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Abstract

A systematic approach to finding variational approximation in an otherwise intractable
non-conjugate model is to exploit the general principle of convex duality by minorizing
the marginal likelihood that renders the problem tractable. While such approaches are
popular in the context of variational inference in non-conjugate Bayesian models, theoretical
guarantees on statistical optimality and algorithmic convergence are lacking. Focusing on
logistic regression models, we provide mild conditions on the data generating process to
derive non-asymptotic upper bounds to the risk incurred by the variational optima. We
demonstrate that these assumptions can be completely relaxed if one considers a slight
variation of the algorithm by raising the likelihood to a fractional power. Next, we utilize
the theory of dynamical systems to provide convergence guarantees for such algorithms
in logistic and multinomial logit regression. In particular, we establish local asymptotic
stability of the algorithm without any assumptions on the data-generating process. We
explore a special case involving a semi-orthogonal design under which a global convergence
is obtained. The theory is further illustrated using several numerical studies.

Keywords: Bayesian; Dynamical System; Logistic regression; Rényi divergence; Risk
bound; Variational Inference

1. Introduction

Variational Inference (VI) has gained substantial momentum in recent years as an e�cient
way of performing approximate Bayesian inference. VI seeks to minimize a divergence mea-
sure between a tractable family of probability distributions and the posterior distribution,
utilizing optimization based techniques to arrive at a minima. In many high dimensional
examples where sampling based techniques such as the Markov chain Monte Carlo require
expert vigilance and care for scalability, VI provides a viable answer with relatively lower
computational cost. Some notable application areas include graphical models (Wainwright
et al., 2008; Jordan et al., 1999), hidden markov models (MacKay, 1997), latent class models
(Blei et al., 2003), neural networks (Graves, 2011) to name a few. Refer to Chapter 10 in
Bishop (2006) and Blei et al. (2017) for excellent reviews on the topic.

The empirical success of VI has prompted researchers to investigate their theoretical
properties. Two distinct directions of research seem to have emerged over the last few years.
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One line of research concerns the statistical aspects of variational estimators (Alquier et al.,
2016; Pati et al., 2018; Yang et al., 2020; Chérief-Abdellatif and Alquier, 2018; Alquier and
Ridgway, 2020; Zhang and Gao, 2020; Wang and Blei, 2019a,b) in a general setting, delin-
eating su�cient conditions on the data generation mechanism and the variational family
under which the variational estimators have optimal first or second-order statistical proper-
ties. Motivated by the robustness properties of a fractional likelihood (Bhattacharya et al.,
2019; Alquier and Ridgway, 2020), Yang et al. (2020) proposed a simple modification to the
variational objective function, deemed as the ↵-Variational Bayes (↵-VB), that only requires
the variational family to be su�ciently flexible and the prior density to be appropriately
concentrated around the true parameter to obtain optimal risk bounds.

The other line of research studies the convergence of the algorithms employed to arrive at
the variational optimizer. In this aspect, the coordinate ascent variational inference (CAVI)
algorithm for mean-field VI (refer to Chapter 10 of Bishop (2006)) has arguably received
the most attention due to its simplicity and generality. An early result on algorithmic
convergence (and lack thereof) of CAVI in Gaussian mixture models appears in Wang and
Titterington (2006). Zhang and Zhou (2020); Mukherjee et al. (2018) analyzed CAVI for
stochastic block models, a popular model for networks belonging to conditionally conjugate
exponential family (cEXP). Yin et al. (2020) obtained convergence of cluster labels in a
stochastic block model by considering a structured variational family which was not possible
using mean field VI. Ghorbani et al. (2018) noted instability of naive mean-field VI in latent
Dirichlet allocation and provided a remedy by optimizing a di↵erent type of free energy
(TAP) instead of the standard variational objective. Locatello et al. (2018); Campbell and
Li (2019) analyzed convergence of a more flexible class of boosting algorithms which aim to
approximate the target class by a mixture of Gaussians rather than a single Gaussian or a
product distribution.

Our goal in this article is to explore a popular class of variational approximation tech-
nique outside cEXP, called the tangent-transform approach (Jaakkola, 1997; Jaakkola and
Jordan, 2000). The tangent transform approach is an example of a structured variational
approximation, lying on the spectrum between the two extremes given by the restrictive
mean-field inference and the highly flexible variational boosting. In this specific instance,
the structure exploited is convex duality (Jordan et al., 1999; Wainwright and Jordan, 2003;
Wainwright et al., 2005) to minorize the log-likelihood function and provide sharp bounds
for the log-partition function in the exponential family of distributions. Assume p(x, ✓) is
an exponential family on a discrete space X indexed by parameter ✓ 2 ⇥,

p(x; ✓) = exp{h✓, t(x)i �B(✓)}, B(✓) = log
hX

x2X
exp{h✓, t(x)i}

i
.

The log-partition function B(✓), a convex function of ✓, plays a critical role in comput-
ing summary measures of p(x; ✓). Jaakkola and Jordan (2000) exploits the dual repre-
sentation of the log-partition function in terms of its Fenchel-Legendre conjugate B(✓) =
supµ2M[h✓, t(x)i � {�H(µ)}], where H(µ) is negative entropy of the distribution parame-
terized by µ and M is the marginal polytope.

Ideas related to the tangent-transform have found widespread applications ranging from
approximate inference in graphical models (Jordan et al., 1999), low-rank approximations
(Srebro and Jaakkola, 2003), inference in large scale generalized linear models (Nickisch and
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Seeger, 2009), non-conjugate latent Gaussian models (Emtiyaz Khan et al., 2013) to more
recently in sparse kernel machines (Shi and Yu, 2019), hierarchical relevance determination
(Hirose et al., 2020), online prediction (Konagayoshi and Watanabe, 2019) among others.
Jaakkola and Jordan (2000) exploits convex duality to minorize the marginal likelihood by
introducing a variational parameter that allows the minorant to be arbitrarily close to the
marginal likelihood. Logistic and multinomial logit regression models are notable examples
where a clever use of this idea results in a straightforward Expectation-Maximization (EM)
algorithm to compute the variational updates.

In this article, we investigate both the statistical and algorithmic aspects of the tangent
transform algorithm in logit models. Despite its widespread usage, statistical properties of
the point estimate of the regression coe�cients resulting from a tangent transform algorithm
has not been previously studied. One possible reason is that unlike mean-field VI, where
the global objective is to minimize the Kullback—Leibler (or another) divergence between
a product distribution and the posterior distribution, the tangent transform algorithm is
defined locally, without a clear global objective function that is being minimized. A key
observation underlying our statistical analysis expresses any stationary point of the EM
algorithm as a minimzer of a suitably chosen global variational objective function. This
observation allows us to extend previously developed variational risk bounds for mean-
field VI (Yang et al., 2020; Pati et al., 2018) to the present setting with some non-trivial
adaptations. Specifically, two important extensions were made. First, the introduction of
variational parameters minorizes the joint density, and the minorant does not integrate to
one. This renders the results in Yang et al. (2020) inapplicable in our case which require a
probabilistic latent variable augmentation. Second, we accurately characterize the Jensen
gap of the minorant in terms of the variational parameter which ultimately allows us to
establish optimal contraction. We show that with minimal assumptions on the data gener-
ating process and the prior density on the regression coe�cients, the variational risk bound
is minimax optimal (up to logarithmic terms). Moreover, the assumption on the data gen-
erating process can be completely relaxed by raising the standard logistic likelihood by a
fractional exponent (Bhattacharya et al., 2019).

Next, we investigate the convergence of the EM algorithm to the fixed point of the
EM iterations. There has been some previous e↵orts to shed more light into the EM
sequence of tangent-transform algorithms. Hunter and Lange (2004) studied connections
between minimization-majorization (MM) in case of logistic likelihood to argue convergence
of the coe�cient vector updates. However, they do not consider Bayesian inference on
the logistic regression coe�cients. Durante and Rigon (2019) drew a connection with the
Pólya-Gamma data augmentation technique (Polson et al., 2013) to provide a probabilistic
interpretation of the EM updates and showed that the optimal evidence lower bound of the
tangent transformation approach coincides with the same obtained in a bonafide variational
inference with a suitably defined conditionally conjugate exponential family. Although
it is possible to use the probabilistic characterization of updates in Durante and Rigon
(2019) and leverage on the techniques developed in Yang et al. (2020) to derive variational
risk bounds, the theory in Yang et al. (2020) would also require us to impose additional
assumptions for optimal concentration of Pólya-Gamma random variables. Moreover, our
goal is to generalize the results to the case of multinomial logit regression for which such
probabilistic characterization is not readily available. We thus aim to develop a theory to
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study convergence of the tangent-transform (TT) estimates that is free of such probabilistic
characterization. However, a case by case analysis is required for the generalization of the
theory to other non-conjugate models.

It may also appear on the surface that the EM algorithm underlying tangent-transforms
can be analyzed using the general su�cient conditions for convergence of the EM (we refer
to the recent article (Balakrishnan et al., 2017) and the references therein for more on
this topic), a careful inspection however reveals that these general-purpose conditions pose
significant di�culty to verify in case of the present EM iterates and demand stringent
conditions on the design matrix and other data generating parameters. Our approach, on
the other hand is to directly analyze the EM sequence without resorting to any high-level
results.

By viewing the EM updates as iterations in a discrete time autonomous dynamical
system, we show that the EM updates converge to the desired fixed point under suitable
initialization, a phenomenon known as local asymptotic stability. While local stability is
typically a weaker statement compared to global convergence as it only ensures convergence
if the system is initialized in a neighborhood around the fixed point, our stability result is
essentially assumption-free and does not require any assumption on the design matrix, the
sparsity of the coe�cients, the dimension p, and the sample size n. Although the notion
of such convergence is local, to the best of our knowledge, this is the first assumption-free
result on the stability of a variational algorithm. The main technical contribution is to
show that the spectral radius of the Jacobian matrix of the linearized operator of the EM
sequence is strictly smaller than one at the fixed point. In the special case when the design
matrix is semi-orthogonal, we show that the EM sequence is globally convergent with an
exponential rate of convergence (logarithmic run time) independent of the initialization.
We also provide a straightforward extension of this result to the case of the multinomial
logit model.

1.1 A Summary of Our Contributions

The contributions in this paper are summarized as follows:

1. In §3, we derive frequentist risk bounds for the variational estimates of the model
parameters based on the ↵-Rényi divergence for ↵ 2 (0, 1]. Also, we argue that the
risk bound for the discrepancy measure in (18) is minimax optimal. It is important
to mention here that our theory to study the convergence of the tangent-transform
estimates does not leverage the probabilistic characterization of the hyperparameters
and thus allows for a natural extension to other classes of distributions for which such
probabilistic characterization is not available.

2. In §4.1 we show that the variational updates originally developed by Jaakkola and
Jordan (2000) are locally asymptotically stable under very mild conditions on the
design matrix. This ensures the existence of a neighborhood around the fixed point,
within which if an iteration is initialized then the system converges to the fixed point
eventually. By invoking results from the dynamical systems literature, we bypass the
challenge of verifying the conditions of Lyapnov’s stability (Romero et al., 2020) and
also the su�cient conditions for convergence of EM algorithm in Balakrishnan et al.
(2017).
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3. By exploiting the structure of a semi-orthogonal design matrix in a simple hierarchical
logistic model, we establish global convergence rates for the variational updates in §4.2.

4. In §5, we explore the convergence of variational updates in the case of multinomial-
logit regression and additionally provide algorithmic convergence results. It is worth
noting that the updates in multinomial logit extension do not have an immediate
probabilistic characterization. Furthermore, we extended the result to achieve global
convergence in a special case of multinomial regression.

