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ABSTRACT

Colinear chaining has proven to be a powerful heuristic for finding near-optimal alignments
of long DNA sequences (e.g., long reads or a genome assembly) to a reference. It is used as
an intermediate step in several alignment tools that employ a seed-chain-extend strategy.
Despite this popularity, efficient subquadratic time algorithms for the general case where
chains support anchor overlaps and gap costs are not currently known. We present algo-
rithms to solve the colinear chaining problem with anchor overlaps and gap costs in O(n)
time, where n denotes the count of anchors. The degree of the polylogarithmic factor depends
on the type of anchors used (e.g., fixed-length anchors) and the type of precedence an optimal
anchor chain is required to satisfy. We also establish the first theoretical connection between
colinear chaining cost and edit distance. Specifically, we prove that for a fixed set of anchors
under a carefully designed chaining cost function, the optimal ‘‘anchored” edit distance
equals the optimal colinear chaining cost. The anchored edit distance for two sequences and a
set of anchors is only a slight generalization of the standard edit distance. It adds an addi-
tional cost of one to an alignment of two matching symbols that are not supported by any
anchor. Finally, we demonstrate experimentally that optimal colinear chaining cost under the
proposed cost function can be computed orders of magnitude faster than edit distance, and
achieves correlation coefficient >0.9 with edit distance for closely as well as distantly related
sequences.

Keywords: alignment, colinear chaining, edit distance.

1. INTRODUCTION

ONE OF THE MOST FUNDAMENTAL PROBLEMS in computational biology is computing the optimal
alignment of two sequences. Unfortunately, conditional lower bounds suggest that an algorithm for
computing an optimal alignment, or edit distance, in strongly subquadratic time is unlikely (Backurs and
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FIG. 1. (Left) Anchors representing a set of exact matches are shown as rectangles. The colinear chaining problem is
to find an optimal ordered subset of anchors subject to some cost function. (Right) A chain of overlapping anchors.

Indyk, 2015; Hoppenworth et al, 2020). This lower bound indicates a challenge for scaling the computation
of edit distance to high-throughput sequencing data. Instead, heuristics are often used to obtain an approx-
imate solution in less time and space. One such popular heuristic is colinear chaining.

This technique involves precomputing fragments between the two sequences that closely agree (in this
study, exact matches are called anchors), then determining which of these anchors should be kept within the
alignment (Fig. 1). Techniques along these lines are used in long-read mappers (Chaisson and Tesler, 2012;
Jain et al, 2022; Li, 2018; Li et al, 2020; Ren and Chaisson, 2021; Sahlin and Makinen, 2021; Sedlazeck et al,
2018) and generic sequence aligners (Abouelhoda et al, 2008; Bray et al, 2003; Kurtz et al, 2004; Margais et al,
2018; Otto et al, 2011). We focus on the following problem (described formally in Section 2): Given a set of n
anchors, determine an optimal ordered subset (or chain) of these anchors.

Several algorithms have been developed for colinear chaining (Abouelhoda and Ohlebusch, 2005;
Mikinen and Sahlin, 2020; Shibuya and Kurochkin, 2003; Uricaru et al, 2011) and even more in the context
of sparse dynamic programming (Eppstein et al, 1992a; Eppstein et al, 1992b; Myers and Miller, 1995;
Morgenstern, 2002; Mékinen et al, 2019; Wilbur and Lipman, 1983). Solutions with different time com-
plexities exist for different variations of this problem. These depend on the cost function assigned to a chain
and the types of chains permitted. Solutions include an algorithm running in O(n log n log log n) time for
a simpler variant of the problem where anchors used in a solution must be nonoverlapping (Abouelhoda and
Ohlebusch, 2005).

More recently, Mikinen and Sahlin (2020) gave an algorithm running in O(n log n) time where anchor
overlaps are allowed, but gaps between anchors are not considered in the cost function. None of the
solutions introduced thus far provide a subquadratic time algorithm for variations that use both overlap and
gap costs. However, including overlaps and gaps into a cost function is a more realistic model for anchor
chaining. For example, consider a simple scenario where minimizers (Schleimer et al, 2003) are used to
identify anchors. Suppose query and reference sequences are identical, then adjacent minimizer anchors
will likely overlap. Not allowing anchor overlaps during chaining will lead to a penalty cost associated with
gaps between chained anchors despite the two strings being identical. Therefore, depending on the type of
anchor, there may be no reason to assume that in an optimal alignment, the anchors would be nonover-
lapping. At the same time, not penalizing long gaps between the anchors is unlikely to produce correct
alignments. This is why both anchor overlaps and gap costs are supported during chaining in widely used
aligners, for example, Minimap2 (Kalikar et al, 2022; Li, 2018) and Nucmer4 (Margais et al, 2018).

This study’s contribution is the following:

e We provide the first algorithm running in subquadratic O(n) time for chaining with overlap and gap
costs.* Refinements based on the specific type of anchor and chain under consideration are also given.
These refinements include an O(n log® n) time algorithm for the case where all anchors are of the
same length, as is the case with k-mers.

e When 7 is not too large (less than the sequence lengths), we present an algorithm with O(n - OPT +n
log n) average case time, where OPT is the optimal solution value. This provides a simple algorithm
that is efficient in practice.

¢ Using a carefully designed cost function, we mathematically relate the optimal chaining cost with a
generalized version of edit distance, which we call anchored edit distance. This is equivalent to the
usual edit distance with the modification that matches performed without the support of an anchor have
unit cost. A more formal definition appears in Section 2. With our cost function, we prove that the
optimal chaining cost is equal to the anchored edit distance.

#0( - ) hides polylogarithmic factors.
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e We empirically demonstrate that computing optimal chaining cost is orders of magnitude faster than
computing edit distance, especially in semiglobal comparison mode. We also demonstrate a strong
correlation between optimal chaining cost and edit distance. The correlation coefficients are favorable
when compared with suboptimal chaining methods implemented in Minimap2 and Nucmer4.

2. PRELIMINARIES

Let S; and S, be two strings of lengths |S;| and |S;|, respectively. An anchor interval pair ([a..b], [c..d])
signifies an exact match between S;[a..b] and S;[c..d]. For an anchor /, we denote these values as /.a, 1.,
I.c,and I.d. Here b—a = d—c and S[a + j] = Sza[c + j] for all 0 < j < b—a. We say that the character
match Si[a + j] = S2lc +jl, 0 <j < b—a, is supported by the anchor ([a..b], [c..d]). Maximal exact
matches (MEMs), maximal unique matches (MUMs), or k-mer matches are some of the common ways to
define anchors. MUMs (Delcher et al, 1999) are a subset of MEMs, having the added constraint that the
pattern involved occurs only once in both strings. If all intervals across all anchors have the same length
(e.g., using k-mers), we say that the fixed-length property holds.

