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Abstract
The accurate estimation of photometric redshifts is crucial to many upcoming galaxy surveys, for example, the
Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). Almost all Rubin extragalactic and
cosmological science requires accurate and precise calculation of photometric redshifts; many diverse approaches
to this problem are currently in the process of being developed, validated, and tested. In this work, we use the
photometric redshift code GPz to examine two realistically complex training set imperfections scenarios for
machine learning based photometric redshift calculation: (i) where the spectroscopic training set has a very
different distribution in color–magnitude space to the test set, and (ii) where the effect of emission line confusion
causes a fraction of the training spectroscopic sample to not have the true redshift. By evaluating the sensitivity of
GPz to a range of increasingly severe imperfections, with a range of metrics (both of photo-z point estimates as
well as posterior probability distribution functions, PDFs), we quantify the degree to which predictions get worse
with higher degrees of degradation. In particular, we find that there is a substantial drop-off in photo-z quality when
line-confusion goes above ∼1%, and sample incompleteness below a redshift of 1.5, for an experimental setup
using data from the Buzzard Flock synthetic sky catalogs.

Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Astrostatistics techniques (1886); Photometry
(1234); Redshift surveys (1378)

1. Introduction

The estimation of the redshift of distant astronomical sources
(mainly galaxies and Active Galactic Nuclei, AGN) is a crucial
part of modern cosmology (Hoyle et al. 2018) and extragalactic
science (Miyaji et al. 2015). However with increasingly large
data sets, in the era of high-precision cosmology, the
requirements on the quality of galaxy redshift estimation can
be very high (Mitra & Linder 2021). If, for example, in the
instance of cosmological inference (say 3× 2 pt analysis,
Zuntz et al. 2021), the redshifts were systematically a few
percent higher or lower than the true redshifts (unknown to us
and not included in the modeling), there could be a risk of
inferring the incorrect cosmological model. Furthermore,
redshifts are critical for extragalactic science, including galaxy
formation and evolution, since they provide the third dimension
and time evolution (see Etherington et al. 2017 and

Fontana et al. 2000). Their use in a variety of science
disciplines, therefore, leads to a strong need to understand their
accuracy and precision.
There are two main observational approaches to estimating

redshifts, both of which have advantages and disadvantages;
spectroscopy and photometry (Fernández-Soto et al. 2001).
Spectroscopic redshifts (“spec-z”) are measured by identifying
an emission/absorption feature in a galaxy’s spectrum and
comparing it to the known rest-frame wavelength. Spec-z
estimations typically provide highly accurate redshift values,
but can be expensive in terms of telescope time and are thus
limited by the sample size, and also typically are more
challenging to obtain for high redshift and low luminosity
sources.
By contrast, photometric redshifts (“photo-z”) make use of

photometry. When a spectrum is redshifted, spectral features
move in and out of different photometric bands, giving
changing measured magnitudes; thus, the photo-z technique
relies on the capacity to isolate the wavelength position of
redshifted continuum features (e.g., Balmer or Lyman breaks).
Hence instead of having a spectrum, we have a certain number

Publications of the Astronomical Society of the Pacific, 134:044501 (11pp), 2022 April https://doi.org/10.1088/1538-3873/ac59bf
© 2022. The Author(s). Published by IOP Publishing Ltd on behalf of the Astronomical Society of the Pacific (ASP). All rights reserved

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-6029-005X
https://orcid.org/0000-0002-6029-005X
https://orcid.org/0000-0002-6029-005X
https://orcid.org/0000-0002-8676-1622
https://orcid.org/0000-0002-8676-1622
https://orcid.org/0000-0002-8676-1622
https://orcid.org/0000-0002-3065-457X
https://orcid.org/0000-0002-3065-457X
https://orcid.org/0000-0002-3065-457X
https://orcid.org/0000-0002-2495-3514
https://orcid.org/0000-0002-2495-3514
https://orcid.org/0000-0002-2495-3514
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
http://astrothesaurus.org/uat/1882
http://astrothesaurus.org/uat/1886
http://astrothesaurus.org/uat/1234
http://astrothesaurus.org/uat/1234
http://astrothesaurus.org/uat/1378
https://doi.org/10.1088/1538-3873/ac59bf
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ac59bf&domain=pdf&date_stamp=2022-04-26
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ac59bf&domain=pdf&date_stamp=2022-04-26
http://creativecommons.org/licenses/by/3.0/


of discrete photometric bands which must be mapped onto a
redshift value. The need for multiple photometric bands is due
to the redshift degeneracies present when one color corre-
sponds to multiple redshift values (e.g., confusion between
different breaks). Wide multiwavelength coverage is necessary
for photo-z surveys to limit this effect. The primary benefit of
using photo-z is the derivation of redshift measurements for a
much larger number of sources detected in imaging surveys,
typically to higher magnitudes and redshifts. These low-cost
photo-z estimates, however, are typically much less precise
than spec-z estimates.

