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Abstract— Wearable Computers are greatly advancing big 

data practices, by levering their capabilities of ubiquitous big 

data capturing and streaming. However, one critical challenge 

is the amount of data to be transmitted, which consumes too 

much energy of the battery-constrained wearable devices. 

Targeting this obstacle, we propose a novel big data pertinence 

learning approach, which can learn and extract pertinent 

patterns in wearable big data for redundancy reduction. More 

specifically, a hybrid deep learning approach based on both 

Convolutional Autoencoder and Long Short-term Memory is 

proposed, which can mine both spatial and temporal patterns in 

the data for key pattern extraction. The achieved 

spatiotemporal co-mining ability when evaluated on a real-

world motion dynamics big data application, demonstrates the 

attractive potential of pertinence extraction and redundancy 

minimization. This study is expected to greatly advance 

wearable big data practices. 
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Wearable Computer, Big Data 

 

 

I. INTRODUCTION  

Big data [1, 2] is igniting many new practices, from smart 
home, smart health to smart world [3, 4]. Wearable computers, 
leveraging their ubiquitous big data capturing and streaming 
capabilities, are playing a more and more important role in big 
data innovations. The advancements of electronics, wireless 
communications, and miniaturization technologies make the 
wearable computers more capable of capturing biomedical 
dynamics, such as physical activities and cardiac conditions 
[5]. The long-term usage of wearable computers is essential 
for capturing time-varying and diverse biomedical dynamics, 
which, at the same time, poses new challenges to the wearable 
computer deployment.  

Wearable computer is usually composed of sensing, 
wireless communication, processing, and power management 
units. The large amount of data usually requires a lot of 
communication energy and makes the long-term health 
monitoring highly challenging. Taking the physical activity 
monitoring as an example, the user may have different levels 
of fatigue and/or physical movement abilities, which usually 
makes the biomechanical dynamics fluctuate significantly 
over time. It is thus essential to continuously monitor the 
biomechanical dynamics for long-term analysis of the big 
data. This will contribute significantly to the prediction, 
diagnosis, and treatment of diseases, through leveraging big 
data-driven precision medicine.  

Deep learning [6] has nowadays advanced many areas, 
such as smart health, computer vision, and natural language 
processing [7, 8]. Deep neural networks, inspired by human 
brain, analyze the patterns layer by layer, and gradually 
achieve high-level abstractions. Deep autoencoder [9], as one 
of the mainstream deep learning architectures, can gradually 
abstract the input into a compressed data representation, and 
then decode the representation to reconstruct the original data. 
Through this encoding and decoding process, deep 
autoencoder can be used to denoise the data. Another 
impressive application is pertinence extraction, meaning that 
the compressed data representation output by the encoder can 
be used to reflect the critical patterns of the original data. 
Motivated by this, we propose to leverage deep autoencoder 
to extract the pertinent patterns of the wearable data, and only 
transmit this compressed data to the big data center for 
minimizing the transmission requirements, as shown in Fig. 1. 
Compared with the traditional methods, such as wavelet 
transform and compressed sensing [10-13], deep learning can 
more intelligently learn the complex patterns in the data for 
critical information extraction. This is because the wavelet 
transform usually uses a predefined mother wavelet as a 
template to screen and compress the data, and compressed 
sensing uses a random transformation matrix to project the 
data to a low-dimension space, while deep learning leveraged 
data-driven learning abilities to find out highly non-linear 
patterns and relationships in the data for data compression. 

In this study, we propose a novel deep spatiotemporal co-
mining approach for wearable big data pertinence learning, by 
leveraging both Convolutional Autoencoder (CAE) [9] and 
Long Short-term Memory (LSTM) [1] that are capable of 
spatial and temporal learning, respectively. More specifically, 
the fully-connected autoencoder, when equipped with the 
convolutional operators, can more effectively capture the 
spatial patterns and save number of operations. Moreover, we 
further introduce LSTM – a typical architecture of recurrent 
neural networks, to mine the temporal relationships in the 
data. The achieved LSTM-CAE deep learning architecture, 
called LSCAE, is then evaluated on a real-world physical 
activity monitoring application, to demonstrate its 
effectiveness of data pertinence learning. To the best of our 
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Fig. 1 Wearable big data pertinence learning and
transmission.
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knowledge, it is the first time to leverage spatiotemporal 
learning for wearable big data compression. 