Our algorithms will make use of dynamic range minimum queries (RmQs). For a set of n d-dimensional
points, each with an associated weight, a “‘query’” consists of an orthogonal d-dimensional range. The
query response is the point in that range with the smallest weight. Using known techniques in computa-
tional geometry, a data structure can be built in O(n log?~! n) time and space, which can both answer
queries and modify a point’s weight in O(log? n) time (de Berg et al, 2008).

2.1. Colinear chaining with overlap and gap costs

Given a set of n anchors A for strings S, and S,, we assume that A already contains two end-point
anchors A = ([0,01, [0,0]) and Agne = ([|S1] + 1, |S1] + 11, [|S2] + 1, |S2] + 1]). We define the
strict precedence relationship < between two anchors I’ : = A[j] and [ : = A[i] as I’ < [ if and only if
I''a <ITlal b <1.b1I .c<I.TI.d<I.d, andstrictinequality holds for at least one of the four
inequalities. In other words, the interval belonging to I’ for S; (respectively S,) should start before or at the
starting position of the interval belonging to I for S; (respectively S,) and should not extend past it.

We also define the weak precedence relation <,, as I'<,,I if and only if I'.a < I.a, I'.c < I.c, and strict
inequality holds for at least one of the two inequalities, that is, intervals belonging to I’ should start before
or at the starting position of intervals belonging to I, but now intervals belonging to I’ can be extended past
the intervals belonging to I. The aim of the problem is to find a totally ordered subset (a chain) of A that
achieves the minimum cost under the cost function presented next. We specify whether we mean a chain
under strict precedence or under weak precedence when necessary.

2.1.1. Cost function. For I' < I, the function connect(I',I) is designed to indicate the cost of
connecting anchor I’ to anchor I in a chain. The chaining problem asks for a chain of m < n anchors,
A'[1], A'[2], ..., A'[m], such that the following properties hold: (i) A'[1]= A, (i) A'[m]= Arigne, (iii)
A1 < A'[2] < ... < A'[m], and (iv) the cost Z:";ll connect(A'[i], A'[i+1]) is minimized.

We next define the function connect. In Section 4, we see that this definition is well motivated by the
relationship with anchored edit distance. For a pair of anchors 7', I such that I’ < I

 The gap in string S| between anchors I’ and I is g = max (0, I.a—TI'.b—1). Similarly, the gap between
the anchors in string S, is g = max (0, I.c—1I'.d—1). Define the gap cost g(I’, I)= max (g1, g2).

¢ The overlap o, is defined such that I’.b — o reflects the nonoverlapping prefix of anchor I’ in string ;.
Specifically, 0o = max (0, I'’.’b — I.a + 1). Similarly, define 0,=max (0, I'’.d — I.c + 1). We define
the overlap cost as o(I’, I) = |0 — 03].

e Lastly, define connect(I', 1) = g(I', I) + o(I', I).

The same definitions are used for weak precedence, only using <,, in the place of <. Regardless of the
definition of connect, the mentioned problem can be trivially solved in O(n?) time and O(n) space. First sort
the anchors by the component A[ - ] . a and let A’ be the sorted array. The chaining problem then has a
direct dynamic programming solution by filling an n-sized array C from left to right, such that C[i] reflects
the cost of an optimal chain that ends at anchor A'[i]. The value C[i] is computed using the recursion:
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C[i] = mingpg<ap (Clk] + connect(A'[k], A'[i])), where the base case associated with anchor Ajeg is
C[1]1=0. The optimal chaining cost will be stored in C[n] after spending O(n*) time. We provide an
O(n log* n) time algorithm for this problem.

2.2. Anchored edit distance

The edit distance problem is to identify the minimum number of operations (substitutions, insertions,
or deletions) that must be applied to string S, to transform it to S;. Edit operations can be equivalently
represented as an alignment (a.k.a. edit transcript) that specifies the associated matches, mismatches, and
gaps while placing one string on top of another. The anchored edit distance problem is as follows: given
strings S; and S and a set of n anchors .4, compute the optimal edit distance subject to the condition that a
match supported by an anchor has edit cost 0, and a match that is not supported by an anchor has edit cost 1.

The mentioned problem is solvable in O(|S;||S2|) time and space. We can assume that input does not
contain redundant anchors, therefore, the count of anchors is < |S;||S2|. Next, the standard dynamic
programming recursion for solving the edit distance problem can be revised. Let D[, j] denote anchored
edit distance between Si[1,i] and S,[1,/], then D[i, j] = min(D[i — 1, j — 1] + x, D[i — 1, j] + 1,
Dl[i, j — 1] + 1), where x=0 if S;[i]=S5[j] and the match is supported by some anchor, and x=1
otherwise.

2.3. Representing sequence alignment as a graph

It is useful to consider the following representation of an alignment of two strings S; and S,. As
illustrated in Figure 2, we have a set of |S;| top vertices and |S,| bottom vertices. There are two types of
edges between the top and bottom vertices: (1) A solid edge from ith top vertex to the jth bottom vertex.
This represents an anchor supported character match between the ith character in §; and the jth character in
S,. (2) A dashed edge from the ith top vertex to the jth bottom vertex. This represents a character being
substituted to form a match between S;[i] and S>[j] or a character match not supported by an anchor.
All unmatched vertices are labeled with an “x” to indicate that the corresponding character is deleted.
An important observation is that no two edges cross.

In a solution to the anchored edit distance problem, every solid edge must be “‘supported’ by an anchor.
By ‘“‘supported” here we mean that the match between the corresponding characters in §; and S, is
supported by an anchor. In Figure 2, these anchors are represented with rectangles above and below the
vertices. We use M to denote a particular alignment. We also associate an edit cost with the alignment,
denoted as EDIT(M). This is equal to the number of vertices marked with x in M plus the number of
dashed edges in M.

3. ALGORITHMS FOR COLINEAR CHAINING

Theorem 1. The colinear chaining problem with overlap and gap costs can be solved in time O(n). In
particular, in time O(n log* n) for chains with fixed-length anchors, in time O(n log® n) for chains under
weak precedence, and in time O(n log* n) for chains under strict precedence.

