Edge-SLAM: Edge-Assisted Visual Simultaneous Localization
and Mapping

ALl J. BEN ALI, Binghamton University, USA
MARZIYE KOUROSHLI, University at Buffalo, USA
SOFIYA SEMENOVA, University at Buffalo, USA
ZAKIEH SADAT HASHEMIFAR, Zoox, USA
STEVEN Y. KO, Simon Fraser University, Canada
KARTHIK DANTU, University at Buffalo, USA

Localization in urban environments is becoming increasingly important and used in tools such as ARCore [18],
ARK:it [34] and others. One popular mechanism to achieve accurate indoor localization and a map of the space
is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to
be resource-intensive in memory and processing time. Further, some of the operations grow in complexity
over time, making it challenging to run on mobile devices continuously. Edge computing provides additional
compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen
when offloading to the cloud.

In this paper, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-
SLAM. We use ORB-SLAM2 [50] as a prototypical Visual-SLAM system and modify it to a split architecture
between the edge and the mobile device. We keep the tracking computation on the mobile device and move
the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices
in this effort and implement them in our prototype. Our results show that our split architecture can allow the
functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of
operation. It also keeps the computation and memory cost on the mobile device constant, which would allow
for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and
resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed
split architecture.

CCS Concepts: « Computer systems organization — Cloud computing; Client-server architectures;
Embedded systems; Real-time system architecture; - Human-centered computing — Ubiquitous
and mobile computing; - Computing methodologies — Multi-agent systems; Computer vision.

Additional Key Words and Phrases: visual simultaneous localization and mapping, edge computing, split
architecture, mobile systems, localization, mapping, concurrency

1 INTRODUCTION

Advances in sensing, computing, communication and actuation are bringing in a new set of mobile
devices into our daily lives. Service robots operate in our homes cleaning our spaces and delivering
condiments in hotels. Augmented reality apps on smart phones allow us to navigate in indoor
environments, provide visualizations of spatial reconfigurations without actually doing it, or play
games in the real world by augmenting it with virtual objects. Augmented reality glasses are used
for collaboration across the globe. There are many more envisioned applications, including better
seamlessness via mixed reality as well as telepresence using robots. Most of these applications
rely on sensing spatial context, in particular spatial localization and place recognition indoors in
GPS-denied scenarios.

Authors’ addresses: Ali J. Ben Ali, abenali@binghamton.edu, Binghamton University, 4400 Vestal Parkway East, Binghamton,
New York, USA, 13902; Marziye Kouroshli, marziye kouroshli@gmail.com, University at Buffalo, 106 Davis Hall, Buffalo,
New York, USA, 14260; Sofiya Semenova, sofiyase@buffalo.edu, University at Buffalo, 106 Davis Hall, Buffalo, New York,
USA, 14260; Zakieh Sadat Hashemifar, zhashemifar@zoox.com, Zoox, 1149 Chess Drive, Foster City, California, USA, 94404;
Steven Y. Ko, steveyko@sfu.ca, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A1S6;
Karthik Dantu, kdantu@buffalo.edu, University at Buffalo, 106 Davis Hall, Buffalo, New York, USA, 14260.

HTTPS://ORCID.ORG/0000-0001-6295-764X
https://orcid.org/0000-0001-6295-764X

2 Ben Alj, et al.

Spatial sensing has been a research topic for several decades. Depending on the application, there
are several modalities of spatial sensing. Examples include (i) place recognition which takes a sensor
snapshot (an image from a camera, for example) of a location and matches it with known locations
from prior measurements, (ii) tracking or estimation of the path followed by the mobile device from
a starting point e.g. odometry, and (iii) localization which is the absolute positioning of a mobile
device with respect to known landmarks. Each of these classes of sensing is useful for various
applications and has tradeoffs in terms of computational complexity as well as utility. More recently,
Simultaneous Localization and Mapping (SLAM) has evolved as a class of algorithms useful for
accurate spatial context. It is the process of localizing a mobile device with respect to an absolute
coordinate system as well as mapping the traversed space with respect to the same coordinate
system. In particular, there has been much recent interest in using visual sensing (cameras, depth
sensors, LIDARs) for SLAM leading to several Visual-SLAM algorithms.

Typical Visual-SLAM algorithms perform three main tasks. First, as the mobile device is moving,
the algorithm performs a frame-frame alignment. This is the process of relating the pose of the
mobile device that captured frame (image) k with the pose when capturing frame k+1. Usually, this
is achieved by detecting features in each frame and finding feature correspondence between the
two frames. The second step is to perform map adjustments locally. This step involves adjusting the
frame-frame alignment performed in step 1 and identifying "KeyFrames" or frames of significance
to be used in step 3. Finally, step 3 is loop closing, or the ability of the algorithm to identify when
the mobile device is back at a location that it has previously visited. This step requires the algorithm
to compare the new frame with all previous frames to identify matches. A challenge with this
task is the growing complexity of this task as the map grows. A typical solution to alleviate this
problem is the use of KeyFrames identified in step 2 for these comparisons, and not compare the
new frame with all previous frames. Other algorithms limit the number of comparisons to a subset
of frames by various methods [22] such as the use of a short-term and long-term memory [39], or
clustering using other sensing [28]. However, most of these solutions perform a tradeoff of accuracy
to computational complexity that leads to mixed results.

Recently, there has been much excitement in edge computing architectures [43, 57, 58, 60]. Such
an architecture advocates for the use of edge computing resources, typically relatively local to the
mobile device and one hop over the local network away, to alleviate some of the computational
tasks on mobile devices. In this work, we use edge computing resources to improve Visual-SLAM.
To this end, we make the following contributions:

e We adapt ORB-SLAM2 [50], a popular Visual-SLAM system, to the edge computing archi-
tecture. Our system is called Edge-SLAM.

e Our design accomplishes this adaptation by designing a novel data structure called Local-
Map. This mapping structure allows us to decouple the Tracking and Local-Mapping tasks,
thereby improving Local-Mapping and Loop-Closing efficiency without compromising the
functionality of the Tracking module.

e We evaluate Edge-SLAM on a prototypical mobile device using two large custom datasets
as well as two open-source datasets (TUM [33]).

e We improve the map update implementation on the mobile device to perform faster updates
and smoother tracking. These improvements reduce the map update reconstruction latency
on the mobile device by 19% compared to the original Edge-SLAM [7] implementation.

e Implement a map update controller interface on the mobile device to provide control over
the updates to the user and/or motion planner algorithm. Such interface has significantly
improved experimentations with Edge-SLAM by reducing the chances of losing track due
to previously known scenarios such as sharp turns.

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 3

Visual-SLAM }gﬂw Full Map

Real-World

| Edge-SLAM | P;::j

Real-World

Full Map |

Fig. 1. Visual-SLAM vs. Edge-SLAM. An augmented reality device running Visual-SLAM (top), and an
augmented reality device running Edge-SLAM in collaboration with an edge device in the environment
(bottom) [1-3, 33, 50]

e We perform a complete resource usage analysis including CPU, memory, and network
(latency and bandwidth) usage as well as power consumption.

e We open-source our Edge-SLAM implementation’ allowing other practitioners to compare
with our system.

Our results show that Edge-SLAM architecture is a good way to distribute Visual-SLAM compu-
tation between the edge and the mobile device. Figure 1 shows the difference between a current
Visual-SLAM system and Edge-SLAM when run on a mobile device. The mobile device in Edge-
SLAM works with a partial map of the environment and is assisted by an edge device. In addition
to performance, there are several additional benefits in deploying Visual-SLAM in the edge com-
puting paradigm such as control of map complexity, privacy, concurrency as well as reasoning with
dynamics. We hope to study these ideas in future work.

2 RELATED WORK
2.1 Edge/Cloud Offloading

The area of edge computing has been the topic of research for the last decade [43, 57, 58, 60].
It proposes a paradigm with sizeable computing and storage resources placed at the edges of
the Internet closer to mobile and IoT devices that generate a lot of data. The idea is to utilize
computing and storage closer to the sensors to improve processing latency while not burdening
the resource-scarce devices.

There has been some work on offloading tasks from mobile devices to the edge/cloud previously.
MAUI [17] and CloneCloud [14] perform cloud offloading of tasks at various granularities. MAR-
VEL [11], VisualPrint [36] and [41] present application-specific techniques for offloading to the

!https://droneslab.github.io/edgeslam/

https://droneslab.github.io/edgeslam/

4 Ben Alj, et al.

edge or the cloud. These papers work on decreasing offload latency or masking it from the end
user in time-sensitive applications.

In the cloud robotics area, several studies have looked into simplifying the integration between
the robots and the cloud. Rapyuta [47] is a cloud platform to enable computation offloading for
robots. [5] proposes a multi-query motion planning system that uses serverless functions on the
cloud. [13] offers an offloading strategy using deep reinforcement learning to help a robot make an
informed decision on when it is best to offload a computation. PoundCloud [44] is a communication
framework to simplify the integration of robots and the cloud. DewROS [8] is a communication
architecture to distribute the computation among the robot, the network device, and the cloud.

2.2 Simultaneous Localization and Mapping (SLAM)

Simultaneous localization and mapping (SLAM) has been a topic of research in robotics and mobile
systems for several decades [6, 20, 61]. Initial research focused on depth sensors such as sonar [23]
and 2-D LiDAR [16, 19]. Other sensors such as Wi-Fi signal strength have been used for SLAM as
well [24, 31, 46].

Visual-SLAM has grown rapidly in the last decade [22, 30]. This includes the use of RGB cameras,
RGB-D cameras, and LiDAR sensors. Systems such as PTAM [37], DTAM [52], LSD-SLAM [21]
used monocular cameras for SLAM. A recent trend has been the use of color images with depth
images, as well as using point and line features [53, 69]. Some more well-known Visual-SLAM
examples include RGBD-SLAM [22], RTAB-Map [39], ORB-SLAM [10, 49, 50], and VINS-Mono [54].
They build on initial work from systems such as Kinect Fusion [51], and Kintinuous [64] that
first used RGB-D sensors for 3-D modeling of environments. Current trends improve on basic
Visual-SLAM by reasoning about semantics [27, 29, 67], reasoning about object permanence in
maps [26], and introducing deep learning techniques to replace or augment various parts of the
traditional Visual-SLAM pipeline [45, 62].

More recently, there is increased interest in the use of multiple sensors to perform SLAM. [63]
combines event camera frames, traditional camera images, and IMU sensor data for accurate visual
SLAM in high dynamic range and low light scenes. Several recent works combine Wi-Fi with visual
sensing for improved SLAM. In [35], they model Wi-Fi signal strength using a Gaussian process
and use it for finding an initial seed estimate of the robot’s location which is then refined with
RGB-D data. [55] utilizes a training phase for Wi-Fi modeling and then applies particle filters for
fusing different sensors. [28] provided a general way to integrate wireless signal strength from
Wi-Fi APs to Visual-SLAM algorithms. [4] uses a Wi-Fi map to merge multiple visual maps from
multiple agents.

2.3 Collaborative SLAM

Collaborative SLAM has been explored in recent works through combining edge/cloud computing
with SLAM systems in different ways. [59] built a collaborative monocular SLAM on top of ORB-
SLAM2 [50] for Unmanned Aerial Vehicles (UAVs). The system runs a smaller version of ORB-SLAM2
(Tracking thread and Local-Mapping thread) on every UAV, to maintain and optimize a limited local
map independently, and runs place recognition and map fusion on a centralized server, to merge and
optimize the UAVs local maps into a global map. This study focuses on enabling collaborative SLAM
on multiple UAVs. Whereas Edge-SLAM addresses the increasing resource usage (compute, storage,
etc.) of Visual-SLAM on mobile devices by splitting the Visual-SLAM pipeline between a mobile
device and an edge device. [25] presents a mapping framework for Micro Arial Vehicles (MAVs).
It consists of one-way communication between multiple MAVs and a server. Every MAV extracts
features, estimates relative-motion, and then sends the information to the server to build a separate
map and detect loops, as well as merge the MAVs maps. This framework does not maintain a local

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 5

map on the MAVs and runs the SLAM pipeline on the server. In Edge-SLAM, the system maintains a
local and global map by splitting Visual-SLAM pipeline between a mobile device and an edge device.
[56] describes C2TAM which is a collaborative SLAM framework that is built on top of PTAM [37].
This system keeps PTAM’s Tracking thread on the client and moves PTAM’s mapping thread to
the cloud. The client sends new KeyFrames to the server, while the server sends the full map to the
client after every optimization. Such a mechanism has the potential of causing the client to run out
of memory and generate increasing network traffic as the map size gets bigger. Edge-SLAM keeps
memory and network usage under control by only maintaining a local map on the client instead
of a global map. In [40], the authors present CORB-SLAM, which is a multi-robot SLAM system
built on top of ORB-SLAM2 [50]. CORB-SLAM runs on multiple robots and a centralized server.
Every robot runs an instance of ORB-SLAM2 to build a map of its environment and sends it to the
server. The server merges the maps received from robots and feed the complete merged map back
to every robot. Sending back the full map to the client can cause the same memory and network
issues mentioned for C2TAM. [48] presents a collaborative mapping system using robots. In this
system, each robot maintains a local map and sends a copy of that map to the cloud. The cloud
merges and optimizes the local maps received from the robots into a global map. The cloud would
then push to each robot an optimized version of its local map. Collaborative SLAM studies might
have some overlap with what we do; however, there are differences between the approaches as
well as the goals. Most collaborative SLAM works focus on building an accurate joint global map
from smaller maps built by individual robots. Their architecture has no computation offloading;
in these systems, multiple agents run independently to map an area. Therefore, they will likely
not be comparable in resource use to Edge-SLAM. Building a global map from smaller maps has
other sources of error beyond what Edge-SLAM does. Thus, comparing Edge-SLAM with these
systems would not be an apples-to-apples comparison of the functioning of the two pipelines. [15]
introduces a decentralized Visual-SLAM system through the integration of multiple decentralized
SLAM components. However, unlike Edge-SLAM and the previously discussed work, their system
does not depend on a singular, central edge or cloud device.