For many existing and forthcoming galaxy surveys like the
Dark Energy Survey (The Dark Energy Survey Collabora-
tion 2005), The Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST Science Collaboration et al. 2009), and
Euclid (Laureijs et al. 2011), the majority of galaxy redshifts
will be based on photometry.

Photo-zʼs themselves have multiple different approaches to
their calculation, including template-fitting, machine learning
(ML), and hybrid techniques. In the case of template fitting, a
series of galaxy templates are selected and a chi-square fitting-
like approach is performed where they are shifted in order to
see what fits the photometry best. Some examples of template
fitting codes include HYPERZ (Bolzonella et al. 2000), LE
PHARE (Ilbert et al. 2006), and EAZY (Brammer et al. 2008).

The ML approach instead utilizes a sample of galaxies with
both photometric and spectroscopic values as the training set of
the algorithm. The ML code then “learns” how to map the
photometric color-magnitudes of the training data onto the
redshift values. Salvato et al. (2019) discuss several of these
approaches to accurately estimating photo-z’s, while also
commenting on the challenge in achieving high redshift
precision in large-scale galaxy surveys. Hybrid approaches
typically attempt to combine template fitting and machine
methods (see Duncan et al. 2018 and Hatfield et al. 2020).

There are now several studies seeking to rigorously assess
and compare photo-z performance. Schmidt et al. (2020)
investigated twelve photo-z algorithms, where the codes were
tested in ideal training and test data scenarios with mock data
created for the Rubin Dark Energy Science Collaboration
(DESC). Similarly, in Euclid Collaboration et al. (2020),
thirteen photo-z methods using either template-fitting or ML
techniques were examined on Euclid-like data, providing a
detailed comparison of their metrics. The goal of these studies
is to develop photo-z techniques appropriate to each survey,
and to understand in advance what systematic biases need to be
modeled and mitigated.

One important aspect of the ML approach is a dependence
on a reliable spectroscopic sample. This is one of the primary
sources of systematic bias affecting photo-z estimation with
ML. We hence need to consider the representativity of the
training data, since commonly, the spectroscopic redshifts do
not span the full color-space that the target data set might (see

Beck et al. 2017). This can lead to reduced performance in
parts of color–magnitude space poorly represented in the
training set. Beyond representativity, another source of
systematic error is incorrectly labeled training data i.e.,
incorrect spectroscopic redshifts, normally as a result of
emission-line confusion. This can risk the ML algorithm
incorrectly “claiming” it is giving good predictions, because it
is giving photo-z predictions that agree with the spectroscopy—
but if the spec-z are themselves inaccurate, then it is very
difficult to evaluate the true performance.
The challenge addressed by this paper is to try and

understand the impact on photo-z estimation (and specifically
on the calculated posterior PDFs) in the non-idealized scenario
where (i) the training and test data have dramatically different
distributions in color–magnitude space and (ii) some fraction of
the spectroscopic data is mislabeled. We use the ML code GPz,
which has already been tested for Legacy Survey of Space and
Time (LSST) and Euclid-like scenarios (Schmidt et al. 2020
and Euclid Collaboration et al. 2020). A number of photo-z
metrics are evaluated for a range of degradations, not just for
point estimates, but also photo-z PDF compared with true
redshift, and photo-z PDF compared with true redshift PDF. In
Section 2 we will discuss the data used in this work (and what
degradations we applied to them), in Section 3 we will describe
how we calculated our photo-z estimates, in Section 4 we
describe the metrics used, in Section 5 we show our results, we
discuss them in Section 6, and finally we conclude in Section 7.
The code for this work is available on GitHub at https://
github.com/nataliastylianou/Photo-z.