The proposed algorithm still uses the recursive formula given in Section 2.1. However, it uses RmQ data
structures to avoid having to check every anchor A[k], where Al[k].a < Al[i].a. We achieve this by
considering six cases concerning the optimal choice of the prior anchor. We use the best of the six distinct
possibilities to determine the optimal C[i] value. This C[i] value is then used to update the RmQ data

FIG. 2. The graph representation of an alignment. Solid edges
represent anchor-supported character matches, dashed edges rep-
resent substitutions and unsupported matches, and x’s represent
deletions. We use M to denote an alignment. Here EDIT(M)=17,
the total number of x’s and dashed edges.
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structures. For the strict precedence case, some of the six cases require up to four dimensions for the RmQs.
When only weak precedence is required, we reduce this to at most three dimensions. When the fixed-length
property holds (e.g., k-mers), we reduce this to two dimensions.

3.1. Algorithm for chains under strict precedence

The first step is to sort the set of anchors A using the key A[ - ].a. Let A’ be the sorted array. We will
next use six RmQ data structures labeled 7 14, 7 15, 7 24> 7 25, 7 34, and 7 3;,. These RmQ data structures
are initialized with the following points for every anchor: For anchor I € A, T, is initialized with the
point (I.b, I.d—1.b), T, with (I.d,l.d—1.b), T,, with (I.b,I.c,1.d), To, with (I.b,1.d), T3, with
({.b, lc, 1d, I.d — 1.b), and T3, with (I.b, 1.d, 1.d — L.b).

All weights are initially set to co except for I =.A.s, Where the corresponding points are given weight 0.
We then process the anchors in sorted order and update the RmQ data structures after each iteration. On the
ith iteration, for j < i, we let C[j] be the optimal colinear chaining cost of any ordered subset of A[1],
A2], ..., A[j] that ends with A’[j]. For i > 1, RmQs are used to find the optimal j < i by considering
six different cases. We let I=A'[i], I'=A'[j], and C[I']=C [j].

The query for each RmQ structure is determined by the different inequalities relating /.a, I.b, I.c, and I.d
to previous anchors in the case considered. For example, in Case 1.a (Fig. 3), it can be seen that I'.b < I.a
and l.a—I'b < Il.c—1I'.d, making I'’b € [0, l.a— 1] and I''d — I'b € [—o0, I.c — I.a], motivating
the query input [0, I.a — 1] X[—o00, I.c — I.a]. At the same time, the values stored in these RmQ struc-
tures are determined by the expression for the colinear chaining cost in that case, C[I'l + I.c — I'.d — 1.

Note that the values stored in each RmQ structure depend only on previously processed anchors and are
combined with the values I.a, I.b, I.c, and I.d for the current anchor / being processed to obtain the
appropriate cost. Hence, for 71, we store values of the form C[I'] — I'.d and combine this with I.c to
obtain the cost. The other cases can be similarly analyzed.

1. Case: I’ disjoint from I.

(a) Case: The gap in S is less or equal to gap in S, (Fig. 3 Left). The RmQ (query input) is of the form:
[0, I.a — 1] X [—00, I.c — La]. Let the query response (weight) from 7, be vi, = min{C[l'] — I'.d :
({I'b, I'd -1Db) € [0, [a—1] X [-o0, I.c — La]} and let Cy, = vi; + [.c — 1.

(b) Case: The gap in S, is less than gap in S;. The RmQ is of the form [0, I.c — 1] X
[I.c — I.a + 1, oo]. Let the query response from 7, be vy, = min{C[l'] —= I''b:(I'd, I'd — I'b) €
[0, I.c — 1] X [l.c — L.a + 1, oo]} and let Cyp = vy + La — 1.

2. Case: I’ and I overlap in only one dimension.

(a) Case: I' and I overlap only in S, (Fig. 3 Middle). The RmQ is of the form [0, l.a — 1] X
[0, I.c] X [I.c, I.d]. Let the query response from 7,, be vy,=min{C[l'l - I'b + I'd: (b,
e, I'd) € [0, I.a— 1] x [0, I.c] X [l.c, 1.d]} and let Cp, = vo, + I.a — I.c.

(b) Case: I’ and I overlap only in S;. Since the anchors are sorted on A[ - ].a, this can be done with a two-
dimensional RmQ structure. The RmQ is of the form [I.a, 1.b] X [0, I.c — 1]. Let the query response
from T, be vy = min{C[I'l + I'b - I'd:(I'b, I'd) € [l.a, 1.b] X [0, [.c — 1]} and let Cy =
vop + I.c — lLa.

3. Case: I and I overlap in both dimensions.

(a) Case: Greater overlap in S, (Fig. 3 Right). Here, |0y — 02| = 02 — 0y =I'.d — I.c — (I'.'b — La).
The RmQ is of the form [l.a, 1.b] X [0, I.c] X [I.c, I.d] X [I.c — I.a + 1, o<o]. Let the query response
from 73, be vy, = min{C[I'] -TI'b+TId:I'b, I'c, I'd, I'd-1TDb) € [la, I.b] x [0, I.c] X
[l.c, I.d] X [I.c — L.a + 1, o]} and let C3, = v3, + l.a — I.c.

La Ib I'a I'b 1 V7777777777
V7777771 [
L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
I'c I'd la 1.b
L] L] L[] L] L] L] L] L] L] L] L] L] L] [ ] L] L] L] L] L]
| V7777773
V7771 Ie Id 1 4 / /7
I'e I'd Ie Id I'ec Ie I''d 1d

FIG. 3. (Left) Case 1.a. Colinear chaining cost is C[I']+g,=C[I']+1.c—I'.d—1. (Middle) Case 2.a. Chaining cost
is C[I'l+g1+0,=C[I'l+1l.a-I'.b+I'.d—1.c. (Right) Case 3.a. Chaining cost is C[l'l+0,—0,=C[jl+I'.d—1.c—
(I'b—1.a).
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(b) Case: Greater or equal overlap in S;. Here, |o1—03] =01 —0y =I'b —la— (I'd — ILc). If
01>0,>0,I'b € [la, I.b],and I'.a € [0, I.a], then I'.c € [0, I.c]. Hence, the RmQ is of the form
[l.a, 1.b] X [I.c, I.d] X [-o0, I.c — I.a]. Let the query response from 73, be vs, = min{C[I'] +
I'b —-1rd:I'b, I'd, I''d - TI'b) € [la, 1.b] X [I.c, I.d] X [—o0, I.c — L.a]} and let Cs, = v3p —
la+ I.c.

Finally, let C [i] = min (Ci4, Cip, Cag, Cap, C3q, C3p) and update the RmQ structures as shown in the
pseudo code in Algorithm 1. In the pseudo code, every RmQ structure 7 has the query method 7 .RmQ()
that takes as arguments an interval for each dimension. It also has the method 7 .update(), which takes a
point and a weight and updates the point to have the new weight. The four-dimensional RmQ structures for
Case 3.a require O(log* n) time per query and update, causing an overtime complexity that is O(n log* n).