2. Tangent Transformation Approach

Denote the data by X and the likelihood conditioned on parameter ✓ 2 ⇥ by p(X | ✓), where
⇥ is the parameter space. For a prior density p(·) on ⇥, the goal of VI is to approximate
the posterior p(✓ | X) / p(✓) p(X | ✓) by a member of a tractable family � of densities on
⇥ with respect to the Kullback—Leibler (KL) divergence.1 Notationally, VI seeks to find

q̂ = argmin
q2�

D(q k p(· | X)), (1)

equivalently maximizing the evidence lower bound (ELBO), L(q) =
R
q(✓) log{p(X, ✓)/q(✓)} d✓

with respect to q 2 �. Using a component-wise product structure on � popularly known as
the mean field family (Parisi, 1988), closed-form updates of a coordinate ascent algorithm
(CAVI) can be generally derived in conditionally conjugate exponential families (Blei et al.,
2017). However, many non-conjugate models such as logistic regression, multinomial logit
regression, graphical and, topic models, do not lead to closed-form CAVI updates, neces-
sitating various specialized techniques (Jordan et al., 1999; Blei et al., 2017). One such
approach is to introduce variational parameters to minorize the log-marginal likelihood by
a tractable family, which when combined with an appropriate prior enjoys conjugate in-
ference. For Bayesian logistic regression models, Jaakkola and Jordan (2000) introduced
a tangent-transform of the logistic function using convex duality. By a standard result in
convex analysis (Rockafellar, 1970), a convex function f(·) on Rd can be represented via a
conjugate or dual function f

⇤ as,

f(x) = max
�

{h�, xi � f
⇤(�)}, f

⇤(�) = max
x

{h�, xi � f(x)}. (2)

One simple example of (2) is x
2 = max�{�x � �

2
/4} with equality at x = �/2. Similarly,

for a concave f(·) we have f(x) = min�{h�, xi � f
⇤(�)} with the dual being f

⇤(�) =
minx{h�, xi � f(x)}. Geometrically, the evaluation of a convex function at any point x can
be viewed as the maxima of the uncountable collection of hyperplanes h�, xi�f

⇤(�) indexed
by � 2 Rd.

The usage of duality is not restricted to linear approximations, i.e., hyperplanes. In fact,
Jaakkola and Jordan (2000) used a quadratic bound for the logistic function that induces
conjugacy with Gaussian priors. In the following subsection, we discuss the salient features
of the tangent transform approach.

1. The KL divergence between densities f and g, denoted D(f k g), is D(f k g) :=
R
f log(f/g)dµ, where µ

is a common dominating measure.
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2.1 Convex Minorant Construction for Logistic Likelihood

We discuss a slightly general version of the tangent transform approach where we raise the
usual logistic likelihood to a power ↵ 2 (0, 1] before combining with the prior. Variational
Bayes procedures with fractional likelihoods have been recently considered in Yang et al.
(2020); Alquier and Ridgway (2020); Alquier et al. (2016). Note that, the case ↵ = 1
recovers the usual tangent transform.

Assuming we observe binary responses yi corresponding to fixed covariates xi 2 Rp (i =
1, . . . , n), consider the usual logistic regression model,

yi | xi,� ⇠ Bernoulli(pi), pi =
1

1 + exp(�xT
i �)

(i = 1, . . . , n). (3)

Denote by X the n ⇥ p covariate matrix with ith row xT
i (i = 1, 2, . . . , n). Consider a

Gaussian prior � ⇠ Np(µ� ,⌃�), denoted by ⇡(�).
Denoting y = (y1, y2, . . . , yn)T, call the joint density of (y,�) given X by p(y,� | X). For

a fixed ↵ 2 (0, 1], define the fractional likelihood (Walker and Hjort, 2001) by p
↵(y | X,�) =

{p(y | X,�)}↵ and denote with a slight abuse of notation, p↵(y,� | X) = p
↵(y | X,�)⇡(�),

p
↵(y,� | X) / exp

h
↵ y

TX� � ↵

nX

i=1

log
�
1 + e

xT
i �)�

1

2
(� � µ�)

T⌃�1
� (� � µ�)

i
. (4)

Jaakkola and Jordan (2000) begins with the following quadratic duality result that holds
for all x 2 R:

� log{1 + exp (x)} = max
t2R

[A(t)x2 � x/2 + C(t)],

A(t) = �tanh(t/2)/4t, C(t) = t/2� log{1 + exp(t)}+ t tanh(t/2)/4.

We can then bound log p↵(y,� | X) from below by log p↵l (y,� | X, ⇠), where

log p↵l (y,� | X, ⇠) =�
1

2
�

T
h
⌃�1
� � 2↵XTdiag{A(⇠)}X

i
� +

n
↵

⇣
y �

1

2
n

⌘T

X+ µ
T
�⌃

�1
�

o
�

� µ
T
�⌃

�1
� µ� + ↵

T
nC(⇠) + Constant. (5)

In the above display, ⇠ = (⇠1, . . . , ⇠n)T collectively denotes all variational parameters, with
⇠i appearing from applying the previous duality result for � log{1 + exp(xT

i �)}. Also,
diag{A(⇠)} is a n ⇥ n diagonal matrix with diagonal entries {A(⇠1), A(⇠2), . . . , A(⇠n)} and
C(⇠) = {C(⇠1), . . . , C(⇠n)}T.

Since p
↵
l (y,� | X, ⇠) serves as a lower bound to p

↵(y,� | X) for any ⇠ 2 Rn, similar to
Jaakkola and Jordan (2000) we use an empirical Bayes approach to estimate the variational
parameters ⇠ by maximizing p

↵
l (y | X, ⇠) =

R
p
↵
l (y,� | X, ⇠)d� with respect to ⇠. The true

posterior distribution of � in (4) is not available in closed form. However, assuming (5)
to be a working (pseudo)-likelihood of y,� given X, ⇠, it is straightforward to see that the
corresponding conditional posterior distribution of � is N(µ↵(⇠),⌃↵(⇠)/↵) where

⌃�1
↵ (⇠) = ⌃�1

� /↵� 2XTdiag{A(⇠)}X, µ
T
↵(⇠)⌃

�1
↵ (⇠) =

⇣
y �

1

2
n

⌘T

X+ µ
T
�⌃

�1
� /↵. (6)
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Treating � as latent variables and augmenting with y to get the complete data, one obtains
the E-step,

Q↵(⇠
t+1

| ⇠
t) = E�|y,⇠t,X

⇥
log p↵l (y,� | ⇠

t+1
,X)

⇤
(7)

= tr
⇥
↵XTdiag{A(⇠t+1)}X{⌃↵(⇠

t)/↵+ µ↵(⇠
t)µT

↵(⇠
t)}

⇤
+ ↵

T
nC(⇠t+1) + Constant,

where tr(A) denotes the trace of a matrix A. Upon di↵erentiating the above expression
with respect to ⇠t+1 and using the fact that C 0(x) = �x

2
A

0(x), we get the M-step,

(⇠t+1)2 = diag[X{⌃↵(⇠
t)/↵+ µ↵(⇠

t)µT
↵(⇠

t)}XT]. (8)

The square operation in the above display is to be interpreted elementwise. We assume
convergence when the increment in p

↵
l (y | X, ⇠) is negligible which implies convergence of

⇠
t by virtue of EM algorithm. The EM sequence in (8) is recognized to be a fixed point
iteration corresponding to the fixed point equation given by,

(⇠⇤)2 = diag[X{⌃↵(⇠
⇤)/↵+ µ↵(⇠

⇤)µT
↵(⇠

⇤)}XT]. (9)

Assuming (8) converges to a fixed point ⇠⇤, µ↵(⇠⇤) gives the variational estimate of �. We
will refer to the above algorithm as ↵-VB TT henceforth.

3. Statistical Optimality of the Variational Estimate

In this section we develop a rigorous framework to obtain frequentist risk bounds of the
variational approximation obtained in (6) at any fixed point ⇠⇤ of (8). Throughout the
section, we assume that the data is generated from a logistic regression model

p(y | �
o
,X) = exp

h
y
TX�o �

nX

i=1

log
�
1 + e

xT
i �

o
)
i
. (10)

It is not immediately clear whether the empirical likelihood based inference of ⇠ as discussed
in Section 2 falls into the framework of variational inference in the sense of (1). In the fol-
lowing, we propose an objective function whose minimizer satisfies the fixed point iteration
(8). Let our working model be

p
↵
l (y | �,X, ⇠) = exp

n
↵

⇣
y
TX� + �

T [XTdiag{A(⇠)}X]� � 0.5 T
nX� + T

nC(⇠)
⌘o

. (11)

It is important to note here that p
↵
l (y | �,X, ⇠) is not a probability density, even when

↵ = 1. Let F be the set of densities on Rp. Define a mapping L : F ⇥ Rn to R as

L(q, ⇠) = �

Z
log

p
↵
l (y,� | X, ⇠)

q(�)
q(�)d�, (12)

where p
↵
l (y,� | X, ⇠) is defined in (5). Observe that L(q, ⇠) is the negative of the evi-

dence lower bound obtained in a variational inference with (11) as the working likelihood,
Np(µ� ,⌃�) the prior on �, and variational family F ⇥ {�⇠ : ⇠ 2 Rn

} where �⇠ is the Dirac
delta measure on ⇠ 2 Rn. In Lemma 1, we show that the tangent transform algorithm
maximizes �L(q, ⇠).
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Lemma 1 Any minimizer (q⇤, ⇠⇤) of (12) over F ⇥ Rn satisfies

q
⇤ = Np{µ↵(⇠

⇤),⌃↵(⇠
⇤)/↵}, (⇠⇤)2 = diag[X{⌃↵(⇠

⇤)/↵+ µ↵(⇠
⇤)µT

↵(⇠
⇤)}XT], (13)

where µ↵(⇠),⌃↵(⇠) are defined in (6).

Proof We start the proof by re-writing (12) as

L(q, ⇠) = �

Z
q(�) log p↵l (y,� | X, ⇠)d� +

Z
q(�) log{q(�)}d�. (14)

To minimize (14) jointly with respect to (q, ⇠), we set up the first order stationarity con-
ditions. We first set the gradient of L(q, ⇠) with respect to ⇠ to zero holding q fixed. As
the second term in (14) is independent of ⇠, this is equivalent to setting the gradient of
Eq
⇥
log p↵l (y,� | ⇠,X)

⇤
with respect to ⇠ to be zero,

@

@⇠
Eq [log p

↵
l (y,� | ⇠,X)] = 0. (15)

By interchanging the integration and di↵erentiation, (15) is equivalent to

Eq


@

@⇠
log p↵l (y,� | ⇠,X)

�
= 0. (16)

For fixed ⇠, to maximize (12), we simply apply Lemma 13 in the appendix. This leads
to the optimal choice of q(�) being the conditional distribution p

↵
l (� | y, ⇠,X) which is

Np(µ↵(⇠),⌃↵(⇠)/↵). This when combined with (16) yields

ENp(µ↵(⇠),⌃↵(⇠)/↵)


@

@⇠
log p↵l (y,� | ⇠,X)

�
= 0. (17)

To show that the solution of (17) satisfies (9), recall that the first-order stationarity condi-
tion for maximizing Q↵(⇠t+1

| ⇠
t) in (7) with respect to ⇠t+1 is given by

@

@⇠t+1
Q↵(⇠

t+1
| ⇠

t) = E�|y,⇠t,X


@

@⇠t+1
log p↵l (y,� | ⇠

t+1
,X)

�
= 0,

which in turn is equivalent to solving the fixed point iteration (⇠t+1)2 = diag[X{⌃↵(⇠t)/↵ +
µ↵(⇠t)µT

↵(⇠
t)}XT]. Thus the solution to (17) satisfies (⇠⇤)2 = diag[X{⌃↵(⇠⇤)/↵ +

µ↵(⇠⇤)µT
↵(⇠

⇤)}XT].

Although (12) is reminiscent of the ↵-variational objective function of Yang et al. (2020),
we note a couple of key di↵erences : (a) p

↵
l (y | �, ⇠,X) is not a valid probability density,

but it is a lower bound to p
↵(y | �,X), (b) The latent variables ⇠ lack a probabilistic

interpretation as in Yang et al. (2020), where one recovers the original likelihood after
marginalization over the latent variables. Here, the latent variables instead correspond to
tuning parameters appearing from convex duality.