2.4 SLAM Offloading

Some studies have run the entire SLAM pipeline on the cloud. FogRos [12] and FogRos2 [32]
are cloud platforms to enable deploying robot systems on the cloud. They were used to deploy
ORB-SLAM2 on the cloud. For this, a robot was used to transfer camera frames to the cloud. On
the cloud, the full ORB-SLAM2 pipeline was running to build and maintain a map of the robot
environment. Few recent studies have considered splitting the SLAM pipeline between a mobile
device and an edge or a cloud device. One such study is edgeSLAM [66], which addressed offloading
Visual-SLAM to the edge. In this study, the authors propose an edge-assisted monocular SLAM
system built on top of ORB-SLAM [49]. At a high level, their goal is similar to our work. However,
examining it closely reveals significant differences in design and implementation. The authors made
offloading decisions by looking at the internal pieces of ORB-SLAM modules and not by looking at
each module as one piece. Further, the authors incorporated a semantic segmentation algorithm into
their system for improved accuracy. Unlike us, the focus of this study is not on resource constraints
on mobile devices. Correspondingly, their design does not address relocalization, and their study
does not measure resource usage (CPU, memory, network, and power) or overhead of synchronizing
the edge and mobile devices. Further, incorporating semantic segmentation makes their design
harder to generalize across other Visual-SLAM systems. Another study, CloudSLAM [65], proposes
a split architecture for cloud-assisted Visual-SLAM system for autonomous driving. This study
aims to minimize network usage of the system while preserving an acceptable level of consistency
between the vehicle and the edge device. The authors claim that the level of consistency in the

6 Ben Alj, et al.

Global-Map

Tracking Module Local-Mapping Module Loop-Closing Module

Feature KeyFrame Loop
Detection Processing Detection
Frame-Frame Local Bundle
Alignment Adjustment
Create KeyFrame Global Bundle
KeyFrame? Culling Adjustment

Fig. 2. Architecture of a typical Visual-SLAM system [2]

Loop
Correction

system is enough to calculate an accurate trajectory. In contrast, Edge-SLAM is built on top of
ORB-SLAM2 [50] (improved version of ORB-SLAM) and incorporates all aspects of Visual-SLAM
including relocalization as well as ability to work with monocular, stereo and RGB-D cameras. Our
design and implementation focus on resource usage (CPU, memory, network, and power) on the
mobile device, and our work extensively evaluates these aspects of the implementation.

3 SYSTEM DESIGN
3.1 Overview of a Typical Visual-SLAM System

Shown in Figure 2 is an architecture diagram of a typical feature-based Visual-SLAM system.
Several SLAM systems adhere roughly to this architecture including PTAM [37], LSD-SLAM [21],
ORB-SLAM [49], ORB-SLAM2 [50], and ORB-SLAMS3 [10]. The input to a typical Visual-SLAM
system are series of images (aka frames) captured from a camera. While we describe this generic
system as one that accepts regular images (RGB), many SLAM systems are capable of accepting
stereo images, depth images as well as color and depth images together. Most Visual-SLAM systems
have three main modules described below.

3.1.1 Tracking Module. The Tracking module detects features in the incoming image (frame).
Typical features can be SIFT, SURF, ORB or corners. The Tracking module then uses these features
to find correspondences with a previous reference image (also called KeyFrame in many cases). Based
on the correspondences in features between the two frames, it calculates the relative odometry
(labeled frame-frame alignment) between the reference KeyFrame and the current frame. The
Tracking module then determines if this frame should be added as a KeyFrame to the map based on
a set of criteria such as number of feature matches. If it decides to add a KeyFrame, it passes the
current frame to the Local-Mapping module.

3.1.2 Local-Mapping Module. If Tracking module deemed the current frame to be a new KeyFrame,
the Local-Mapping module is invoked. This module creates correspondences between the new
KeyFrame and other KeyFrames in the map. It then performs local bundle adjustment; a process
of refining the relative coordinates of where the images were taken given the detected common
features between KeyFrames. The bundle adjustment is local because it limits the reasoning to
KeyFrames with common features.

3.1.3 Loop-Closing Module. Every so often (frequency depends on the particular algorithm), the
SLAM system runs the loop closure procedure. Conceptually, this might need to run every time a

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 7

new KeyFrame is added. The new KeyFrame is compared to all the other KeyFrames in the map to
check if the current location (place where the current image was taken) is the same as a previously
visited location. If the current KeyFrame is similar to a previous one, this module will perform
fusion of these KeyFrames and all related ones. It might also perform pose optimization, typically
as a graph optimization [38].

3.2 Challenges in Deploying Visual-SLAM Systems

3.2.1 Computational Complexity. Typically, loop closure, or the process of identifying previously
visited places is extremely time consuming. This is because the complexity of this task grows with
the size of the map. This has been the research topic for several Visual-SLAM systems such as
RTAB-Map [39] which uses long-term and short-term memory to reduce this complexity. Secondly,
the process of merging map data structures from two distinct locations could be arbitrarily complex
depending on the local structure at those places. Finally, the step of refining poses after the merge
involves solving an optimization problem which might also be complex.

Historically, SLAM algorithms were designed to run on robots that had reasonably powerful
computing onboard. As these technologies move to mobile/wearable devices, running a Visual-
SLAM algorithm at reasonable rates is extremely challenging. Further, SLAM is typically a service
to identify the location or recognize a place. This service is used by an application to perform
additional tasks that could need additional computing power making it even more challenging to
run a complete SLAM system on a mobile/wearable device.

3.2.2 Tight Coupling between Modules. An idea would be to run some modules in a SLAM algorithm
on the mobile device while running others on the edge/cloud. However, this is challenging as all
modules are tightly coupled. As shown in Figure 2, all of them operate on the Global-Map and
require to compare, modify and trim the map. Latency in access to this shared data structure or
between the modules would result in improper function of the overall system. Therefore, it is
challenging to simply offload parts of the computation in a Visual-SLAM system. To better visualize
the complexity of de-coupling Visual-SLAM modules, we traced the modules that access parts of
the Global-Map in ORB-SLAM2 [50] in Section 4.1.2. The number of locks, and the accessing of
various data structures from multiple locations demonstrates the tight coupling of the modules.

3.3 Edge-SLAM Design

3.3.1 Edge-SLAM Design Goals. Our primary goal in designing Edge-SLAM is to reduce the
computational and memory overhead on the mobile/wearable device without affecting the accuracy
of the execution of the Visual-SLAM system. As described previously, this is challenging given
the tightly coupled nature of the modules. A second goal is to keep the overall resource usage
(CPU, memory) constant to allow smooth working of applications on the mobile device. As seen
in Figure 8, running a Visual-SLAM pipeline could potentially require a large, and an increasing
amount of resources over time. Our objective is to keep that constant for long-term operation.

3.3.2 Edge-SLAM Architecture. Shown in Figure 3 is the Edge-SLAM architecture. Our goal is to
offload some of the computing to a “nearby” edge device. However, this is non-trivial as described
previously. To make it possible, we make two major changes. First, we propose to run the Tracking
module on the mobile device and move the Local-Mapping as well as the Loop-Closing to the edge
device along with the Global-Map. However, the Tracking module needs the map for its tasks. To
address this, we introduce a Local-Map—a partial map that resides on the mobile device. This is our
second modification. We designed the Local-Map structure to meet one of our primary motivations,
which is to keep the resource overhead (CPU, memory) on the mobile device constant. From the
local/global map structure, the split followed. The Tracking module could work completely using

8 Ben Alj, et al.

Images [Mobile Device] : [Edge Device |

. Map Updates
Local-Map - ' ________ Global-Map
: Local-Mapping Module Loop-Closing Module
: Pocosin
. Processin, Detection
KeyFrames - i
Frame-Frame f|— ~ "~~~ 7~ 7 - Local Bundle Loop
Alignment . Adjustment Correction
Frames .
= = ——— - KeyFrame Global Bundle
: Culling Adjustment

Tracking Module

Feature
Detection

Create
KeyFrame?

Fig. 3. Envisioned architecture of the Edge-SLAM system—our modifications are shown in red [2]

the Local-Map and is, therefore, on the mobile device. The Local-Mapping and the Loop-Closing
modules need the Global-Map for some of their computation. Therefore, they were moved to
the edge. We then provision communication mechanisms between the Tracking module and the
Local-Mapping module. Since Local-Mapping and Loop-Closing modules frequently update the
Global-Map, we also need a mechanism to update the Local-Map when the Global-Map changes.
This is discussed further below.

Network Design. A key design challenge was the synchronization between the Tracking module
on the mobile device and the Local-Mapping/Loop-Closing modules on the edge device. First, we
assume that there is a reasonable connection (such as a reliable wireless connection with speeds
similar to a local wireless network) between the two sides. Without this, it is challenging to sustain
the amount of synchronization required. As shown in Figure 3, we designed three separate network
connections between the mobile device and the edge device. Each of these network connections
operates independently of the other so that there is no sequencing of the communication and
corresponding delays.

The first two connections are used to pass the output of the Tracking module to the edge device—
they are shown in red in the lower portion of Figure 3. One connection is used by the Tracking
module during relocalization to communicate the processed frame including features and local
geometry, and is labeled Frames in Figure 3. The second connection is used to pass the KeyFrame
if Tracking module decided to create a new KeyFrame, and is labeled KeyFrames in Figure 3. The
third connection is used to update the Local-Map. This is shown in the top portion of Figure 3 and
labeled Map Updates. This communication is typically from the edge device to the mobile device.
This connection keeps the Local-Map updated with the Global-Map. The Global-Map keeps track
of the differences between its state and the current Local-Map. If the difference is deemed to be
large, it creates an update and sends the update to the mobile device. Depending on the current
status of tracking, the mobile device can decide if it wants to accept the update or not.

Updating the Local-Map. Both the Local-Mapping and Loop-Closing modules update and optimize
the Global-Map. They look for local and global relationships between KeyFrames and constantly
work on optimizing the overall map for consistency. However, since Edge-SLAM creates a new
map structure for the mobile device, it is important to keep it synchronized with the Global-Map
for correct execution of the Tracking module.

Each time the Tracking module creates a new KeyFrame, it passes it on to the Local-Mapping
module on the edge. Correspondingly, the edge keeps track of the Local-Map on the mobile device.
As the Global-Map changes, it computes map updates and sends them to the mobile device for

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 9

Tracking
Pose Prediction
Stereo/RGB-D Pre-process 9 New KeyFrame KeyFrame
Frame > Input (Motion Modgl) Track Local Map D
or Relocalization
Place -
Recognition Global-Map KeyFrame o
Insertion 8
i =
" V'sb“al' MapPoints KeyFrames Recent 5
ocabulary MapPoints T,
|| Culling 2
@
Recognition Covisibility q 0
BalaliEes Graph Spanning Tree New Pgmls
Creation
—_—
Local Bundle
Loop Correction Loop Detection Adjustment
Update Full Bundle Optimize
i 5 Loop Compute Query Local
M: Adjustt it
a S Essential || Fusion SE3 || Database KeyFrames
rap Culling
Global Bundle =
Adjustment Loop-Closing

Fig. 4. ORB-SLAM2 system architecture [50]

update. However, map updating on the mobile device is a time consuming process as will be shown
later. Therefore, we modify the Tracking module to have the capability to accept or reject the map
updates. Given this tradeoff, we empirically determine a timeout mechanism to decide when the
Local-Map is stale and requires updating. The exact mechanism is discussed in the implementation
of our prototype.

While conceptually, these changes seem straightforward, engineering everything to work to-
gether with realistic network latencies is challenging.

