sequences that closely agree (in this

study, exact matches are called anchors), then determining which of these anchors should be kept within the

alignment (Fig. 1). Techniques along these lines are used in long-read mappers (Chaisson and Tesler, 2012;

Jain et al, 2022; Li, 2018; Li et al, 2020; Ren and Chaisson, 2021; Sahlin and Mäkinen, 2021; Sedlazeck et al,

2018) and generic sequence aligners (Abouelhoda et al, 2008; Bray et al, 2003; Kurtz et al, 2004; Marçais et al,

2018; Otto et al, 2011). We focus on the following problem (described formally in Section 2): Given a set of n

anchors, determine an optimal ordered subset (or chain) of these anchors.

Several algorithms have been developed for colinear chaining (Abouelhoda and Ohlebusch, 2005;

Mäkinen and Sahlin, 2020; Shibuya and Kurochkin, 2003; Uricaru et al, 2011) and even more in the context

of sparse dynamic programming (Eppstein et al, 1992a; Eppstein et al, 1992b; Myers and Miller, 1995;

Morgenstern, 2002; Mäkinen et al, 2019; Wilbur and Lipman, 1983). Solutions with different time com-

plexities exist for different variations of this problem. These depend on the cost function assigned to a chain

and the types of chains permitted. Solutions include an algorithm running in O(n log n log log n) time for

a simpler variant of the problem where anchors used in a solution must be nonoverlapping (Abouelhoda and

Ohlebusch, 2005).

More recently, Mäkinen and Sahlin (2020) gave an algorithm running in O(n log n) time where anchor

overlaps are allowed, but gaps between anchors are not considered in the cost function. None of the

solutions introduced thus far provide a subquadratic time algorithm for variations that use both overlap and

gap costs. However, including overlaps and gaps into a cost function is a more realistic model for anchor

chaining. For example, consider a simple scenario where minimizers (Schleimer et al, 2003) are used to

identify anchors. Suppose query and reference sequences are identical, then adjacent minimizer anchors

will likely overlap. Not allowing anchor overlaps during chaining will lead to a penalty cost associated with

gaps between chained anchors despite the two strings being identical. Therefore, depending on the type of

anchor, there may be no reason to assume that in an optimal alignment, the anchors would be nonover-

lapping. At the same time, not penalizing long gaps between the anchors is unlikely to produce correct

alignments. This is why both anchor overlaps and gap costs are supported during chaining in widely used

aligners, for example, Minimap2 (Kalikar et al, 2022; Li, 2018) and Nucmer4 (Marçais et al, 2018).

This study’s contribution is the following:

� We provide the first algorithm running in subquadratic ~O(n) time for chaining with overlap and gap

costs.* Refinements based on the specific type of anchor and chain under consideration are also given.

These refinements include an O(n log2 n) time algorithm for the case where all anchors are of the

same length, as is the case with k-mers.
� When n is not too large (less than the sequence lengths), we present an algorithm with O(n � OPT + n

log n) average case time, where OPT is the optimal solution value. This provides a simple algorithm

that is efficient in practice.
� Using a carefully designed cost function, we mathematically relate the optimal chaining cost with a

generalized version of edit distance, which we call anchored edit distance. This is equivalent to the

usual edit distance with the modification that matches performed without the support of an anchor have

unit cost. A more formal definition appears in Section 2. With our cost function, we prove that the

optimal chaining cost is equal to the anchored edit distance.

FIG. 1. (Left) Anchors representing a set of exact matches are shown as rectangles. The colinear chaining problem is

to find an optimal ordered subset of anchors subject to some cost function. (Right) A chain of overlapping anchors.

* ~O(�) hides polylogarithmic factors.

1238 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

� We empirically demonstrate that computing optimal chaining cost is orders of magnitude faster than

computing edit distance, especially in semiglobal comparison mode. We also demonstrate a strong

correlation between optimal chaining cost and edit distance. The correlation coefficients are favorable

when compared with suboptimal chaining methods implemented in Minimap2 and Nucmer4.

2. PRELIMINARIES

Let S1 and S2 be two strings of lengths jS1j and jS2j, respectively. An anchor interval pair ([a::b]‚ [c::d])

signifies an exact match between S1[a::b] and S2[c::d]. For an anchor I, we denote these values as I:a, I:b,

I:c, and I:d. Here b - a = d - c and S1[a + j] = S2[c + j] for all 0 � j � b - a. We say that the character

match S1[a + j] = S2[c + j], 0 � j � b - a, is supported by the anchor ([a::b]‚ [c::d]). Maximal exact

matches (MEMs), maximal unique matches (MUMs), or k-mer matches are some of the common ways to

define anchors. MUMs (Delcher et al, 1999) are a subset of MEMs, having the added constraint that the

pattern involved occurs only once in both strings. If all intervals across all anchors have the same length

(e.g., using k-mers), we say that the fixed-length property holds.

Our algorithms will make use of dynamic range minimum queries (RmQs). For a set of n d-dimensional

points, each with an associated weight, a ‘‘query’’ consists of an orthogonal d-dimensional range. The

query response is the point in that range with the smallest weight. Using known techniques in computa-

tional geometry, a data structure can be built in O(n logd - 1 n) time and space, which can both answer

queries and modify a point’s weight in O(logd n) time (de Berg et al, 2008).

2.1. Colinear chaining with overlap and gap costs

Given a set of n anchors A for strings S1 and S2, we assume that A already contains two end-point

anchors Aleft = ([0‚ 0]‚ [0‚ 0]) and Aright = ([jS1j + 1‚ jS1j + 1]‚ [jS2j + 1‚ jS2j + 1]). We define the

strict precedence relationship � between two anchors I0 : = A[j] and I : = A[i] as I0 � I if and only if

I0 :a � I :a, I0 :b � I :b, I0 :c � I :c, I0 :d � I :d, and strict inequality holds for at least one of the four

inequalities. In other words, the interval belonging to I0 for S1 (respectively S2) should start before or at the

starting position of the interval belonging to I for S1 (respectively S2) and should not extend past it.

We also define the weak precedence relation �w as I0�wI if and only if I0:a � I:a, I0:c � I:c, and strict

inequality holds for at least one of the two inequalities, that is, intervals belonging to I0 should start before

or at the starting position of intervals belonging to I, but now intervals belonging to I0 can be extended past

the intervals belonging to I. The aim of the problem is to find a totally ordered subset (a chain) of A that

achieves the minimum cost under the cost function presented next. We specify whether we mean a chain

under strict precedence or under weak precedence when necessary.

2.1.1. Cost function. For I0 � I, the function connect(I0‚ I) is designed to indicate the cost of

connecting anchor I0 to anchor I in a chain. The chaining problem asks for a chain of m � n anchors,

A0[1], A0[2]‚ . . . ‚A0[m], such that the following properties hold: (i) A0[1] =Aleft, (ii) A0[m] =Aright, (iii)

A0[1] � A0[2] � . . . � A0[m], and (iv) the cost
Pm - 1

i = 1 connect(A0[i]‚ A0[i + 1]) is minimized.

We next define the function connect. In Section 4, we see that this definition is well motivated by the

relationship with anchored edit distance. For a pair of anchors I0, I such that I0 � I:

� The gap in string S1 between anchors I0 and I is g1 = max (0‚ I:a - I0:b - 1). Similarly, the gap between

the anchors in string S2 is g2 = max (0‚ I:c - I0:d - 1). Define the gap cost g(I0‚ I) = max (g1‚ g2).
� The overlap o1 is defined such that I0:b - o1 reflects the nonoverlapping prefix of anchor I0 in string S1.