The usage of the fractional likelihood for ↵ 2 (0, 1) results in only minor changes from a
methodological and implementation perspective. However, from a theoretical perspective,
like Yang et al. (2020), ↵ 2 (0, 1) requires fewer assumptions to deliver optimal risk bounds.
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3.1 Variational Risk Bounds

In the following, we develop risk bounds for the variational estimator separately for the
case ↵ 2 (0, 1) and ↵ = 1. In the former case, to quantify the discrepancy between the
variational estimate and the true parameter, we use an ↵-Rényi divergence

D↵(�,�
o) =

1

n(↵� 1)
log

X

y2{0,1}

(
p(y | �,X)

p(y | �o,X)

)↵

p(y | �
o
,X). (18)

Refer to Bhattacharya et al. (2019) for more on posterior risk bounds under the ↵-Rényi
divergence. The factor (1/n) is used to measure average discrepancy per observation. We
can further simplify (18) to

D↵(�,�
o) =

1

n(↵� 1)

nX

i=1

log
h
p
↵
i,�p

1�↵
i,�o + (1� pi,�)

↵(1� pi,�o)1�↵
i
,

where pi,� = 1/{1 + exp(�xT
i �)}. The next theorem derives an upper bound to the

risk obtained by integrating the ↵-Rényi divergence with respect to the optimal varia-
tional solution. Denote by �p(x;µ,⌃) the p-dimensional multivariate Gaussian density
evaluated at x 2 Rp, with mean µ and variance covariance matrix ⌃. Let kXk2,1 =
max{kxik, i = 1, . . . , n} and kXk1 := max{|xij |, i = 1, . . . , n, j = 1, . . . , p}. Let L(�o,X) =
max{4kXk2,1, 8kXk

2
2,1k�

o
k2}.

Theorem 2 For any " 2 (0, 1), with probability (1� ")� 1/{(D � 1)2 n "2} under (10)

(1� ↵)

Z
D↵(�,�

o)�p
�
�;µ↵(⇠

⇤),⌃↵(⇠
⇤)
 
d�  D↵ "

2 +
p

n
log

n
L(�o,X)

"2

o
+

Cn(�
o
, µ� ,⌃�) +

1

n
log

⇣1
"

⌘

for some constant D > 0, where

Cn(�
o
, µ� ,⌃�) =

1

2n
(�o � µ�)

T⌃�1
� (�o � µ�).

The proof of Theorem 2 can be found in §A.1 in the appendix.

Remark 3 (a) It is important to mention here that ↵ in (18) and (12) need not be same.
One can use the inequality ↵(1�e↵)/{e↵(1�↵)}De↵  D↵  De↵ for 0 < ↵  e↵ < 1 (Van Erven
and Harremos, 2014), to generalize the above theorem for any D� such that � 2 (0, 1).(b)
Setting "2 = p log n/n, the risk bound for discrepancy D↵ is p/n up to logarithmic terms
which is near-minimax optimal. Please refer to Bhattacharya et al. (2019) and the references
therein for further readings on this topic. The explicit bound is non-asymptotic and depends
on prior parameters, the covariate matrix X and the true data generating density.

Next, we separately deal with the case ↵ = 1. In doing so, we work with a limiting
metric of ↵-Rényi divergence as ↵ tends to 1. Let a(t) = log(1+e

t) and a
(1) and a

(2) denote

9
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the first and second derivatives. a satisfies a(t + h) � a(t) + h a
(1)(t) + r(|h|) a(2)(t)/2 for

all t, h, where r(h) = h
2
/(r1h+ 1) for r1 > 0. Define

D(�o,�) :=
1

n
E�o

⇢
log

p(y | �
o
,X)

p(y | �,X)

�
=

1

n

nX

i=1

�
a(xT

i �)� a(xT
i �

o)� a
(1)(xT

i �
o)xT

i (� � �
o)
 
.

The last term in the above display follows from the fact that, E(y) = a
(1)(xT

i �
o) un-

der (10). D(�o,�) is the KL divergence between p(· | �
o
,X) and p(· | �,X). Let

W = diag{a(2)(xT
1�

o), . . . , a(2)(xT
n�

o)} and let 1 = �p(XTX/n), 2 = �1(XT
WX/n),

where �j(A) denotes the jth largest eigen value of a positive definite matrix A and ⇣p =
kXk1

p
np log p/2.

Theorem 4 Fix � 2 (0, 1) and set e" = (n2+2⇣pr1
p
pkXk1)/{r1kXk1

p
p (n2�2⇣pr1kXk1

p
p)},

for any " � 2e", set ✏ = 2"/(8r1kXk1
p
p). If

p
n � r1p

p
log pkXk

2
1/2 and both 1,2 > 0,

then with probability 1� 2/p� e
�n�✏/8

� e
�n1"2/32 � 1/{(D � 1)2 n "2} under (10),

�

4

Z
D(�o,�)�p

�
�;µ(⇠⇤),⌃(⇠⇤)

 
d� 

1

n
log 3 + (D + �1/16) "

2 +
p

n
log

n
L(�o,X)

"2

o

+ Cn(�
o
, µ� ,⌃�).

The proof of Theorem 4 can be found in §A.2 in the appendix.

Remark 5 (a) To obtain a risk bound, we keep � to be a fixed number in (0, 1) and set
"
2 = p log n/n. Then KL divergence risk is p/n (up to logarithmic terms) which is again
minimax optimal (Bhattacharya et al., 2019). As opposed to Theorem 2, Theorem 4 requires
the eigenvalues of XT

WX/n to be bounded from below and the eigenvalues of XTX/n to
be bounded from above. (b) Raising the likelihood with a fractional power is an e↵ective
theoretical tool to reduce the complexity of assumptions in deriving the variational risk. In
a well-specified model, choosing ↵ = 1 will lead to the best risk bound on average. However,
in absence of the knowledge of the data generation mechanism, one can resort to optimiz-
ing appropriate inferential goals to choose ↵. For instance, one can choose ↵ so that the
corresponding credible region achieves the nominal frequentist coverage probability; refer to
Syring and Martin (2019) for a data-driven procedure to set ↵.

Now we conduct a numerical study to empirically support the conclusions of the the-
orems above. For fixed (n, p) we construct a n ⇥ p design matrix X where xT

i (i =
1, . . . , n) are independently drawn from Np

�
0, (0.5 Ip + 0.5 p

T
p )
�
. We then normalize each

row of X by
p
p. We fix �

o to be {�4, 4, 4,�4} and generate yi ⇠ Bernoulli(pi) with
pi = 1/{1 + exp(�xT

i �
o)}, independently for i 2 {1, 2, . . . , n}. We place a zero-mean

Gaussian prior � ⇠ Np(0p,⌃�) and set ⌃� = 52Ip. Given a dataset (y,X) and fixed
↵ 2 {0.50, 0.65, 0.80, 0.95, 1.00} we calculate the fixed point solution ⇠⇤ using (8) with tol-
erance 10�5. We use p(y | µ↵(⇠⇤),X) as the final estimated density and calculate the
discrepency D↵(µ↵(⇠⇤),�o) with p(y | �

o
,X). In panel (a) we plot D↵(µ↵(⇠⇤),�o) for

↵ 2 {0.50, 0.65, 0.80, 0.95} along with D(�o, µ(⇠⇤)) that corresponds to ↵ = 1. In panel (b)
we plot the `2 norm between µ↵(⇠⇤) and �o. We repeat this process for 500 independent
samples with (n = 100, p = 4) and (n = 200, p = 4). Clearly, increasing the sample size

10
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leads to improved estimation as seen from either panel of Figure 1. Also, D↵(µ↵(⇠⇤),�o)
slightly increases as ↵ increases to 1. Since ↵-Rényi divergence counterbalances the e↵ect
of the misspecified likelihood and reinforces concentration around the truth, this behavior
is expected. It is important to mention here that the discrepancy measure D↵(µ↵(⇠⇤),�o)
changes with ↵, and it can not be used to measure the accuracy of the variational estimates
themselves. However, this issue is addressed in panel (b) where we use `2-norm as a measure
of the discrepancy.

0.000

0.025

0.050

0.075

0.50 0.65 0.80 0.95 1.00
α

D
α
(⋅

,⋅
)

(n=100, p=4) (n=200, p=4)

Boxplot of Dα( ⋅ , ⋅ ) for different α

(a)

0

2

4

6

0.50 0.65 0.80 0.95 1.00
α

||µ
α
(ξ
∗ )−

βo || 2
(n=100, p=4) (n=200, p=4)

Boxplot of ||µα(ξ∗) − βo||2 for different α

(b)

Figure 1: (a) Boxplot of D↵(µ↵(⇠⇤),�o) for ↵ 2 (0, 1) and D(�o
, µ(⇠⇤)) for ↵ = 1 (b) Boxplot of

kµ↵(⇠⇤)� �
o
k2 for di↵erent values of ↵ 2 (0, 1]

In Figure 2 we show the contour plots of the marginal of (�2,�4) obtained from the
variational approximation q

⇤ = Np{µ↵(⇠⇤),⌃↵(⇠⇤)} for a given dataset (y,X). The upper
and lower panels correspond to (n = 100, p = 4) and (n = 200, p = 4) respectively with
di↵erent ↵ 2 {0.80, 0.95, 1.00}. Clearly the concentration of the approximate posterior
around the truth (4,�4) increases as ↵ tends to 1. Also concentration increases with the
increase in the sample size. Further, the variational approximations appear to be almost
similar for ↵ = 0.95 and ↵ = 1. This is important since the conditions required to achieve
the variational risk for ↵ < 1 are much milder than at ↵ = 1.

3.2 Related Work

PAC-Bayesian inequalities (McAllester, 1999; Seeger, 2002; Catoni, 2003; Maurer, 2004);
see Alquier (2021) for a comprehensive review; and Theorem 2 both use the variational
inequality to provide sharp bounds to the posterior / variational risk. Traditional PAC-
Bayes inequalities, e.g. Theorem 2.1 in Alquier and Ridgway (2020) or Proposition 2.1 in
[Catoni, “Lecture notes for the IFCAM Summer School on Applied Mathematics”, Indian
Institute of Science. Bangalore, 2014] are not applicable here since tangent transforma-
tion (TT) involves optimizing over an additional parameter ⇠ which is not present in the
risk D↵(�,�o), but plays a critical role in minimizing the upper bound. Realizing the fact
that pl(y | �, ⇠,X) minorizes p(y | �,X) for any ⇠ 2 R+, we connect the variational risk
with a suitably defined variational objective function in (12) involving ⇠. Our primary
contribution is to recognize that this objective function when minimized over variational
family F ⇥ {�⇠ : ⇠ 2 Rn

} leads to the TT algorithm. From a theoretical point of view,

11
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(a) (b) (c)

(d) (e) (f)

Figure 2: Contour plot of posterior distribution of (�2,�4) given by Np{µ↵(⇠⇤),⌃↵(⇠⇤)} for di↵erent
↵ and n. The upper row ((a)—(c)) corresponds to (n = 100, p = 4) and the lower row ((d)—(f))
corresponds to (n = 200, p = 4).

careful selection of ⇠ aids in controlling the Jensen gap in the in the upper bound which
in turn delivers an optimal variational risk bound. However, Alquier and Ridgway (2020)
studied contraction in logit models using PAC-Bayes inequalities (Corollary 3.3). While
Theorem 2 is developed under a fixed design, Alquier and Ridgway (2020) assumes the
X to be random. Moreover, Alquier and Ridgway (2020) restricts the variational fam-
ily to be Gaussian whereas no such condition is imposed in our case. One can analyze
the above theorem in a random design setting as well. In that case Theorem 2 remains
unchanged except L(�o,X) on the upper bound of risk would be replaced by Ẽ�o,X :=
max{2E1/4(kXk

4
2), 8E

1/2(kXk
4
2) k�

o
k2, 4E1/2(kXk

2
2), 2E

1/8(kXk
8
2), 4E

1/4(kXk
8
2) k�

o
k2},

which follows from working with Ey,X[�(�,�o)] and Vy,X[�(�,�o)] in (37). One can
show that Ey,X[�(�,�o)]  n"

2 and Vy,X[�(�,�o)]  Ey,X[�2(�,�o)]  n"
2 whenever

Ẽ�o,Xk� � �
o
k2  "

2. This immediately imposes a finite eigth order moment condi-
tion on X whereas Corollary 3.3 of Alquier and Ridgway (2020) only requires a finite
second order moment condition. As a special case, assuming the entries X ⇠ N(0, 1),
EkXk

2k
2 = 2k�(k + p/2)/�(p/2). Hence, Ẽ�o,X  max{4

p
p, 16p k�ok2} which leads to an

upper bound O(p log(pk�ok2)/n) in Theorem 2, while Alquier and Ridgway (2020) achieved
a rate O(p log(n2p

p)/n). In both cases it matches the minimax rate of contraction p/n upto
logarithmic terms. Furthermore, both approaches lead to an upper bound that scales simi-
larly with respect to k�

o
k2 given by O(k�ok22/n).