3.3.3 Adapting Edge-SLAM Architecture in Visual-SLAM Systems. To demonstrate the feasibility of
our Edge-SLAM architecture, we prototyped our idea on ORB-SLAM2 [50], a well-known Visual-
SLAM system. Our work provides a conceptual design to offload Visual-SLAM. In order to apply
it to other Visual-SLAM systems, one would need to map the components of our design to the
implementation of the particular Visual-SLAM system to determine the exact implementation of
the offloading. For example, to apply Edge-SLAM architecture to VINS-Mono [54], we can map
VINS’s Measurement Preprocessing and Initialization module to Edge-SLAM’s Tracking module
on the mobile device. Then, we map VINS’s Local Visual-Inertial Odometry with Relocalization
module to Edge-SLAM’s Local-Mapping module on the edge device. Finally, we map VINS’s Global
Pose Graph Optimization and Reuse module to Edge-SLAM’s Loop-Closing module on the edge
device.

Other non-Visual-SLAM systems such as LIDAR-SLAM might be less applicable to our Edge-
SLAM architecture depending on the particular system pipeline. For example, LOAM [68] is a
LiDAR-based mapping system where the pipeline components can not be directly mapped to
Edge-SLAM components. For such systems, further exploration of the details is necessary.

4 Edge-SLAM IMPLEMENTATION IN ORB-SLAM?2

Section 3 described our overall design to offloading some tasks in Visual-SLAM. We prototyped
our idea using ORB-SLAM2 since it is open-source. We will now describe ORB-SLAM2, and our
Edge-SLAM prototype implementing the split architecture using ORB-SLAM2. Please note that we
present some of the details including several magic numbers that make the system work for clarity.

10 Ben Alj, et al.

No. of Operations
Data Structure Lock Acquiring the Lock
per Module

5—Tracking
1—Local Mapping
1—Loop Closing
1—Full Bundle Adjustment

MapPoint mGlobalMutex (static)

12—Tracking
6—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment

MapPoint mMutexPos

12—Tracking
6—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment

MapPoint mMutexFeatures

2—Tracking
4—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment

KeyFrame mMutexPose

4—Tracking
7—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment

KeyFrame mMutexConnections

7—Tracking
KeyFrame mMutexFeatures 8—Local Mapping
6—Loop Closing

1—Tracking
KeyFrameDatabase mMutex 1—Local Mapping
1—Loop Closing

1—Tracking
1—Local Mapping
1—Loop Closing
1—Full Bundle Adjustment

Map mMutexMapUpdate

4—Tracking

Map mMutexPointCreation 1—Local Mapping

6—Tracking
6—Local Mapping
1—Loop Closing
1—Full Bundle Adjustment

Table 1. Global-Map locks in ORB-SLAM2 [50]

Map mMutexMap

4.1 ORB-SLAM2

4.1.1 Overview. ORB-SLAM2 [50] is the recent state-of-the-art graph-based Visual-SLAM algo-
rithm that can use a monocular (RGB) camera, stereo cameras, or RGB-D camera to build sparse
3-D maps. The map is a graph where vertices correspond to image frames, and edges correspond to
3-D visual transformations between them.

ORB-SLAM2 consists of three threads, one per module: Tracking, Local-Mapping, and Loop-
Closing as shown in Figure 4. The Tracking thread loops through incoming image frames for their
initial pose estimation and decides which frame to accept as a KeyFrame, based on five conditions
where the first four were introduced in the first ORB-SLAM paper [49], and the fifth in the second
paper [50]. They are:

(1) If relocalization occurred, then 20 frames should pass to insert a new KeyFrame.

(2) Either 20 frames have passed after the last inserted KeyFrame, or Local-Mapping thread is
not busy.

(3) The current frame is tracking at least 50 features.

(4) The current frame is tracking fewer than 90% points compared to the frame’s reference
KeyFrame (i.e., the KeyFrame most similar to the current frame).

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 1

(5) If the current frame tracks less than 100 close points, and can create more than 70 new close
points.

As described later, this detail is important to Edge-SLAM because our split requires us to reason
about some of these conditions on the mobile side and others on the edge side.

Local-Mapping adds accepted KeyFrames to a Global-Map and performs MapPoints and KeyFrames
optimization as well as bundle adjustment on the map local to the accepted KeyFrame. Next, Local-
Mapping passes the accepted KeyFrame to the Loop-Closing thread, which checks for loops, which
checks if the current KeyFrame is similar to any previously stored KeyFrame. If they are similar, it
performs loop correction where it corrects KeyFrames poses and optimizes the Global-Map.

There are two central data structures to the operation of ORB-SLAM2—KeyFrames and MapPoints.
A KeyFrame, as described above, is an image frame that contains unique segment or viewpoint of the
environment. A MapPoint stores the position, feature descriptor, and references to all KeyFrames
that observe it. In ORB-SLAM2, the MapPoints are obtained by detecting the ORB-features in an
image. Therefore, the feature descriptors are ORB-descriptors. Each KeyFrame points to several
MapPoints. Also, multiple KeyFrames could point to the same MapPoints if the same features are
seen from multiple KeyFrames. Together, the set of all KeyFrames currently constructed, and all
their observed MapPoints form the current Global-Map. These three data structures depend on
each other, and maintain several additional information—details can be found in [49, 50]. Part of the
map is a visual vocabulary. ORB-SLAM2 stores this so it is easy to compare frames. Each incoming
frame gets tagged with the list of observed words from this dictionary. This can be used later for
quick lookup of similar frames—for loop closure for example.

4.1.2 Complexity. ORB-SLAM2? is an open-source system with large code-base consisting of 20
classes and 18,000 lines of code. The system depends on three main threads running simultaneously,
where each thread runs one of the modules, i.e., Tracking, Local-Mapping, and Loop-Closing. Further,
the system initiates a fourth thread on-demand after every loop closure to perform full bundle
adjustment. ORB-SLAM2 complexity lies in all these threads working on a shared Global-Map
structure. To demonstrate the level of coupling between these threads, Table 1 lists the set of
locks used in the ORB-SLAM2 code, the data structures they control access to, and the number of
times they are called in various modules. For example, we observe in the table that the Map data
structure lock mMutexMap is acquired to perform six operations in the Tracking module such as
Tracking: :UpdatelLocalMap(), to perform six operations in the Local-Mapping module such as
LocalMapping: :MapPointCulling(), to perform one operation LoopClosing: : CorrectLoop()
in the Loop-Closing module, and to perform full bundle adjustment.

In ORB-SLAM2, all three threads assume to execute on the same computing device and have access
to a Global-Map maintained by the system. The operation of each of the threads is dependent on each
other because of their reliance on the shared data structures.

4.2 Edge-SLAM Implementation

Figure 5 shows a breakdown of Edge-SLAM into components that run on the mobile device and
the edge. As described earlier, in Edge-SLAM split architecture, the Tracking thread runs on the
mobile device while the Local-Mapping and the Loop-Closing threads run on the edge.

4.2.1 Global-Map. The Global-Map is created and stored on the edge. This contains the complete
set of KeyFrames, set of MapPoints, the Co-Visibility Graph, and the Spanning Tree. The Co-
Visibility Graph connects KeyFrames based on their shared MapPoints observations. The Spanning

Zhttps://github.com/raulmur/ORB_SLAM2

https://github.com/raulmur/ORB_SLAM2

12 Ben Alj, et al.

Tracking

Pre-process fmﬁ;ﬁ:ﬂ:ﬁ Track Local Map || NewKevFrame LM _ _
StersaRGa.D Input o o Decision
rame

Local Map Update Callback

swieiihoy

(uonezijesojey) awely

1 1

1 1

1 1

1 1

A 1 1

e ! 1 1

g ! 1 f

Visual . '8 [1 1

Vit MapPoints KeyFrames } = 8 ' \

8 1§2 | 1

Recognition Covisibility . 'S g . '

Database Graph Spanning Tree 12 1835 h \

- 1 1

Local Place Local-Map 1 : 1 1

Recognition 1 , 1 1

P Loeuns HETTETTS Lo [

- L

Edge :
: KeyFrame
Device Global Place 1 Frame Callback Collinek

Recognition Global-Map }
1

Visual
Vocabulary

Buiddepy-jeso

MapPoints KeyFrames

Recent
MapPoints
Culling

New Points
Creation
_____ Local Map Update
e Local Bundle
Loop Correction Loop Detection Adjustment
Update [il Full Bundle Optimize Local
- 2 Loop Compute || Query
Map Adjustment Essential Fusion SE3 it KeyFrames
Graph Culling

Global Bundle =
Adjustment Loop-Closing

Recognition
Database

Covisibility
Graph

Spanning Tree

1

1

1

1

1

1 Relocalization
N - Map Update 'ﬁﬁi:,’{j;':,e
1 Module

1

1

1

1

1

1

1

Fig. 5. Edge-SLAM system architecture—our modifications are shown in red

Tree is a subset of the Co-Visibility Graph connecting every KeyFrame with the KeyFrame that
they share the most MapPoints.

4.2.2 Local-Map. We create our new map structure called the Local-Map in the Tracking thread
on the mobile device. It includes a subset of the latest created KeyFrames, MapPoints, Co-Visibility
Graph, and Spanning Tree from the Global-Map. It uses the same visual vocabulary and recognition
database as the one on the edge.

4.2.3 Map Synchronization. The edge periodically sends Local-Map updates with the latest opti-
mized changes to the mobile device. The mobile device, on the other hand, instantly sends newly
created KeyFrames along with its MapPoints to the edge. On receiving an update, the mobile device
can choose if it wants to update its Local-Map or not. The edge always accepts new KeyFrames
from the mobile device.

4.3 Mobile-Edge Network Setup

As described in Section 3, the latency between modules could greatly affect the working of the
Visual-SLAM system. To this end, we have three separate connections between the mobile device
and the edge—one each to transmit frames from the mobile device to the edge upon relocalization
event, to transmit KeyFrames from the mobile device to the edge, and the third to send Local-Map
updates or relocalization map updates from the edge to the mobile device. Because each connection
is running on a separate thread and in a nonblocking/simultaneous fashion with other working
threads, we implemented three callback sub-modules as shown in Figure 5. Local-Map Update
Callback in the Tracking thread on the mobile device. Frame Callback and KeyFrame Callback in
the Local-Mapping thread on the edge. Upon successful transmission of a Frame/KeyFrame/Map-
Update object, the corresponding callback sub-module will be triggered to process the incoming

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 13

data. With system performance a priority, we use a fast blocking concurrent queue implementation®
for inter-thread communication. Our results show that such setup has low overhead on the overall
working of the Edge-SLAM system.

We will now describe Edge-SLAM operation on the mobile as well as the edge.

4.4 Mobile Device Operation

In our design (Figure 5), the mobile device runs the Tracking thread. In order to decouple the mobile
device operation, we allow the Tracking thread to maintain a Local-Map, create new KeyFrames,
create new MapPoints, and accept map updates from the edge. As in ORB-SLAM2, the Tracking
thread in Edge-SLAM continuously processes input feed/frames from the camera, tracks the Local-
Map, estimates the initial position of the current frame, and decides which frame to be a KeyFrame.
However, in Edge-SLAM, the Local-Mapping on the edge does not accept all KeyFrames created
by the Tracking on the mobile device. This is because we split the KeyFrame creation conditions,
described in Section 4.1, between the mobile device and the edge depending on where each condition
can be validated. We moved the conditions 1 and 2 to the Local-Mapping on the edge and kept
the conditions 3, 4, and 5 on the mobile device. If a new KeyFrame is to be created, the Tracking
thread creates the new KeyFrame in its Local-Map and sends a copy to the edge to be considered
for addition to the Global-Map as well.

When the mobile device receives a Local-Map update, it first checks if it is not redundant. A
map update is considered redundant if no new KeyFrame created since the last applied map update.
Second, the mobile device checks if applying the Local-Map update would significantly increase the
chance of losing track due to its latency. We apply a time constraint starting at 300 milliseconds,
which decreases as the number of KeyFrames in the Local-Map increases. Such a time constraint
will limit the size of the Local-Map on the mobile device. It will also prevent a Local-Map update
from being applied when the KeyFrame creation rate is high. Typically, more KeyFrames are created
when there are large changes in the scene indicating that the device is moving fast. In such cases,
interruptions for map updates will lead to losing track, and is undesirable. Thus, a Local-Map
update is accepted only if more than the time constraint has passed since the last created KeyFrame.
We use the following formula to compute the time constraint:

TC = ITC/((KEN/LMU) + 1) 1)

Where TC is Time Constraint, ITC is Initial Time Constraint (set to 300ms), KFN is current number
of KeyFrames in the Local-Map, and LMU is the Local-Map Update size (set to six KeyFrames). We
discuss why we choose such numbers in Section 4.7.