Specifically, o1 = max (0‚ I0:b - I:a + 1). Similarly, define o2 = max (0‚ I0:d - I:c + 1). We define

the overlap cost as o(I0‚ I) = jo1 - o2j.
� Lastly, define connect(I0‚ I) = g(I0‚ I) + o(I0‚ I).

The same definitions are used for weak precedence, only using �w in the place of �. Regardless of the

definition of connect, the mentioned problem can be trivially solved in O(n2) time and O(n) space. First sort

the anchors by the component A[�] : a and let A0 be the sorted array. The chaining problem then has a

direct dynamic programming solution by filling an n-sized array C from left to right, such that C[i] reflects

the cost of an optimal chain that ends at anchor A0[i]. The value C[i] is computed using the recursion:

ALGORITHMS FOR COLINEAR CHAINING 1239

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

C[i] = minA0[k]�A0[i] (C[k] + connect(A0[k]‚ A0[i])), where the base case associated with anchor Aleft is

C[1] = 0. The optimal chaining cost will be stored in C[n] after spending O(n2) time. We provide an

O(n log4 n) time algorithm for this problem.

2.2. Anchored edit distance

The edit distance problem is to identify the minimum number of operations (substitutions, insertions,

or deletions) that must be applied to string S2 to transform it to S1. Edit operations can be equivalently

represented as an alignment (a.k.a. edit transcript) that specifies the associated matches, mismatches, and

gaps while placing one string on top of another. The anchored edit distance problem is as follows: given

strings S1 and S2 and a set of n anchors A, compute the optimal edit distance subject to the condition that a

match supported by an anchor has edit cost 0, and a match that is not supported by an anchor has edit cost 1.

The mentioned problem is solvable in O(jS1jjS2j) time and space. We can assume that input does not

contain redundant anchors, therefore, the count of anchors is � jS1jjS2j. Next, the standard dynamic

programming recursion for solving the edit distance problem can be revised. Let D[i‚ j] denote anchored

edit distance between S1[1‚ i] and S2[1‚ j], then D[i‚ j] = min (D[i - 1‚ j - 1] + x‚ D[i - 1‚ j] + 1‚

D[i‚ j - 1] + 1), where x = 0 if S1[i] = S2[j] and the match is supported by some anchor, and x = 1

otherwise.

2.3. Representing sequence alignment as a graph

It is useful to consider the following representation of an alignment of two strings S1 and S2. As

illustrated in Figure 2, we have a set of jS1j top vertices and jS2j bottom vertices. There are two types of

edges between the top and bottom vertices: (1) A solid edge from ith top vertex to the jth bottom vertex.

This represents an anchor supported character match between the ith character in S1 and the jth character in

S2. (2) A dashed edge from the ith top vertex to the jth bottom vertex. This represents a character being

substituted to form a match between S1[i] and S2[j] or a character match not supported by an anchor.

All unmatched vertices are labeled with an ‘‘x’’ to indicate that the corresponding character is deleted.

An important observation is that no two edges cross.

In a solution to the anchored edit distance problem, every solid edge must be ‘‘supported’’ by an anchor.

By ‘‘supported’’ here we mean that the match between the corresponding characters in S1 and S2 is

supported by an anchor. In Figure 2, these anchors are represented with rectangles above and below the

vertices. We use M to denote a particular alignment. We also associate an edit cost with the alignment,

denoted as EDIT(M). This is equal to the number of vertices marked with x in M plus the number of

dashed edges in M.

3. ALGORITHMS FOR COLINEAR CHAINING

Theorem 1. The colinear chaining problem with overlap and gap costs can be solved in time ~O(n). In

particular, in time O(n log2 n) for chains with fixed-length anchors, in time O(n log3 n) for chains under

weak precedence, and in time O(n log4 n) for chains under strict precedence.

The proposed algorithm still uses the recursive formula given in Section 2.1. However, it uses RmQ data

structures to avoid having to check every anchor A[k], where A[k]:a < A[i]:a. We achieve this by

considering six cases concerning the optimal choice of the prior anchor. We use the best of the six distinct

possibilities to determine the optimal C[i] value. This C[i] value is then used to update the RmQ data

FIG. 2. The graph representation of an alignment. Solid edges

represent anchor-supported character matches, dashed edges rep-

resent substitutions and unsupported matches, and x’s represent

deletions. We useM to denote an alignment. Here EDIT(M) = 7,

the total number of x’s and dashed edges.

1240 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

structures. For the strict precedence case, some of the six cases require up to four dimensions for the RmQs.

When only weak precedence is required, we reduce this to at most three dimensions. When the fixed-length

property holds (e.g., k-mers), we reduce this to two dimensions.

3.1. Algorithm for chains under strict precedence

The first step is to sort the set of anchors A using the key A[�]:a. Let A0 be the sorted array. We will

next use six RmQ data structures labeled T 1a, T 1b, T 2a, T 2b, T 3a, and T 3b. These RmQ data structures

are initialized with the following points for every anchor: For anchor I 2 A0, T 1a is initialized with the

point (I:b‚ I:d - I:b), T 1b with (I:d‚ I:d - I:b), T 2a with (I:b‚ I:c‚ I:d), T 2b with (I:b‚ I:d), T 3a with

(I:b‚ I:c‚ I:d‚ I:d - I:b), and T 3b with (I:b‚ I:d‚ I:d - I:b).

All weights are initially set to1 except for I =A left, where the corresponding points are given weight 0.

We then process the anchors in sorted order and update the RmQ data structures after each iteration. On the

ith iteration, for j < i, we let C [j] be the optimal colinear chaining cost of any ordered subset of A0[1],

A0[2]‚ . . . ‚ A0[j] that ends with A0[j]. For i > 1, RmQs are used to find the optimal j < i by considering

six different cases. We let I =A0[i], I0 =A0[j], and C[I0] = C [j].

The query for each RmQ structure is determined by the different inequalities relating I:a, I:b, I:c, and I:d
to previous anchors in the case considered. For example, in Case 1.a (Fig. 3), it can be seen that I0:b < I:a
and I:a - I0:b < I:c - I0:d, making I0:b 2 [0‚ I:a - 1] and I0:d - I0:b 2 [-1‚ I:c - I:a], motivating

the query input [0‚ I:a - 1] · [-1‚ I:c - I:a]. At the same time, the values stored in these RmQ struc-

tures are determined by the expression for the colinear chaining cost in that case, C[I0] + I:c - I0:d - 1.

Note that the values stored in each RmQ structure depend only on previously processed anchors and are

combined with the values I:a, I:b, I:c, and I:d for the current anchor I being processed to obtain the

appropriate cost. Hence, for T 1a we store values of the form C[I0] - I0:d and combine this with I:c to

obtain the cost. The other cases can be similarly analyzed.

1. Case: I0 disjoint from I.

(a) Case: The gap in S1 is less or equal to gap in S2 (Fig. 3 Left). The RmQ (query input) is of the form:

[0‚ I:a - 1] · [-1‚ I:c - I:a]: Let the query response (weight) from T 1a be v1a = minfC[I0] - I0:d :
(I0:b‚ I0:d - I0:b) 2 [0‚ I:a - 1] · [-1‚ I:c - I:a]g and let C1a = v1a + I:c - 1.