Atchadé (2017) studied contraction of quasi-posterior distribution in sparse logistic re-
gression and hence could not be directly applied to prove the Theorem above. A more direct
comparison is possible with a recent work by Bhattacharya and Pati (2020) which provides
posterior contraction in generalized linear models (Theorem 2) and as a consequence im-
poses restrictions on the data generating process that is similar to Theorem 4.
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4. Stability and Convergence of Tangent Transform Algorithm

We provide a brief review of stability of dynamical systems here; a more detailed review and
relevant references can be found in §B of the appendix. Consider the following discrete-time
autonomous system,

 
t+1 = f( t), t 2 N, (19)

where f : Rn
! Rn (or, f : D ! Rn

,D ✓ Rn) is a twice continuously di↵erentiable function
and  t is the iteration at the t

th time-point. Any  ⇤
2 Rn satisfying  ⇤ = f( ⇤) is called

a fixed point for this system. A fixed point  ⇤ of (19) is called locally asymptotically stable
if given any ✏ > 0, there exists � = �(✏) such that whenever k 

0
�  

⇤
k < �, we have

kf( t)�  
⇤
k < ✏ for all t and limt!1 k 

t
�  

⇤
k = 0.

The following well-known result is instrumental to show that a fixed point is locally
asymptotically stable. Denote by ⇢(J) the spectral radius of a square matrix J, the largest
eigenvalue of J in absolute value. Refer to Theorem 4 in Barbarossa (2011) for the following
lemma.

Lemma 6 Let  ⇤ be a fixed point solution to the discrete-time autonomous system given by
 t+1 = f( t). Suppose, f : D ! Rn(D ✓ Rn) is a twice continuously di↵erentiable function
around a neighborhood D of  ⇤. Let J = [@if( )/@ j ] = ⇤ be the Jacobian matrix of f
evaluated at  ⇤. Then,  ⇤ is locally asymptotically stable if ⇢(J) is less than 1.

4.1 Asymptotic Stability of Tangent Transform EM

In this subsection, we study the EM sequence of ⇠ from equation (8) viewed as a discrete
time dynamical system in ⇠2. As noted above, the convergence and stability aspects of the
system depends crucially on the properties of the Jacobian of the map. Since the function
A(⇠) := � tanh(⇠/2)/4⇠ = {1�exp(⇠)}/[4⇠{1+exp(⇠)}] is symmetric around 0 (follows from
the definition), and ⌃↵(⇠) and µ↵(⇠) are dependent on ⇠ through A(·), only the magnitude
of ⇠ is relevant and hence we will discuss the nature of EM iterates on R+. The properties of
the function A(·) play a crucial role in such an analysis. In particular, it can be shown that
the function A : R+

! R� is monotonically increasing and twice continuously di↵erentiable
with A(0) = �1/8 and A(⇠)+⇠A0(⇠) < 0 for all ⇠ 2 R+ (see Proposition 26 in the appendix).

In Theorem 7 below, we show that the EM sequence in equation (8) is locally asymp-
totically stable.

Theorem 7 Suppose the design matrix X does not have any row equal to the zero vector.
For any ↵ 2 (0, 1] and positive definite ⌃�, any fixed point solution ⇠⇤ of the EM sequence
in (8) is locally asymptotically stable.

Proof In light of Lemma 6, one needs to check the spectral radius of the Jacobian of the
system at the fixed point to prove Theorem 7. We present an outline of the proof here; refer
to §C.1 in the appendix for a complete proof. Given positive semi-definite matrices A,B

of the same dimension, we follow the usual convention to denote B � A (resp. B - A) to
mean (A�B) is positive definite (resp. positive semi-definite).

⌃↵(⇠⇤) = [⌃�1
� /↵�2XTdiag{A(⇠⇤)}X]�1 is positive definite since ⌃�1

� /↵�2XTdiagA(⇠⇤)}X

is positive definite as A(⇠) := � tanh(⇠/2)/4⇠ 2 R� for all ⇠ 2 R+ and ⌃� is positive def-
inite. Now, for any xT

i 6= 0 (i = 1, 2, . . . , n), one can conclude ⇠⇤i > 0 from (9). Next, we

13
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show that the Jacobian matrix evaluated at the fixed point ⇠⇤ can be analytically expressed
as

J↵ = [X⌃↵ (⇠
⇤)XT

�X {⌃↵ (⇠
⇤) /↵+ 2µ↵ (⇠

⇤)µT
↵ (⇠

⇤)}XT] D, (20)

where � denotes the Hadamard (or, elementwise) product, µ↵(⇠),⌃↵(⇠) are defined in (6),
and D = diag {A0 (⇠⇤)/⇠⇤}, where the / operation is to be interpreted elementwise. By
similarity, J↵ and

J̃↵ = D1/2 [X⌃↵(⇠
⇤)XT

�X {⌃↵(⇠
⇤)/↵+ 2µ↵(⇠

⇤)µT
↵(⇠

⇤)}XT] D1/2
,

have the same set of eigenvalues. Clearly, J̃↵ is real symmetric and positive semi-definite
by the Schur product theorem. Therefore, J̃↵, and hence J↵, has non-negative eigenvalues.
Hence, the spectral radius ⇢(J↵) is simply the largest eigenvalue of J↵, which we proceed
to bound next.

Using the fact that, D1/2[X⌃↵(⇠⇤)XT
� X⌃↵(⇠⇤)XT]D1/2

/↵ is a positive semi-definite
matrix, we have,

J̃↵ - 2D1/2 [X⌃↵(⇠
⇤)XT

�X {⌃↵(⇠
⇤)/↵+ µ↵(⇠

⇤)µT
↵(⇠

⇤)}XT] D1/2
. (21)

Denote ⇤↵ = ⌃↵(⇠⇤)/↵ + µ↵(⇠⇤)µT
↵(⇠

⇤) and X⇤↵XT = �(⇠⇤) � �↵ where [�(⇠⇤)]ij = ⇠
⇤
i ⇠

⇤
j ,

[�↵]ij = xT
i ⇤↵xj/(⇠⇤i ⇠

⇤
j ). Then the matrix on the right hand side of the (21) can be written

as,
2D1/2

{X⌃↵(⇠
⇤)XT

��(⇠⇤)}D1/2
� �↵.

A result from Horn and Johnson (1994) (see Lemma 23 in the appendix) provides bounds on
the largest eigenvalues of M�N as a product of the largest eigenvalue of M and largest diag-
onal of the N. The diagonals of �↵ are 1 and the largest eigenvalue of 2D1/2

{X⌃↵(⇠⇤)XT
�

�(⇠⇤)}D1/2 which is equal to 2 diag[{⇠⇤A0(⇠⇤)}1/2]X⌃↵(⇠⇤)XTdiag[{⇠⇤A0(⇠⇤)}1/2] is the
same as that of 2⌃↵(⇠⇤)XTdiag{⇠⇤A0(⇠⇤)}X. Since A(x) + xA

0(x) < 0 for all x 2 R,
2XTdiag{⇠⇤A0(⇠⇤)}X � ⌃�1

↵ (⇠⇤). Lemma 24 shows that the largest eigenvalue of M�1/2 NM�1/2

is strictly less than 1 where N � M and M,N are positive definite and positive semi-definite
matrices respectively. This delivers the proof that ⇢(J↵) < 1.

In the special case when p = 1, we can make substantial simplifications and show that
(see §C.2 in the appendix for details),

⇢(J↵) =
2
Pn

i x
2
iA

0(⇠⇤i )⇠
⇤
i

{�
�2
� /↵�

Pn
i=1 2x

2
iA(⇠⇤i )}

�

Pn
i x

4
iA

0(⇠⇤i )/⇠
⇤
i

↵ {�
�2
� /↵�

Pn
i=1 2x

2
iA(⇠

⇤
i )}

2
, (22)

<
2
Pn

i=1 x
2
iA

0(⇠⇤i )⇠
⇤
i

�
�2
� /↵�

Pn
i=1 2x

2
iA(⇠⇤i )

< 1,

where the first inequality follows from the fact that the second term in (22) is positive as
A

0(x)/x > 0 for all x 2 R. The second inequality follows from the fact that A(x)+xA
0(x) < 0

for all x 2 R.

One of the critical elements in the proof is to show that the diagonals of �↵ are equal to 1
which is achieved due to the fixed point equation evaluated at ⇠⇤. One can achieve global
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convergence if the proof could be generalized for every point in the domain. However, the
invalidity of (9) at any point other than ⇠

⇤ does not allow us to show that. Also, It is
important to note that Theorem 7 places minimal restriction on the design matrix X.

We conduct a replicated numerical study to empirically demonstrate some of these
features. We use the same simulation design corresponding to Figure 1 except now for a
fixed (n, p), we provide a su�ciently flat prior ⌃� = 102Ip while fixing the first p/2 (resp.
[p/2] + 1) entries of �o to be �4, and the remaining p/2 (resp. [p/2]) to be 4 when p is
even (resp. odd). To remain faithful to the assumptions of Theorem 7, we do not normalize
X with

p
p. We compute the spectral radius ⇢ := ⇢(J↵) of the Jacobian matrix J↵ for

↵ 2 {0.50, 1.00} at the fixed point ⇠⇤ for di↵erent values of (n, p) over 500 independent
replicates, with summary boxplots shown in Figure 3. In panel (a), we fix n = 150 and vary
p 2 {2, 5, 10, 20}. In panel (b), we fix p at 15 and vary n 2 {5, 10, 50, 100}. It is evident
that ⇢ remains less than 1 for all combinations of (n, p). Observe also that the first two
cases in panel (b) correspond to p > n, and as predicted by the theory, the spectral radius
continues to be smaller than 1. It can be seen from either panel that on an average ⇢ at
↵ = 0.5 is higher than the corresponding value at ↵ = 1.

0.7

0.8

0.9

1.0

p=2 p=5 p=10 p=20

ρ

α 0.50 1.00

Boxplot of ρ with n=150 with different α

(a)

0.85

0.90

0.95

n=5 n=10 n=50 n=100

ρ

α 0.50 1.00

Boxplot of ρ with p=15 with different α

(b)

Figure 3: (a) Boxplot of ⇢ with n fixed and varying p (b) Boxplot of ⇢ with p fixed and di↵erent
values of n. Both the plots are produced with 500 replications using the same data (y,X). It can be
clearly seen that, for both the ↵ 2 {0.50, 1.00} the spectral radius is strictly less than 1 irrespective
of n and p.

It is worth noting that local asymptotic stability does not provide any information other
than the existence of a � - neighborhood around ⇠⇤ such that, if the system is initialized in
that region the iterates converge to ⇠⇤ as t ! 1. Also, the definition does not say anything
about the rate of convergence. In the following, we provide a heuristic argument to connect
the notion of the rate of convergence with the spectral radius.