When a Local-Map update is accepted, the Tracking thread would temporarily stop operation
and not process any new frame. The mobile device updates the Local-Map by fully clearing the
current one, and then constructs a new map using the received update. Because KeyFrames are
sent to the edge upon creation, no information is lost when the current Local-Map is cleared. This
is a time-consuming process and we show the latencies involved in Section 5. We also discuss some
additional measures we take to address this challenge in Section 4.7.

4.5 Edge Operation

As described earlier, the edge runs two threads: Local-Mapping and Loop-Closing. Local-Mapping
thread receives KeyFrames from the mobile device as they get created and sends periodic Local-
Map updates back to the mobile device. On the other hand, Loop-Closing thread interacts with

Shttps://github.com/cameron314/concurrentqueue

https://github.com/cameron314/concurrentqueue

14 Ben Ali, et al.

Local-Mapping thread to receive new KeyFrames, after they get processed and added to the Global-
Map, and then it continues processing as in ORB-SLAM2. When the Local-Mapping thread on the
edge device receives a new KeyFrame, it checks the remaining KeyFrame insertion conditions, i.e.,
conditions 1 and 2 described in Section 4.1, before accepting the KeyFrame to be inserted into the
Global-Map.

In Edge-SLAM, the mobile device maintains a Local-Map to keep the system going. This map
is not intended to be used for a long-term run. Because the Local-Mapping and Loop-Closing
run on the edge, the Tracking Local-Map (on mobile device) does not get optimized and might
drift and affect the system accuracy if it does not receive an update regularly. Thus, our objective
is to maximize the number of updates to minimize such drift in the Tracking thread. However,
maximizing the number of updates would also mean more network usage as well as adding map
reconstruction overhead to the Tracking thread. In Edge-SLAM, we implemented a timer-based
Local-Map Update Module in Local-Mapping thread to regularly send a Local-Map update with the
minimum number of KeyFrames possible at short time intervals. Such an update would correct any
drifts and inconsistencies in the mobile device’s Local-Map. In our update module, a Local-Map
update is sent every five seconds and consists of the six most recent KeyFrames inserted into the
Global-Map along with all of their MapPoints. By sending small map updates at short time intervals,
we are achieving our objectives to minimize the drift, minimize the map reconstruction overhead,
and limit the network usage. We will quantify all these in Section 5. In Section 4.7, we discuss why
a Local-Map update consists of six KeyFrames in more detail.

4.6 Implementation Tradeoffs

4.6.1 Local-Map Update Strategies. There are two typical methods to update the Local-Map on the
mobile device. The first method is to apply edge changes to the mobile device’s current Local-Map.
The second method is to clear the mobile device’s current Local-Map and replace it with the new
received Local-Map update from the edge. After running several experiments, we identified the
following issues with the first method, which makes it not efficient and unsafe:

o If we continue reusing the current Local-Map on the mobile device by applying changes to
it, then we will accumulate lots of unprocessed and unoptimized KeyFrames and MapPoints
in the Local-Map. Such KeyFrames and MapPoints will also contribute to creating newer
KeyFrames and MapPoints that are inaccurate and increase the chances of drift and lower
accuracy in the Global-Map on the edge.

e Applying changes to the current Local-Map require an expensive search for every single
KeyFrame and MapPoint in the update to find all their references in the Local-Map structure.
This would significantly increase the time complexity of applying an update and reduce the
mobile device performance.

e Due to the complex structure of ORB-SLAM?2, there exist lots of cyclic references in the
data structures. Thus, applying changes to the current Local-Map increases the chances of
memory issues such as memory leaks.

e The Local-Map structure on the mobile device is shared between the various threads. This
requires mechanisms to avoid concurrent operations on the map for correct functioning.
Therefore, synchronization mechanisms such as locks are used by individual threads to
streamline their access. Isolating such data structure to update it would be very time
consuming and might result in the erroneous operation of the whole system.

Thus, whether we receive updates immediately as it happens or regularly over time, the process
of applying the updates would rapidly increase the chance of losing track as well as decrease the
mobile device performance. The second method, by contrast, is safer, more efficient, and has fewer

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 15

side effects on the mobile device. In this method, a Local-Map update fully replaces the existing
mobile device Local-Map with the minimum possible overhead on the mobile device performance
due to the small size of the update.

4.7 Engineering Edge-SLAM Modules For Efficient Operation

4.7.1 Tracking Thread. In this subsection, we first discuss Edge-SLAM Parameters, then we discuss
the Local-Map Update Callback sub-module in the Tracking thread.

Edge-SLAM Parameters. Edge-SLAM has 4 parameters that have been selected after careful and
extensive testing. The parameters are:

e Local-Map Update Size (discussed in Section 4.7.3) this is set to six KeyFrames, which
is the minimum number of KeyFrames required for the system to operate in the normal
mode. Otherwise, the system would run in the initialization mode. This parameter is so
sensitive as it directly affects the mobile device performance. Increasing the size of the
Local-Map update will increase the time required to freeze the Tracking module to apply
the map update and consequently increase the chances of the mobile device losing track.
Therefore, we set this parameter to the minimum possible number of KeyFrames to keep
the map update overhead at the lowest rate.

e Local-Map Update Frequency (discussed in Section 4.5) this is set to five seconds, such
that small map updates are sent frequently in short time intervals from the edge device.
This parameter indirectly affects the mapping accuracy of the system. Increasing the map
update frequency will increase the network usage but may help reduce the mapping drifts
on the mobile device. On the other hand, reducing the map update frequency will reduce the
network usage but may increase the mapping drifts since the mobile device will work more
with unoptimized mapping data. Therefore, this parameter may be adjusted as necessary
depending on the conditions under which the system has to run.

¢ Relocalization Frame Frequency (discussed in Section 4.7.5) this is set to half a second,
such that one frame is sent every half a second from the mobile device to the edge device to
receive map assistance for relocalization. This time interval would prevent the mobile device
from sending additional redundant frames to the edge device. Typically, cameras produce
30 frames per second. This parameter defines how frequently a frame is sent from the
mobile device to the edge device when the system is in relocalization mode. Increasing the
frequency will increase the network usage but may also increase the chances of successful
relocalization if the scene changes rapidly; otherwise, the sent frames will be redundant.
Reducing the frequency, on the other hand, will reduce the network usage but may also
reduce the chances of successful relocalization. Therefore, this parameter can be adjusted
as necessary depending on the conditions under which the system has to run.

e Time Constraint to Accept a Local-Map Update As we discussed in Section 4.4, the
Tracking thread computes a time constraint value which is used to decide whether to accept
a Local-Map update or not. We initially set this to 300ms. When selecting an initial time
constraint value, our objective was to control how big the Tracking Local-Map can get before
it is updated, especially during a high KeyFrame creation rate. Also, we wanted to allow the
mobile device to work independently for short periods regardless of connectivity to the
edge. After several experiments, we found that during high KeyFrame creation periods, an
initial time constraint value of 300ms would most likely lead the Tracking thread to accept
a Local-Map update before the size of the Local-Map gets higher than 50 KeyFrames. We
found through experiments that working with 50 unoptimized KeyFrames in the Local-Map
is a fair number before needing a map update. The "Local-Map Update Frequency" parameter

16 Ben Alj, et al.

discussed above defines how frequently a map update is sent from the edge device. The
"Time Constraint to Accept a Local-Map Update" parameter defines how frequently a map
update is accepted on the mobile device. This parameter is sensitive to changes as it directly
affects how the mobile device behaves in different scenarios. Increasing the time constraint
will reduce the frequency of accepted map updates, leading to mapping drifts. However,
this may still help in challenging mapping scenarios by preventing a map update from
being applied when the scene is rapidly changing. Reducing the time constraint, however,
will increase the frequency of accepted map updates which may increase the chances of
losing track soon after the system gets into any challenging scenario. Therefore, careful
consideration is necessary when setting this parameter.

Our experiments show that the above parameters work with most scenarios and datasets without
adjusting them. Further, Edge-SLAM is sensitive to ORB-SLAM2 parameters. Thus, not setting such
parameters correctly would affect the system’s performance.

Local-Map Update Callback. The Local-Map Update Callback submodule in the Tracking thread
is responsible for processing and reconstructing the Local-Map when an update is received from the
edge. Before processing an incoming update, the submodule would first check if all the following
conditions are true:

e The map update controller (discussed in Section 4.7.2) did not disable map updates.
e The system is not in initialization mode.

e The Local-Map has changed since the last applied map update.

e The current KeyFrame creation rate is not high.

If the above conditions are true, the submodule pauses the Tracking thread from processing
incoming camera frames. It would then fully erase the Local-Map on the mobile device. Since a
copy of every new KeyFrame is sent to the edge device on creation, no information will be lost
when the Local-Map is erased. Next, the received map update is used to rebuild the Local-Map.
Once the map is rebuilt and all connections have been established, the submodule will resume the
Tracking thread to process the incoming frames. The Tracking thread processes the latest camera
frame when the frame processing resumes. Since the latency of updating the map is small, the
amount of change in the scene (i.e., when comparing the last processed frame before the update
and the first processed frame after the update) is typically accepted by the system, which allows
tracking to continue without issues. Occasionally, applying a map update would cause tracking to
be lost, but that only happens due to unforeseen circumstances, as discussed in Section 4.7.2.

4.7.2 Map Update Controller Interface. After testing ORB-SLAM2 and Edge-SLAM with various
datasets, we have observed that the mapping pipeline is sensitive to the following scenarios:

e Quick Rotation is when the speed at which the mobile device changes direction is more
than what the system can handle, i.e., the system cannot track the changes in the scene
during the rotation.

e Sharp Turn is when instead of the mobile device turning gradually while moving forward,
it makes the turn in place, resulting in a sharp angle turn. Such a turn would most likely
result in a totally different scene from the one before the turn.

e Shaking Scene is when the mobile device shakes while moving at a degree that would
result in a blurry scene that is not visible enough to extract features.

o Featureless Scene there are moments where the environment that the mobile device is
navigating has very few features, which may result in difficulties for the system to continue
tracking scene changes.

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 17

e Dynamic Scene is when the scene includes some non-static moving objects such as a
walking person or a moving car. Such dynamicity can cause a rapid change in the scene,
making it difficult to track.

When such movements happen, the system loses track and needs to perform relocalization or
restart its map. This is because the system needs to compute the amount of change in the scene
after processing every single frame. The scene change is calculated by extracting features from the
current frame and matching those features to the features of the last created KeyFrame. For the
tracking to persist, the number of matched features after processing each frame must meet a preset
threshold in ORB-SLAM2 [49, 50]. If the threshold is not met, the tracking will be lost. Therefore,
any challenging movement, such as the ones mentioned above, would lead to the same outcome,
losing track if the minimum number of feature matches is not found. Because continuous tracking
is time-consuming and computationally heavy, losing track chances significantly increases when
an unforeseen movement happens.

Further, in Edge-SLAM, when the mobile device receives a map update, it needs to freeze
processing the incoming camera frames while it reconstructs an updated map. Such updates could
take hundreds of milliseconds and affect the system’s trackability. The process of freezing the
tracking and constructing the map is particularly exaggerated if the mobile device is experiencing
any of the above scenarios, which can pull the number of matched features in the scene to zero,
causing tracking to be lost.

To address this, we take the following measures in Edge-SLAM to reduce the chances of losing
track due to the scenarios mentioned above:

e We reconsider the data structures used in ORB-SLAM2 to maintain the map’s KeyFrames
and MapPoints and then restructure the map using other data structures that would enable
fast retrieval. One such data structure that we have decided to use is the unordered_map
data structure from the C++ Standard Template Library (STL), which is based on hash tables
and can, in most cases, retrieve an item in a constant time. This is particularly important
because the map in ORB-SLAM2 is highly connected. Each KeyFrame object should have a
reference to each of its MapPoints, and each MapPoint object, on the other hand, should
reference each KeyFrame that observes it. In ORB-SLAM2, each KeyFrame could have
hundreds of MapPoints, and each MapPoint could be observed by multiple KeyFrames.
When a map update is received in Edge-SLAM, the Local-Map should be reconstructed
from the update by looping through the KeyFrames and MapPoints to rebuild the map
connections. Such operation would require at least quadratic time complexity when used
with the map data structures in ORB-SLAM2 to reconstruct the map. To address this, we use
unordered_map, a hash-based data structure to map each KeyFrame and each MapPoint to
its corresponding unique identification value. This way, every KeyFrame, and MapPoint can
be retrieved on average in a constant time, and the map rebuild operation will take a linear
time complexity on average. Our objective in restructuring the map is to reduce the time
it takes to rebuild the Local-Map from an update on the mobile device and consequently
reduce the time needed to freeze the Tracking module.

e We implement a map update controller interface for the mobile device to enable or disable
map updates at specific moments. Our rationale behind the controller is that several unde-
sirable movements such as those mentioned above might be known to the user or other
algorithms such as motion planning. The controller would enable a user or an algorithm to
use such knowledge to prevent a map update from causing tracking loss. The controller has
a graphical user interface (GUI) and a programming interface.