(b) Case: The gap in S2 is less than gap in S1. The RmQ is of the form [0‚ I:c - 1] ·
[I:c - I:a + 1‚ 1]: Let the query response from T 1b be v1b = minfC[I0] - I0:b : (I0:d‚ I0:d - I0:b) 2
[0‚ I:c - 1] · [I:c - I:a + 1‚ 1]g and let C1b = v1b + I:a - 1.

2. Case: I0 and I overlap in only one dimension.

(a) Case: I0 and I overlap only in S2 (Fig. 3 Middle). The RmQ is of the form [0‚ I:a - 1] ·
[0‚ I:c] · [I:c‚ I:d]. Let the query response from T 2a be v2a = minfC[I0] - I0:b + I0:d : (I0:b‚

I0:c‚ I0:d) 2 [0‚ I:a - 1] · [0‚ I:c] · [I:c‚ I:d]g and let C2a = v2a + I:a - I:c.

(b) Case: I0 and I overlap only in S1. Since the anchors are sorted on A[�]:a, this can be done with a two-

dimensional RmQ structure. The RmQ is of the form [I:a‚ I:b] · [0‚ I:c - 1]. Let the query response

from T 2b be v2b = minfC[I0] + I0:b - I0:d : (I0:b‚ I0:d) 2 [I:a‚ I:b] · [0‚ I:c - 1]g and let C2b =
v2b + I:c - I:a.

3. Case: I0 and I overlap in both dimensions.

(a) Case: Greater overlap in S2 (Fig. 3 Right). Here, jo1 - o2j = o2 - o1 = I0:d - I:c - (I0:b - I:a):
The RmQ is of the form [I:a‚ I:b] · [0‚ I:c] · [I:c‚ I:d] · [I:c - I:a + 1‚ 1]: Let the query response

from T 3a be v3a = minfC[I0] - I0:b + I0:d : (I0:b‚ I0c‚ I0:d‚ I0:d - I0:b) 2 [I:a‚ I:b] · [0‚ I:c] ·
[I:c‚ I:d] · [I:c - I:a + 1‚ 1]g and let C3a = v3a + I:a - I:c.

FIG. 3. (Left) Case 1.a. Colinear chaining cost is C[I0] + g2 = C[I0] + I:c - I0:d - 1. (Middle) Case 2.a. Chaining cost

is C[I0] + g1 + o2 = C[I0] + I:a - I0:b + I0:d - I:c. (Right) Case 3.a. Chaining cost is C[I0] + o2 - o1 = C[j] + I0:d - I:c -
(I0:b - I:a).

ALGORITHMS FOR COLINEAR CHAINING 1241

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

(b) Case: Greater or equal overlap in S1. Here, jo1 - o2j = o1 - o2 = I0:b - I:a - (I0:d - I:c): If

o1 � o2 > 0, I0:b 2 [I:a‚ I:b], and I0:a 2 [0‚ I:a], then I0:c 2 [0‚ I:c]. Hence, the RmQ is of the form

[I:a‚ I:b] · [I:c‚ I:d] · [-1‚ I:c - I:a]. Let the query response from T 3b be v3b = minfC[I0] +
I0:b - I0:d : (I0:b‚ I0:d‚ I0:d - I0:b) 2 [I:a‚ I:b] · [I:c‚ I:d] · [-1‚ I:c - I:a]g and let C3b = v3b -
I:a + I:c.

Finally, let C [i] = min (C1a‚ C1b‚ C2a‚ C2b‚ C3a‚ C3b) and update the RmQ structures as shown in the

pseudo code in Algorithm 1. In the pseudo code, every RmQ structure T has the query method T :RmQ()

that takes as arguments an interval for each dimension. It also has the method T :update(), which takes a

point and a weight and updates the point to have the new weight. The four-dimensional RmQ structures for

Case 3.a require O(log4 n) time per query and update, causing an overtime complexity that is O(n log4 n).

3.2. Modifications for weak precedence and fixed-length anchors

We first consider the case of weak precedence. In Case 3.a, the anchor end I0: d can be positioned

arbitrarily to the right of I: c. Moreover, since by the first dimension of the RmQ there is positive overlap

in S1 and by the fourth dimension there is greater overlap in S2, we know that I0: d � I: c. Hence, we can

then remove the third dimension from the RmQ. The query will then be of the form (I0: b‚ I0: c‚

I0: d - I0: b) 2 [I: a‚ 1] · [0‚ I: c] · [I: c - I: a + 1‚ 1].

In Case 3.b, where there is greater or equal overlap in S1, we can similarly ignore I0: b, but to match our

definition of weak precedence we must also ensure I0: c 2 [0‚ I: c - 1] (this is unnecessary for I0: a in Case

3.a as the strictly greater overlap in S2 ensures I0: a < I: a). We modify the query to be of the form

(I0: c‚ I0: d‚ I0: d - I0: b) 2 [0‚ I: c - 1] · [I: c‚ 1] · [-1‚ I: c - I: a]. Since each RmQ has at most

three dimensions, the total time complexity can be brought down to O(n log3 n).

Algorithm 1: O(n log4 n) time algorithm for strict precedence.

Input: n anchors A[1‚ n] including Aleft =A[1] and Aright =A[n].

Output: Array C[1‚ n] such that C[i] is the optimal colinear chaining cost for any ordered subset of A[1‚ i] ending

with A[i].

Let A0[1]‚ . . . ‚ A0[n] be the anchors A sorted on A[�] : a;

Construct RmQ structures with weights set to 1;

Initialize array C of size n to 0;

for i)1 to n do

I)A0[i];
if i � 2 then

C1a)T 1a: RmQ([0‚ I:a - 1]‚ [-1‚ I:c - I:a]) + I:c - 1;

C1b)T 1b:RmQ([0‚ I:c - 1]‚ [I:c - I:a + 1‚1]) + I:a - 1;

C2a)T 2a:RmQ([0‚ I:a - 1]‚ [0‚ I:c]‚ [I:c‚ I:d]) + I:a - I:c;

C2b)T 2b:RmQ([I:a‚ I:b]‚ [0‚ I:c - 1]) - I:a + I:c;

C3a)T 3a:RmQ([I:a‚ I:b]‚ [0‚ I:c]‚ [I:c‚ I:d]‚ [I:c - I:a + 1‚1]) + I:a - I:c;

C3b)T 3b:RmQ([I:a‚ I:b]‚ [I:c‚ I:d]‚ [-1‚ I:c - I:a]) - I:a + I:c;

/* Take optimal choice */

C[i]) min (C1a‚ C1b‚ C2a‚ C2b‚ C3a‚ C3b);

end

/* Update RmQ structures */

T 1a:update((I:b‚ I:d - I:b)‚ C[i] - I:d);

T 1b:update((I:d‚ I:d - I:b)‚ C[i] - I:b);

T 2a:update((I:b‚ I:c‚ I:d)‚ C[i] - I:b + I:d);

T 2b:update((I:b‚ I:d)‚ C[i] + I:b - I:d);

T 3a:update((I:b‚ I:c‚ I:d‚ I:d - I:b)‚ C[i] - I:b + I:d);

T 3b:update((I:b‚ I:d‚ I:d - I:b)‚ C[i] + I:b - I:d);

end

return C[1‚ n]

In the case of fixed-length anchors, the RmQ for Case 2.a. can be made (I0: b‚ I0: d) 2 [0‚ I: a - 1] ·
[I: c‚ I: d]: The modifications for Cases 3.a and 3.b are more involved. We keep a pointer pa to indicate the

current a value of the interval, initially setting pa =A[1] : a. Conceptually, before processing anchor I

we increment pa from its previous position to I:a. If for some anchor I0 the end I0:b is passed by pa, we

1242 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

update the points associated with I0 in T 3a and T 3b to have the weight 1. This eliminates the need to use

a range query to check I0:b 2 [I:a‚ I:b], since any points not within that range are effectively removed

from consideration.