3.2. Modifications for weak precedence and fixed-length anchors

We first consider the case of weak precedence. In Case 3.a, the anchor end I'.d can be positioned
arbitrarily to the right of 1. c. Moreover, since by the first dimension of the RmQ there is positive overlap
in S; and by the fourth dimension there is greater overlap in S,, we know that I’.d > I.c. Hence, we can
then remove the third dimension from the RmQ. The query will then be of the form (I'.b, I'.c,
I''d-T.b) € I.a, ] X [0, I.c] X [I.c — I.a + 1, co].

In Case 3.b, where there is greater or equal overlap in S}, we can similarly ignore I'. b, but to match our
definition of weak precedence we must also ensure I'. ¢ € [0, I.¢ — 1] (this is unnecessary for I'. a in Case
3.a as the strictly greater overlap in S, ensures I'.a < I.a). We modify the query to be of the form
(I'.c, I''d, I'.d —T.b) € [0, I.c —1] x[l.c, o] X [—oo, I.c — I.a]. Since each RmQ has at most
three dimensions, the total time complexity can be brought down to O(n log® n).

Algorithm 1: O(n log* n) time algorithm for strict precedence.

Input: n anchors A[1, n] including Ajeqi = A[1] and Ayign = Aln].

Output: Array C[1, n] such that C[{] is the optimal colinear chaining cost for any ordered subset of A[1, i] ending
with A[{].

Let A'[1], ..., A'[n] be the anchors A sorted on A[ - ].a;

Construct RmQ structures with weights set to oo;

Initialize array C of size n to 0;

for i—1 to n do

I Alil;

if i > 2 then

Cia=T14. RmQO, I.a — 1], [—00, I.c — La]) + I.c — 1;

Cip<—T1,.RmQ(0,I.c—1],[l.c—-1l.a+1,x])+Il.a-1;

Coa T 2,.RmQ([0,I.a—-1],[0,1.c],[I.c,1.d])+1.a—1.c;

Cop—To,.RmQ([1.a,1.b],[0,1.c—1))—I.a+1.c;

Cso<—T34,.RmQ([1.a,1.b],[0,1.c],[I.c,1.d],[I.c—1.a+1,x])+1.a-1.c;

C3p <7 3,.RmQ([l.a, 1.b], [I.c,1.d],[—oo,l.c—1.a])—1.a+I.c;

/* Take optimal choice */

Cli] < min (Ci4, C1p, Caas Cap, C34, Cap);

end

/* Update RmQ structures */

T \a-update((I.b, 1.d—1.b), C[i]—1.d);

T 1p.update((1.d, I.d—1.D), C[i]—1.b);

T o4.update((I.b, I.c,1.d), C[i]-1.b+1.d);

T op.update((I.b, 1.d), C[i]+1.b—1.d);

T 3q.update((I.b, 1.c,1.d, 1.d—1.b), C[i]-1.b+1.d);

T 3p.update((I.b,1.d, I.d—1.b), C[i]+1.b—1.d);

end

return C[1, n]

In the case of fixed-length anchors, the RmQ for Case 2.a. can be made (I".b, I'.d) € [0, I.a — 1] X
[.c, I.d]. The modifications for Cases 3.a and 3.b are more involved. We keep a pointer p, to indicate the
current a value of the interval, initially setting p,=.A[1].a. Conceptually, before processing anchor [/
we increment p, from its previous position to I.a. If for some anchor I’ the end I'.b is passed by p,, we
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update the points associated with I’ in 73, and 7 35, to have the weight co. This eliminates the need to use
a range query to check I'.b € [l.a, 1.b], since any points not within that range are effectively removed
from consideration.

Hence, we can reduce the query for Case 3.a. (overlap in S, greater than overlap in S;) to
(I''c, I'd = I''b) € [0, I.c] X [I.c — I.a + 1, oo]. and the query for Case 3.b (overlap in §; greater or
equal to overlap in S,) to (I''d, I''d — I''b) € [l.c, I.d] X [—o0, I.c — I.a]. To avoid the |S;| time
complexity, the anchors that would be encountered while incrementing p,, can be found by looking at which
anchors have b values between the previous p, value and I.a. Because each update requires O(log® n) time,
these updates cost time O(n log® n) in total.

4. PROOF OF EQUIVALENCE

Theorem 2. For a fixed set of anchors A, the following quantities are equal: the anchored edit distance,
the optimal colinear chaining cost under strict precedence, and the optimal colinear chaining cost under
weak precedence.

The optimal colinear chaining cost is defined using the cost function described in Section 2.1. An
implication of Theorems 1 and 2 is that if only the anchored edit distance is desired (and not an optimal
strictly ordered anchor chain), there exists a O(n log® n) for computing this value.

Theorem 2 will follow from Lemmas 1 and 2.

Lemma 1. Anchored edit distance < optimal colinear chaining cost under weak precedence < optimal
colinear chaining cost under strict precedence.

Proof. The second inequality follows from the observation that every set of anchors ordered under strict
precedence is also ordered under weak precedence. We now focus on the inequality between anchored edit
distance and colinear chaining cost under weak precedence. Starting with an anchor chain under weak precedence,
A[1], A[2], ... with associated colinear chaining cost x, we provide an alignment with an anchored edit
distance that is at most x. This alignment is obtained using a greedy algorithm that works from left to right,
always taking the closest exact match when possible, and when not possible, a character substitution or
unsupported exact match, or if none of these are possible, a deletion. We now present the details.

The Greedy Algorithm. Assume inductively that all symbols in S;[1, A[i]. 5] and S,[1, A[i].d] have
been processed, that is, either matched, substituted, or deleted (represented by check marks in Figs. 4-6).
The base case of this induction holds trivially for A ;. We consider the anchor A[i+ 1] and the possible
cases regarding its position relative to A[i]. Symmetric cases that only swap the roles of S; and S, are
ignored. To ease notation, let I'=A[i] and I=A[i+1].

1.CaseI'.b > I.b and I'.d > I.c (Fig. 4): To continue the alignment, delete the substring S>[I'.d+ 1, 1.d]
from S,. This has edit cost I.d—1'.d. We can assume both intervals of I’ are not nested in intervals of I,
hence connect(I',I)=01—0r,=I'"b—1.a=I'd+I.c > I.c+I.b—1.a-I'.d=1d-TId.