Our major contributions are summarized as below: 

• Proposing a novel deep spatiotemporal co-mining 
approach for wearable big data pertinence learning; 

• Leveraging a hybrid deep autoencoder architecture 
based on both CAE and LSTM, for spatial and 
temporal pattern mining, respectively; 

• Evaluating the achieved LSCAE architecture on a real-
world physical activity monitoring application, and 
demonstrating its effectiveness on data pertinence 
learning. 

 

II. METHODS 

In this section, we detail the proposed spatiotemporal co-
mining architecture, LSCAE, for wearable big data pertinence 
learning. 

A. System Diagram 

A system diagram is given in Fig. 2, where the wearable 
data is firstly fed into the LSCAE encoder for big data 
pertinence extraction, and then into the decoder for original 
data reconstruction on the data center. In such a way, the data 
to be transmitted is only the extracted low-dimension 
representation.  

B. Spatiotemporal Learning 

The proposed LSCAE architecture is composed by an 
encoder and an decoder, each of which is then composed by 
the LSTM and CAE components. Here let’s detail the encoder 
of the LSCAE architecture. As shown in Fig. 2, the wearable 
data goes through LSTM and then CAE for spatial and 
temporal pattern extraction.  

The LSTM module aims to extract the temporal 
relationships in the input data segment, as defined in (1-6), 
where 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 correspond to the weighting factor of the 
memory gate, input gate, and output gate, respectively, 𝑐̃, 𝑐𝑡 
and ℎ𝑡  correspond to the pre-gated input, gated input, and 
gated output, respectively, 𝜎, 𝑊, 𝑈 and 𝑏 correspond to the 

activation function, neural weights for input, neural weights 
for gated output at last moment, and bias respectively, and 𝑥𝑡 
is the input at the current moment. 𝑊, 𝑈, and 𝑏 are learnable 
parameters during the training phase, and ℎ𝑡  is the hidden 
state generated by the LSTM neurons. 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)    (1) 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)   (2) 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)   (3) 

𝑐̃ = 𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)   (4) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐̃    (5) 

ℎ𝑡 = 𝑜𝑡𝜎ℎ(𝑐𝑡)    (6) 

In such a way, the LSTM module learns to capture the 
relationships in the temporal data, by controlling the input, 
memory and output intelligently. The output is then fed into 
CAE, where, as shown in Fig. 2, the patterns are gradually 
compressed into a short vector.  

The overall LSCAE can be summarized as (7-8), where 

the input signal segment 𝑋 is encoded as 𝑋̿ – a compressed 
data representation that reflects critical patterns, and 

afterwards, 𝑋̿ is decoded as the estimate of the input, 𝑋̂. 𝑋̂ is 
expected to maintain the critical patterns of the original signal 
segment. Therefore, the LSCAE architecture, through 
learning spatiotemporal patterns for pertinence extraction, and 
reconstructing the original signal on the receiver side, can 
effectively compress the wearable big data for transmission 
effort minimization.  

𝑋̿ = 𝐿𝑆𝐶𝐴𝐸_𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋)   (7) 

𝑋̂ = 𝐿𝑆𝐶𝐴𝐸_𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑋̿)   (8) 

C. Deep Learning Architectures 

Multiple deep learning architectures have been designed 
and evaluated in this study. The depth of CAE in the encoder 
has been selected as 2 and 4, respectively. For each depth, the 
number of feature maps is chosen as 2 and 6, respectively 
(except last stage, which has one feature map). The max 

 

Fig. 2 The proposed novel deep LSTM-CAE spatiotemporal co-mining architecture, named as LSCAE, for
wearable big data pertinence learning.
Notes. LSTM: long short-term memory; CAE: convolutional autoencoder.

LSTM CAE CAE LSTM



pooling size is set as 2, and the convolutional size is 5. The 
output dimension of LSTM in the encoder is set to be 1 to 
minimize the computation requirement. The decoder is the 
reversed encoder, to gradually increase the dimension and 
reconstruct the original data. 

 

III. RESULTS 

We here detail the experimental design, evaluation results 
and analysis, to demonstrate the effectiveness of the proposed 
LSCAE architecture. 