For simplicity, consider the one-dimensional system x
t+1 = g(xt) for some function

g : R ! R which is twice continuously di↵erentiable. If x⇤ is a fixed point of this system,
using Taylor’s theorem we have for some T0 > 0, (xt+1

� x
⇤) ⇡ g(x⇤)(xt � x

⇤) for all
t � T0. Recall that the linear rate of convergence (Romero et al., 2019) is given by,
� = limt!1 kx

t+1
� x

⇤
k/kx

t
� x

⇤
k, provided the limit exists. In the above scenario, the

iterates converge when g(x⇤) < 1 and the rate of convergence is g(x⇤). For a general d-
dimensional linear system ↵

(t+1) = A↵
(t) with fixed point ↵⇤ = 0, it can be shown that,
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Figure 4: For each replicated dataset i 2 {1, 2, . . . , 500}, we observe the number of iterations (log-
scale) required by the algorithm for convergence and calculate the ⇢ at the fixed point solution for
↵ = 1. We plot (⇢i,log(iteri)) for all i 2 {1, 2, . . . , 500} and fitted with LOWESS line to explore
the relationship between these two dependent variables. In (a), we generated the data (y,X) with
(n = 150, p = 2). In (b), data (y,X) is generated with (n = 150, p = 20). It can be seen that number
of iteration grows almost exponentially with the increasing ⇢. Also, for fixed n, bigger p leads to
higher ⇢ and as a consequence more iteration are required for convergence.

k↵
(t)
k2 = kA

t
↵
(0)

k2  {⇢(A)}tk↵(0)
k2 where A is a square matrix and k ·k2 is the Euclidean

norm. Hence ⇢(A) acts as a rate of convergence for this case. Figure 4 is an illustration of
the number of iterations needed for the system given by (8) to converge to the fixed point
as a function of ⇢(J↵=1). It is evident that the number of iterations increase exponentially
as ⇢(J↵=1) tends to 1.

4.2 A Special Case of Semi-Orthogonal Design

In this section, we shall consider a simple hierarchical logistic regression model given by,

p(yij = 1 | �) = 1/{1 + exp (��j)} (i = 1, 2, . . . , n; j = 1, 2, . . . , p), (23)

We assume a prior � ⇠ Np(0,�2� p). In this case, the results of Section 4.1 can be strength-
ened to obtain a global convergence rate of the EM sequence in (8). One key advantage
here is the ability to decouple the EM sequence into independent coordinate-wise updates.
This is illustrated in Lemma 8.

Lemma 8 The EM updates for the model (23) can be simplified to,

⇣
⇣
t+1
j

⌘2
=

1

{�
�2
� � 2nA(⇣tj)}

+
n
2 (ȳj � 1/2)2

{�
�2
� � 2nA(⇣tj)}

2
(j = 1, 2, . . . , p), (24)

where, ȳj =
Pn

i=1 yij/n, for all j = 1, 2, . . . , p and ⇣t is the update at the t
th iteration.

Proof The log-likelihood from (23) is given by,

log p(y | �) /
pX

j=1

n ȳj �j �

pX

j=1

n log{1 + exp(�j)}.
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Following the calculations of (4) and (5) corresponding to ↵ = 1,

log pl(y,� | ⇣) = �
1

2
�

T
h
�
�2
� p � 2n diag{A(⇣)}

i
� + n (Ȳ � 1/2 p)

T
� + n

T
pC(⇣) + Const.,

where, Ȳ T = [ȳ1, ȳ2, . . . , ȳp]. We claim from the above equation that, �j | Y, ⇣j ⇠ N
�
µ(⇣j),⌃(⇣j)

�
,

independently for all j = 1, 2, . . . , p. Here ⌃�1(⇣j) = {�
�2
� � 2nA(⇣j)} and

µ(⇣j) = n
�
ȳj � 1/2

�
/{�

�2
� � 2nA(⇣j)}. Following the calculation similar to (8) we obtain

(24).

It is important to distinguish between the EM update ⇠ in (8) and ⇣ in (24). In the general
setting (3), the variational parameter ⇠ are introduced for each individual i 2 {1, 2, . . . , n},
whereas ⇣ is introduced here for di↵erent groups j 2 {1, 2, . . . , p}. Though we used similar
techniques to get the updates, they have di↵erent interpretation. Figure 3 and Figure 5 are
not comparable in that sense.

The parallelization of the updates of ⇣ makes the posterior of � independent. Also,
since the updates are independent and identical for all j = 1, 2, . . . , p given the initial point,
it su�ces to study the stability of a single coordinate. The following theorem assures the
global asymptotic stability of the EM sequence in (24).

Theorem 9 The EM updates in (24) are globally asymptotically stable assuming �j ⇠

N(0,�2�) with �� = 1 for all j = 1, 2, . . . , p and n � 2. Moreover, with �tj := (⇣tj)
2 (j =

1, . . . , p), there exists a global constant ⇢ 2 (0, 1) such that

|�
t
j � �

⇤
j |  ⇢

t
|�

0
j � �

⇤
j |.

Proof The proof of Theorem 9 is provided for �� = 1 for technical convenience. Letting
z = ⇣

2
j and u = (ȳj � 0.5), consider,

hu,�� ,n(z) =
1

{�
�2
� � 2nA(

p
z)}

+
n
2
u
2

{�
�2
� � 2nA(

p
z)}2

,

for some fixed j = 1, 2, . . . , p. Then one can write (24) by, zt+1 = hu,�� ,n(z
t). It is easy to

see that,

@hu,�� ,n(z)

@z
= h

0
u,�� ,n(z) =

nA
0(
p
z)

p
z

{�
�2
� � 2nA(

p
z)}�2

"
1 +

2n2
u
2

{�
�2
� � 2nA(

p
z)}

#
. (25)

Let us call �n = {�
�2
� /n � 2A(

p
z)}. Since u

2
 1/4 as ȳj 2 [0, 1], we have the following

inequality,

h
0
u,�� ,n(z) 

A
0(
p
z)

p
z

�
�2
n


1

n
+

1

2�n

�
:= h

0
�� ,n(z).

In appendix §C.4, we show that supn�1 kh
0
�� ,nk1 < 1 when �� = 1, where kh

0
�� ,nk1 :=

supz2R+ h
0
�� ,n(z). The proof is then concluded by appealing to Lemma 16 in the appendix

with ⇢ = supn�1 kh
0
1,nk1.
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Figure 5: (a) Evolution of �t1 with arbitrary initialization when �� = 1 and n = 50 for di↵erent
|u| (b) Plot of h0

u,�� ,n(z) for varying |u| when �� = 5 and n = 20. (c) Plot of h0
1,n(z) for di↵erent

values of n, (d) We plot kh0
u,�� ,nk1 = maxz2R+ h

0
u,�� ,n(z) as a function of ��, for di↵erent |u| and

a fixed n = 10. Numerically it is seen that kh0
0.5,�� ,10(z)k1 � 1 when �� � 12.894.

It can be seen from (24) that the updates of ⇣j depend on the (y,X) through ȳj , which
is a su�cient statistic for �j . Therefore if for some j 6= j

0 we have ȳj = ȳj0 , the sequences
{⇣

t
j} and {⇣

t
j0} converge to the same limit. Figure 5a shows the global convergence of

the EM sequence for di↵erent ȳj when �� = 1 and n = 50 with arbitrary initializations.
Numerically we assumed convergence when |⇣

t+1
� ⇣

t
| < 10�10. Interestingly, it is observed

that convergence is slower when the data becomes more imbalanced, i.e. |ȳj � 0.5| ! ±0.5.
A similar behavior for the mixing time of the Pólya-Gamma data augmentation Gibbs
sampling in Bayesian logistic regression is observed in Johndrow et al. (2019), which is all
the more interesting given the connection between Pólya-Gamma augmentation and tangent
transforms established by Durante and Rigon (2019).

Figure 5b shows the behavior of h0u,5,20(z) for di↵erent values of u. Barring u = 0, in
all other cases h

0
u,5,20(z) increase first before dropping o↵. Figure 5c shows that for fixed

z, h01,n(z) is an increasing function of n and less than 1. Lemma 27 proves this fact and in
addition shows that for fixed z, limn!1 h

0
1,n(z) < 1. It is important to note that h0�� ,n(z) is

dependent on �� and for large �� and fixed z, h0�� ,n(z) may not be an increasing function of

n. Finally, Figure 5d shows kh0u,�� ,10k1 increases as �� increases. It can be easily verified
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that for fixed u and n, h0u,�� ,n(z) is an increasing function of �� and also for fixed n and

�� , an increasing function of |u|. Numerically it can be seen that kh
0
0.5,�� ,10

k1 � 1 when
�� � 12.894. Overall, as the data get more imbalanced, a flatter prior on � increasingly
hurts the convergence.

5. Extension to Multinomial Logit

In this section we provide an extension of the results in Section 4.1 to the case of multi-
nomial logit regression where the response is an unordered categorical random variables
with K levels. Assume yi (i = 1, 2, . . . , n), takes the values in {1, 2, . . . ,K} with following
probabilities:

p[yi = j | �1,�2, . . . ,�K�1] =

8
<

:

exp (xT
i �j)

1+
PK�1

j=1 exp (xT
i �j)

for j = 1, 2, . . . ,K � 1

1
1+

PK�1
j=1 exp (xT

i �j)
for j = K.

Also assume �j ⇠ Np(µj ,⌃j) (j = 1, 2, . . . ,K�1). Let us define, Yn⇥(K�1) = [Y1, Y2, . . . , YK�1]
with Y

T
j = [ (y1 = j), (y2 = j), . . . , (yn = j)] (j = 1, 2, . . . ,K � 1), X is the design ma-

trix. Specific to each individual i and class j, we introduce a variational parameter denoted
by �ij (i = 1, 2, . . . , n; j = 1, 2, . . . ,K � 1). Let us call �T

j = (�1j ,�2j , . . . ,�nj), and
� = (�1,�2, . . . ,�K�1).

The multinomial logistic log-likelihood contains a log-sum-exp term which poses the
same di�culty of intractability as (4). Moreover, the logistic term can not be optimized
straightaway due to sum of exponents inside the logistic function. Various methods have
been proposed to circumvent this issue; Taylor approximation to the log-sum-exp term
(Braun and McAuli↵e, 2010), Quasi-Monte-Carlo (Lawrence et al., 2004), Jensen’s inequal-
ity (Blei and La↵erty, 2007), quadratic approximation (Bouchard, 2008; Jebara and Choro-
manska, 2012). We use following inequality based on Bouchard (2008)

K�1X

j=1

log
⇣
1 + e

xT
i �j

⌘
� log

✓
1 +

K�1X

j=1

e
xT
i �j

◆
. (26)

In an ideal scenario, if p[yi = l] > p[yi = j] for all j 6= l (ensuring a high probabillity that
yi belongs to the l

th class), then xT
i �l > xT

i �j for all j 6= l. Hence, the major contribution
on the both sides of the above display comes from a single term exp(xT

i �l) making the
inequality in (26) tight. In general, however, (26) is not optimal and Bouchard (2008)
introduces additional parameters to attain a tighter bound. This leads us to the following
Lemma which provides the update equation for the EM sequence in multinomial logistic
regression utilizing the Bouchard’s bound in (26).