2. Case I''b > I.b and I'.d < I.c (Fig. 4): Delete the substring Sy[I'.d+ 1, I.d] from S,, with edit cost
1.d-1T.d. Also connect(I', =01 +g,=I'b—Il.a+I.c—I'.d > l.c+I.b—1.a-I'.d=1d-TId.

3. Case Ib>TIb, lLa<[lI.b, Ic<I.d (Fig. 5): Supposing wlog that o; > 0,, delete
So[I'.d+1, I'.d+0,—05], and match S [I’.b+1, 1.b] and S>[I'.d+ 01— 0>+ 1, I.d]. This has edit cost 0] — 0,
and connect(I', I)=01 - 0,.

4. Case I.Lb>Tb, l.a<[Tl.h, I.c>TI.d (Fig. 5): We delete S;[I'.d+1,I'.d+0;+g>] and match
Sill'.b+1,1.b] with S,[I'.d + o1 + g» + 1, I.d]. This has edit cost 01+ g, and connect(I', I)=o01+ g>.

I'.a I'b I'.a I'b
V777777777771 V7777774
L 1 [
v v v v v v vt
Ia I.b I.c 1.d I.a I.b I.c 1.d
v v v v v v X v v v v X X X
[ ) L] ] [ ) [ ] [ ] [ ] [ ) [ ] [ ] [ ) L] ] [ ]
L1 1
/77777 //] V77777777
I'.c I'.d I'.c I'.d

FIG. 4. Cases in Proof of Lemma 1. The v' symbol indicates symbols processed before considering I. (Left) Case
I''b>IbandI'd>Icl'b>1bandI'.d<I.c.
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I'.a I'b ’ /
/7777777777] Yrrrrrds
. . s S [
N N s s 2 o o .
L.a Ta Ib
¢ 4L ¢ ¢ 4 ¢ % X
L 1 1
/77777777777 /77777771 I.c Id
I'e I'.d I'.c I'.d

FIG. 5. Cases in proof of Lemma 1. (Left) Case I.b > I'.b, I.a < I'.b, I.c <I'.d. (Right) Case I.b > I'.b, I.a <I'.b,
Ie>Td.

5. Case I.a > I'.b, I.c > I'.d (Fig. 6): Supposing wlog g, > g;, match with substitutions or unsupported
exact matches Si[I'.b + 1, I''b + gi] and Sp[I'.d + 1, I'.d + g1]. Delete the substring S,[I'.d + g1 + 1,
I.c — 1]. Finally, match Si[l.a, I.b] and S;[l.c, 1.d]. The edits consist of g; of substitutions or
unsupported exact matches and g, — g deletions, which is g, edits in total. Also, connect(I', I) =
max{gi, g} = &

Continuing this process until Agp, all symbols in S; and S, become included in the alignment. O

We delay the details of Lemma 2’s proof to Section 4.1.

Lemma 2. Fora set of anchors A, optimal chaining cost under strict precedence < anchored edit distance.

Proof. We start with an arbitrary alignment M supported by .A. We show in Lemma 3 how to obtain
a subset B C A totally ordered under strict precedence and supporting an alignment M’ where
EDIT(M') < EDIT(M). We then show in Lemma 4 that the edit cost of M’ is greater or equal to the edit
cost of the alignment M given by the greedy algorithm on B. Finally, in Lemma 5 we show that the
colinear chaining cost of B is equal to the edit cost of M. Combining, we have EDIT(M) >
EDIT(M") > EDIT(Mg)= the colinear chaining cost on B > optimal colinear chaining cost under strict
precedence for A. The result follows from the fact that EDIT(M) equals the anchored edit distance when
M is an optimal alignment for A. O

4.1. Details of Lemma 2 proof

We apply Algorithm (i) followed by Algorithm (ii) to convert a supporting set of anchors A for M into
the totally ordered subset of anchors B supporting M. Note that these algorithms are only for the purpose
of the proof. Moving forward, we call an edge e = (Si[h], S2[k]) contained but not supported by [
if he[la, I.b] or ke [l.c, 1.d] and h—I.a # k—1.c. We define for e the two edges ¢ =(S[h],
S>[l.c + h — La]) and ¢”=(S1[I.a + k — I.c], S»[k]), which are supported by I.

Algorithm (i). Algorithm for removing incomparable anchors. Let 7 and I’ be two incomparable
anchors under weak precedence (Fig. 6). The anchor that has the rightmost supported solid edge will be the
anchor we keep. Suppose wlog is I. Working from right to left, starting with that rightmost edge, for any
edge e that is contained but not supported by I, we replace e with the rightmost of ¢’ and ¢”’. Note that at
least one side of every edge supported by I’ is within an interval of I. Hence, all edges supported by I’ are
eventually replaced. We then remove I'. This algorithm is repeated until a total ordering under weak
precedence is possible.

I'a I'b
V//7774/
M r
< oV |
[ ] [ ]
"¢ \//////////////////
v/ 777/ I.c
I'e I'd

FIG. 6. (Left) Case I.a > I'.b, I.c > I'.d. (Right) Anchors I and I’ are incomparable. The current alignment is
shown with black solid and dashed edges. To remove I’ we sweep from right to left, replacing edges not supported by
I with edges supported by I. Here, e=(S{[h], S2[k]) is not supported by I and will be replaced with ¢'=(S;[A],
S>ll.c + h — I.a]) (in red), which is supported by 1.
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Algorithm (ii). Algorithm for removing anchors with nested intervals. Consider two anchors I and I’
where wlog I’ has an interval nested in one of the intervals belonging to I. Let eg be the rightmost edge
supported by I. Working from right to left, we replace any edge e to the left of e that is contained but not
supported by I with the rightmost of ¢’ and ¢’. Next, working from left to right, we replace any edge e to the
right of e that is contained but not supported by I with the leftmost of ¢’ and ¢”. These procedures
combined will replace all edges supported by I’ with those supported by I. We repeat this until there are no
two nested intervals among all remaining anchors. Finally, remove all anchors that do not support any edge.
We call such an anchor chain where every anchor supports at least one edge minimal.

Lemma 3. EDIT(M’) < EDIT(M).

Proof. For Algorithm (i), suppose we are replacing an edge e not supported by anchor I, the anchor we
wish to keep. Suppose wlog that ¢’ is the rightmost of ¢’ and ¢”, so we replace e with ¢’. Because the edge
immediately to the right of e is also aligned with /, deleting S,[k] and matching S,[/.c + h — I.a] does not
require modifying any additional edges. If e was a solid edge, the edit cost is unaltered, since the total
number of deletions and matches is unaltered. If ¢ was a dashed edge, replacing e with ¢’ converts a
substitution or unsupported exact match at S,[k] to a deletion, and removes a deletion at S[I.c + h — l.a],
decreasing the edit cost by 1.