2. Data Generation

2.1. The Buzzard Simulation

The data set used in this work is a sample of 100,000
galaxies from the Buzzard Flock synthetic sky catalogs7

(DeRose et al. 2019), with redshifts in the range 0< z< 2.3
and photometry in the LSST ugrizy bands.8 The Buzzard
catalogs are constructed by first adding galaxies onto a dark-
matter-only N-body simulation (in such a way as to be
consistent with known lower-redshift luminosity functions),
and then “observing” them by imposing a realistic set of
observational properties and systematics. We chose this data set
in order to have a mock catalog of sufficient size with
observational properties similar to LSST, and did not need
some of the more complex physics that other simulations and
mock catalogs might capture (as we are specifically focusing on
the impact of degradation of the spectroscopic training set, not
other effects e.g., stellar contamination).

7 Also used in Schmidt et al. (2020).
8 In particular we use the sample from https://github.com/jfcrenshaw/
pzflow.
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2.2. Normalizing Flows

In this work, we will at points compare predicted redshift
PDF to true redshift PDF. Galaxies only have one redshift, but
given a set of photometric observations (bands and depths),
there is a PDF that would represent the perfect extraction of
redshift information. If the joint N+ 1 (where N is the number
of bands) dimensional redshift magnitude distribution p(z, m)
(where z is the redshift, and m was the photometry) were
known perfectly, then the “true” redshift PDF for a set of
observed magnitudes would be p(z|m), the best possible
estimation of the redshift (even though individual galaxies
only have a single value for redshift). In a realistic
observational scenario, we will not a priori know p(z, m) —
but in this paper, we will test how well we can reconstruct
p(z|m) in a scenario where we do know the full distribution
from the simulation.

The joint distribution p(z, m) is closely linked to the redshift
distribution for the whole population, N(z) (which is required
for some science goals). First, if p(z, m) is perfectly known, the
univariate distribution for z can be found with a simple
marginalization: N(z)= ∫p(z, m)dm. Second, given a set of
galaxies with “true” redshift PDFs p(z|m), and the corresp-
onding population distribution of color-magnitudes p(m) (itself
a function of the underlying luminosity functions and the
observational properties of the survey), N(z) can again be
recovered by performing the relevant weighted integral
(“stacking”): N(z)= ∫p(z|m)p(m)dm. Finally, if we knew
p(z, m) perfectly, then we could treat it as a prior in redshift
for an unseen galaxy before any magnitudes were observed (or
if only some of the magnitudes were known). For more realistic
observational cases where we are merely estimating the true
PDF, and do not perfectly know p(z, m), a set of more complex
approaches have been developed to convert a set of PDF
estimates back to N(z) (e.g., see Malz 2021, which discusses
more rigorously when a simple stacking approach is appro-
priate, and when it is not).

In the case of a simulation, we perfectly know both (a) the
intrinsic joint distribution of magnitudes and redshifts for
the galaxies, and (b) the selection function, which is applied in
the simulation to construct the mock sky catalog. However,
in the case of real observations, we neither know the intrinsic p
(z, m) distribution, which is often what we intend to measure,
nor do we typically perfectly understand the selection effects,
although we usually have some knowledge of certain
constraints (e.g., detection thresholds).

The sample of sources from the Buzzard Flock synthetic sky
catalogs all have single redshift values. In order to construct
true redshift PDFs to compare against, we use a Normalizing
Flow (Jimenez Rezende & Mohamed 2015) to model the
p(z, m) of the Buzzard sample. Normalizing Flows are tools
that use sequences of invertible mappings to convert simple
distributions into more complex ones. From the resulting

Normalizing Flow we can sample galaxies with redshifts,
galaxies with redshift PDFs, and we can even apply
transformations that correspond to degradations to create new
Normalizing Flows, which we can also sample from. To further
build a Normalizing Flow we use pzflow, which is a package
that models normalizing flows (Crenshaw 2021). The approach
here uses code from the Redshift Assessment Infrastructure
Layers code (RAIL9) and borrows heavily in its approach from
the example flow in pzflow.10

We use this Normalizing Flow sample with photometry,
redshifts, and true redshift PDFs as our “no-degradation”
sample. This data acts as our training, validation, and test data
for the “no-degradation” case, and also the test data for when
the algorithm is trained on the degraded data.