A. Experimental Design 

A real-world physical activity monitoring database [14] is 
used for the evaluation of LSCAE. Five subjects with 
complete data are chosen, and the Treadmill-Slop-Walking 
activity is used in the evaluation. The X-axis of the 
accelerometer signal is used for minimizing the power of the 
wearable application. Each recording has 78080 samples with 
a sampling rate of 128 Hz, and the segmentation length is 128 
that results in 610 instances (seconds) per subject. The data is 
split into 90% and 10%, for training and testing, respectively. 
One thing is note is that we have selected one activity type that 
was repeated performed by the subjects, to demonstrate the 
effectiveness of LACAE, but at the same time, the proposed 
framework can also be generalized to other physical activities 
types, and other signal modalities. A signal segment is given 
in Fig. 3, which indicates that the biomechanical dynamics are 
time-varying. 

 

B. Learning Process 

To demonstrate the learning process, Fig. 4 gives the 
training process of the proposed LSCAE. The curve converges 
effectively after 100 epochs, indicating that the network has 
well learned the patterns in the data. Deep learning, although 
it has complex computation process, owns a good landscape 
of solutions. It means that the optimization algorithm usually 
can find good solutions in the searching process [15]. The 
advantage of this learning process is data-driven, and no 
manual feature engineering is required, as compared to the 
traditional signal processing algorithms. 

C. Reconstruction Performance  

To demonstrate the performance of LSCAE, Fig. 5 
illustrates the reconstructed signals for different compression 
ratios. In Fig. 5(a), the LSCAE depth is 2 (compression ratio 
is 4), and increasing the number of feature maps has non-
significant impacts of the reconstruction performance. With 
deeper LSCAE, higher compression ratio is obtained with 
some drop of the reconstruction performance. When 
increasing the depth to 4 (compression ratio is 16) in Fig. 5(b), 
6 feature maps (FM6) is better than 2(FM2), in terms of signal 
reconstruction. This is due to the fact that FM6 can capture 
more patterns from the original data and thus generate better 
data pertinence in the compressed representation. This 

Fig. 3 The biomechanical dynamics during physical 

movements. X-axis of the accelerometer signal is 

visualized. 

Fig. 4 The learning curve showing a good converges 

trend. 

Fig. 5 The reconstructed signals at LSCAE depth 2 (a) 

and 4 (b), respectively, indicating that more feature 

maps (FM6) improve the performance compared 

than less feature maps (FM2). Overall, the signals are 

well reconstructed. 

Notes. FM: feature map.  



indicates that, when choosing a higher compression ratio, the 
number of features can contribute to the reconstruction 
performance.  

D. Performance Summary 

TABLE I.  PERFORMANCE SUMMARY 

 

Further performance summary is given Table I. When 
LSCAE depth is 2 and #FM is 6, the root mean square error 
(RMSE) is 0.041, better than that of FM2. Similarly, more 
feature maps also improve the performance when depth is 4. 
The systematic design of the deep LSCAE architecture is thus 
needing the co-consideration of all these crucial design 
parameters.  

E. Future Studies 

Future studies may include further optimization of the 
LSCAE architecture, as well more evaluations using the real-
world applications. Besides, multiple design parameters, 
including depth, feature map, convolutional size, and LSTM 
dimensions, are also of interest, and the comprehensive design 
principles will facilitate the performance improvement. It is 
also interesting to compare with other methods like wavelet 
transform and compressed sensing [16-18], to further evaluate 
the intelligent compression ability of the proposed LSCAE 
framework.  

 

IV. CONCLUSION 

We have proposed and evaluated a novel deep 
spatiotemporal co-learning architecture, for wearable big data 
pertinence learning. The proposed LSCAE architecture owns 
an encoder for data pertinence extraction and a decoder for 
original data reconstruction. More specifically, the encoder 
firstly abstracts the temporal patterns using LSTM and then 
abstracts spatial patterns using CAE. The achieved LSTM-
CAE encoder can thus learn both temporal and spatial 
patterns. The CAE-LSTM decoder on the data center can then 
reconstruct the data from the compressed data representation. 
The LSCAE architecture has been evaluated on the real-world 
physical activity monitoring application, and demonstrated its 
effectiveness on critical pattern extraction. It will be 
interesting to further investigate lightweight LACAE 
architectures for easy deployment on the wearable devices. 
This study will greatly advance wearable and other related big 
data applications.  