The same arguments hold for Algorithm (ii) when we replace edges from right to left. In Algorithm (ii)
when we process edges from left to right, since any edges to left of the edge e being replaced are supported
by I, replacing e with the leftmost of ¢’ and ¢’ does not require modifying any additional edges. Again, if e
is solid, the edit cost is unaltered, and if e is dashed, the edit cost is decreased by 1. O

Lemma 4. The greedy algorithm described in the proof of Lemma 1 produces an optimal alignment for a
“minimal” anchor chain under strict precedence.

Proof. This follows from an exchange argument. Let M be an optimal alignment on the anchor chain B
Further, suppose that M is not the same as the alignment produced by the greedy algorithm M. As we
process the edges from left to right, consider when the first discrepancy in the edges is found, the leftmost edges
e=(S1[A], S2lk]) in M and eg = (Si[hcl, Sa2lkg]) in Mg that are not equal. Let e, be the previous edge
on which the M and Mg coincided. We claim e can be replaced with e without increasing the edit cost.

e Case: eg is solid and left of e. Then e can clearly be exchanged for e; with no increase in edit cost.

* Case: g is solid and not left of e. We assume WLOG k < k¢ (Fig. 7). Suppose eg is supported by an
anchor /. We claim that (i) 7 > hg, and (ii) there exists an edge e = (S| [h), S,[k])in M to the right
of e and supported by /. Note that h — hg + 1 solid edges can be obtained by matching S;[4g, h] to
S> kg, k], and that this alignment has at most the edit cost incurred within the intervals [Ag, h] in S;
and [k, k] in S, by M. Thanks to (i) and (ii), swapping all of the edges in M inside these intervals with
the h — hg + 1 edges supported by I already mentioned can be done without effecting edges outside
those intervals. The proofs for claims (i) and (ii) are shown hereunder.

(i) h > hg: Suppose to the contrary that & < hg. Let epey =(S1[Aprev]s S2[kprev]). Since hpey < h < hg
and kprey < k < kg, this would imply that there are deletions (x’s) at both S;[4] and S,[k] in Mg.
However, the greedy algorithm would instead create an edge including S;[h] or Sy[k] (or both),
causing there to be an edge to the left of e and to the right of epy. This contradicts our assumption
that eg is the first edge in Mg to the right of epry.

(ii) An edge e = = (S1[h], Salk)) exists in M to the right of e and supported by I: We claim eg is the
leftmost edge supported by / in M. Otherwise, since only consecutive edges supported by an
anchor are taken in the greedy algorithm (Cases 3, 4, and 5 in proof of Lemma 1), epey=
(Silhg—11, Salkg—11). Then epey was also in M by our assumption that Mg and M agreed

S1[ha] Sy[h] Si[h]
o ° o FIG. 7. Consider a greedy alignment Mg and optimal align-
F ment M where the leftmost difference is e and e. Here, é pre-
R . vents swapping e and es without modifying additional edges in
M.

Salk]  Sy[k] Salkc] Sa[k]
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until es. However, epey = (Si[hg — 11, S2[kg — 1) would cross or share a vertex with
e = (Si[h], S2[k]) in M since hg—1 < hand k < kg — 1, a contradiction. Now, if no other edges
supported by [ are in M, then B is not minimal. Hence, we can assume that an edge
e = (S [ﬁ], Sz[lg]) exists in M to the right of e and supported by 1.

* Case: e is a dashed edge. Since dashed edges are only created in Case 5 of the proof of Lemma 1
(Fig. 6), eprev = (Silhg — 11, S2lkg — 1]) must have been either the rightmost supported edge for
some anchor, or another dashed edge. In addition, no other supported edges are possible that include
either S;[A] or S,[k]. Here the dashed edge e is optimal and swapping e with es will reduce the edit
cost. O

Lemma 5. For an anchor chain under strict precedence, the edit cost of the alignment produced by the
greedy algorithm described in the proof of Lemma 1 is equal to the chaining cost.

Proof. This follows from induction on the number of anchors processed, using the same arguments used
in the proof of Lemma 1. However, only I’.b=1.b needs to be considered in Cases 1 and 2 leading to
equality in these cases. O

5. IMPLEMENTATION

In multidimensional RmQs, O(nlog?~! n) storage requirement and irregular memory access during a
query can limit their efficacy in practice (de Berg et al, 2008). We can take advantage of two observations
to design a more practical algorithm. First, if sequences are highly similar, their edit distance will be
relatively small. Hence the anchored edit distance, denoted in this section as OPT, will be relatively small
for MUM or MEM anchors. Second, if the sequences are dissimilar, then the number of MUM or MEM
anchors, n, will likely be small.

These observations allow us to design an alternative algorithm (Algorithm 1) that requires O(n)
worst-case space and O(n - OPT + n log n) average case time over all possible inputs where
n < max (|S], |S2]), that is, the number of anchors is less than the longer sequence length. This is stated
formally in Lemma 6. This property always holds when the anchors are MUMs and is typically true for
MEMs as well. This makes the algorithm presented here a practical alternative.

As before, let A be the initial (possibly unsorted) set of anchors, but with A = A[1] and
Asighe = Aln]. We assume wlog [S1| > |S,|. We begin by sorting anchor set A by the component A[ - ].a
and making a guess for the optimal solution, B (Algorithm 2). The value B is used at every step to bound
the range of A[ - ].a values that need to be examined. This bounds the number of anchors that need to be
considered (on average). If C[n] is greater than our current guess B after processing all n anchors, we
update our guess to B - B.

Algorithm 2: O(OPT - n + n log n) average case algorithm.

Input: »n anchors A and parameters B; and B,.
Output: C[1, n] such that C[i] is optimal colinear chaining cost for any ordered subset of A[1, i{] ending at A[{].
Let A'[1], ... A'[n] be the set of anchors A sorted on A[ - ].a;
Initialize array C of size n to 0 and B« By;
do
AmE
for i<—1 to n do

while A'[i].a— A'[jl.a > B do

Jeitl

end

C[i] < min{C[k] + connect(A'[k], A[i])|j < k < iand A'[k] < A[i]}
end
Blas{(_B;
B<—B;-B;
while C[n] > B,y
return C[1, n]
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Extending the mentioned pseudo code to enable semiglobal chaining, that is, free anchor gap on both
ends of reference sequences, is also simple. In each i-loop, the connection to anchor A4 must be always
considered, and for last iteration when i =n, j must be set to 1. Second, a revised cost function must be used
when connecting to either Ay or Ayigh, Where a gap penalty is used only for anchor gap over the query
sequence. The experiments in the next section use an implementation of this algorithm.