Lemma 10 The EM updates to the above multinomial logit regression under (26) are given
by,

(�t+1
j )2 = diag[X{⌃↵(�

t
j)/↵+ µ↵(�

t
j)µ

T
↵(�

t
j)}X

T], j 2 {1, 2, . . . ,K � 1} (27)

where, ⌃�1
↵ (�j) = ⌃�1

j /↵ � 2XTdiag{A(�j)}X and µ
T
↵(�j)⌃�1

↵ (�j) =
�
yj �

1
2 n

�T
X +

µ
T
j⌃

�1
j /↵.
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Proof We begin with the log-fractional likelihood,

log p↵(y | X,�) = ↵

nX

i=1

K�1X

j=1

x
T
i �j [yi = j]� ↵

nX

i=1

log
�
1 +

K�1X

j=1

e
xT
i �j

�
. (28)

Now using (26) in (28), we get a lower bound to p
↵(y | X,�) given by,

log p↵(y | X,�) � ↵

K�1X

j=1

⇢ nX

i=1

xT
i �j [yi = j]�

nX

i=1

log
⇣
1 + e

xT
i �j

⌘�
. (29)

Next, we use the quadratic bound proposed by Jaakkola and Jordan (2000) on the right
hand side of the above inequality. This leads to a lower bound to log p↵(y | X,�) similar to
(5) where

log p↵l (y,� | X,�) =
K�1X

j=1


↵

⇢
Y

T
j X�j + (X�j)

Tdiag{A(�ij)}(X�j)�
1

2
T
nX�j +

T
nC(�ij)

��

�

K�1X

j=1


1

2
(�j � µj)

T ⌃�1
j (�j � µj)

�
+Constant ,

for fixed j 2 {1, 2, . . . ,K � 1} the updates are exactly similar to the updates in logis-
tic version. Moreover, updates to �

T
j = [�1j ,�2j , . . . ,�nj ]

T are independent over j 2

{1, 2, . . . ,K � 1}. Following the similar E-step and M-step for the logistic version as in
(7)-(8), it can be easily seen that for fixed j the update equation is given by (27).

As the updates across each level j 2 {1, 2, . . . ,K � 1} are independent and the behavior
of the updates is exactly similar to the binary setup in (8), this leads us to the following
theorem that guarantees the local asymptotic stability of EM updates in Lemma 10.

Theorem 11 Suppose the design matrix X does not have any row equal to the zero vector.
For any ↵ 2 (0, 1] and positive definite ⌃�, any fixed point solution �⇤

j of the EM sequence
in (27) is locally asymptotically stable.

Proof For each fixed j 2 {1, 2, . . . ,K � 1}, the fixed point equation is,

(�⇤
j )

2 = diag[X{⌃↵(�
⇤
j ) + µ↵(�

⇤
j )µ

T
↵(�

⇤
j )}X

T]. (30)

Call ⇠⇤ = �
⇤
j and ⇠t = �

t
j . Then, (27) and (30) reduces to (8) and (9) respectively. Now, we

directly apply Theorem 7 to conclude that the updates in (27) are locally asymptotically
stable.

The variational estimates in case of Multinomial logit regression incorporate two levels
of approximation, first the log-sum term in probability density is bounded from above by
sum-log term using Bouchard’s technique (Bouchard, 2008) in (26) and then the tangent
transformation is applied on the lower bound to the density in (29). Theoretically the first
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approximation is sub-optimal and the risk can not be made arbitrarily small here. However,
from a practical perspective the variational approximator in the current framework performs
well which we illustrate subsequently.

Here, we conduct simulations to verify the algorithmic convergence and provide empirical
evidence of the statistical accuracy of the variational estimates. We do not include any plot
for convergence since the fixed point iterations in (27) are essentially equivalent to the
logistic case. In case of multinomial logistic regression, the accuracy of the variational
approximation poses a more interesting question. We start the investigation by defining

D↵(�,�
o) =

1

n(↵� 1)
log

Z ⇢
p(y | �,X)

p(y | �o,X)

�↵
p(y | �

o
,X)dy,

for any ↵ 2 (0, 1). Under the multinomial distribution, the above display simplifies to

D↵(�,�
o) =

1

n(↵� 1)

nX

i=1

log


1 +

PK�1
j=1 exp{↵xT

i �j + (1� ↵)xT
i �

o
j }�

1 +
PK�1

j=1 exp(xT
i �j)

 ↵�
1 +

PK�1
j=1 exp(xT

i �
o
j )
 1�↵

�
.

Also define,

D(�o,�) =
1

n

Z
log

⇢
p(y | �

o
,X)

p(y | �,X)

�
p(y | �

o
,X)dy,

=
1

n

nX

i=1

K�1X

j=1

xT
i (�

o
j � �j)

exp(xT
i �

o
j )

1 +
PK�1

j=1 exp(xT
i �

o
j )

+ log
1 +

PK�1
j=1 exp(xT

i �
o
j )

1 +
PK�1

j=1 exp(xT
i �j)

�
.
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Figure 6: (a) Boxplot of D↵(µ↵(�⇤),�o) for ↵ 2 (0, 1) and D(�o
, µ(�⇤)) for ↵ = 1 (b) Boxplot of

kµ↵(�⇤)� �
o
k2 for di↵erent values of ↵ 2 (0, 1]

In order to begin our investigation, we fix K = 4, p = 5 and �o1 = (3,�1, 0,�2, 0)T, �o2 =
(�2, 4, 1,�1,�2)T, �o3 = (0, 1,�2, 2,�1)T and varied n 2 {100, 200}. Then, each row xT

i
of the n ⇥ p design matrix X is generated from N(0, Ip). We normalize each row of X by
p
p. The response yi (i = 1, 2, . . . , n) is generated from a multinomial distribution with

class probabilities given by pi = exp(xT
i �

o
j )/{1+exp(xT

i �
o
j )} (j = 1, 2, . . . ,K�1) and pK =
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1/{1+ exp(xT
i �

o
j )}. Next, we let the iterations converge and took {µ↵(�⇤

1), µ↵(�
⇤
2), µ↵(�

⇤
3)}

to be the variational estimates of {�o1 ,�
o
2 ,�

o
3 }. We repeat the above process for 250 times.

For notational convenience, we call µ↵(�⇤) to be collection of {µ↵(�⇤
1), µ↵(�

⇤
2), µ↵(�

⇤
3)}.

In the left panel of Figure 6, we plot D↵(µ↵(�⇤),�o) for ↵ 2 {0.50, 0.65, 0.80, 0.95} and
D(�o, µ(�⇤)) for ↵ = 1 and on the right panel, we plot kµ↵(�⇤) � �

o
k2 where kµ↵(�⇤) �

�
o
k
2
2 = {kµ↵(�⇤

1)� �
o
1 k

2
2 + kµ↵(�⇤

2)� �
o
2 k

2
2 + kµ↵(�⇤

3)� �
o
3 k

2
2}. From both these plots, it is

evident that the estimates improve with the increase in the sample size. For reasons similar
to the case of logistic regression, D↵(·, ·) increases with ↵ 2 {0.5, 0.65, 0.80, 0.95}. In Figure
7, we plot kµ↵(�⇤

i )��
o
i k2 (i = 1, 2, 3) for ↵ 2 {0.5, 0.65, 0.80, 0.95, 1}. One can see that the

`2 norm between the variational estimate and the truth decreases with the increase in the
sample size for each class as well.
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Figure 7: Boxplot of kµ↵(�⇤
i )� �

o
i k2 for i = 1, 2, 3 from left to right respectively with varying n.

5.1 An example of global convergence

Similar to §4.2 one can achieve global convergence in case of multinomial logit regression
as well. Following a similar setup to the model in (23) one can define the following for any
j 2 {1, 2, . . . , p} and i 2 {1, 2, . . . , n},

p[yij = l | �1,�2, . . . ,�K�1] =

8
>><

>>:

exp
⇣
�
(j)
l

⌘

1+
PK�1

l=1 exp
⇣
�
(j)
l

⌘ for l = 1, 2, . . . ,K � 1,

1

1+
PK�1

l=1 exp
⇣
�
(j)
l

⌘ for l = K.

Where, �(j)l is the j
th component of the vector �l corresponding to the l

th class. Let us
assume that, �l ⇠ N(0,�2�lIp) for l = 1, 2, . . . ,K � 1. Then, we have the following lemma.

Lemma 12 The EM updates for the model above can be simplified to,

⇣
⌥t+1

j,l

⌘2
=

1

{�
�2
�l

� 2nA(⌥t
j,l)}

+
n
2 (ȳj,l � 1/2)2

{�
�2
�l

� 2nA(⌥t
j,l)}

2
,

where, ȳj,l =
Pn

i=1 (yij = l)/n, for all j = 1, 2, . . . , p; l = 1, 2, . . . ,K � 1 and ⌥t is the
update at the t

th iteration.
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Proof The log-likelihood can be written as,

log p(y | �) =
nX

i=1

pX

j=1

"
K�1X

l=1

�
(j)
l (yij = l)� log

(
1 +

K�1X

l=1

exp
⇣
�
(j)
l

⌘)#
.

Now, applying the inequality in (26) on the last term of the right hand side of the above
equation, we get

log p(y | �) �
K�1X

l=1

pX

j=1

nX

i=1

h
�
(j)
l (yij = l)� log

n
1 + exp

⇣
�
(j)
l

⌘oi

=
K�1X

l=1

pX

j=1

h
nȳj,l �

(j)
l � n log

n
1 + exp

⇣
�
(j)
l

⌘oi
.

Now, for any fixed l 2 {1, 2, . . . ,K � 1}, the rest follows from proof of Lemma 8.

Using a combination of the Lemma 12 and Theorem 9, the global convergence follows.

6. Discussion

In this article, we are able to provide statistical and computational guarantees for the tan-
gent transformation approach of Jaakkola and Jordan (2000) in the context of Bayesian
logistic regression problem. We showed that for ↵ 2 (0, 1] the variational estimates arising
out of the ↵-VB TT in (8) converge to the true parameter at minimax optimal rate. Next,
we prove that the algorithm converges to a fixed point under minimal assumptions on the
data generation. However, our result on algorithmic convergence pertains to local asymp-
totic stability, which ensures convergence only if the iteration is initialized within a certain
neighborhood around a fixed point. Accurately characterizing the neighborhood of initial-
ization is an interesting future work. In simulations, we have empirically observed good
convergence behavior for a wide range of initializations, which suggests such an exercise
might be possible, perhaps with additional conditions on the design matrix.

One example where we have managed to show global convergence is in the context
of a hierarchical logit model. We extend our result on algorithmic convergence using the
tangent transformation approach in case of multinomial logistic regression and numerically
study the statistical accuracy of the variational estimates. Due to sub-optimality of the
inequality (26), the variational risk can not be made arbitrarily small in this case. As an
ongoing research, we are exploring the implications of introducing an additional variational
parameter to close this gap.
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Appendix A. Proof of Statistical Optimality Results in Section 3

In the following, we first provide the proofs of Theorems 2 and 4 in §A.1 and A.2 respectively
and then provide the proofs of some of the auxiliary results used in subsequent §A.3.

A.1 Proof of Theorem 2

The proof consists of two major steps.

Risk majorization. In this first step, we obtain an upper bound to the integrated risk
in terms of easily controllable quantities. We denote E�o as taking expectation under (10).
From the definition of the ↵-Renyi divergence and the fact that pl lower bounds p(y | �,X)

E�o exp
n
↵ log

pl(y | �, ⇠,X)

p(y | �o,X)

o
 E�o exp

n
↵ log

p(y | �,X)

p(y | �o,X)

o
= e

�n(1�↵)D↵(�,�o)
.

Thus, for any " 2 (0, 1), we have

E�o exp


↵ log

pl(y | �, ⇠,X)

p(y |�o,X)
+ n(1� ↵)D↵(�,�

o)� log(1/")

�
 ".

Integrating both side of this inequality with respect to the prior ⇡� and interchanging the
integrals using Fubini’s theorem, we obtain

E�o

Z
exp


↵ log

pl(y |�, ⇠,X)

p(y |�o,X)
+ n(1� ↵)D↵(�,�

o)� log(1/")

�
⇡�(�) d�  ".

Now, recall the variational inequality for a probability measure µ and for h such that eh is
integrable,

log

Z
e
h
dµ = sup

⇢⌧µ

 Z
hd⇢�D(⇢||µ)

�
. (31)

Using (31),

E�o exp sup
q⌧⇡�

 Z ⇢
↵ log

pl(y | �, ⇠,X)

p(y | �o,X)
+ n(1� ↵)D↵(�,�

o)� log(1/")

�
q(�) d�

�D(q ||⇡�)

�
 ".

