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Abstract— Wearable Computers are greatly advancing big
data practices, by levering their capabilities of ubiquitous big
data capturing and streaming. However, one critical challenge
is the amount of data to be transmitted, which consumes too
much energy of the battery-constrained wearable devices.
Targeting this obstacle, we propose a novel big data pertinence
learning approach, which can learn and extract pertinent
patterns in wearable big data for redundancy reduction. More
specifically, a hybrid deep learning approach based on both
Convolutional Autoencoder and Long Short-term Memory is
proposed, which can mine both spatial and temporal patterns in
the data for key pattern extraction. The achieved
spatiotemporal co-mining ability when evaluated on a real-
world motion dynamics big data application, demonstrates the
attractive potential of pertinence extraction and redundancy
minimization. This study is expected to greatly advance
wearable big data practices.
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I. INTRODUCTION

Big data [1, 2] is igniting many new practices, from smart
home, smart health to smart world [3, 4]. Wearable computers,
leveraging their ubiquitous big data capturing and streaming
capabilities, are playing a more and more important role in big
data innovations. The advancements of electronics, wireless
communications, and miniaturization technologies make the
wearable computers more capable of capturing biomedical
dynamics, such as physical activities and cardiac conditions
[5]. The long-term usage of wearable computers is essential
for capturing time-varying and diverse biomedical dynamics,
which, at the same time, poses new challenges to the wearable
computer deployment.

Wearable computer is usually composed of sensing,
wireless communication, processing, and power management
units. The large amount of data usually requires a lot of
communication energy and makes the long-term health
monitoring highly challenging. Taking the physical activity
monitoring as an example, the user may have different levels
of fatigue and/or physical movement abilities, which usually
makes the biomechanical dynamics fluctuate significantly
over time. It is thus essential to continuously monitor the
biomechanical dynamics for long-term analysis of the big
data. This will contribute significantly to the prediction,
diagnosis, and treatment of diseases, through leveraging big
data-driven precision medicine.
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Fig. 1 Wearable big data pertinence learning and
transmission.

Deep learning [6] has nowadays advanced many areas,
such as smart health, computer vision, and natural language
processing [7, 8]. Deep neural networks, inspired by human
brain, analyze the patterns layer by layer, and gradually
achieve high-level abstractions. Deep autoencoder [9], as one
of the mainstream deep learning architectures, can gradually
abstract the input into a compressed data representation, and
then decode the representation to reconstruct the original data.
Through this encoding and decoding process, deep
autoencoder can be used to denoise the data. Another
impressive application is pertinence extraction, meaning that
the compressed data representation output by the encoder can
be used to reflect the critical patterns of the original data.
Motivated by this, we propose to leverage deep autoencoder
to extract the pertinent patterns of the wearable data, and only
transmit this compressed data to the big data center for
minimizing the transmission requirements, as shown in Fig. 1.
Compared with the traditional methods, such as wavelet
transform and compressed sensing [10-13], deep learning can
more intelligently learn the complex patterns in the data for
critical information extraction. This is because the wavelet
transform usually uses a predefined mother wavelet as a
template to screen and compress the data, and compressed
sensing uses a random transformation matrix to project the
data to a low-dimension space, while deep learning leveraged
data-driven learning abilities to find out highly non-linear
patterns and relationships in the data for data compression.

In this study, we propose a novel deep spatiotemporal co-
mining approach for wearable big data pertinence learning, by
leveraging both Convolutional Autoencoder (CAE) [9] and
Long Short-term Memory (LSTM) [1] that are capable of
spatial and temporal learning, respectively. More specifically,
the fully-connected autoencoder, when equipped with the
convolutional operators, can more effectively capture the
spatial patterns and save number of operations. Moreover, we
further introduce LSTM — a typical architecture of recurrent
neural networks, to mine the temporal relationships in the
data. The achieved LSTM-CAE deep learning architecture,
called LSCAE, is then evaluated on a real-world physical
activity monitoring application, to demonstrate its
effectiveness of data pertinence learning. To the best of our



knowledge, it is the first time to leverage spatiotemporal
learning for wearable big data compression.