Hence, we can reduce the query for Case 3.a. (overlap in S2 greater than overlap in S1) to

(I0:c‚ I0:d - I0:b) 2 [0‚ I:c] · [I:c - I:a + 1‚ 1]: and the query for Case 3.b (overlap in S1 greater or

equal to overlap in S2) to (I0:d‚ I0:d - I0:b) 2 [I:c‚ I:d] · [-1‚ I:c - I:a]: To avoid the jS1j time

complexity, the anchors that would be encountered while incrementing pa can be found by looking at which

anchors have b values between the previous pa value and I:a. Because each update requires O(log2 n) time,

these updates cost time O(n log2 n) in total.

4. PROOF OF EQUIVALENCE

Theorem 2. For a fixed set of anchors A, the following quantities are equal: the anchored edit distance,

the optimal colinear chaining cost under strict precedence, and the optimal colinear chaining cost under

weak precedence.

The optimal colinear chaining cost is defined using the cost function described in Section 2.1. An

implication of Theorems 1 and 2 is that if only the anchored edit distance is desired (and not an optimal

strictly ordered anchor chain), there exists a O(n log3 n) for computing this value.

Theorem 2 will follow from Lemmas 1 and 2.

Lemma 1. Anchored edit distance � optimal colinear chaining cost under weak precedence � optimal

colinear chaining cost under strict precedence.

Proof. The second inequality follows from the observation that every set of anchors ordered under strict

precedence is also ordered under weak precedence. We now focus on the inequality between anchored edit

distance and colinear chaining cost under weak precedence. Starting with an anchor chain under weak precedence,

A[1], A[2]‚ . . . with associated colinear chaining cost x, we provide an alignment with an anchored edit

distance that is at most x. This alignment is obtained using a greedy algorithm that works from left to right,

always taking the closest exact match when possible, and when not possible, a character substitution or

unsupported exact match, or if none of these are possible, a deletion. We now present the details.

The Greedy Algorithm. Assume inductively that all symbols in S1[1‚ A[i] : b] and S2[1‚ A[i] : d] have

been processed, that is, either matched, substituted, or deleted (represented by check marks in Figs. 4–6).

The base case of this induction holds trivially for A left. We consider the anchor A[i + 1] and the possible

cases regarding its position relative to A[i]. Symmetric cases that only swap the roles of S1 and S2 are

ignored. To ease notation, let I0 =A[i] and I =A[i + 1].

1. Case I0:b � I:b and I0:d � I:c (Fig. 4): To continue the alignment, delete the substring S2[I0:d + 1‚ I:d]

from S2. This has edit cost I:d - I0:d. We can assume both intervals of I0 are not nested in intervals of I,

hence connect(I0‚ I) = o1 - o2 = I0:b - I:a - I0:d + I:c � I:c + I:b - I:a - I0:d = I:d - I0:d:
2. Case I0:b � I:b and I0:d < I:c (Fig. 4): Delete the substring S2[I0:d + 1‚ I:d] from S2, with edit cost

I:d - I0:d. Also connect(I0‚ I) = o1 + g2 = I0:b - I:a + I:c - I0:d � I:c + I:b - I:a - I0:d = I:d - I0:d:
3. Case I:b > I0:b, I:a � I0:b, I:c � I0:d (Fig. 5): Supposing wlog that o1 > o2, delete

S2[I0:d + 1‚ I0:d + o1 - o2], and match S1[I0:b + 1‚ I:b] and S2[I0:d + o1 - o2 + 1‚ I:d]. This has edit cost o1 - o2

and connect(I0‚ I) = o1 - o2.

4. Case I:b > I0:b, I:a � I0:b, I:c > I0:d (Fig. 5): We delete S2[I0:d + 1‚ I0:d + o1 + g2] and match

S1[I0:b + 1‚ I:b] with S2[I0:d + o1 + g2 + 1‚ I:d]. This has edit cost o1 + g2 and connect(I0‚ I) = o1 + g2.

FIG. 4. Cases in Proof of Lemma 1. The X symbol indicates symbols processed before considering I. (Left) Case

I0‚ b � I:b and I0:d � I:c I0:b � I:b and I0:d < I:c.

ALGORITHMS FOR COLINEAR CHAINING 1243

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

5. Case I:a > I0:b, I:c > I0:d (Fig. 6): Supposing wlog g2 � g1, match with substitutions or unsupported

exact matches S1[I0:b + 1‚ I0:b + g1] and S2[I0:d + 1‚ I0:d + g1]. Delete the substring S2[I0:d + g1 + 1‚

I:c - 1]. Finally, match S1[I:a‚ I:b] and S2[I:c‚ I:d]. The edits consist of g1 of substitutions or

unsupported exact matches and g2 - g1 deletions, which is g2 edits in total. Also, connect(I0‚ I) =
maxfg1‚ g2g = g2.

Continuing this process until Aright, all symbols in S1 and S2 become included in the alignment. ,
We delay the details of Lemma 2’s proof to Section 4.1.

Lemma 2. For a set of anchorsA, optimal chaining cost under strict precedence � anchored edit distance.

Proof. We start with an arbitrary alignment M supported by A. We show in Lemma 3 how to obtain

a subset B � A totally ordered under strict precedence and supporting an alignment M0 where

EDIT(M0) � EDIT(M). We then show in Lemma 4 that the edit cost ofM0 is greater or equal to the edit

cost of the alignment MG given by the greedy algorithm on B. Finally, in Lemma 5 we show that the

colinear chaining cost of B is equal to the edit cost of MG. Combining, we have EDIT(M) �
EDIT(M0) � EDIT(MG) = the colinear chaining cost on B � optimal colinear chaining cost under strict

precedence for A. The result follows from the fact that EDIT(M) equals the anchored edit distance when

M is an optimal alignment for A. ,

4.1. Details of Lemma 2 proof

We apply Algorithm (i) followed by Algorithm (ii) to convert a supporting set of anchors A forM into

the totally ordered subset of anchors B supportingM0. Note that these algorithms are only for the purpose

of the proof. Moving forward, we call an edge e = (S1[h]‚ S2[k]) contained but not supported by I

if h 2 [I:a‚ I:b] or k 2 [I:c‚ I:d] and h - I:a 6¼ k - I:c. We define for e the two edges e0 = (S1[h]‚

S2[I:c + h - I:a]) and e00 = (S1[I:a + k - I:c]‚ S2[k]), which are supported by I.

Algorithm (i). Algorithm for removing incomparable anchors. Let I and I0 be two incomparable

anchors under weak precedence (Fig. 6). The anchor that has the rightmost supported solid edge will be the

anchor we keep. Suppose wlog is I. Working from right to left, starting with that rightmost edge, for any

edge e that is contained but not supported by I, we replace e with the rightmost of e0 and e00. Note that at

least one side of every edge supported by I0 is within an interval of I. Hence, all edges supported by I0 are

eventually replaced. We then remove I0. This algorithm is repeated until a total ordering under weak

precedence is possible.