If we choose ⇢ = q
⇤
� ⌘ �p

�
�;µ↵(⇠⇤),⌃↵(⇠⇤)

 
as the variational approximation and set ⇠ = ⇠

⇤

E�o exp

 Z ⇢
↵ log

pl(y | �, ⇠
⇤
,X)

p(y | �o,X)
+ n(1� ↵)D↵(�,�

o)� log(1/")

�
q
⇤
�(�) d� �D(q⇤� ||⇡�)

�

 ". (32)

By applying Markov’s inequality, we further obtain that with P�o probability at least (1�"),

n(1� ↵)

Z
D↵(�,�

o) q⇤�(�) d�  �↵

Z

�
log

pl(y | �, ⇠
⇤
,X)

p(y |�o,X)
q
⇤
�(�) d� +D(q⇤� ||⇡�) + log(1/").
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Now using the Lemma 1,

� ↵

Z

�
log

pl(y | �, ⇠
⇤
,X)

p(y | �o,X)
q
⇤
�(�) d� +D(q⇤� ||⇡�)

= inf
q,⇠

⇢
� ↵

Z

�
log

pl(y | �, ⇠,X)

p(y |�o,X)
q(�) d� +D(q ||⇡�)

�
. (33)

Optimizing the majorized risk. Our second step consists of optimizing the term obtained in
(33) by choosing suitable candidates for q and ⇠. We refer to them as q̃ and ⇠̃. The idea is to
choose q̃ and ⇠̃ so that q̃ places almost all its mass into a small neighborhood around truth
X�o, so that the first term in the right hand side of (33) becomes small; on the other hand,
the neighborhood is large enough so that the second regularization term n

�1
D(q ||⇡�) is

not too large. We choose q̃ first and ⇠̃ later. Let q̃

q̃(�) =
⇡�(�)

⇡�

⇥
Bn(�o, ")

⇤ IBn(�o, ")(�), 8� 2 Rp
, (34)

be the restriction of the prior density ⇡� into the KL neighborhood Bn(�o, ") around �
o

with radius " defined as

Bn(�
o
, ") =

n
n
�1 eD

⇥
p(· | �o

,X)
���� pl(· | �, ⇠,X)

⇤
 "

2
, n

�1 V
⇥
p(· | �o

,X)
���� pl(· | �, ⇠,X)

⇤
 "

2
o
,

(35)

where for two non-negative functions f, g, eD(f k g) =
R
f | log(f/g)| and V(f, g) :=

R
f log2(f/g) � eD2

(f k g). Note that D̃(f | g) is an extension of the usual KL distance
for probability measures to positive functions which may not integrate to one. With
this substitution, the second term in (33) becomes the negative log prior mass [n (1 �

↵)]�1 log
�
⇡� [Bn(�o, ")]

 �1
and it remains to provide a high-probability bound for the first

term and an upper bound for the log-prior concentration term log
�
⇡� [Bn(�o, ")]

 
.

i) High probability upper bound for the first term in (33). By applying Fubini’s theorem
and invoking the definition of Bn(�o, "), we have

E�o

 Z

�
q̃(�) log

pl(y | �, ⇠,X)

p(y | �o,X)
d�

�
=

Z

�
E�o


log

pl(y | ⇠,�,X)

p(y | �o,X)

�
q̃(�) d�



Z

Bn(�o, ")

eD
⇥
p(· | �o,X)

���� pl(· | �, ⇠,X)
⇤
q̃(�) d�  n "

2
.

Similarly, we have the following bound for the second moment by applying the Cauchy-
Schwarz inequality,

Var�o

 Z

�
q̃(�) log

pl(y | �, ⇠,X)

p(y | �o,X)
d�

�


Z

Bn(�o, ")
V
⇥
p(· | �o

,X)
���� p(· | �, ⇠,X)

⇤
q̃(�) d�  n "

2
.

Putting pieces together, applying Chebyshev’s inequality, we obtain

P�o

⇢Z

�
q̃(�) log

pl(y | �, ⇠,X)

p(y | �o,X)
d�  �Dn "

2

�

 P�o

⇢Z

�
q̃(�) log

pl(y | �, ⇠,X)

p(y | �o,X)
d� � E�o

h Z

�
q̃(�) log

pl(y | �, ⇠,X)

p(y | �o,X)
d�

i
 �(D � 1)n "2

�



Var�o

⇥ R
� q̃(�) log

pl(y | �,⇠,X)
p(y | �o,X) d�

⇤

(D � 1)2 n2 "4


1

(D � 1)2 n "2
.
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It follows with probability 1� 1/{(D� 1)2 n "2)}, the first term of (33) evaluated at q = q̃

satisfies

�↵

Z

�
q̃(�) log

pl(y | �, ⇠,X)

p(y | �o,X)
d�  Dn↵ "

2
.

ii) Upper bound for the negative log-prior concentration term � log
�
⇡� [Bn(�o, ")]

 
. We

first obtain an upper bound for the log-pseudo-likelihood ratio

log
pl(y | �, ⇠,X)

p(y | �o,X)
= y

TX(� � �
o) + �

T
{XTdiag{A(⇠)}X}� + 0.5 T

nX

+ T
nC(⇠) + T

n log{1 + exp(X�o)}.

To obtain the lower bound pl(y | ⇠,�,X) of p(y | �,X), Jaakkola and Jordan (2000)
used � log{1 + exp(�x)} = x/2 � log(ex/2 + e

�x/2) and noted f(x) = � log(ex/2 + e
�x/2)

is a convex function in the variable x
2. Since a tangent surface to a convex function is a

global lower bound for the function, we can bound f(x) globally with a first order Taylor
expansion in the variable of x2 around ⇠2 as

f(x) � f(⇠) +
df(⇠)

d⇠2
(x2 � ⇠

2)

= � log{1 + exp(�⇠)}� ⇠/2�
1

4⇠
tanh(⇠/2)(x2 � ⇠

2). (36)

To quantify the gap �(�,�o) := log pl(y | �, ⇠,X)� log p(y | �
o
,X), observe that

�(�,�o) = log p(y | �,X)� log p(y | �
o
,X) + log pl(y | �, ⇠,X)� log p(y | �,X) (37)

:= y
TX(� � �

o) + T
n[log(1 + exp(X�o)� log(1 + exp(X�)] +�

where � is the Jensen-Gap in (36). To estimate �, we perform a second order Taylor-
expansion around ⇠2

f(x) = f(⇠) +
df(⇠)

d⇠2
(x2 � ⇠

2) +
1

2

d
2
f(⇠)

d⇠4
|⇠=⇠̂(x

2
� ⇠

2)2.

Observe further,

df(⇠)

d⇠2
= �

1

4
p
⇠2

tanh

p
⇠
2

2
,

d
2
f(⇠)

d⇠4
= �

h0.0625 sech2(
p
⇠
2
/2)

⇠2
�

0.125 tanh(
p
⇠
2
/2)

(⇠2)1.5

i
.

Moreover, d
2
f(⇠)/d⇠4 is a decreasing function of ⇠2 and 0 < d

2
f(⇠)/d⇠4 < 1. Hence

� 
Pn

i=1{(x
T
i �)

2
� ⇠

2
i }

2
. Setting ⇠i = xT

i �
o for all i = 1, . . . , n, we have

� 

nX

i=1

{xT
i (� � �

o)}2{xT
i (� � �

o) + 2xT
i �

o
}
2

 2
nX

i=1

{xT
i (� � �

o)}4 + 8
nX

i=1

{xT
i �

o
}
2
{xT

i (� � �
o)}2.

 2nkXk
4
2,1k� � �

o
k
4 + 8nkXk

4
2,1k�

o
k
2
2k� � �

o
k
2
,
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where the final inequality follows from xT
i (� � �

o)  kXk2,1k� � �
o
k. Plugging in the

bound obtained above in �(�,�o), we get

�(�,�o)  y
0X(� � �

o) + T
n[log(1 + exp(X�o)� log(1 + exp(X�)] +

nX

i=1

{(xT
i �)

2
� (xT

i �
o)2}2



nX

i=1

{yi + 1}xT
i (� � �

o) + 2nkXk
4
2,1k� � �

o
k
4 + 8nkXk

4
2,1k�

o
k
2
2k� � �

o
k
2

 2nkXk2,1k� � �
o
k+ 2nkXk

4
2,1k� � �

o
k
4 + 8nkXk

4
2,1k�

o
k
2
2k� � �

o
k
2
.

where the last inequality is obtained by noting that log(1 + e
x) is a 1-Lipschitz function.

Recall that L(�o,X) = max{4kXk2,1, 8kXk
2
2,1k�

o
k2}. If k� � �

o
k < "

2
/L(�o,X), then

�(�,�o)  n"
2 which implies

n
�1 eD

⇥
p(· | �o,X)

���� pl(· | �, ⇠,X)
⇤
 "

2
.

Also, since

V
⇥
p(y | �

o
,X)

���� p(y | �, ⇠,X)
⇤
= nV

⇥
p(y1 | �

o
,x1)

���� p(y1 | �, ⇠,x1)
⇤
,

following the same argument as before but with one observation, we have

�1(�,�
o) := log pl(y1 |�, ⇠,x1)� log p(y1 |�

o
,x1)

 2kXk2,1k� � �
o
k+ 2kXk

4
2,1k� � �

o
k
4 + 8kXk

4
2,1k�

o
k
2
2k� � �

o
k
2
,

which implies if k� � �
o
k < "

2
/L(�o,X), then n

�1V
⇥
p(· | �

o
,X)

���� pl(· | �, ⇠,X)
⇤
 "

2.
Hence

� log
�
⇡� [Bn(�

o
, ")]

 
 � log ⇡�

�
k� � �

o
k < "

2
/L(�o,X)

 
 p log

n
L(�o,X)

"2

o
+

1

2
�
oT⌃�1

� �
o
,

where the final inequality holds using using multivariate Gaussian concentration through
Anderson’s inequality.

A.2 Proof of Theorem 4

We start by rewriting the log-likelihood ratio as

log
p(y | �,X)

p(y | �o,X)
= (� � �

o)TXT
y �

nX

i=1

[a(xT
i �)� a(xT

i �
o)]

= hy � Ey,X(� � �
o)i � nD(�o,�).

Since a(t) = log(1+ e
t) satisfies a(t+h) � a(t)+h a

(1)(t)+r(|h|) a(2)(t)/2 for all t, h, where
r(h) = h

2
/(r1h+ 1) for r1 > 0, we have

n D(�o,�) =
nX

i=1

�
a(xT

i �)� a(xT
i �

o)� a
(1)(xT

i �
o)xT

i (� � �
o)
 
�

nX

i=1

r(|xT
i (� � �

o)|)a(2)(xT
i �

o).

27



Ghosh, Bhattacharya and Pati

Defining k(h) = h
2
/r(h) and W = diag[a(2)(xT

1�
o), . . . , a(2)(xT

n�
o)],

n D(�o,�) � (� � �
o)T

 nX

i=1

a
(2)(xT

i �
o)

k(|xT
i (� � �o)|)

xix
T
i

�
(� � �

o),

�
(� � �

o)TXT
WX(� � �

o)

1 + r1kXk1
p
pk� � �ok

,

�
n2 k� � �

o
k
2

1 + r1kXk1
p
pk� � �ok

,

where the second last inequality follows |xT
i (� � �

o)|  kXk1
p
pk� � �

o
k. Define ⌦n be

the set

max
1jp

���
nX

i=1

(yi � Eyi)xij
���  kXk1(n log p)1/2/2.

Setting ⇣p := kXk1
p
np log p/2, it follows that in ⌦n, hy � Ey,X(� � �

o)i  ⇣pk� � �
o
k.