 

V. ACKNOWLEDGEMENT 

This material is based upon work supported by the 
National Science Foundation CAREER Award 2047849. Any 

opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science 
Foundation. 

 

REFERENCES 

[1] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin, "Variational LSTM 
enhanced anomaly detection for industrial big data," IEEE 
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3469-3477, 
2020. 

[2] Z. Lv and L. Qiao, "Analysis of healthcare big data," Future 
Generation Computer Systems, vol. 109, pp. 103-110, 2020. 

[3] Q. Zhang, D. Arney, J. M. Goldman, E. M. Isselbacher, and A. A. 
Armoundas, "Design Implementation and Evaluation of a Mobile 
Continuous Blood Oxygen Saturation Monitoring System," Sensors, 
vol. 20, no. 22, p. 6581, 2020. 

[4] Q. Zhang, V. Piuri, E. A. Clancy, D. Zhou, T. Penzel, and W. W. Hu, 
"IEEE Access Special Section Editorial: Advanced Information 
Sensing and Learning Technologies for Data-Centric Smart Health 
Applications," IEEE Access, vol. 9, pp. 30404-30407, 2021. 

[5] Q. Zhang, X. Zeng, W. Hu, and D. Zhou, "A Machine Learning-
empowered System for Long-term Motion-tolerant Wearable 
Monitoring of Blood Pressure and Heart Rate with Ear-ECG/PPG," 
IEEE Access, vol. 5, pp. 10547-10561, 2017. 

[6] A. Esteva et al., "A guide to deep learning in healthcare," Nature 
medicine, vol. 25, no. 1, pp. 24-29, 2019. 

[7] R. D. Deshmukh and A. Kiwelekar, "Deep learning techniques for part 
of speech tagging by natural language processing," in 2020 2nd 
International Conference on Innovative Mechanisms for Industry 
Applications (ICIMIA), 2020: IEEE, pp. 76-81.  

[8] H. Zhu, W. Wang, and R. Leung, "SAR target classification based on 
radar image luminance analysis by deep learning," IEEE Sensors 
Letters, vol. 4, no. 3, pp. 1-4, 2020. 

[9] B. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, "Convolutional 
autoencoder for spectral–spatial hyperspectral unmixing," IEEE 
Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 
535-549, 2020. 

[10] A. Maalej, M. Ben-Romdhane, M. Tlili, F. Rivet, D. Dallet, and C. 
Rebai, "On the wavelet-based compressibility of continuous-time 
sampled ECG signal for e-health applications," Measurement, vol. 164, 
p. 108031, 2020. 

[11] A. M. Rateb, "A fast compressed sensing decoding technique for 
remote ecg monitoring systems," IEEE Access, vol. 8, pp. 197124-
197133, 2020. 

[12] V. Izadi, P. K. Shahri, and H. Ahani, "A compressed-sensing-based 
compressor for ECG," Biomedical engineering letters, vol. 10, no. 2, 
pp. 299-307, 2020. 

[13] S. Chandra, A. Sharma, and G. Singh, "A comparative analysis of 
performance of several wavelet based ECG data compression 
methodologies," IRBM, vol. 42, no. 4, pp. 227-244, 2021. 

[14] S. Khandelwal and N. Wickström, "Evaluation of the performance of 
accelerometer-based gait event detection algorithms in different real-
world scenarios using the MAREA gait database," Gait & posture, vol. 
51, pp. 84-90, 2017. 

[15] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 
521, no. 7553, pp. 436-444, 2015. 

[16] Transform and Huffman Encoding," in 2021 7th International 
Conference on Contemporary Information Technology and 
Mathematics (ICCITM), 2021: IEEE, pp. 75-81.  

[17] R. S. Istepanian and A. A. Petrosian, "Optimal zonal wavelet-based 
ECG data compression for a mobile telecardiology system," IEEE 
Transactions on Information Technology in Biomedicine, vol. 4, no. 3, 
pp. 200-211, 2000. 

[18] C.-T. Ku, K.-C. Hung, T.-C. Wu, and H.-S. Wang, "Wavelet-based ECG 
data compression system with linear quality control scheme," IEEE 
Transactions on Biomedical Engineering, vol. 57, no. 6, pp. 1399-
1409, 2010. 

 
 

 

 

 

 

Depth #FM RMSE 

2 
2 0.079 

6 0.041 

4 
2 0.163 

6 0.149 