FIG. 6. (Left) Case I:a > I0:b, I:c > I0:d. (Right) Anchors I and I0 are incomparable. The current alignment is

shown with black solid and dashed edges. To remove I0 we sweep from right to left, replacing edges not supported by

I with edges supported by I. Here, e = (S1[h]‚ S2[k]) is not supported by I and will be replaced with e0 = (S1[h]‚

S2[I:c + h - I:a]) (in red), which is supported by I.

FIG. 5. Cases in proof of Lemma 1. (Left) Case I:b > I0:b, I:a � I0:b, I:c � I0:d. (Right) Case I:b > I0:b, I:a � I0:b,

I:c > I0:d.

1244 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Algorithm (ii). Algorithm for removing anchors with nested intervals. Consider two anchors I and I0

where wlog I0 has an interval nested in one of the intervals belonging to I. Let eR be the rightmost edge

supported by I. Working from right to left, we replace any edge e to the left of eR that is contained but not

supported by I with the rightmost of e0 and e00. Next, working from left to right, we replace any edge e to the

right of eR that is contained but not supported by I with the leftmost of e0 and e00. These procedures

combined will replace all edges supported by I0 with those supported by I. We repeat this until there are no

two nested intervals among all remaining anchors. Finally, remove all anchors that do not support any edge.

We call such an anchor chain where every anchor supports at least one edge minimal.

Lemma 3. EDIT(M0) � EDIT(M):

Proof. For Algorithm (i), suppose we are replacing an edge e not supported by anchor I, the anchor we

wish to keep. Suppose wlog that e0 is the rightmost of e0 and e00, so we replace e with e0. Because the edge

immediately to the right of e is also aligned with I, deleting S2[k] and matching S2[I:c + h - I:a] does not

require modifying any additional edges. If e was a solid edge, the edit cost is unaltered, since the total

number of deletions and matches is unaltered. If e was a dashed edge, replacing e with e0 converts a

substitution or unsupported exact match at S2[k] to a deletion, and removes a deletion at S2[I:c + h - I:a],

decreasing the edit cost by 1.

The same arguments hold for Algorithm (ii) when we replace edges from right to left. In Algorithm (ii)

when we process edges from left to right, since any edges to left of the edge e being replaced are supported

by I, replacing e with the leftmost of e0 and e00 does not require modifying any additional edges. Again, if e

is solid, the edit cost is unaltered, and if e is dashed, the edit cost is decreased by 1. ,

Lemma 4. The greedy algorithm described in the proof of Lemma 1 produces an optimal alignment for a

‘‘minimal’’ anchor chain under strict precedence.

Proof. This follows from an exchange argument. LetM be an optimal alignment on the anchor chain B
Further, suppose that M is not the same as the alignment produced by the greedy algorithm MG. As we

process the edges from left to right, consider when the first discrepancy in the edges is found, the leftmost edges

e = (S1[h]‚ S2[k]) inM and eG = (S1[hG]‚ S2[kG]) inMG that are not equal. Let eprev be the previous edge

on which theM andMG coincided. We claim e can be replaced with eG without increasing the edit cost.

� Case: eG is solid and left of e. Then e can clearly be exchanged for eG with no increase in edit cost.
� Case: eG is solid and not left of e. We assume WLOG k < kG (Fig. 7). Suppose eG is supported by an

anchor I. We claim that (i) h � hG, and (ii) there exists an edge ~e = (S1[~h]‚ S2[~k]) inM to the right

of e and supported by I. Note that ~h - hG + 1 solid edges can be obtained by matching S1[hG‚ ~h] to

S2[kG‚ ~k], and that this alignment has at most the edit cost incurred within the intervals [hG‚ ~h] in S1

and [k‚ ~k] in S2 byM. Thanks to (i) and (ii), swapping all of the edges inM inside these intervals with

the ~h - hG + 1 edges supported by I already mentioned can be done without effecting edges outside

those intervals. The proofs for claims (i) and (ii) are shown hereunder.

(i) h � hG: Suppose to the contrary that h < hG. Let eprev = (S1[hprev]‚ S2[kprev]). Since hprev < h < hG

and kprev < k < kG, this would imply that there are deletions (x’s) at both S1[h] and S2[k] in MG.

However, the greedy algorithm would instead create an edge including S1[h] or S2[k] (or both),

causing there to be an edge to the left of eG and to the right of eprev. This contradicts our assumption

that eG is the first edge in MG to the right of eprev.

(ii) An edge ~e = (S1[~h]‚ S2[~k]) exists in M to the right of e and supported by I: We claim eG is the

leftmost edge supported by I in MG. Otherwise, since only consecutive edges supported by an

anchor are taken in the greedy algorithm (Cases 3, 4, and 5 in proof of Lemma 1), eprev =
(S1[hG - 1]‚ S2[kG - 1]). Then eprev was also in M by our assumption that MG and M agreed

FIG. 7. Consider a greedy alignment MG and optimal align-

ment M where the leftmost difference is e and eG. Here, ê pre-

vents swapping e and eG without modifying additional edges in

M.

ALGORITHMS FOR COLINEAR CHAINING 1245

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

until eG. However, eprev = (S1[hG - 1]‚ S2[kG - 1]) would cross or share a vertex with

e = (S1[h]‚ S2[k]) inM since hG - 1 < h and k � kG - 1, a contradiction. Now, if no other edges

supported by I are in M, then B is not minimal. Hence, we can assume that an edge

~e = (S1[~h]‚ S2[~k]) exists in M to the right of e and supported by I.
� Case: eG is a dashed edge. Since dashed edges are only created in Case 5 of the proof of Lemma 1

(Fig. 6), eprev = (S1[hG - 1]‚ S2[kG - 1]) must have been either the rightmost supported edge for

some anchor, or another dashed edge. In addition, no other supported edges are possible that include

either S1[h] or S2[k]. Here the dashed edge eG is optimal and swapping e with eG will reduce the edit

cost. ,

Lemma 5. For an anchor chain under strict precedence, the edit cost of the alignment produced by the

greedy algorithm described in the proof of Lemma 1 is equal to the chaining cost.

Proof. This follows from induction on the number of anchors processed, using the same arguments used

in the proof of Lemma 1. However, only I0:b = I:b needs to be considered in Cases 1 and 2 leading to

equality in these cases. ,

5. IMPLEMENTATION

In multidimensional RmQs, O(n logd - 1 n) storage requirement and irregular memory access during a

query can limit their efficacy in practice (de Berg et al, 2008). We can take advantage of two observations

to design a more practical algorithm. First, if sequences are highly similar, their edit distance will be

relatively small. Hence the anchored edit distance, denoted in this section as OPT, will be relatively small

for MUM or MEM anchors. Second, if the sequences are dissimilar, then the number of MUM or MEM

anchors, n, will likely be small.

These observations allow us to design an alternative algorithm (Algorithm 1) that requires O(n)

worst-case space and O(n � OPT + n log n) average case time over all possible inputs where

n � max (jS1j‚ jS2j), that is, the number of anchors is less than the longer sequence length. This is stated

formally in Lemma 6. This property always holds when the anchors are MUMs and is typically true for

MEMs as well. This makes the algorithm presented here a practical alternative.