Our major contributions are summarized as below:

e Proposing a novel deep spatiotemporal co-mining
approach for wearable big data pertinence learning;

e Ieveraging a hybrid deep autoencoder architecture
based on both CAE and LSTM, for spatial and
temporal pattern mining, respectively;

o Evaluating the achieved LSCAE architecture on a real-
world physical activity monitoring application, and
demonstrating its effectiveness on data pertinence
learning.

II. METHODS

In this section, we detail the proposed spatiotemporal co-
mining architecture, LSCAE, for wearable big data pertinence
learning.

A. System Diagram

A system diagram is given in Fig. 2, where the wearable
data is firstly fed into the LSCAE encoder for big data
pertinence extraction, and then into the decoder for original
data reconstruction on the data center. In such a way, the data
to be transmitted is only the extracted low-dimension
representation.

B. Spatiotemporal Learning

The proposed LSCAE architecture is composed by an
encoder and an decoder, each of which is then composed by
the LSTM and CAE components. Here let’s detail the encoder
of the LSCAE architecture. As shown in Fig. 2, the wearable
data goes through LSTM and then CAE for spatial and
temporal pattern extraction.

The LSTM module aims to extract the temporal
relationships in the input data segment, as defined in (1-6),
where f;, i;, and o; correspond to the weighting factor of the
memory gate, input gate, and output gate, respectively, ¢, ¢,
and h, correspond to the pre-gated input, gated input, and
gated output, respectively, o, W, U and b correspond to the
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activation function, neural weights for input, neural weights
for gated output at last moment, and bias respectively, and x;
is the input at the current moment. W, U, and b are learnable
parameters during the training phase, and h; is the hidden
state generated by the LSTM neurons.
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In such a way, the LSTM module learns to capture the
relationships in the temporal data, by controlling the input,
memory and output intelligently. The output is then fed into
CAE, where, as shown in Fig. 2, the patterns are gradually
compressed into a short vector.

The overall LSCAE can be summarized as (7-8), where
the input signal segment X is encoded as X — a compressed
data representation that reflects critical patterns, and
afterwards, X is decoded as the estimate of the input, X. X is
expected to maintain the critical patterns of the original signal
segment. Therefore, the LSCAE architecture, through
learning spatiotemporal patterns for pertinence extraction, and
reconstructing the original signal on the receiver side, can
effectively compress the wearable big data for transmission
effort minimization.

X = LSCAE _encoder(X) (7)
X = LSCAE _decoder(X) 8)

C. Deep Learning Architectures

Multiple deep learning architectures have been designed
and evaluated in this study. The depth of CAE in the encoder
has been selected as 2 and 4, respectively. For each depth, the
number of feature maps is chosen as 2 and 6, respectively
(except last stage, which has one feature map). The max
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Fig. 2 The proposed novel deep LSTM-CAE spatiotemporal co-mining architecture, named as LSCAE, for

wearable big data pertinence learning.

Notes. LSTM: long short-term memory; CAE: convolutional autoencoder.
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Fig. 3 The biomechanical dynamics during physical
movements. X-axis of the accelerometer signal is
visualized.

pooling size is set as 2, and the convolutional size is 5. The
output dimension of LSTM in the encoder is set to be 1 to
minimize the computation requirement. The decoder is the
reversed encoder, to gradually increase the dimension and
reconstruct the original data.

III.  RESULTS

We here detail the experimental design, evaluation results
and analysis, to demonstrate the effectiveness of the proposed
LSCAE architecture.