Lemma 6. Algorithm 2 runs in O(n - OPT + n log n) average case time over all inputs where
n S max(|Sl|, |S2‘)

Proof. The n log n term is from the sorting the anchors. To analyze the second portion of the algorithm,
we first let Xj, ; be 1 if A[h].a is located at index j in S;. Under the assumption of a random placement of
anchors, E[X), ;]=1/|S1|. Let X; be the number of anchors, A[h], where A[h].a € [Alil.a-B, Alil.a—1].
We have that X; = Y, _, Z;‘l:[%]_ 01_ 5 Xn,j. Letting X be the total number of anchors processed,
X=>%",X and

n n  Alila-1 I’l2 . B
EX] =Y Y > EXy,l= T SnE
i=1 h=1j=Alil.a-B

[logy, OPT]
2
B,

The total expected time is a constant factor from Bin(1 + By + ... + ) =00 - OPT). I

6. EXPERIMENTAL EVALUATION

There are multiple open-source libraries/tools that implement edit distance computation. Edlib (v1.2.7)
(Sosi¢ and Sikié, 2017) uses Myers’s bit-vector algorithm (Myers, 1999) and Ukkonen’s banded algorithm
(Ukkonen, 1985), and is known to be the fastest implementation currently. In this section, we aim to show
that (1) the proposed algorithm as well as existing chaining methods achieves significant speedup compared
with computing exact edit distance using Edlib, and (2) in contrast to existing chaining methods, our
implementation consistently achieves high Pearson correlation (> 0.90) with edit distance while requiring
modest time and memory resources.

We implemented Algorithm 2 in C++, and refer to it as ChainX. The code is available at (https://
github.com/at-cg/ChainX). Inputs are a target string, query strings, comparison mode (global or semi-
global), anchor type preferred, that is, MUMs or MEMs, and a minimum match length. We include a
preprocessing step to index target string using the same suffix array-based algorithm (Vyverman et al,
2013) used in Nucmer4 (Marcais et al, 2018). Chaining costs computed using ChainX for each query—target
pair are provably optimal.

Existing colinear chaining implementations

Colinear chaining has been implemented previously as a stand-alone utility (Abouelhoda et al, 2008;
Otto et al, 2011) and also used as a heuristic inside widely used sequence aligners (Bray et al, 2003; Li,
2018; Margais et al, 2018). Out of these, Clasp (v1.1), Nucmer4 (v4.0.0rcl), and Minimap2 (v2.22-r1101)
tools are available as open source, and used here for comparison purpose. Unlike our algorithm where the
optimization problem involves minimizing a cost function, these tools execute their respective chaining
algorithms using a score maximization objective function. Clasp, being a stand-alone chaining method,
returns chaining scores in its output, whereas we modified Minimap2 and Nucmer4 to print the maximum
chaining score for each query—target string pair, and skip subsequent steps.

To enable a fair comparison, all methods were run with single thread and same minimum anchor size 20.
Accordingly, ChainX, Clasp, and Nucmer4 were run with MUMs of length > 20, and Minimap2 was
configured to use minimizer k-mers of length 20. For these tests, we made use of an Intel Xeon E5-2698 v3
processor with 32 cores and 128 GB RAM. All tools were required to match only the forward strand of
each query string. ChainX and Clasp are both exact solvers of colinear chaining problem, but use different
gap cost functions. Clasp only permits nonoverlapping anchors in a chain, and supports two cost functions
that were referred to as sum-of-pair and linear gap cost functions in their article (Otto et al, 2011).

We tested Clasp with both of its gap cost functions, and refer to these two versions as Clasp-sop
and Clasp-linear, respectively. Both the versions solve colinear chaining using RmQ data structures,


https://github.com/at-cg/ChainX
https://github.com/at-cg/ChainX

Downloaded by 35.138.92.213 from www.liebertpub.com at 11/27/22. For personal use only.

1248 JAIN ET AL.

TABLE 1. RUNTIME AND MEMORY USAGE COMPARISON OF EDIT DISTANCE SOLVER EDLIB AND COLINEAR
CHAINING METHODS CHAINX, CLASP, NUCMER4, AND MINIMAP2

No. of Edlib ChainX Clasp-sop Clasp-linear Nucmerd Minimap?2
0. 0

Similarity MUMs Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem)

Semiglobal pairwise sequence comparisons, sequence sizes 10* x 5 * 10°

99% 67 190 (17) 2.0 (57) 1.8 (57) 0.9 (57) 1.8 (60) 1.9 (75)
97% 160 642 (17) 2.9 (57) 4.8 (57) 1.8 (57) 4.1 (60) 2.3 (75)
94% 176 1165 (17) 3.0 (57) 5.9 (57) 2.1 (57) 3.2 (60) 1.6 (75)
90% 135 2168 (17) 5.6 (57) 4.7 (57) 2.0 (57) 5.5 (60) 1.9 (75)
80% 28 2360 (17) 4.2 (57) 2.5 (57) 2.2 (57) 3.4 (60) 4.3 (75)
70% 3 4297 (17) 3.7 (57) 2.2 (57) 2.3 (57) 5.5 (60) 1.1 (75)
Global pairwise sequence comparisons, sequence sizes 10° x 10°

99% 7012 949 (8) 47.2 (24) 1236.8 (1800) 182.8 (257) 68.7 (26) 193.5 (35)
97% 15,862 1308 (8) 490.4 (24) 5363.7 (8742) 765.4 (1278)  87.8 (26) 179.0 (36)
94% 18,389 2613 (8) 6779 24) 11737.1 (20,501) 1021.0 (1694) 113.5 (27) 116.9 (34)
90% 14,472 6233 (8) 851.5 (24) 5110.3 (8277) 115.3 (27) 121.8 (26) 94.8 (33)
80% 2964 12,506 (8) 158.8 (24) 504.8 (572) 133.7 (24) 148.9 (26) 69.5 (32)
70% 195 29,602 (8) 136.5 (23)  140.6 (23) 139.6 (23) 167.3 (26) 55.6 (32)

The best numbers are highlighted in bold.

Runtime is measured in milliseconds across the columns, and memory usage (Mem) is noted in MBs. In this experiment, ChainX,
Clasp-sop, Clasp-linear, and Nucmer4 used MUMs of length > 20 as input anchors, while Minimap2 used fixed-length minimizer
k-mers of size 20.