As before, let A be the initial (possibly unsorted) set of anchors, but with A left = A[1] and

A right = A[n]. We assume wlog jS1j � jS2j. We begin by sorting anchor set A by the component A[�] : a
and making a guess for the optimal solution, B (Algorithm 2). The value B is used at every step to bound

the range of A[�] : a values that need to be examined. This bounds the number of anchors that need to be

considered (on average). If C[n] is greater than our current guess B after processing all n anchors, we

update our guess to B2 � B.

Algorithm 2: O(OPT � n + n log n) average case algorithm.

Input: n anchors A and parameters B1 and B2.

Output: C[1‚ n] such that C[i] is optimal colinear chaining cost for any ordered subset of A[1‚ i] ending at A[i].

Let A0[1]‚ . . . A0[n] be the set of anchors A sorted on A[�]:a;

Initialize array C of size n to 0 and B)B1;

do

j)1;

for i)1 to n do

while A0[i]:a -A0[j]:a > B do

j)j + 1;

end

C[i]) minfC[k] + connect(A0[k]‚ A0[i])jj � k < i and A0[k] � A0[i]g
end

Blast)B;

B)B2 � B;

while C[n] > Blast;

return C[1‚ n]

1246 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Extending the mentioned pseudo code to enable semiglobal chaining, that is, free anchor gap on both

ends of reference sequences, is also simple. In each i-loop, the connection to anchor Aleft must be always

considered, and for last iteration when i = n‚ j must be set to 1. Second, a revised cost function must be used

when connecting to either Aleft or Aright, where a gap penalty is used only for anchor gap over the query

sequence. The experiments in the next section use an implementation of this algorithm.

Lemma 6. Algorithm 2 runs in O(n � OPT + n log n) average case time over all inputs where

n � max (jS1j‚ jS2j).

Proof. The n log n term is from the sorting the anchors. To analyze the second portion of the algorithm,

we first let Xh‚ j be 1 if A[h]:a is located at index j in S1. Under the assumption of a random placement of

anchors, E[Xh‚ j] = 1=jS1j. Let Xi be the number of anchors, A[h], where A[h]:a 2 [A[i]:a - B‚ A[i]:a - 1].

We have that Xi =
Pn

h = 1

PA[i]:a - 1
j =A[i]:a - B Xh‚ j. Letting X be the total number of anchors processed,

X =
Pn

i = 1 Xi and

E[X] =
Xn

i = 1

Xn

h = 1

XA[i]:a - 1

j =A[i]:a - B

E[Xh‚ j] =
n2 � B

jS1j
� nB:

The total expected time is a constant factor from B1n(1 + B2 + . . . + B
Ø logB2

OPTø
2) = O(n � OPT). ,

6. EXPERIMENTAL EVALUATION

There are multiple open-source libraries/tools that implement edit distance computation. Edlib (v1.2.7)

(Šošić and Šikić, 2017) uses Myers’s bit-vector algorithm (Myers, 1999) and Ukkonen’s banded algorithm

(Ukkonen, 1985), and is known to be the fastest implementation currently. In this section, we aim to show

that (1) the proposed algorithm as well as existing chaining methods achieves significant speedup compared

with computing exact edit distance using Edlib, and (2) in contrast to existing chaining methods, our

implementation consistently achieves high Pearson correlation (> 0:90) with edit distance while requiring

modest time and memory resources.

We implemented Algorithm 2 in C++, and refer to it as ChainX. The code is available at (https://

github.com/at-cg/ChainX). Inputs are a target string, query strings, comparison mode (global or semi-

global), anchor type preferred, that is, MUMs or MEMs, and a minimum match length. We include a

preprocessing step to index target string using the same suffix array-based algorithm (Vyverman et al,

2013) used in Nucmer4 (Marçais et al, 2018). Chaining costs computed using ChainX for each query–target

pair are provably optimal.

Existing colinear chaining implementations

Colinear chaining has been implemented previously as a stand-alone utility (Abouelhoda et al, 2008;

Otto et al, 2011) and also used as a heuristic inside widely used sequence aligners (Bray et al, 2003; Li,

2018; Marçais et al, 2018). Out of these, Clasp (v1.1), Nucmer4 (v4.0.0rc1), and Minimap2 (v2.22-r1101)

tools are available as open source, and used here for comparison purpose. Unlike our algorithm where the

optimization problem involves minimizing a cost function, these tools execute their respective chaining

algorithms using a score maximization objective function. Clasp, being a stand-alone chaining method,

returns chaining scores in its output, whereas we modified Minimap2 and Nucmer4 to print the maximum

chaining score for each query–target string pair, and skip subsequent steps.

To enable a fair comparison, all methods were run with single thread and same minimum anchor size 20.

Accordingly, ChainX, Clasp, and Nucmer4 were run with MUMs of length � 20, and Minimap2 was

configured to use minimizer k-mers of length 20. For these tests, we made use of an Intel Xeon E5-2698 v3

processor with 32 cores and 128 GB RAM. All tools were required to match only the forward strand of

each query string. ChainX and Clasp are both exact solvers of colinear chaining problem, but use different

gap cost functions. Clasp only permits nonoverlapping anchors in a chain, and supports two cost functions

that were referred to as sum-of-pair and linear gap cost functions in their article (Otto et al, 2011).

We tested Clasp with both of its gap cost functions, and refer to these two versions as Clasp-sop

and Clasp-linear, respectively. Both the versions solve colinear chaining using RmQ data structures,

ALGORITHMS FOR COLINEAR CHAINING 1247

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://github.com/at-cg/ChainX
https://github.com/at-cg/ChainX

requiring O(n log2 n) and O(n log n) time, respectively. Both require a set of anchors as input, therefore,

we supplied the same set of anchors, that is, MUMs of length � 20 as used by ChainX. Minimap2 and

Nucmer4 use colinear chaining as part of their seed-chain-extend pipelines. Both Minimap2 and Nucmer2

support anchor overlaps in a chain, as well as penalize gaps using custom functions. However, both these

tools employ heuristics (e.g., enforce a maximum gap between adjacent chained anchors) for faster pro-

cessing that can result in suboptimal chaining scores.

Runtime and memory comparison

We downloaded the same set of query and target strings that were used for benchmarking in Edlib

article (Šošić and Šikić, 2017) (https://github.com/Martinsos/edlib/tree/master/test_data). These test strings,

ranging from 10 to 5000 kbp in length, allowed us to compare tools for end-to-end global sequence

comparisons as well as semiglobal comparisons at various degrees of similarity levels. To test end-to-end

comparisons, the target string had been artificially mutated at various rates using mutatrix (https://

github.com/ekg/mutatrix), whereas for the semiglobal comparisons, a substring of the target string had been

sampled and mutated.