2.3. More Realistically Complex Training Set
Imperfections

Ideally, for an ML-based calculation of photo-z, the training
set would consist of perfectly redshift labeled sources with the
exact same color–magnitude distribution as the test data. In
practice, this is never achieved.
This paper will focus on two sources of training-set

imperfections with the aid of two degraders (taken from
RAIL11): Inverse Redshift Incompleteness, which introduces
sample incompleteness (i.e., where the training set is not
representative of the test data), and the Emission Line
Confusion, which includes spectroscopic systematics (i.e.,
training spectroscopic data are labeled with incorrect redshifts).
Other training set imperfections not discussed in this paper

include AGN variability—consider that if the magnitudes of
sources are changing over time then photometric redshift
estimates risk becoming more unreliable (as the source redshift
does not change) (Simm et al. 2015). Similarly, the blending of
sources, and dust reddening depending on galactic coordinates,
all result in inaccurate photometric redshift estimates (Calzetti
et al. 2000).

2.3.1. Inverse Redshift Incompleteness

The Inverse Redshift Incompleteness Degrader attempts to
replicate redshift incompleteness by applying a selection
function inversely proportional to redshift. Its selection
function probability is described by:

p z
z

z
min 1, 1p⎛⎝ ⎞⎠�( ) ( )

where the zp term defines the pivot redshift, specifying the
redshift where the incompleteness begins.

9 https://github.com/LSSTDESC/RAIL
10 https://github.com/jfcrenshaw/pzflow/blob/main/pzflow/examples/
examples.py
11 https://github.com/LSSTDESC/RAIL/tree/master/rail/creation/
degradation
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Figure 1 shows the two different redshift distributions for the
unbiased representative sample set and the degraded sample set
through the Inverse Redshift Incompleteness Degrader. We set
the pivot redshift for this degradation equal to zp= 0.10. As
seen in Figure 1, the degraded data set has most of its galaxies
concentrated in the lower redshifts and very few lying in the
high-redshift area. Such an effect can be caused by the
difficulty in making spectroscopic measurements for high-
redshift galaxies with faint photometric magnitudes (although
of course, in general, low-luminosity sources at low-redshift
may also be affected).

2.3.2. Emission Line Confusion

The Emission Line Confusion Degrader mimics the effect of
spectroscopic systematic errors by simulating the confusion of
different emission lines. Specifically, we used the Emission
Line Confusion degrader to misidentify between 0.2% and 10%
of O II lines as Hα lines and vice versa (for a discussion of
plausible line-confusions and percentages see Euclid Colla-
boration et al. 2021). Since O II emission lines have a
wavelength of 3727Å and Hα lines a wavelength of 6563Å,
this confusion would consequently result in a larger spectro-
scopic redshift and the opposite misidentification would result
in a smaller spectroscopic redshift. Euclid Collaboration et al.
(2021) has considered more complex models of emission line
confusion, such as the misclassification of Hα as O II lines for
redshifts lower than 0.5 and between 1.4 and 2, O II lines as Hα
or Lyα lines for redshifts between 0.5 and 1.4, and for redshifts
above 2 then Lyα lines are misidentified as O II lines. For the

purposes of this paper, we proceeded to only use the O II and
Hα line confusion since further complexity would increase the
realism by a small amount, as which line confusions are key
will depend heavily on what spectroscopic training set is
actually used (what resolution the spectrographs have, what
lines were used for redshift measurement, what flag tolerance
was used etc.).
Figure 2 shows the degraded spec-zʼs with the emission line

errors against the true non-degraded redshifts. The percentage
of degradation used in Figure 2 is 5% (which we will refer to as
a “badness” parameter of 0.05). The central line (along the
diagonal representing equality) in the plot represents where the
true spec-zʼs and the degraded spec-zʼs are equal and there was
no confusion in the line identification. Conversely, the two
lines diverging from the one-to-one line illustrate where the O II
and Hα have been misclassified, resulting in a larger or smaller
spec-z value. The more degradation the spec-z data endure, the
more prominent the two diverging lines would be and the
weaker the identity line would appear.

3. Photo-z Estimation

The ML code we use in this work to estimate photo-zs is
called GPz. It is a sparse Gaussian process code described in
Almosallam et al. (2016a) and Almosallam et al. (2016b). GPz
produces a point estimated mean and a variance that
incorporates both the uncertainty due to intrinsic output noise,
as well as due to low data density. Hence it accounts for

Figure 1. Redshift distributions for degraded and non-degraded (unbiased)
data sets.

Figure 2. Degraded spectroscopic redshifts against non-degraded true redshifts
data sets for the Buzzard photometry used in this study.
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training data insufficiency and galaxy magnitude degeneracies.
GPz has been observed to be a fast, high-performing ML code
that typically performs well for a range of metrics, normally
particularly bias metrics. One weakness is that it outputs only
point estimates with uncertainty as opposed to more general
PDFs (uni-modal Gaussians instead of multi-modal PDFs),
which can prove problematic for certain sources.