18 Ben Alj, et al.

The mobile device’s environment can be highly dynamic, which can introduce many navigation
challenges beyond a single system’s ability to understand and properly handle. Therefore, having
a map update controller interface on the mobile device for the user and other algorithms can
improve the mapping quality and assist in correctly addressing navigation challenges that can
cause unnecessary tracking loss.

For example, the planner could use the controller on a robot to indicate an upcoming sharp turn
by turning off the map updates. The map update controller should be toggled to disable map updates
on the mobile device before receiving a new update from the edge device during an unwanted
scenario. The controller can then re-enable map updates as soon as the undesirable scenario is over.

4.7.3 Local-Mapping Thread. As described earlier in Section 4.5, when the Local-Mapping thread
prepares a Local-Map update to send to the mobile device, it sets the size of the update to six
KeyFrames. The main objectives we had when setting the size of the Local-Map update was to
reduce network usage and to reduce map reconstruction overhead on the mobile device. Thus, after
looking into the Tracking thread initialization process, we found that if the system loses track and
there are less than six KeyFrames in the map, the Tracking thread would reset the whole system. It
would assume the system lost track right after initialization. Based on this condition, the minimum
number of KeyFrames the Local-Map can have to continue working without resetting the system is
six, which is what we choose as our Local-Map update size.

4.7.4 Reset Function. The reset function can be called by the system as well as the user. The system
calls reset function after an unsuccessful initialization. Whenever the reset function is called, the
system will clear all data structures and restart the mapping process. In Edge-SLAM, we did not
add any new data structure to perform a full (mobile-edge) system reset. Instead, the Tracking
thread uses the same KeyFrames connection to resend the most recent KeyFrame after setting the
KeyFrame’s reset flag to true. This way, both sides would reset instantly upon receiving a request
either from the system or the user.

4.7.5 Relocalization Function. Relocalization function is called when the Tracking thread loses track
where it tries to re-compute the camera pose using the Global-Map. Relocalization is particularly
useful when the Tracking thread loses track at a location that has been previously visited and
mapped. In Edge-SLAM, we want relocalization to be as robust as ORB-SLAM2. To this end, when
our system loses track, it not only tries to relocalize using the current Local-Map but also sends a
relocalization request to the edge for assistance. This is why we dedicated one of the connections
between the mobile device and the edge to the transmission of frames that assist in relocalization.
When the Tracking thread on the mobile device loses track, it transmits a frame to the edge every
half a second. We chose to send a frame every half a second to allow some change to happen in the
scene, so we do not send redundant frames. The Local-Mapping on the edge uses the received frames
to detect candidate KeyFrames from the Global-Map for relocalization. It then sends a relocalization
map update to the mobile device using the Relocalization Map Update Module, as shown in Figure 5,
so the mobile device can try estimating the camera pose from the map. A relocalization map update
consists of candidate KeyFrames in addition to the KeyFrames connected to each one of them.
When Edge-SLAM is trying to relocalize, it lifts all time and size limits imposed on Local-Map
updates. This is because successful relocalization is a priority over performance during such time.
We compare Edge-SLAM and ORB-SLAM2 relocalization statistics in Section 5.3.2.

5 EVALUATION

To study Edge-SLAM, we conduct several experiments to demonstrate the performance as well
as overheads from our design. We use a setup that mimics that of the modern mobile devices to

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 19

study the performance. We use two datasets collected at University at Buffalo along with two
publicly available datasets. The collected datasets are much longer than the publicly available ones,
allowing us to demonstrate the performance of Edge-SLAM for more extended periods. We study
the mapping accuracy, performance, memory use, CPU use, network use, and power consumption.
Finally, we look at the impact of variable network bandwidth on Edge-SLAM performance by using
a network shaper tool and limiting the upload/download bandwidth available.

5.1 Experiment Setup

To evaluate Edge-SLAM, we run experiments using two mobile devices and an edge device. The
first mobile device is an NVIDIA JETSON TX2—64-bit NVIDIA Denver and ARM Cortex-A57 CPUs,
NVIDIA Pascal GPU, 8GB Memory, and Connects using 802.11ac WLAN—running Ubuntu 18.04LTS.
We denote this device as JTX2. The second mobile device is a DELL Latitude laptop—Intel Core
i7-7600U, Intel HD Graphics, 16GB Memory—running Ubuntu 18.04LTS. We denote this device
as LAPT. The edge device is a DELL XPS desktop—Intel Core i7 9700K, NVIDIA GeForce GTX
1080, 32GB Memory—running Ubuntu 18.04LTS. We denote this device as DESK. In this section we
evaluate our system Edge-SLAM and compare it to ORB-SLAM2. In ORB-SLAM2 experiments, only
a mobile device is required, so we either use JTX2 or LAPT. In Edge-SLAM experiments, a mobile
device and an edge device are needed, and for that, we use either JTX2-DESK or LAPT-DESK.

We use two pre-collected RGB-D datasets of our campus building floors as the input source for
long-running experiments. Our datasets are collected using a robot equipped with a Kinect 360 RGB-
D sensor and a Velodyne VLP-16 LiDAR for the ground truth. Our first and primary dataset consists
of 52,427 frames, runs for a total of 1,774 seconds (~30 minutes), and has a trajectory of ~155 meters.
We denote this dataset as D1. Our second dataset consists of 39,374 frames, runs for a total of 1,315
seconds (=22 minutes), and has a trajectory of ~140 meters. We denote this dataset as D2. We also
use two popular public datasets from the Technical University of Munich called TUM [33] RGB-D
datasets for short-running experiments. The first TUM dataset is called freiburg2_pioneer_slam2,
which we denote as D3. The second TUM dataset is called freiburg2 pioneer_slam3, which we
denote as D4. All the datasets frames are read from storage by the mobile device and published as
ROS topics* for consumption by either ORB-SLAM2 or Edge-SLAM.

We repeat the experiments on each platform by replaying the dataset frames as if they were being
collected. This allows us to provide an exact comparison of performance across different platforms
and is a standard mechanism to compare performance across SLAM systems [9]. The speed at
which the robot traversed D1 and D2 datasets are not constant. Due to the campus building corridor
dynamics at the time of the dataset collection, the robot had to make several stops in different parts
of the datasets. Therefore, the speed cannot be calculated purely from the distance and duration
of the dataset. A typical frame rate of the Kinect is between 15-30fps. Due to the sensitivity of
the Tracking module discussed in Section 4.7.1 and Section 4.7.2, we replay our datasets for the
long-running experiments using 15fps and use the map update controller at turns as necessary to
reduce the chances of losing track. Note that this is a shortcoming of ORB-SLAM2, and fixing this
was beyond the scope of this work. We use the same configurations to evaluate ORB-SLAM2 and
Edge-SLAM in all the long-running experiments results presented below. For the short-running
experiments, we use the public datasets, which we replay using 30fps for all platforms.

The mobile devices are connected to a private campus Wi-Fi network (Download=84Mbps,
Upload=92Mbps). The edge is connected to a private campus network through a wired connection
(Download=92Mbps, Upload=93Mbps), emulating an actual deployment.

4https://wiki.ros.org

https://wiki.ros.org

20 Ben Alj, et al.

10 10

—— Ground-Truth

5

—— Ground-Truth

=)

3 —— ORB-SLAM2 JTX2 2 —— ORB-SLAM2 JTX2
- —— Edge-SLAM JTX2-DESK - 0 —— Edge-SLAM JTX2-DESK
—10
-5
—-20
—10
—10 =5 0 5 10 —10 -5 0 5 10
X (m) X (m)

Fig. 6. ORB-SLAM?2 and Edge-SLAM trajectories mapping D1 (left) and D2 (right) datasets compared to the
ground-truth. ORB-SLAM2 is running on JTX2, and Edge-SLAM is running on JTX2 and DESK

Visual-SLAM | ORB-SLAM2 | Edge-SLAM
Accuracy Measure JIX2 JTX2-DESK

Mean Localization Error
for D1 Dataset (cm)

‘ 19.08 +9.4 ‘18.69i8,55

Table 2. Mean Localization Error of ORB-SLAM2 and Edge-SLAM mapping D1 and D2 datasets

‘ Mean Localization Error

+ +
for D2 Dataset (cm) ‘ 21.36 £10.46 ‘ 18.94 +7.53

5.2 Mapping Accuracy

Our primary objective was to improve the execution performance of Visual-SLAM while running
on mobile devices. Implicit in this objective is to retain the accuracy of the localization and mapping
achieved by the redesigned Visual-SLAM system. This subsection will compare the localization and
mapping accuracy of ORB-SLAM2 and Edge-SLAM with a ground-truth trajectory. For this, we
perform four experiments. The first two experiments map D1 and D2 datasets using ORB-SLAM2
running on a mobile device (JTX2). The second two experiments map D1 and D2 datasets using
Edge-SLAM running on a mobile device (JTX2) and an edge device (DESK).

The 2-D trajectories of the path traced by the mobile device (JTX2) as constructed by ORB-SLAM2
and Edge-SLAM are shown in Figure 6. There is minimal difference between the mapped trajectories
and the ground-truth trajectory, demonstrating that the Edge-SLAM system is comparable in
accuracy to ORB-SLAM2.

For a more detailed examination, we show the mean localization error in centimeters of ORB-
SLAM2 and Edge-SLAM for both datasets in Table 2. Edge-SLAM performs slightly better on
both datasets with a difference of ~1cm (0.01m) on average on a trajectory of ~150m. For most
applications, this is quite acceptable for the feasibility of deploying accurate localization and
mapping long-term on mobile devices.

Also, ORB-SLAM2 mapping is highly accurate. From the results in Table 2, we see that it only drifts
for ~20cm (0.2m) after traveling ~150m, which is small. Inherent latency, splitting the architecture,
and working with a smaller map (Local-Map) tend to increase Edge-SLAM’s potential drift/error.
However, our results show that the drift of running Edge-SLAM is similar to ORB-SLAM2, i.e.,
~19cm (0.19m), after traveling the same trajectory length. This is because, in ORB-SLAM2 and
Edge-SLAM, full bundle adjustment is performed after every loop closure. This process optimizes
the Global-Map to reduce the drift. In our experiments, the D1 dataset has two loops, and the D2
dataset has one loop, where each system got to run full bundle adjustment at least once in each
dataset. However, in Edge-SLAM, the full bundle adjustment gets to run on the edge device with

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 21

6000 140
[l ORB-SLAM2 JTX2 —— ORB-SLAM2 JTX2

5000 Edge-SLAM JTX2-DESK 120/ —— Edge-SLAM JTX2-DESK
g £ 100
3} 4000 t’
g g 80
£ %
£ 3000 %
- w 60
3 =]
§ 2000 £
=} E 40
- &
1000 20
0 - - - 0
Tracking Local-Mapping Loop-Closing 0 20 40 60 80 100

Visual-SLAM Threads Time (% of Execution)

Fig. 7. Overall latency of ORB-SLAM2 and Edge-SLAM while mapping D1 dataset on JTX2. The average
latency per-module (left) shows that Edge-SLAM offloads the two CPU-intensive tasks. Tracking module
latency on the mobile device (JTX2) over time (right) better shows the latency for that module in each system

more computing power and lower latency, which would help achieve either the same or better
accuracy than ORB-SLAM2.

5.3 Performance

In this subsection, we measure the overall performance of ORB-SLAM2 and Edge-SLAM. We look
at the latency of the modules as well as the latency of the relocalization operation. Our goal is to
determine how the split architecture has affected the working of the Visual-SLAM pipeline.

5.3.1 Module Latency. In this subsection, we present the results of two experiments. In the first
experiment, we map our D1 dataset using ORB-SLAM2 running on JTX2. In the second experiment,
we map our D1 dataset using Edge-SLAM running on JTX2 as the mobile device and DESK as the
edge. If not specified, all the results are averaged over our dataset. As a reminder, the two goals of
Edge-SLAM are to reduce computational load on the mobile device and keep the load constant.
Our first set of results show the computational complexity of running Visual-SLAM entirely on the
mobile device (ORB-SLAM?2) and running Visual-SLAM with edge offloading (Edge-SLAM).

Shown in Figure 7 (left) are the average times taken (in ms) to run the individual modules (Track-
ing, Local-Mapping, and Loop-Closing) in each of the two configurations. As seen from Figure 7
(right), the Tracking thread takes less than 60ms on average. There is also not much difference
in performance between latency in execution of the original ORB-SLAM?2 Tracking module and
the Tracking module in Edge-SLAM. This is expected given the two modules are similar, except
for the Tracking module in Edge-SLAM interacting with the Local-Map, which does not have
any significant performance impact. However, when a loop is detected and closed, at *65% and
~95% execution time, we observe that the Tracking latency on ORB-SLAM2 goes up to ~120ms. In
contrast, the Tracking latency on Edge-SLAM continues working at the same rate given the loop
closure operation is performed on the edge side. Further, we see a large difference between the
execution time for Local-Mapping as well as Loop-Closing modules.