Table 1. Runtime and Memory Usage Comparison of Edit Distance Solver Edlib and Colinear

Chaining Methods ChainX, Clasp, Nucmer4, and Minimap2

Similarity

No. of

MUMs

Edlib ChainX Clasp-sop Clasp-linear Nucmer4 Minimap2

Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem)

Semiglobal pairwise sequence comparisons, sequence sizes 104 · 5 � 106

99% 67 190 (17) 2:0 (57) 1:8 (57) 0:9 (57) 1:8 (60) 1:9 (75)

97% 160 642 (17) 2:9 (57) 4:8 (57) 1:8 (57) 4:1 (60) 2:3 (75)

94% 176 1165 (17) 3:0 (57) 5:9 (57) 2:1 (57) 3:2 (60) 1:6 (75)

90% 135 2168 (17) 5:6 (57) 4:7 (57) 2:0 (57) 5:5 (60) 1:9 (75)

80% 28 2360 (17) 4:2 (57) 2:5 (57) 2:2 (57) 3:4 (60) 4:3 (75)

70% 3 4297 (17) 3:7 (57) 2:2 (57) 2:3 (57) 5:5 (60) 1:1 (75)

Global pairwise sequence comparisons, sequence sizes 106 · 106

99% 7012 949 (8) 47:2 (24) 1236:8 (1800) 182:8 (257) 68:7 (26) 193:5 (35)

97% 15‚ 862 1308 (8) 490:4 (24) 5363:7 (8742) 765:4 (1278) 87:8 (26) 179:0 (36)

94% 18‚ 389 2613 (8) 677:9 (24) 11737:1 (20‚ 501) 1021:0 (1694) 113:5 (27) 116:9 (34)

90% 14‚ 472 6233 (8) 851:5 (24) 5110:3 (8277) 115:3 (27) 121:8 (26) 94:8 (33)

80% 2964 12‚ 506 (8) 158:8 (24) 504:8 (572) 133:7 (24) 148:9 (26) 69:5 (32)

70% 195 29‚ 602 (8) 136:5 (23) 140:6 (23) 139:6 (23) 167:3 (26) 55:6 (32)

The best numbers are highlighted in bold.

Runtime is measured in milliseconds across the columns, and memory usage (Mem) is noted in MBs. In this experiment, ChainX,

Clasp-sop, Clasp-linear, and Nucmer4 used MUMs of length � 20 as input anchors, while Minimap2 used fixed-length minimizer

k-mers of size 20.

MUM, maximal unique match.

Table 2. Absolute Pearson Correlation Coefficients of Chaining Costs (or Scores) Computed

by Various Methods with the Corresponding Edit Distances

Sequence sizes Similarity

Correlation coefficient

ChainX Clasp-sop Clasp-linear Nucmer4 Minimap2

Semiglobal sequence comparisons

104 · 5 � 106 90%–100% 0:996 0:994 0:986 0:968 0:995

104 · 5 � 106 80%–90% 0:975 0:976 0:786 0:864 0:958

104 · 5 � 106 75%–80% 0:927 0.915 0:732 0:733 0:808

Global sequence comparisons

106 · 106 90%–100% 0:999 0:997 0:994 0:991 0:999

106 · 106 80%–90% 0:998 0:998 0:922 0:955 0:996

106 · 106 75%–80% 0:992 0:993 0:871 0:907 0:952

The best numbers are highlighted in bold.

100 query strings were simulated and matched to the target string within each similarity range.

1248 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://github.com/Martinsos/edlib/tree/master/test_data
https://github.com/ekg/mutatrix
https://github.com/ekg/mutatrix

Table 1 presents runtime and memory comparison of all tools. Columns of the table are organized

to show tools in three categories: edit distance solver (Edlib); optimal colinear chaining solvers (ChainX,

Clasp-sop, and Clasp-linear); and heuristic implementations (Nucmer4 and Minimap2). We make the

following observations here. First, chaining methods (both optimal and heuristic based) are significantly

faster than Edlib in most cases, and we see up to three orders of magnitude speedup.

Second, within optimal chaining methods, Clasp-sop’s time and memory consumption increases quickly

with increase in count of anchors, which is likely due to irregular memory access and storage overhead of

its algorithm that uses a 2d-RmQ data structure. Finally, we note that Minimap2 and Nucmer4 are often

faster than exact algorithms during global string comparisons due to their fast heuristics.

All tools (except Edlib) use an indexing step such as building a k-mer hash table (Minimap2) or

computing suffix array (ChainX, Clasp-sop, Clasp-linear, and Nucmer4). Indexing time was excluded from

reported results, and was found to be comparable. For instance, in the case of semiglobal comparisons,

ChainX, Nucmer4, and Minimap2 required 590, 736, and 236 ms for index computation, respectively.

Correlation with edit distance

We checked how well the chaining cost (or score) correlates with edit distance. We use absolute value of

Pearson correlation coefficients for a comparison. In this experiment, we simulated 100 query strings within

three similarity ranges: 90% - 100%‚ 80% - 90%, and 75% - 80%. Table 2 gives the correlation achieved

by all the tools. Here we observe that ChainX and Clasp-sop are more consistent in terms of maintaining

high correlation across all similarity ranges. Between the two, ChainX was shown to offer superior

scalability in terms of runtime and memory usage (Table 1). Hence, ChainX can be useful in practice when

good performance and accuracy are desired across a wide similarity range.

Effect of anchor type and minimum match length

How many anchors are given as input will naturally affect the performance and output quality of a

chaining algorithm. We tested runtime and correlation with edit distance achieved by ChainX while varying

the anchor type (MUMs/MEMs) and minimum match length lmin parameter (Table 3). When MUMs are

used as anchors, we observe good scalability, and lowering lmin from 20 to 10 improves the correlation, but

the correlation saturates afterward. This is because very short exact matches will unlikely be unique and

will not be selected as MUMs. However, when MEMs are used as anchors, correlation continues to

improve with decreasing minimum length parameter, however, runtime grows exponentially. Excessive

count of anchors improves the correlation but then anchor chaining becomes computationally demanding.

7. CONCLUSIONS

This study provides new algorithms for colinear chaining, a fundamental problem in bioinformatics.

Variants of this technique have been regularly used in alignment tools since four decades (Wilbur and

Lipman, 1983). We addressed an open problem pertaining to the general case of this problem that allows

anchor overlaps and penalizes gap cost between adjacent chained anchors. The proposed algorithms for

multiple versions of this problem are provably optimal and efficient, and can be incorporated in read

Table 3. Effect of anchor precomputation method on the performance of ChainX

Similarity

Using MUMs Using maximal exact matches

Length ‡20 Length ‡10 Length ‡7 Length ‡20 Length ‡10 Length ‡ 7

Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.)

90%–100% 7:2 (0:996) 2:9 (0:997) 3:5 (0.997) 5:1 (0:996) 8:1 (0:997) 2652 (0:998)

80%–90% 4:5 (0:975) 5:6 (0:992) 3:2 (0:992) 4:5 (0:975) 7:4 (0:993) 5413 (0:995)

75%–80% 5:3 (0:927) 5:9 (0:977) 1:9 (0:977) 5:0 (0:927) 10:9 (0:987) 9221 (0:992)

The best numbers are highlighted in bold.

Total runtime to do 100 pairwise semiglobal sequence comparisons (sequence size: 104 · 5 � 106) is measured in seconds, and

correlation (corr.) with the corresponding edit distances is computed using Pearson correlation coefficient.

ALGORITHMS FOR COLINEAR CHAINING 1249

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

mappers. We also discussed a new cost function for the colinear chaining problem that enabled us to

establish the first mathematical link between colinear chaining and the edit distance problem.

This result is a useful addition to a prior result (Mäkinen and Sahlin, 2020) where a connection between

the colinear chaining problem and the longest common subsequence problem was made. Although we

focused on a single cost function, it may be possible to derive a family of chaining cost functions by linking

from weighted edit distance or linear and affine gap alignment scoring functions.

AUTHORS’ CONTRIBUTIONS

The authors confirm that all authors contributed equally to the conception and analysis of the ideas

presented in this study, as well as the drafting and finalizing of this document.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no conflicting financial interests.