Ultimately, as with analogous ML-based codes, the
performance of GPz is dependent on the spectroscopic training
data used. As mentioned in Section 1, Schmidt et al. (2020) and
Euclid Collaboration et al. (2020) tested GPz in the context of a
photo-z data challenge. In addition to this, GPz has been used
in a number of separate studies, including Gomes et al. (2018)
who tested the inclusion of source size information, and
Hatfield et al. (2020) who combined Gaussian mixture models
(GMMs) with GPz to improve redshift estimation and
ultimately accelerate photo-z computation.

4. Evaluation Metrics

To assess the quality of photometric redshift estimations,
there are a large number of different metrics that characterize in
different ways how successful the estimates have been at
predicting the true redshift. Metrics might compare just the
photo-z point estimate to the true redshift, the photo-z PDF to
the true redshift, or ultimately the photo-z PDF to the true PDF.

4.1. Point Estimate Metrics

We consider the following three metrics (see Section 6.3 of
Almosallam et al. 2016a) to evaluate the point estimated
outputs compared to single-valued true redshifts; these are (i)
the root mean squared error (RMSE), (ii) the fraction retained
for 15% (FR15) and iii) the Bias.

Specifically, the RMSE is defined as:

n

z z

z
RMSE

1
1

2
n

1

spec photo

spec

2

⎜ ⎟⎛⎝ ⎞⎠��
�

�
( )

The FR15 classifies the fraction of catastrophic outliers with
a 15% threshold defined as:

n

z z

z
FR15

100
1

0.15 3spec photo
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�

�
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Finally, the Bias demonstrates how the photometric redshift
deviates systematically from the true redshift.

n

z z

z
Bias

1
1

4
n

1

spec photo

spec
��

�

�
( )

All of these quantities can be calculated for the population as
a whole, or considered as a function of redshift (or some other
parameter).

4.2. PDF Metrics Relative to True Redshifts

Beyond assessing the quality of point-estimates of the
redshift, we might also wish to assess the quality of our
uncertainty estimates, and the realism of the PDFs. We can
hence consider (i) the Probability Integral Transform (PIT) and
(ii) the Conditional Density Estimate (CDE) loss.
There is a broad range of other metrics in the literature to

assess the quality of regression analyzes that could be used to
characterize the relationship between photo-z PDFs and the true
redshifts. One possibility is the coefficient of determination (R2,
Wright 1921) metric, which characterizes how much of the
variation in the data is captured by a predictive model (where
R2= 1 corresponds to perfect predictive power, R2= 0 would
correspond to predicting the population mean each time, and
R2< 0 corresponds to predictions poorer than simply guessing
the population mean for each data point). This is in contrast to
RMSE measurements for example, which can give compar-
isons of quality between two regressions, but do not solely by
themselves give an indication of whether the model is capturing
the full variance present in the data. R2 has been used in
astronomy for a range of applications, for example modeling
light curves (Shoji et al. 2020) and testing goodness of fit in
studies of magnetohydrodynamical turbulence (González-
Casanova et al. 2018). In terms of comparing PDFs rather
than point estimates, R2 was generalized to the Bayesian
context in Gelman et al. (2019). The R2 metric captures several
aspects of the quality of fit well, but can give misleading
conclusions in others (see for example Lewis-beck &
Skalaban 1990 for a discussion). We decided not to use R2 in
this work, as we felt the RMSE and PIT metrics together
quantified the same behavior R2 captures (RMSE describing
quality of fit, and PIT characterizing how much of the true
variance was captured by the calculated uncertainties). For
example, when uncertainties on predictions are too small, the
histogram of the PIT values shows a characteristic peak at 0
and 1, a peak at 0.5 when uncertainties are too large, and
perfectly calibrated photo-z PDFs give a uniform distribution
(see Section 4.2.1). In addition, the PIT distribution has been
used to quantify the performance of photo-z PDF methods in
many prior instances (Freeman et al. 2017; Tanaka et al. 2018
and Polsterer et al. 2016), making it more straightforwards to
compare our work to other studies. However, using (Bayesian)
R2 to compare photometric redshift PDFs would be an
interesting study for future work.