We would like to make two observations regarding the results of average latency in processing for
each of the modules of Visual-SLAM. First, Edge-SLAM reduces the latency in the Local-Mapping
and Loop-Closing modules by offloading them to the edge. It reduces the latency of the Loop-Closing
module dramatically, allowing for faster map updates. Our second observation is that by offloading
the intensive tasks, we reduce the variability of performance on the mobile device and allow the
mobile device to run end-user applications, which are the main reason to run Visual-SLAM in the

22 Ben Alj, et al.

Visual-SLAM | ORB-SLAM2 | Edge-SLAM
Relocalization JTX2 JTX2-DESK

D3: # of Successful
Relocalization

‘ D3: Relocalization

Latency (ms) ‘ 32.13 £2.91 ‘ 30.5 1.5 ‘

D4: # of Successful

Relocalization 3 8

D4: Relocalization
Latency (ms)

Table 3. Relocalization statistics for ORB-SLAM2 and Edge-SLAM on JTX2 mapping D3 and D4 public datasets

24 £1.15 37 £5.26

first place. This accomplishes our first objective of reducing the overall computational load on the
mobile device.

5.3.2 Relocalization Latency. Relocalization is an essential feature of Visual-SLAM systems. It
enables the system to resume mapping after losing track due to sudden movement. This subsection
shows that the split architecture in Edge-SLAM has minimal effect on the relocalization performance.
We map two challenging TUM [33] RGB-D public datasets, D3 and D4, at 30fps using ORB-SLAM2
and Edge-SLAM. We use JTX2 as our mobile device and DESK as our edge device. The camera in
these datasets heavily shakes multiple times while in motion causing both systems to lose track
and try to relocalize.

Table 3 shows that both systems successfully relocalize multiple times in each of the two datasets.
Successful relocalization mainly depends on how well the system is performing with respect to
feature extraction and matching. This is why each system might relocalize better or worse than the
other system in each dataset. However, since the Tracking module in Edge-SLAM uses a Local-Map,
it reasons with fewer KeyFrames and features than ORB-SLAM2; therefore, it has a slightly higher
chance of losing track compared to ORB-SLAM2.

Table 3 also shows that the split architecture of Edge-SLAM has minimal effect on the relocaliza-
tion latency. When our system loses track, it tries to relocalize using the existing Local-Map. In
the meantime, it requests relocalization assistance from the edge. From the table, we observe that,
on average, the relocalization latency on both systems is less than ~40ms. ORB-SLAM2 takes on
average 28ms, and Edge-SLAM takes on average 34ms. The additional overhead of Edge-SLAM
comes from serializing a frame every half a second to send it to the edge to get assistance.

5.4 CPU and Memory Usage

Figure 8 shows the CPU and memory usage on the mobile device (JTX2) while running ORB-SLAM2
and Edge-SLAM to map the D1 dataset. This is our next significant result that we demonstrate with
our system.

Figure 8 (left) shows the instantaneous CPU usage through the execution on the mobile device
(JTX2). On average, the CPU usage for ORB-SLAM2 is at ~30% while using the JTX2. In comparison,
the CPU usage is at ~15% when using the JTX2 for Edge-SLAM. Overall, there is ~#50% reduction in
CPU use while using Edge-SLAM due to offloading.

Figure 8 (right) shows the memory usage on the mobile device (JTX2) for both ORB-SLAM2
as well as Edge-SLAM. As described in Section 3, as the size of the map increases, the overall
memory required to store it also goes up. If the Global-Map is stored on the mobile device, as in
ORB-SLAM2, this will result in growing memory use which is highly undesirable. Also, note that
the memory use goes up when loop closure is performed (at #65% and ~95% execution time). This

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 23

100 30
—— ORB-SLAM2 JTX2 —— ORB-SLAM2 JTX2
—— Edge-SLAM JTX2-DESK —— Edge-SLAM JTX2-DESK

)
S

80

3

60

CPU Usage (%)
=
(=]

Memory Usage (%)
=
o

00 20 40 60 80 100 0 20 40 60 80 100
Time (% of Execution) Time (% of Execution)

Fig. 8. Resource usage of ORB-SLAM2 and Edge-SLAM on the mobile device (JTX2) while mapping D1
dataset—CPU (left) and Memory (right). The jumps in memory use at 65% time and 95% time (right) are due
to loop closures in ORB-SLAM2

Edge-SLAM JTX2-DESK
with MUCI

Visual-SLAM Edge-SLAM JTX2-DESK
Measurement without MUCI

Keyframe Transmit Latency from

Mobile Device to Edge (ms) 16243 £2.90

97.03 £3.58

Latency on Edge (ms)

Map Update Publish
‘ Frequency on Edge (s) 8.24 £0.48

Construct Map Update ‘
‘ 8.76 £0.57

Map Update Acceptance

Frequency on Mobile Device (s) 916 £0.55

9.62 +£0.65

Re-Construct Map Update

Latency on Mobile Device (ms) 41143 £4.84

57.09 £0.69 ‘ 61.82 +0.64 ‘
‘ 335.72 £1.79 ‘

Mean Localization Error
for D1 Dataset (cm)

19.23 +11.32 ‘ 18.69 +8.55 ‘

Table 4. Map update latencies and frequencies on the mobile device (JTX2) and on the edge (DESK) while
mapping the D1 dataset using Edge-SLAM. We provide measurements for Edge-SLAM with and without Map
Update Controller Interface (MUCI). The measures for the "without MUCI" are based on [7]

is also undesirable. Because Edge-SLAM stores a fixed-size Local-Map on the mobile device, the
memory usage of Edge-SLAM is constant. It remains constant even during loop closure, which
is performed on the edge. This accomplishes our second objective of keeping the resource use on the
mobile device constant.

5.5 Network Usage

5.5.1 Latency. As described in Section 5.1, we use a regular on-campus wireless network to connect
the mobile device with the edge device. We also performed our experiments during normal working
hours when the access points are used by other users. We did so to understand the network latency
imposed in a typical urban setup and its effect on the Edge-SLAM system. In Figure 3, we show
three links between the mobile and the edge device. We characterize the delay on these links for
Edge-SLAM running on the mobile device (JTX2) and the edge (DESK) while mapping the D1
dataset.

The biggest source of delay is in the map update from the Global-Map on the edge to the Local-
Map on the mobile device. This latency is shown in Table 4 (with MUCI). Totally, there are three
parts to this latency. First is the latency to construct the map update on the edge. Second to transmit
the map update across the network. Third, once the update is received, the mobile device needs to
reconstruct its Local-Map using the received map update. The table shows that preparing the map

24 Ben Alj, et al.

—— Upload
50000 —— Download

—
0
&
i 40000
)
o0
% 30000
]
e 20000
=}
3
-
5]
Z, 10000

0

0 20 40 60 80 100

Time (% of Execution)

Fig. 9. Network usage over time for Edge-SLAM running on LAPT mapping D1 dataset without limiting the
bandwidth

Low
(U=15Mbps, D=10Mbps)

Medium
(U=20Mbps, D=20Mbps)

Bandwidth High
Measure (U=51Mbps, D=67Mbps

of Dropped KeyFrames
on Mobile Device

11 ‘ 236 ‘ 392 ‘

‘ Mean Localization ‘

23.3 +10.13 19.59 +8.65 28.50 £12.49
Error (cm)

Table 5. Comparing the overhead of limiting the mobile device’s (LAPT) network bandwidth on the perfor-
mance of Edge-SLAM to map D1 dataset

update on the edge takes ~62ms. Reconstructing the map update on the mobile device, however,
takes ~336ms. We should note that the mobile device cannot execute the Tracking module while
reconstructing the map update. The reconstruction latency might seem long on the mobile device,
but with the current optimizations, it is short enough for the Tracking module to continue mapping
smoothly.

Each map update consists of the latest six KeyFrames added to the edge Global-Map. Shown
in Table 4 (with MUCI) is the end-to-end latency in transmitting each KeyFrame across the wireless
network. This latency includes the time from when a KeyFrame is assigned for transmission on
one side to when it is received and deserialized on the other side. We see that each KeyFrame
transmission takes on average ~97ms, which is small. We should note that all network connections
are non-blocking, and each runs on a separate thread simultaneously with other mapping operations.
Therefore, Edge-SLAM can tolerate reasonable network latencies and delays.

Finally, Table 4 (with MUCI) shows the frequency of the map update in our experiment. Note that
the mobile device might choose not to accept map updates transmitted by the edge. We offer the
average frequency of map updates sent from the edge and the frequency of map updates accepted
on the mobile device. Our results show that the mobile device rejects map updates rarely, at least
on the D1 dataset. Map updates are published every ~9s from the edge and accepted every ~10s on
the mobile device.

5.5.2 Bandwidth. In order to measure the effect of available network bandwidth on the performance
of Edge-SLAM, we use the wondershaper [42] tool to control the bandwidth on the mobile device.
We also identify the minimum required bandwidth for Edge-SLAM to work correctly. Because
wondershaper is not compatible with JTX2, we use LAPT as our mobile device for the bandwidth

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 25

experiments. In these experiments, we map our primary dataset, D1, using Edge-SLAM. We run
three experiments, first with a high bandwidth (no limits), second with medium bandwidth, and
third with low bandwidth (minimums).

Figure 9 shows network usage for Edge-SLAM on the mobile device LAPT while mapping the
D1 dataset without limiting the bandwidth. The mobile device in Edge-SLAM uses the network
to download map updates from the edge every 5 seconds and upload KeyFrames to the edge
immediately after creation. We observe that the download rate is steady at ~5Mbps. This is because
the Local-Map updates are small and consist of only six KeyFrames per update. On the other hand,
the upload rate is *2Mbps most of the time, but it spikes when the KeyFrame creation rate is high.
The figure shows around eight upload spikes that go as high as ~56Mbps. These spikes correspond
to eight turns that exist in the D1 dataset. When the robot turns, the scene changes rapidly, causing
the system to create a higher number of KeyFrames to keep up with the changes.

Table 5 shows how lower network bandwidths could affect the performance of Edge-SLAM. Our
main objectives in performing the network bandwidth measurements are:

e Show that Edge-SLAM can work reliably in different network conditions.
o Identify the minimum network bandwidth required for Edge-SLAM to map properly.

After performing several experiments, we have identified the upload rate of 15Mbps and the
download rate of 10Mbps as the minimum required bandwidths for Edge-SLAM to work accurately
without mapping issues. We have used these minimum rates for our low bandwidth experiment.
From the low bandwidth measurements, we observe some overhead with respect to the number of
dropped KeyFrames and the mean localization error. This overhead is still within an acceptable
range, given that the system could fully map the dataset without any mapping issues. As for
the medium bandwidth experiment, we see no overhead in the mean localization error, which is
even better than the high bandwidth’s mean localization error. However, we do see more drops of
created KeyFrames, but without affecting the system mapping accuracy. We would like to note here
that ORB-SLAM2 and consequently Edge-SLAM depend on multiple factors when run; therefore,
their outcomes are slightly different after each run. These factors include but are not limited
to the device’s computational load, resource availability, network condition, and optimization
quality. Thus, as long as the network bandwidths are above the minimum, it is normal to observe
slightly mixed measurements for medium and high bandwidths. i.e., higher KeyFrame drops, lower
localization error for medium bandwidth, lower KeyFrame drops, and higher localization error
for high bandwidth. However, the final mapping outcome for both bandwidths should still be
consistent and within an acceptable accuracy range. Therefore, Edge-SLAM can smoothly map
with a wide range of today’s bandwidths and variable network conditions.

5.6 Map Update Controller Interface Analysis

As described in Section 4.7.2, we implemented a map update controller interface along with other
map update improvements for the mobile device to prevent unnecessary tracking loss during
challenging mapping scenarios. In this subsection, we analyze these improvements by comparing
different aspects of the system with the previous version. For this, we use measurements for Edge-
SLAM running on the mobile device (JTX2) and the edge (DESK) while mapping the D1 dataset.
The measurements for Edge-SLAM without the map update controller interface are based on [7].

Table 4 compares the measurements of the previous version of Edge-SLAM (without MUCI) to
the current improved version of Edge-SLAM (with MUCI). For the edge operations (i.e., map update
construction latency and publish frequency), these stayed almost the same as they are not affected
by the map update controller and the map restructuring improvements. The improvements are
designed to mainly enhance mobile device operations. For instance, when the controller prevents

26 Ben Alj, et al.

2.5

2.0
z
o 1.5
)
«
n
=)
. 1.0
[
z
o
~

0.5

—— ORB-SLAM2 JTX2
0.0| — Edge-SLAM JTX2-DESK
0 20 40 60 80 100

Time (% of Execution)

Fig. 10. Power consumption over time for ORB-SLAM?2 and Edge-SLAM on JTX2 mapping D1 dataset

applying map updates during challenging scenarios, it enables the mobile device to better utilize
its resources for other mapping and non-mapping operations. For mapping operations, we observe
that the map update controller has slightly improved the mean localization error (i.e., accuracy). We
also observe that the controller has almost no impact on the frequency at which the mobile device
accepts map updates. For non-mapping operations, we look at the latency to prepare (serialize)
and transmit newly created KeyFrames from the mobile device to the edge. Since all network
connections are non-blocking, and each runs on a separate thread simultaneously with other
mapping operations, we observe a %40 reduction in the KeyFrame transmission latency from the
mobile device to the edge when map updates are only applied at the proper times.