A. Experimental Design

A real-world physical activity monitoring database [14] is
used for the evaluation of LSCAE. Five subjects with
complete data are chosen, and the Treadmill-Slop-Walking
activity is used in the evaluation. The X-axis of the
accelerometer signal is used for minimizing the power of the
wearable application. Each recording has 78080 samples with
a sampling rate of 128 Hz, and the segmentation length is 128
that results in 610 instances (seconds) per subject. The data is
split into 90% and 10%, for training and testing, respectively.
One thing is note is that we have selected one activity type that
was repeated performed by the subjects, to demonstrate the
effectiveness of LACAE, but at the same time, the proposed
framework can also be generalized to other physical activities
types, and other signal modalities. A signal segment is given
in Fig. 3, which indicates that the biomechanical dynamics are
time-varying.

B. Learning Process

To demonstrate the learning process, Fig. 4 gives the
training process of the proposed LSCAE. The curve converges
effectively after 100 epochs, indicating that the network has
well learned the patterns in the data. Deep learning, although
it has complex computation process, owns a good landscape
of solutions. It means that the optimization algorithm usually
can find good solutions in the searching process [15]. The
advantage of this learning process is data-driven, and no
manual feature engineering is required, as compared to the
traditional signal processing algorithms.
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Fig. 4 The learning curve showing a good converges
trend.

C. Reconstruction Performance

To demonstrate the performance of LSCAE, Fig. 5
illustrates the reconstructed signals for different compression
ratios. In Fig. 5(a), the LSCAE depth is 2 (compression ratio
is 4), and increasing the number of feature maps has non-
significant impacts of the reconstruction performance. With
deeper LSCAE, higher compression ratio is obtained with
some drop of the reconstruction performance. When
increasing the depth to 4 (compression ratio is 16) in Fig. 5(b),
6 feature maps (FM6) is better than 2(FM2), in terms of signal
reconstruction. This is due to the fact that FM6 can capture
more patterns from the original data and thus generate better
data pertinence in the compressed representation. This
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Fig. 5 The reconstructed signals at LSCAE depth 2 (a)
and 4 (b), respectively, indicating that more feature
maps (FM6) improve the performance compared
than less feature maps (FM2). Overall, the signals are
well reconstructed.
Notes. FM: feature map.



indicates that, when choosing a higher compression ratio, the
number of features can contribute to the reconstruction
performance.

D. Performance Summary

TABLE L. PERFORMANCE SUMMARY
Depth #FM RMSE
5 2 0.079
6 0.041
2 0.163
4
6 0.149

Further performance summary is given Table I. When
LSCAE depth is 2 and #FM is 6, the root mean square error
(RMSE) is 0.041, better than that of FM2. Similarly, more
feature maps also improve the performance when depth is 4.
The systematic design of the deep LSCAE architecture is thus
needing the co-consideration of all these crucial design
parameters.

E. Future Studies

Future studies may include further optimization of the
LSCAE architecture, as well more evaluations using the real-
world applications. Besides, multiple design parameters,
including depth, feature map, convolutional size, and LSTM
dimensions, are also of interest, and the comprehensive design
principles will facilitate the performance improvement. It is
also interesting to compare with other methods like wavelet
transform and compressed sensing [16-18], to further evaluate
the intelligent compression ability of the proposed LSCAE
framework.

IV. CONCLUSION

We have proposed and evaluated a novel deep
spatiotemporal co-learning architecture, for wearable big data
pertinence learning. The proposed LSCAE architecture owns
an encoder for data pertinence extraction and a decoder for
original data reconstruction. More specifically, the encoder
firstly abstracts the temporal patterns using LSTM and then
abstracts spatial patterns using CAE. The achieved LSTM-
CAE encoder can thus learn both temporal and spatial
patterns. The CAE-LSTM decoder on the data center can then
reconstruct the data from the compressed data representation.
The LSCAE architecture has been evaluated on the real-world
physical activity monitoring application, and demonstrated its
effectiveness on critical pattern extraction. It will be
interesting to further investigate lightweight LACAE
architectures for easy deployment on the wearable devices.
This study will greatly advance wearable and other related big
data applications.
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