FUNDING INFORMATION

This research is supported in part by the U.S. National Science Foundation (NSF) grants CCF-1704552,

CCF-1816027, CCF-2112643, and CCF-2146003, and funding from the Indian Institute of Science.

A preliminary version of this study appeared in RECOMB (Jain et al, 2022).

REFERENCES

Abouelhoda M, Ohlebusch E. Chaining algorithms for multiple genome comparison. J Discrete Algorithms 2005;

3(2–4):321–341; doi: 10.1016/j.jda.2004.08.011

Abouelhoda MI, Kurtz S, Ohlebusch E. Coconut: An efficient system for the comparison and analysis of genomes.

BMC Bioinf 2008;9(1):476; doi: 10.1186/1471-2105-9-476

Backurs A, Indyk P. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In:

Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, Association for

Computing Machinery, New York, NY, United States 2015; pp. 51–58.

Bray N, Dubchak I, Pachter L. Avid: A global alignment program. Genome Res 2003;13(1):97–102; doi: 10.1101/

gr.789803

Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive

refinement (blasr): Application and theory. BMC Bioinf 2012;13(328):1–17; doi: 10.1186/1471-2105-13-238

de Berg M, Cheong O, van Kreveld MJ, et al. Computational geometry: Algorithms and applications, 3rd Edition.

Springer-Verlag, Berlin, Heidelberg, 2008.

Delcher AL, Kasif S, Fleischmann RD, et al. Alignment of whole genomes. Nucleic Acids Res 1999;27(11):2369–

2376; doi: 10.1093/nar/27.11.2369

Eppstein D, Galil Z, Giancarlo R, et al. Sparse dynamic programming i: Linear cost functions. JACM 1992a;39(3):519–

545; doi: 10.1145/146637.146650

Eppstein D, Galil Z, Giancarlo R, et al. Sparse dynamic programming ii: Convex and concave cost functions. JACM

1992b;39(3):546–567; doi: 10.1145/146637.146650.

Hoppenworth G, Bentley JW, Gibney D, et al. The fine-grained complexity of median and center string problems under

edit distance. In: 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Vol. 173.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik: Pisa, Italy, 2020; pp. 61:1–61:19.

Jain C, Gibney D, Thankachan SV. Co-linear chaining with overlaps and gap costs. Research in Computational Biology

In: 26th International Conference on Research in Computational Molecular Biology, RECOMB 2022, 22–25 May

2022, Springer, San Diego, CA, USA, pp. 246–262. bioRxiv 2021; doi: 10.1007/978-3-031-04749-7_15

Jain C, Rhie A, Hansen NF, et al. Long-read mapping to repetitive reference sequences using winnowmap2. Nat

Methods 2022;19(6):705–710; doi: 10.1038/s41592-022-01457-8

Kalikar S, Jain C, Vasimuddin M, et al. Accelerating minimap2 for long-read sequencing applications on modern cpus.

Nat Comput Sci 2022;2(2):78–83; doi: 10.1038/s43588-022-00201-8

1250 JAIN ET AL.

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Kurtz S, et al. Versatile and open software for comparing large genomes. Stefan Kurtz. Adam M. Phillippy (eds)-

Genome Biol 2004;5(2):R12; doi: 10.1186/gb-2004-5-2-r12

Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018;34(18):3094–3100; doi: 10.1093/

bioinformatics/bty191

Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol

2020;21(1):265; doi: 10.1186/s13059-020-02168-z

Mäkinen V, Sahlin K. Chaining with overlaps revisited. In: 31st Annual Symposium on Combinatorial Pattern

Matching, CPM 2020, June 17–19, 2020, Vol. 161. Schloss Dagstuhl - Leibniz-Zentrum für Informatik: Copenhagen,

Denmark, 2020; pp. 25:1–25:12.

Mäkinen V, Tomescu AI, Kuosmanen A, et al. Sparse dynamic programming on dags with small width. ACM Trans

Algorithms 2019;15(2):29:1–29:21; doi: 10.1145/3301312

Marçais G, Delcher AL, Phillippy AM, et al. Mummer4: A fast and versatile genome alignment system. PLoS Comput

Biol 2018;14(1):e1005944; doi: 10.1371/journal.pcbi.1005944

Morgenstern B. A simple and space-efficient fragment-chaining algorithm for alignment of DNA and protein

sequences. Appl Math Lett 2002;15(1):11–16; doi: 10.1016/S0893-9659(01)00085-4

Myers G. A fast bit-vector algorithm for approximate string matching based on dynamic programming. JACM

1999;46(3):395–415; doi: 10.1145/316542.316550

Myers G, Miller W. Chaining multiple-alignment fragments in sub-quadratic time. SODA ’95: Proceedings of the Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms 1995;95:38–47; doi: 10.5555/313651

Otto C, Hoffmann S, Gorodkin J, et al. Fast local fragment chaining using sum-of-pair gap costs. Algorithms Mol Biol

2011;6(1):4; doi: 10.1186/1748-7188-6-4

Ren J, Chaisson MJP. lra: A long read aligner for sequences and contigs. PLoS Comput Biol 2021;17(6):e1009078; doi:

10.1371/journal.pcbi.1009078

Sahlin K, Mäkinen V. Accurate spliced alignment of long RNA sequencing reads. Bioinformatics 2021;37(24):4643–

4651; doi: doi: 10.1093/bioinformatics/btab540

Schleimer S, Wilkerson DS, Aiken A. Winnowing: Local algorithms for document fingerprinting. In: Proceedings of

the 2003 ACM SIGMOD International Conference on Management of data. Association for Computing Machinery,

New York, NY, USA, 2003; pp. 76–85.

Sedlazeck FJ, Rescheneder P, Smolka M, et al. Accurate detection of complex structural variations using single-

molecule sequencing. Nat Methods 2018;15(6):461–468; doi: 10.1038/s41592-018-0001-7

Shibuya T, Kurochkin I. Match chaining algorithms for cDNA mapping. In: Algorithms in Bioinformatics, Third

International Workshop, WABI 2003, Budapest, Hungary, September 15–20, 2003, Proceedings. Springer, Berlin,

Heidelberg, Germany, 2003; pp. 462–475.

Šošić M, Šikić M. Edlib: A C/C++ library for fast, exact sequence alignment using edit distance. Bioinformatics

2017;33(9):1394–1395; doi: 10.1093/bioinformatics/btw753.

Ukkonen E. Algorithms for approximate string matching. Inf Control 1985;64(1–3):100–118; doi: 10.1016/S0019-

9958(85)80046-2

Uricaru R, Mancheron A, Rivals E, et al. Novel definition and algorithm for chaining fragments with proportional

overlaps. J Comput Biol 2011;18(9):1141–1154; doi: 10.1089/cmb.2011.0126

Vyverman M, De Baets B, et al. essamem: Finding maximal exact matches using enhanced sparse suffix arrays.

Bioinformatics 2013;29(6):802–804; doi: 10.1093/bioinformatics/btt042

Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A

1983;80(3):726–730; doi: 10.1073/pnas.80.3.726

Address correspondence to:

Dr. Daniel Gibney

School of Computer Science and Engineering

Georgia Institute of Technology

CODA Tech Square

756 West Peachtree Street, NW

12th Floor, Station S1257A

Atlanta, GA 30308

USA

E-mail: daniel.j.gibney@gmail.com

ALGORITHMS FOR COLINEAR CHAINING 1251

D
ow

nl
oa

de
d

by
 3

5.
13

8.
92

.2
13

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

27
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