Restructuring the map to support fast retrieval operation has improved the time it takes for the
mobile device to rebuild the Local-Map from an update and establish the map connections. This
can be seen in Table 4, showing a %19 reduction in the map update reconstruction latency.

Finally, we want to highlight another main benefit of the map update controller interface:
reducing the number of experiments that must be performed to successfully map the long-running
datasets with challenging scenarios. For instance, in the D1 dataset shown in Figure 6, there are
eight sharp turns the robot needs to make without losing track to successfully map the dataset, and
that is challenging. Thus, without the map update controller, we had to map the dataset multiple
times from the beginning until getting a run where the system made it through all turns. However,
after implementing the map update controller, we successfully mapped the entire dataset in a single
run.

5.7 Power Consumption

We also measure power consumption on the mobile device for ORB-SLAM2 and Edge-SLAM. For
this, we first map our main dataset, D1, using ORB-SLAM2 running on the JTX2. Second, we map
the D1 dataset using Edge-SLAM running on the JTX2 as the mobile device and DESK as the edge
device. The power measurements are collected on the JTX2.

To measure power consumption, we collect voltage readings throughout the run of each system.
Then, we calculate the current using the obtained voltage using Equation 2. Finally, we calculate
the power using Equation 3.

Current = (Voltage — 2.5)/0.1 (2)

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 27

Power = Voltage = Current 3)

Figure 10 shows no significant difference in power consumption between ORB-SLAM2 and
Edge-SLAM on the JTX2. In ORB-SLAM2, the power consumption varies between 2 and 2.25 Watts.
We believe this variation in power consumption is due to the loop closure and global optimization
operations on the mobile device happening at ~65% and ~95% execution time. These operations are
computationally heavy and run when a loop is detected. In Edge-SLAM, the power consumption
is steady at ~2.25 Watts. We believe this steadiness is due to moving the occasional computation-
heavy operations such as loop closure and global optimization to the edge device. On the other
hand, due to the continuous Wi-Fi network usage throughout the experiment, Edge-SLAM power
consumption is equal to ORB-SLAM2’s maximum power value of 2.25 Watts. ORB-SLAM2 does not
use the network while mapping. Therefore, the increase of 0.25 watts on average can be attributed
to the consistent use of the Wi-Fi. Even with this addition, Edge-SLAM power consumption is
comparable to that of ORB-SLAM2.

6 CONCLUSION

Many mobile applications require spatial localization, including augmented reality apps and libraries
such as ARCore, ARKit, and HoloLens APIL One popular mechanism to achieve this is using Visual-
SLAM. However, most Visual-SLAM systems are computationally intensive. In this work, we adapt
Visual-SLAM to a split architecture called Edge-SLAM, distributing the compute load between a
mobile device and an edge device. We demonstrate our proposed idea by prototyping the Edge-
SLAM architecture using ORB-SLAM?2, a popular Visual-SLAM system. In particular, we kept
the Tracking module on the mobile device and moved the Local-Mapping and the Loop-Closing
modules to the edge. We achieved this split by creating a new map structure called the Local-Map
on the mobile device for use by the Tracking module. This Local-Map only contains a local view of
the Global-Map and gets periodically updated by the edge when needed.

In Edge-SLAM, we mainly overcome two challenges of ORB-SLAM2. First, we limit the growth in
memory usage due to increasing map size and keep the mobile device memory usage constant. Sec-
ond, we move the bursty computational tasks (Local-Mapping and Loop-Closing) to the edge device,
allowing the mobile device to function more efficiently and run other apps. Overall, we achieved
this with minimal loss of accuracy in the final map and the trajectory taken. We demonstrated this
using our own datasets as well as publicly available datasets. We have internally tested our system
on multiple other datasets, and the results are similar. We evaluated all aspects of resources used
by our system, including CPU, memory, network, and power consumption. We open-source® our
Edge-SLAM implementation and make it available to other researchers to evaluate their solutions.

ACKNOWLEDGMENTS

The authors were supported through NSF#1846320. We would like to thank our anonymous
reviewers for their feedback in improving this work.

REFERENCES

1] 2020. Computer Cpu Desktop - Free vector graphic on Pixabay. https://pixabay.com/images/id-156768/.

2] 2020. Interior Design Tv Multi-Screen - Free image on Pixabay. https://pixabay.com/images/id-828545/.

3] 2020. Smartphone Android Technology - Free vector graphic on Pixabay. https://pixabay.com/images/id-3358735/.

4] C. Adhivarahan and K. Dantu. 2019. WISDOM: WIlreless Sensing-assisted Distributed Online Mapping. In 2019
International Conference on Robotics and Automation (ICRA). 8026-8033. https://doi.org/10.1109/ICRA.2019.8793932

[
[
[
[

Shttps://droneslab.github.io/edgeslam/

https://pixabay.com/images/id-156768/
https://pixabay.com/images/id-828545/
https://pixabay.com/images/id-3358735/
https://doi.org/10.1109/ICRA.2019.8793932
https://droneslab.github.io/edgeslam/

28

5]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ben Alj, et al.

Raghav Anand, Jeffrey Ichnowski, Chenggang Wu, Joseph M. Hellerstein, Joseph E. Gonzalez, and Ken Goldberg.
2021. Serverless Multi-Query Motion Planning for Fog Robotics. In 2021 IEEE International Conference on Robotics and
Automation (ICRA). 7457-7463. https://doi.org/10.1109/ICRA48506.2021.9561571

T. Bailey and H. Durrant-Whyte. 2006. Simultaneous localization and mapping (SLAM): part II. IEEE Robotics
Automation Magazine 13, 3 (Sep. 2006), 108-117. https://doi.org/10.1109/MRA.2006.1678144

Ali J. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM: Edge-Assisted Visual Simultaneous
Localization and Mapping. In Proceedings of the 18th International Conference on Mobile Systems, Applications, and
Services (Toronto, Ontario, Canada) (MobiSys ’20). Association for Computing Machinery, New York, NY, USA, 325-337.
https://doi.org/10.1145/3386901.3389033

Alessio Botta, Jonathan Cacace, Riccardo De Vivo, Bruno Siciliano, and Giorgio Ventre. 2021. Networking for
Cloud Robotics: The DewROS Platform and Its Application. Journal of Sensor and Actuator Networks 10, 2 (2021).
https://doi.org/10.3390/jsan10020034

M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. P. O’Boyle, A. J. Davison, P. H. J. Kelly, G. Riley, B. Lennox,
M. Lujan, and S. Furber. 2019. SLAMBench 3.0: Systematic Automated Reproducible Evaluation of SLAM Systems
for Robot Vision Challenges and Scene Understanding. In 2019 International Conference on Robotics and Automation
(ICRA). 6351-6358. https://doi.org/10.1109/ICRA.2019.8794369

Carlos Campos, Richard Elvira, Juan] Gémez Rodriguez, José MM Montiel, and Juan D Tardés. 2020. ORB-SLAM3: An
accurate open-source library for visual, visual-inertial and multi-map SLAM. arXiv preprint arXiv:2007.11898 (2020).

Kaifei Chen, Tong Li, Hyung-Sin Kim, David E. Culler, and Randy H. Katz. 2018. MARVEL: Enabling Mobile Augmented
Reality with Low Energy and Low Latency. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor
Systems (Shenzhen, China) (SenSys ’18). ACM, New York, NY, USA, 292-304. https://doi.org/10.1145/3274783.3274834
Kaiyuan Eric Chen, Yafei Liang, Nikhil Jha, Jeffrey Ichnowski, Michael Danielczuk, Joseph Gonzalez, John Kubiatowicz,
and Ken Goldberg. 2021. FogROS: An Adaptive Framework for Automating Fog Robotics Deployment. In 2021 IEEE
17th International Conference on Automation Science and Engineering (CASE). 2035-2042. https://doi.org/10.1109/
CASE49439.2021.9551628

Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang, Evgenya Pergament, Eyal Cidon,
Sachin Katti, and Marco Pavone. 2021. Network offloading policies for cloud robotics: a learning-based approach.
Autonomous Robots 45, 7 (2021), 997-1012.

Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. 2011. CloneCloud: Elastic Execution
Between Mobile Device and Cloud. In Proceedings of the Sixth Conference on Computer Systems (Salzburg, Austria)
(EuroSys '11). ACM, New York, NY, USA, 301-314. https://doi.org/10.1145/1966445.1966473

Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. 2018. Data-efficient decentralized visual SLAM. In
2018 IEEE international conference on robotics and automation (ICRA). IEEE, 2466-2473.

D. M. Cole and P. M. Newman. 2006. Using laser range data for 3D SLAM in outdoor environments. In Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. 1556-1563. https://doi.org/10.1109/
ROBOT.2006.1641929

Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer Chandra, and Paramvir
Bahl. 2010. MAUI: Making Smartphones Last Longer with Code Offload. In Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services (San Francisco, California, USA) (MobiSys °10). ACM, New
York, NY, USA, 49-62. https://doi.org/10.1145/1814433.1814441

Google Developers. 2020. Build new augmented reality experiences that seamlessly blend the digital and physical
worlds. https://developers.google.com/ar.

M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba. 2001. A solution to the
simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation 17, 3
(June 2001), 229-241. https://doi.org/10.1109/70.938381

H. Durrant-Whyte and T. Bailey. 2006. Simultaneous localization and mapping: part I. IEEE Robotics Automation
Magazine 13, 2 (June 2006), 99-110. https://doi.org/10.1109/MRA.2006.1638022

Jakob Engel, Thomas Schéps, and Daniel Cremers. 2014. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Computer
Vision — ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International
Publishing, Cham, 834-849.

Nikolas Engelhard, Felix Endres, Jirgen Hess, Jirgen Sturm, and Wolfram Burgard. 2011. Real-time 3D visual SLAM
with a hand-held RGB-D camera. In Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics
Forum, Vasteras, Sweden, Vol. 180. 1-15.

M. F. Fallon, J. Folkesson, H. McClelland, and J. J. Leonard. 2013. Relocating Underwater Features Autonomously
Using Sonar-Based SLAM. IEEE Journal of Oceanic Engineering 38, 3 (July 2013), 500-513. https://doi.org/10.1109/JOE.
2012.2235664

https://doi.org/10.1109/ICRA48506.2021.9561571
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1145/3386901.3389033
https://doi.org/10.3390/jsan10020034
https://doi.org/10.1109/ICRA.2019.8794369
https://doi.org/10.1145/3274783.3274834
https://doi.org/10.1109/CASE49439.2021.9551628
https://doi.org/10.1109/CASE49439.2021.9551628
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1109/ROBOT.2006.1641929
https://doi.org/10.1109/ROBOT.2006.1641929
https://doi.org/10.1145/1814433.1814441
https://developers.google.com/ar
https://doi.org/10.1109/70.938381
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/JOE.2012.2235664
https://doi.org/10.1109/JOE.2012.2235664

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 29

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

Brian Ferris, Dieter Fox, and Neil Lawrence. 2007. WiFi-SLAM Using Gaussian Process Latent Variable Models. In
Proceedings of the 20th International Joint Conference on Artifical Intelligence (Hyderabad, India) (IJCAI’07). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2480-2485. http://dl.acm.org/citation.cfm?id=1625275.1625675
C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza. 2013. Collaborative monocular SLAM with multiple Micro
Aerial Vehicles. In 2013 IEEE/RS7 International Conference on Intelligent Robots and Systems. 3962-3970. https:
//doi.org/10.1109/IROS.2013.6696923

Z. Hashemifar and K. Dantu. 2020. Practical Persistence Reasoning in Visual SLAM. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). 7307-7313. https://doi.org/10.1109/ICRA40945.2020.9196913

Zakieh Hashemifar, Kyung Won Lee, Nils Napp, and Karthik Dantu. 2018. Geometric Mapping for Sustained Indoor
Autonomy. In Proceedings of the 1st International Workshop on Internet of People, Assistive Robots and Things (Munich,
Germany) (IoPARTS’18). Association for Computing Machinery, New York, NY, USA, 19-24. https://doi.org/10.1145/
3215525.3215531

Zakieh S Hashemifar, Charuvahan Adhivarahan, Anand Balakrishnan, and Karthik Dantu. 2019. Augmenting visual
SLAM with Wi-Fi sensing for indoor applications. Autonomous Robots 43, 8 (2019), 2245-2260.