4.2.1. Probability Integral Transform (PIT)

The PIT metric seeks to assess the “realism” of PDFs for
estimates for a population. For each prediction it takes the
integral of individual PDFs from zero up to the true redshift,
and then plots the distribution (a histogram) of those values. A
histogram of PIT values is commonly used to assess how
“realistic” a population of photo-z PDFs is compared with the
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true redshifts. Ideally, the histogram would appear as a uniform
distribution, which corresponds to the PDFs being perfectly
calibrated.

Although the PIT distribution is ideally flat, it is expected to
be less flat for the biased training data set than for the
representative data set. We can hence use this to see the impact
of degradation on the predictions. The test statistics of the PIT
distribution tell us about the deviation from that ideal flat
distribution and are expected to be more discrepant for more
biased training sets.

Outliers at high-redshifts often have underestimated means
with large variances, but at low-redshifts they typically have
overestimated means with small variances. There are more of
the latter, so we expect an overabundance of low PIT values.

Note that the PIT is assessing the realism of the PDFs, not
their information content per se; Schmidt et al. (2020) showed
that uninformative PDFs could get high PIT scores because
they were very well-calibrated PDFs, but did not give any
information.

4.2.2. Conditional Density Estimate (CDE) loss

The CDE loss is the discrepancy of the ensemble of PDFs
relative to the true redshift-photometry distribution. See
Section 4.2 in Schmidt et al. (2020) (also Dalmasso et al.
2020) for a full description and more detailed definition, but it
is essentially the root-mean-square-error of the difference
between the true and the predicted PDFs. However, in the
absence of knowledge of the true PDF, it can still be
determined up to a constant, even in the absence of knowledge
of the true underlying redshift-photometry distribution.

The CDE loss metric essentially approximates the true
posterior PDF from the estimated posterior PDF evaluated at
the true redshift. Therefore, the lower the CDE loss is, the
better the predictions. The CDE loss might typically be
expected to get worse the more biased and degraded the
training set data is.

4.2.3. Summary Statistics

The exact shapes of the PIT curves contain information
about which way the estimated PDFs are biased. However,
these curves can be summarized further if a single number is
required.

A Kolmogorov–Smirnov statistic test (KS test) can be used
to find the maximum difference between the true and estimated
cumulative distributions of the PIT values. The KS test outputs
values from zero to one and the closer the KS value is to zero,
the more uniform the PIT distribution is. Therefore, the KS
values of the representative data sets are expected to be lower
than for the biased data sets.

Similarly, a variant of the KS test is the Cramer-von Mises
test (CvM test) which represents the mean-square difference
between the cumulative distribution functions of estimated and

true PDFs, and again would be expected to be lower for the
representative training data sets.
Finally, a modification to the KS test is the Anderson-

Darling test (AD test). The AD test describes the weighted
mean-squared difference and gives more weight to discrepan-
cies in the PIT distribution tails.
See Schmidt et al. (2020) and references within for the PIT,

CDE loss, and summary statistics tests.

4.3. PDF Metric Relative to True PDFs

Finally, a comparison of the estimated and true photo-z
posterior PDFs is possible, which we will do here with the
Kullback Leibler Divergence (KLD) metric. This metric has
been used for photo-z PDF evaluation in Malz et al. (2018).

4.3.1. Kullback Leibler Divergence (KLD)

The KLD is the information content difference between the
predicted PDF and the true PDF from which the data was
generated (in our case via the Normalizing Flow), and it is
estimated for each PDF in the sample. Ideally, the KLD value
for each galaxy would be very small, signifying a low
information loss from using estimated photo-z PDFs instead
of the true PDFs.

z
z

z
dzKLD PDF log

PDF
PDF

5true
true

estimated
⎜ ⎟⎛⎝ ⎞⎠¨�

�d

d
( ) ( )

( )
( )

5. Results

To estimate photo-zʼs with GPz, samples of 100,000 sources
from the NF (either the degraded or non-degraded NF, as
appropriate) are created. These data sets are then split into 3
subsequent sets. 20% of the data was used for the training of
the algorithm, 20% for the validation process, and the
remaining 60% of the data was used for the testing. For the
non-degraded case, GPz is trained and validated on non-
degraded data, and tested on non-degraded data. However, for
the degraded case, GPz is trained and validated on the degraded
data, but is still tested on the non-degraded data (i.e., both non-
degraded and degraded predictors are applied to the same data).
This allows us to probe the impact of training data
imperfections on the quality of the predictor.
The GPz performance with the NF data under no degradation

is illustrated in Figure 3. We demonstrate the estimated photo-
zʼs in contrast to the spec-zʼs, colored by number density. It is
evident that most galaxies have accurate photo-zʼs consistent
with their spec-zʼs (lying on the diagonal), especially for z< 1.
In the following subsections we describe the deviations from

the best prediction performance quantitatively via the metrics
previously discussed, as degradations are introduced.
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5.1. Point Estimates