MUM, maximal unique match.

requiring O(n log? n) and O(n log n) time, respectively. Both require a set of anchors as input, therefore,
we supplied the same set of anchors, that is, MUMs of length > 20 as used by ChainX. Minimap2 and
Nucmer4 use colinear chaining as part of their seed-chain-extend pipelines. Both Minimap2 and Nucmer2
support anchor overlaps in a chain, as well as penalize gaps using custom functions. However, both these
tools employ heuristics (e.g., enforce a maximum gap between adjacent chained anchors) for faster pro-
cessing that can result in suboptimal chaining scores.

Runtime and memory comparison

We downloaded the same set of query and target strings that were used for benchmarking in Edlib
article (§0§ié and Siki¢, 2017) (https://github.com/Martinsos/edlib/tree/master/test_data). These test strings,
ranging from 10 to 5000 kbp in length, allowed us to compare tools for end-to-end global sequence
comparisons as well as semiglobal comparisons at various degrees of similarity levels. To test end-to-end
comparisons, the target string had been artificially mutated at various rates using mutatrix (https://
github.com/ekg/mutatrix), whereas for the semiglobal comparisons, a substring of the target string had been
sampled and mutated.

TABLE 2. ABSOLUTE PEARSON CORRELATION COEFFICIENTS OF CHAINING COSTS (OR SCORES) COMPUTED
BY VARIOUS METHODS WITH THE CORRESPONDING EDIT DISTANCES

Correlation coefficient

Sequence sizes Similarity ChainX Clasp-sop Clasp-linear Nucmerd4 Minimap?2
Semiglobal sequence comparisons
10*x 5 % 10° 90%-100% 0.996 0.994 0.986 0.968 0.995
10*x 5 % 108 80%—90% 0.975 0.976 0.786 0.864 0.958
10%x 5 x 10° 75%—80% 0.927 0.915 0.732 0.733 0.808
Global sequence comparisons
105 x 106 90%-100% 0.999 0.997 0.994 0.991 0.999
109 % 10° 80%-90% 0.998 0.998 0.922 0.955 0.996
10° % 106 75%—80% 0.992 0.993 0.871 0.907 0.952

The best numbers are highlighted in bold.
100 query strings were simulated and matched to the target string within each similarity range.
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TABLE 3. EFFECT OF ANCHOR PRECOMPUTATION METHOD ON THE PERFORMANCE OF CHAINX

Using MUMs Using maximal exact matches
Length =220 Length 210 Length =27 Length 220 Length =210 Length > 7
Similarity Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.)

90%-100% 7.2 (0.996) 29 (0.997) 3.5  (0.997) 5.1 (0.996) 8.1 (0.997) 2652 (0.998)
80%-90% 4.5 (0.975) 5.6 (0.992) 32  (0.992) 45 (0975 7.4 (0.993) 5413 (0.995)
75%-80% 53 (0.927) 5.9 (0.977) 19  (0.977) 50 (0.927) 10.9 (0.987) 9221 (0.992)

The best numbers are highlighted in bold.
Total runtime to do 100 pairwise semiglobal sequence comparisons (sequence size: 10* x5 * 10%) is measured in seconds, and
correlation (corr.) with the corresponding edit distances is computed using Pearson correlation coefficient.

Table 1 presents runtime and memory comparison of all tools. Columns of the table are organized
to show tools in three categories: edit distance solver (Edlib); optimal colinear chaining solvers (ChainX,
Clasp-sop, and Clasp-linear); and heuristic implementations (Nucmer4 and Minimap2). We make the
following observations here. First, chaining methods (both optimal and heuristic based) are significantly
faster than Edlib in most cases, and we see up to three orders of magnitude speedup.

Second, within optimal chaining methods, Clasp-sop’s time and memory consumption increases quickly
with increase in count of anchors, which is likely due to irregular memory access and storage overhead of
its algorithm that uses a 2d-RmQ data structure. Finally, we note that Minimap2 and Nucmer4 are often
faster than exact algorithms during global string comparisons due to their fast heuristics.

All tools (except Edlib) use an indexing step such as building a k-mer hash table (Minimap2) or
computing suffix array (ChainX, Clasp-sop, Clasp-linear, and Nucmer4). Indexing time was excluded from
reported results, and was found to be comparable. For instance, in the case of semiglobal comparisons,
ChainX, Nucmer4, and Minimap2 required 590, 736, and 236 ms for index computation, respectively.

Correlation with edit distance

We checked how well the chaining cost (or score) correlates with edit distance. We use absolute value of
Pearson correlation coefficients for a comparison. In this experiment, we simulated 100 query strings within
three similarity ranges: 90% — 100%, 80% —90%, and 75% — 80%. Table 2 gives the correlation achieved
by all the tools. Here we observe that ChainX and Clasp-sop are more consistent in terms of maintaining
high correlation across all similarity ranges. Between the two, ChainX was shown to offer superior
scalability in terms of runtime and memory usage (Table 1). Hence, ChainX can be useful in practice when
good performance and accuracy are desired across a wide similarity range.

Effect of anchor type and minimum match length

How many anchors are given as input will naturally affect the performance and output quality of a
chaining algorithm. We tested runtime and correlation with edit distance achieved by ChainX while varying
the anchor type (MUMSs/MEMs) and minimum match length /i, parameter (Table 3). When MUMs are
used as anchors, we observe good scalability, and lowering /;, from 20 to 10 improves the correlation, but
the correlation saturates afterward. This is because very short exact matches will unlikely be unique and
will not be selected as MUMs. However, when MEMs are used as anchors, correlation continues to
improve with decreasing minimum length parameter, however, runtime grows exponentially. Excessive
count of anchors improves the correlation but then anchor chaining becomes computationally demanding.

7. CONCLUSIONS

This study provides new algorithms for colinear chaining, a fundamental problem in bioinformatics.
Variants of this technique have been regularly used in alignment tools since four decades (Wilbur and
Lipman, 1983). We addressed an open problem pertaining to the general case of this problem that allows
anchor overlaps and penalizes gap cost between adjacent chained anchors. The proposed algorithms for
multiple versions of this problem are provably optimal and efficient, and can be incorporated in read
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mappers. We also discussed a new cost function for the colinear chaining problem that enabled us to
establish the first mathematical link between colinear chaining and the edit distance problem.

This result is a useful addition to a prior result (Mékinen and Sahlin, 2020) where a connection between
the colinear chaining problem and the longest common subsequence problem was made. Although we
focused on a single cost function, it may be possible to derive a family of chaining cost functions by linking
from weighted edit distance or linear and affine gap alignment scoring functions.
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