Z.S. Hashemifar, K. W. Lee, N. Napp, and K. Dantu. 2017. Consistent Cuboid Detection for Semantic Mapping. In 2017
IEEE 11th International Conference on Semantic Computing (ICSC). 526-531. https://doi.org/10.1109/ICSC.2017.78

W. Hess, D. Kohler, H. Rapp, and D. Andor. 2016. Real-time loop closure in 2D LIDAR SLAM. In 2016 IEEE International
Conference on Robotics and Automation (ICRA). 1271-1278. https://doi.org/10.1109/ICRA.2016.7487258

J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal. 2011. Efficient, generalized indoor WiFi
GraphSLAM. In 2011 IEEE International Conference on Robotics and Automation. 1038-1043. https://doi.org/10.1109/
ICRA.2011.5979643

Jeffrey Ichnowski, Kaiyuan Chen, Karthik Dharmarajan, Simeon Adebola, Michael Danielczuk, Victor Mayoral-Vilches,
Hugo Zhan, Derek Xu, Ramtin Ghassemi, John Kubiatowicz, Ion Stoica, Joseph Gonzalez, and Ken Goldberg. 2022.
FogROS 2: An Adaptive and Extensible Platform for Cloud and Fog Robotics Using ROS 2. https://doi.org/10.48550/
ARXIV.2205.09778

Computer Vision Group in Department of Informatics at Technical University of Munich. 2020. Computer Vision
Group - Dataset Download. https://vision.in.tum.de/data/datasets/rgbd-dataset/download.

Apple Inc. 2020. Augmented Reality - Apple Developer. https://developer.apple.com/augmented-reality/.

S. Ito, F. Endres, M. Kuderer, G. Diego Tipaldi, C. Stachniss, and W. Burgard. 2014. W-RGB-D: Floor-plan-based indoor
global localization using a depth camera and WiFi. In 2014 IEEE International Conference on Robotics and Automation
(ICRA). 417-422. https://doi.org/10.1109/ICRA.2014.6906890

Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth Offload for Mobile AR. In Proceedings
of the 12th International on Conference on Emerging Networking EXperiments and Technologies (Irvine, California, USA)
(CoNEXT ’16). ACM, New York, NY, USA, 237-251. https://doi.org/10.1145/2999572.2999587

G. Klein and D. Murray. 2007. Parallel Tracking and Mapping for Small AR Workspaces. In 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality. 225-234. https://doi.org/10.1109/ISMAR.2007.4538852

R. Kimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. 2011. G2o: A general framework for graph
optimization. In 2011 IEEE International Conference on Robotics and Automation. 3607-3613. https://doi.org/10.1109/
ICRA.2011.5979949

M. Labbé and F. Michaud. 2013. Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term
Operation. IEEE Transactions on Robotics 29, 3 (June 2013), 734-745. https://doi.org/10.1109/TRO.2013.2242375

Fu Li, Shaowu Yang, Xiaodong Yi, and Xuejun Yang. 2018. CORB-SLAM: A Collaborative Visual SLAM System for
Multiple Robots. In Collaborative Computing: Networking, Applications and Worksharing, Imed Romdhani, Lei Shu,
Hara Takahiro, Zhangbing Zhou, Timothy Gordon, and Deze Zeng (Eds.). Springer International Publishing, Cham,
480-490.

Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time Object Detection for Mobile Augmented
Reality. In The 25th Annual International Conference on Mobile Computing and Networking (Los Cabos, Mexico)
(MobiCom ’19). ACM, New York, NY, USA, Article 25, 16 pages. https://doi.org/10.1145/3300061.3300116

Canonical Ltd. 2021. Ubuntu Manpage: wondershaper - simple traffic shaping script. http://manpages.ubuntu.com/
manpages/trusty/man8/wondershaper.8.html.

P. Mach and Z. Becvar. 2017. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE
Communications Surveys Tutorials 19, 3 (thirdquarter 2017), 1628-1656. https://doi.org/10.1109/COMST.2017.2682318
Ricardo C. Mello, Sergio D. Sierra M., Wandercleyson M. Scheidegger, Marcela C. Munera, Carlos A. Cifuentes,
Moises R.N. Ribeiro, and Anselmo Frizera-Neto. 2022. The PoundCloud framework for ROS-based cloud robotics:
Case studies on autonomous navigation and human-robot interaction. Robotics and Autonomous Systems 150 (2022),
103981. https://doi.org/10.1016/j.robot.2021.103981

http://dl.acm.org/citation.cfm?id=1625275.1625675
https://doi.org/10.1109/IROS.2013.6696923
https://doi.org/10.1109/IROS.2013.6696923
https://doi.org/10.1109/ICRA40945.2020.9196913
https://doi.org/10.1145/3215525.3215531
https://doi.org/10.1145/3215525.3215531
https://doi.org/10.1109/ICSC.2017.78
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA.2011.5979643
https://doi.org/10.1109/ICRA.2011.5979643
https://doi.org/10.48550/ARXIV.2205.09778
https://doi.org/10.48550/ARXIV.2205.09778
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://developer.apple.com/augmented-reality/
https://doi.org/10.1109/ICRA.2014.6906890
https://doi.org/10.1145/2999572.2999587
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/TRO.2013.2242375
https://doi.org/10.1145/3300061.3300116
http://manpages.ubuntu.com/manpages/trusty/man8/wondershaper.8.html
http://manpages.ubuntu.com/manpages/trusty/man8/wondershaper.8.html
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1016/j.robot.2021.103981

30

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]
[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

Ben Alj, et al.

Stefan Milz, Georg Arbeiter, Christian Witt, Bassam Abdallah, and Senthil Yogamani. 2018. Visual slam for automated
driving: Exploring the applications of deep learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 247-257.

P. Mirowski, T. K. Ho, Saehoon Yi, and M. MacDonald. 2013. SignalSLAM: Simultaneous localization and mapping
with mixed WiFi, Bluetooth, LTE and magnetic signals. In International Conference on Indoor Positioning and Indoor
Navigation. 1-10. https://doi.org/10.1109/IPIN.2013.6817853

Gajamohan Mohanarajah, Dominique Hunziker, Raffaello D’Andrea, and Markus Waibel. 2015. Rapyuta: A Cloud
Robotics Platform. IEEE Transactions on Automation Science and Engineering 12, 2 (2015), 481-493. https://doi.org/10.
1109/TASE.2014.2329556

Gajamohan Mohanarajah, Vladyslav Usenko, Mayank Singh, Raffaello D’Andrea, and Markus Waibel. 2015. Cloud-
Based Collaborative 3D Mapping in Real-Time With Low-Cost Robots. IEEE Transactions on Automation Science and
Engineering 12, 2 (2015), 423-431. https://doi.org/10.1109/TASE.2015.2408456

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardés. 2015. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Transactions on Robotics 31, 5 (Oct 2015), 1147-1163. https://doi.org/10.1109/TR0O.2015.2463671

R. Mur-Artal and J. D. Tardés. 2017. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D
Cameras. IEEE Transactions on Robotics 33, 5 (Oct 2017), 1255-1262. https://doi.org/10.1109/TRO.2017.2705103

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and
A. Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping and tracking. In 2011 10th IEEE International
Symposium on Mixed and Augmented Reality. 127-136. https://doi.org/10.1109/ISMAR.2011.6092378

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. 2011. DTAM: Dense tracking and mapping in real-time. In 2011
International Conference on Computer Vision. 2320-2327. https://doi.org/10.1109/ICCV.2011.6126513

Albert Pumarola, Alexander Vakhitov, Antonio Agudo, Alberto Sanfeliu, and Francese Moreno-Noguer. 2017. PL-
SLAM: Real-time monocular visual SLAM with points and lines. In 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 4503-4508.

Tong Qin, Peiliang Li, and Shaojie Shen. 2018. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State
Estimator. IEEE Transactions on Robotics 34, 4 (2018), 1004—-1020.

M. Quigley, D. Stavens, A. Coates, and S. Thrun. 2010. Sub-meter indoor localization in unmodified environments
with inexpensive sensors. In 2010 IEEE/RS7F International Conference on Intelligent Robots and Systems. 2039-2046.
https://doi.org/10.1109/IROS.2010.5651783

L. Riazuelo, Javier Civera, and J.M.M. Montiel. 2014. C2TAM: A Cloud framework for cooperative tracking and
mapping. Robotics and Autonomous Systems 62, 4 (2014), 401 - 413. https://doi.org/10.1016/j.robot.2013.11.007

M. Satyanarayanan. 2017. The Emergence of Edge Computing. Computer 50, 1 (Jan 2017), 30-39. https://doi.org/10.
1109/MC.2017.9

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. The Case for VM-Based Cloudlets in Mobile Computing.
IEEE Pervasive Computing 8, 4 (Oct 2009), 14-23. https://doi.org/10.1109/MPRV.2009.82

P. Schmuck and M. Chli. 2017. Multi-UAV collaborative monocular SLAM. In 2017 IEEE International Conference on
Robotics and Automation (ICRA). 3863-3870. https://doi.org/10.1109/ICRA.2017.7989445

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge Computing: Vision and Challenges. IEEE Internet of Things
Journal 3, 5 (Oct 2016), 637-646. https://doi.org/10.1109/JI0T.2016.2579198

Sebastian Thrun et al. 2002. Robotic mapping: A survey. Exploring artificial intelligence in the new millennium 1, 1-35
(2002), 1.

Lokender Tiwari, Pan Ji, Quoc-Huy Tran, Bingbing Zhuang, Saket Anand, and Manmohan Chandraker. 2020. Pseudo
rgb-d for self-improving monocular slam and depth prediction. In European Conference on Computer Vision. Springer,
437-455.

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. 2018. Ultimate SLAM? Combining
events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robotics and Automation
Letters 3, 2 (2018), 994-1001.

T. Whelan, H. Johannsson, M. Kaess,]. J. Leonard, and J. McDonald. 2013. Robust real-time visual odometry for dense
RGB-D mapping. In 2013 IEEE International Conference on Robotics and Automation. 5724-5731. https://doi.org/10.
1109/ICRA.2013.6631400

Kwame-Lante Wright, Ashiwan Sivakumar, Peter Steenkiste, Bo Yu, and Fan Bai. 2020. CloudSLAM: Edge Offloading
of Stateful Vehicular Applications. In Proceedings of the Fifth ACM/IEEE Symposium on Edge Computing (SEC 20).

J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang. 2020. Edge Assisted Mobile Semantic Visual
SLAM. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 1828-1837. https://doi.org/10.1109/
INFOCOM41043.2020.9155438

Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang, Qi Wei, and Qiao Fei. 2018. DS-SLAM: A semantic visual SLAM
towards dynamic environments. In 2018 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS).

https://doi.org/10.1109/IPIN.2013.6817853
https://doi.org/10.1109/TASE.2014.2329556
https://doi.org/10.1109/TASE.2014.2329556
https://doi.org/10.1109/TASE.2015.2408456
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.1109/IROS.2010.5651783
https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/ICRA.2017.7989445
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/ICRA.2013.6631400
https://doi.org/10.1109/ICRA.2013.6631400
https://doi.org/10.1109/INFOCOM41043.2020.9155438
https://doi.org/10.1109/INFOCOM41043.2020.9155438

Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 31

IEEE, 1168-1174.
[68] Ji Zhang and Sanjiv Singh. 2014. LOAM: Lidar Odometry and Mapping in Real-time.. In Robotics: Science and Systems,

Vol. 2. Berkeley, CA, 1-9.
[69] Xingxing Zuo, Xiaojia Xie, Yong Liu, and Guoquan Huang. 2017. Robust visual SLAM with point and line features. In

2017 IEEE/RST International Conference on Intelligent Robots and Systems (IROS). IEEE, 1775-1782.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Edge/Cloud Offloading
	2.2 Simultaneous Localization and Mapping (SLAM)
	2.3 Collaborative SLAM
	2.4 SLAM Offloading

	3 System Design
	3.1 Overview of a Typical Visual-SLAM System
	3.2 Challenges in Deploying Visual-SLAM Systems
	3.3 Edge-SLAM Design

	4 Edge-SLAM Implementation in ORB-SLAM2
	4.1 ORB-SLAM2
	4.2 Edge-SLAM Implementation
	4.3 Mobile-Edge Network Setup
	4.4 Mobile Device Operation
	4.5 Edge Operation
	4.6 Implementation Tradeoffs
	4.7 Engineering Edge-SLAM Modules For Efficient Operation

	5 Evaluation
	5.1 Experiment Setup
	5.2 Mapping Accuracy
	5.3 Performance
	5.4 CPU and Memory Usage
	5.5 Network Usage
	5.6 Map Update Controller Interface Analysis
	5.7 Power Consumption

	6 Conclusion
	Acknowledgments
	References