Figure 4 exhibits how the RMSE, the FR15, and the Bias
metrics vary with representative and non-representative data for
the two degraders. The plots correspond to a degradation of 5%
for the Emission Line Confusion Degrader and a pivot redshift
of 0.92 for the Inverse Redshift Incompleteness Degrader. The
RMSE of the biased data is larger than for the representative
data in both degraders. Similarly, the biased data shows a lower
FR15 in the two degraders than for the representative data.

Finally, the non-degraded data has a very flat Bias close to
zero in both cases, whereas the degraded data has biases that
deviate from zero in the negative and positive direction
respectively for each degrader.

Importantly however, throughout all of these metrics, the
Emission Line Confusion degrader plots illustrate a signifi-
cantly larger discrepancy between the representative and
degraded data (at least for the experimental setup consid-
ered here).

5.2. PDF Relative to True Redshift

In Figure 5 we show the two plots of the PIT distribution of
degraded and non-degraded NF data for degradations of 0.05
badness and a 0.92 pivot redshift, respectively. Both plots
indicate a nearly flat distribution for the representative data
with the exception of a spike in the very beginning and a
considerably smaller spike at the very end of the distribution.
The biased data in the Emission Line Confusion Degrader
shows a peak at about 0.5, while for the Inverse Redshift
Incompleteness Degrader the biased data has similar PIT values
to the representative data.

The summary statistics of PIT (KS, CvM and AD) are shown
in Figure 6 for different badness and pivot redshifts parameters.
The badness parameter was varied from 0.002 to 0.10 (from
best to worst) and the pivot redshift from 0.10 to 2.5 (from

worst to best) to evaluate performance. For both degraders, the
metrics can be seen to be inconsistent with the non-degraded
case (apart from the extreme where no degradation is taking
place). All of the representative data points are identical in
every degradation scenario; therefore the standard deviation
from their scatter was calculated and included as a representa-
tive error bar for all the summary statistics values.12 In the
Emission Line Confusion Degrader’s case, the metrics get very
rapidly poorer as the badness degradation parameter increases,
and then flattens off for higher values. In the Inverse Redshift
Incompleteness Degrader’s case, there is a distinct rise in the
values of the summary statistics for the lower pivot redshifts
(more extreme degradation).
The CDE loss is shown as a function of badness and pivot

redshift in Figure 7 with the standard deviation of the
representative values as error bars, hence two different trends
are observed. The CDE loss seems to in fact be very similar
between the degraded and non-degraded predictions for the
Inverse Redshift Incompleteness Degrader case. Conversely,
for the Emission Line Confusion Degrader case, the CDE loss
is low for the representative data and high for the biased data
(even for very low fractions of line confusion).

5.3. Estimated PDF Relative to True PDF

The logarithmic distribution of the KLD values for the two
degraders is shown in Figure 8, for badness 0.05 and pivot
redshift 0.92 respectively. The representative and bias data in
the Inverse Redshift Incompleteness Degrader have comparable
KLD distributions. However, in the Emission Line Confusion
Degrader case, the representative data have a significant
number of their KLD values below zero, unlike their
corresponding biased data.

6. Discussion

The overall results for the two degraders exhibit similar
behavior, in that both of the degraded data show a decline in
performance with increasing bias in the training set, while the
non-degraded, representative data follow a consistent and
generally good performance outcome for all metrics. It is also
noted that the degradation of the Emission Line Confusion is
generally more extreme than the Inverse Redshift Incomplete-
ness degradation, and hence especially the point estimate plots
of the former show greater discrepancies than of the latter.
The overabundance of low PIT values is found to be as

expected (see Section 4). The under-representation of high PIT
values indicates that GPz is slightly too conservative with the
variances (see performance in the DC1 experiment, see
Schmidt et al. 2020).

Figure 3. Photo-z predictions with the NF data.

12 We could have run this whole analysis a large number of times to calculate
error bars but this would have been highly computationally expensive.
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Based on the summary statistics and the CDE loss for the
Emission Line Confusion, the metrics get worse quite fast from
degradations of 0.2% to about 3% and then seem relatively flat
from a degradation of 3% onwards. This shows that there are

only modest gains to be found from decreasing spec-z
contamination fraction when above ∼3%—it appears it must
be brought below ∼1%–2% for the real improvements to show
(at least for this experimental setup).

Figure 4. Plots showing the RMSE, FR15 and BIAS metrics in terms of the Percentage of Data (galaxies ranked by uncertainty on prediction, with 0 being the lowest
uncertainty) for the representative and biased samples of the two degraders.

Figure 5. Histograms of PIT values for the representative and biased data sets of the two degraders.
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Figure 6. Plots showing the PIT Summary Statistics for the two degraders.

Figure 7. Plots of the CDE loss against a gradient of degradations corresponding to the two degraders.
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We note that for the Inverse Redshift Incompleteness case,
we would potentially expect the biased set to have higher CDE
loss for lower pivot redshifts, where the bias of the training set
is stronger, and lower CDE loss at higher pivot redshift, where
the distributions are very similar. This is not observed here—
instead, the bias and the representative data show a consistent
performance outcome with low CDE loss throughout the
training set degradations (although degradation did affect the
other metrics). In other words, CDE loss appears not to be
affected by redshift incompleteness. Similar behavior is seen
for the KLD metric; Emission Line confusion impacts this
metric strongly, preventing Log KLD values below 0 from
being achieved for any galaxies, whereas for the incomplete-
ness degradation the distribution of KLD values are
comparable.

Regarding the performance sensitivity of GPz to the inverse
redshift incompleteness, we can say that above a 1.5 pivot
redshift the bias data point metrics and summary statistics are
generally good for the representative data, as expected, but they
get increasingly worse for pivot redshifts below 0.5 for the
biased data. This redshift threshold is dependent on the data set
used and hence it would likely be different if the original
sample had a different redshift and color–magnitude distribu-
tion. Nonetheless, for this and any comparable training set
distributions, we would caution on sample incompleteness
reaching below 0.5 redshift, as the impact on the relevant
metrics then starts to become very substantial.

Our results are in agreement with the findings of Cunha et al.
(2014), where the impact of incompleteness and incorrect
spectroscopic redshifts was investigated using N-body-spectro-
photometric simulations, although we study a broader range of
metrics, including evaluations of PDF quality. They also found
redshift incompleteness was potentially not as impactful as the
emission line confusion in terms of impact on photo-z estimator
performance. Cunha et al. (2014) demonstrated that incorrect
redshifts have the most severe impact on the accuracy of

photo-z estimators due to their significant degradation on the
training set. In particular, they also found that 1% is
approximately the tolerable fraction for spectroscopic line
confusion (before critically affecting cosmological biases),
which is in accordance with our results.

7. Conclusion

To simulate imperfections in spectroscopic redshift training
sets for photo-z’s estimation we used two degraders to replicate
emission line confusion and inverse redshift incompleteness.
We compared photo-z based on these biased data sets of
increasing degradation with a set of representative data (drawn
from the Buzzard Flock synthetic sky catalogs, constructed to
be comparable to Rubin-LSST), and calculated a range of
metrics that quantified how much poorer degradation of the
training data made the resulting photo-z estimates.
It is clear that, broadly, the more biased the data are, and the

larger the mismatch between the training and test set is, the
worse the metrics and the overall performance of GPz (and
likely any other ML-based photo-z estimator) is. Typically, the
emission line confusion had a much greater impact on the
metrics, with the CDE-loss and KLD metrics, in particular,
being only very weakly impacted by redshift incompleteness.
We have shown that for samples comparable to those used in

this study, the incompleteness pivot redshift (for a sample
spanning approximately 0< z< 2.3) should not reach below a
redshift of 0.5, as this greatly affects the accuracy. Similarly,
we have shown that the emission line confusion fraction may
only be worth improving if it can be reduced below 1%–2%,
since the decline in the metrics performance is dramatic after
that, but relatively flat before.
There are a large number of training set imperfection

scenarios, each of which typically will affect photo-z quality to
a greater or lesser degree, depending on the exact properties of
a specific survey. In this paper we have considered the
sensitivity of ML-based photometric redshift estimation under

Figure 8. Plots showing the KLD metric for the two degraders.
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two training set imperfection scenarios, specifically looking
toward the upcoming Rubin-LSST survey. Our results provide
an insight into the level of tolerance of training set degradation
needed for future large-scale studies, and how badly photo-z
predictions can be affected if not mitigated.
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