Set e" = (n2 + 2⇣pr1
p
pkXk1)/{r1kXk1

p
p (n2 � 2⇣pr1kXk1

p
p)}, then whenever

p
n >

r1kXk
2
1p

p
log p/2, for any � such that k���ok � e", we have, n D(�o,�) > 2hy�Ey,X(��

�
o)i inside ⌦n which further leads to

log
pl(y | �, ⇠,X)

p(y | �o,X)
⌦n  log

p(y | �,X)

p(y | �o,X)
⌦n  �n D(�o,�)/2.

Let us define the following probability measure on ⌦n

ep(y | �
o
,X) =

p(y | �
o
,X) ⌦nR

⌦n
p(y | �o,X)dy

Also, let us define the following finite measure epl(y | �, ⇠,X) = pl(y | �, ⇠,X) ⌦n . Then,
for any � > 0, define B(�1; �) = {epl(· | �, ⇠,X) : k� � �1k < �}. Denote by conv{B(�1; �)}
the convex hull of B(�1; �). Pick any �1 such that k�1 � �

o
k = r. Then, from Lemma 2 of

Bhattacharya and Pati (2020) and the assumption
p
n � r1p

p
log pkXk

2
1/2, there exists

measurable functions 0  �n  1 such that for every n � 1 and ↵ 2 (0, 1)

sup
epl(·|�,⇠,X)2conv{B(�1;r/2)}

Eep(·|�o,X)�n + Eepl(·|�,⇠,X)(1� �n)  exp
n
�
↵n2k� � �

o
k

8r1
p
p kXk1

o
. (38)

Now, for any event A 2 Y
(n), one can write

P�o(Ac) = P�o(Ac
| ⌦n)P�o(⌦n) + P�o(Ac

| ⌦c
n)P�o(⌦c

n)

 P�o(Ac
| ⌦n) + P�o(⌦c

n) (39)

We know that P�o(⌦c
n)  2/p and show in Lemma 14 that with high probability (w.r.t.

P�o(· | ⌦n)),

Z 
exp

�
`n(�,�

o) + (�/4)n D(�o,�)
 �
⇡�(�)d�  3en�1"

2/16
, (40)
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where `n(�,�o) = log{pl(y | �, ⇠,X)/p(y | �
o
,X)}. And hence provide a high probability

bound w.r.t. P�o . Next, we use the variational inequality (31) with µ = ⇡� , ⇢ = q̂� to show
with high probability

�

4

Z
n D(�o,�) q⇤�(�) d�  �

Z

�
log

pl(y | �, ⇠,X)

p(y | �o,X)
q
⇤
�(�) d� +D(q⇤� ||⇡�) + n1�"

2
/16 + log 3.

This brings us back to the proof of Theorem 2 and the remaining part of the proof of
Theorem 4 follows verbatim from the proof of Theorem 2.

A.3 Auxiliary Results for Proofs in Section 3

Lemma 13 Let u and v denote two continuous random vectors with joint density function
p(u, v). The maximum value of

Z
q(u) log

⇢
p(u, v)

q(u)

�
du

over all density functions q is attained by q
⇤(u) = p(u | v).

The following lemma is derived similar to Lemma 14 in Atchadé (2017) and Theorem 2 in
Kleijn and van der Vaart (2006).

Lemma 14 Fix any � 2 (0, 1) and " � 2e", also set ✏ = 2"/(8r1kXk1
p
p). If

p
n �

r1p
p
log pkXk

2
1/2, then with probability 1� e

�n�✏/8
� e

�n�1"2/32 in P�o(· | ⌦n),

Z
exp

�
`n(�,�

o) + (�/4)n D(�o,�)
 
⇡�(�)d�  3en�1"

2/16
. (41)

Proof Writing ⌘(�,�o) = exp
�
`n(�,�o) + (�/4)n D(�o,�)

 
and

U := {� : k� � �
o
k > "} =

1[

j=1

Uj,n (42)

where Uj,n = {� : j" < k� � �
o
k < (j + 1)"}, we express

Z
⌘(�,�o)⇡�(�)d� =

Z

Uc
⌘(�,�o)⇡�(�)d� +

Z

U
�̃n⌘(�,�

o)⇡�(�)d�

+
1X

j=1

Z

Uj,n

(1� �̃n)⌘(�,�
o)⇡�(�)d�

T = T1 + S1, S1 = T2 +
1X

j=1

T2j

for any sequence of test functions {�̃n : n � 1}. Then

Eep(·|�o,X)T1 

Z

Uc
e
(�/4)n D(�o,�)

⇡�(�)d� 

Z

Uc
e
(�/4)n1k���ok2/8

⇡�(�)d�  e
n�1"2/32.
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The above ineqaulity follows from the fact that nD(�o,�)  n1k���
o
k
2
/8, since a(2)(x) 

1/4 for all x 2 R. By Markov’s inequality, T1  e
n�1"2/16 with probability 1� e

�n�1"2/32.
To bound T2 and T2j , j = 1, . . . ,1, we detail the construction of �̃n. Let Nj,n :=
N(j"/2, Uj,n, k · k) denote the j"/2-covering number of Uj,n with respect to k · k. For each
j � 1, let Sj be a maximal j"/2-separated points in Uj,n and for each point �̃k 2 Sj

we can construct a test function �n,�̃k
as in (38), with r = j". Then we set �̃n to

�̃n = supj�1max�̃k2Sj
�n,�̃k

. Note also that

sup
epl(·|�,⇠,X)2conv{B(�1;r/2)}

Eep(·|�o,X)�n + Eepl(·|�,⇠,X)(1� �n)  exp
n
�
↵n2k� � �

o
k

8r1
p
p kXk1

o
.

where the second last inequality follows since
p
n � r1p

p
log pkXk

2
1/2 and k� � �

o
k >

j"/2 � e" for j � 1. Then

Eep(·|�o,X){�̃n} 

X

j=1

Nj,n exp

⇢
� ↵

n2j"

8r1kXk1
p
p

�
 exp

⇢
� C

n2"

8r1kXk1
p
p

�
:= e

�Cn✏
,

for some constant C > 0. From Markov’s inequality we obtain �̃n  e
�Cn✏/2 with probabil-

ity at least 1� e
�Cn✏/2. Hence T2  S1e

�Cn✏/2 with probability atleast 1� e
�Cn✏/2. Finally

note that

Eep(·|�o,X)

1X

j=1

T2j 

Z

U
e
�(�/4)n D(�o,�)

⇡�(�)d�  exp

⇢
�

�n2"

16r1kXk1
p
p

�
:= exp{��n✏/2}.

The penultimate inequality follows from the fact that e� 2 (0, 1) and for any � 2 (0, 1),
one can write, `n(�,�o) + �nD(�o,�)/4  ��nD(�o,�)/4 inside ⌦n. The last inequality
follows because whenever

p
n > r1kXk

2
1p

p
log(p)/2 and k� � �

o
k2 � ✏/2 � e✏ we have

nD(�o,�) � n2k���
o
k2/{2r1

p
pkXk1}. Then, E�oS1  e

�Cn✏/2
E�oS1+e

�n�✏/2, whence

E�oS1  2e�n�✏/4 for su�ciently large n. Hence S1  2e�n�✏/8 with probability at least
1� e

�n�✏/8 in P�o(· | ⌦n).

Appendix B. Review of Dynamical Systems & Notion of Stability

Dynamical systems theory is a classical technique that deals with stability and convergence
of complex iterative methods. We call a dynamical system to be discrete-time if the system
is observed on discrete time points {t0, t1, t2, . . .}. Usually, we consider the time-points to
be evenly placed, i.e. tj+1 = tj + h for some h > 0. Moreover, a system is considered
autonomous if the function is independent of time and non-autonomous otherwise. In this
section, we will discuss the notion of stability for discrete time autonomous systems. Let
us consider the following discrete-time autonomous system given by,

 
t+1 = f( t), t 2 N (43)

where f : Rn
! Rn(or, f : D ! Rn

,D ✓ Rn) is a di↵eomorphism, i.e. a smooth function
with smooth inverse and  

t
2 Rn.  

⇤
2 Rn is called a fixed point to this system if

 
⇤ = f( ⇤). We recall the following definition from Bof et al. (2018).
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Definition 15 A fixed point  ⇤ of a system given by (43) is called
(a) locally stable if given any ✏ > 0, there exists � = �(✏) such that, whenever k 0

� 
⇤
k <

�, we have kf( t)�  
⇤
k < ✏ for all t.

(b) locally asymptotically stable if it is stable and � can be chosen such that, whenever
k 

0
�  

⇤
k < �, we have  t

!  
⇤ as t ! 1.

(c) locally unstable if it is not locally stable.

The locality in the definition is used to denote the fact that we are initializing the system
in a �-ball around the fixed point. We say the stability is global if the system converges to
the fixed point independent of the initialization, i.e. we can initialize at any point in the
function domain.

Lemma 16 Consider a system x
t+1 = g(xt) where g : D ! R (D ✓ R) with a fixed point

x
⇤ such that, |g

0(x)|  � for all x 2 D � {x
⇤
}, for some � < 1. Then, x

⇤ is globally
asymptotically stable.

Proof Given a fixed point x⇤ = g(x⇤), use the Mean Value Theorem to get, |xt+1
� x

⇤
| =

|g
0(x)||xt�x

⇤
|, for some x 2 (xt, x⇤). Since, |g0(x)|  �, we have, |xt+1

�x
⇤
|  �

t+1
|x

0
�x

⇤
|.

This implies |xt+1
� x

⇤
| ! 0 as t ! 1.

Let �k be the k-th coordinate of a vector � 2 Rn. Consider the system in (43) with a fixed
point  ⇤. Using generalized Taylor’s theorem we get,

 
t+1
k �  

⇤
k = fk( 

t)� fk( 
⇤) = rfk( 

⇤)( t
�  

⇤) + h( t)| t
�  

⇤
|,

where rfk( ) is the gradient vector with i
th entry given by @fk( )/@ i and h : Rn

! R
such that, lim ! ⇤ h( ) = 0. If  t is close to  ⇤, the convergence of the system depends
on rfk( ⇤) by the following approximation,

( t+1
�  

⇤) ⇡ J( t
�  

⇤), (44)

where J is the n⇥n Jacobian matrix evaluated at  ⇤ with i
th row given by rf

T
i ( 

⇤). Thus
the behavior of the dynamical system (43) around a small neighbourhood of  ⇤ is exactly
same as that of the linearization in (44). This is formalized in the Hartman-Grobman
theorem.

Definition 17 A fixed point  ⇤, for a map  ! f( ),  2 Rn is called hyperbolic if none
of the eigenvalues of J has magnitude 1.

Theorem 18 (Hartman & Grobman) In a neighborhood of a hyperbolic fixed point, a
di↵eomorphism is topologically conjugate to the derivative at that fixed point.

The theorem above asserts that the behavior of a system around a hyperbolic fixed point is
essentially same as the linearization near this point. Refer to Quandt (1986) for a complete
review. This motivates us to check stability of a fixed point using Lemma 20 . Refer to
Wiggins (2003); Barbarossa (2011) for a proof and for further reading on this topic.

Definition 19 For a square matrix A, the spectral radius ⇢(A) is defined by

⇢(A) := max {|�| : � is eigenvalue of A}
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Lemma 20 Let  ⇤ be a fixed point solution to the discrete-time autonomous system given by
 t+1 = f( t). Suppose, f : D ! Rn(D ✓ Rn) is a twice continuously di↵erentiable function
around a neighbourhood D of  ⇤. Let J = [@if( )/@ j ] = ⇤ be the Jacobian matrix of f
evaluated at  ⇤. Then,

(a)  ⇤ is locally asymptotically stable if ⇢(J) < 1.
(b)  ⇤ is locally unstable if at least one eigenvalue of J is greater than one in absolute

value.

Lemma 20 along with Theorem 18 provides su�cient conditions for the local convergence
of a system. Consider the linear system given by ↵(t+1) = A↵

(t), with a fixed point ↵⇤ = 0.
Let us consider, A⌫i = �i⌫i (i = 1, 2, . . . , n) and |�1| � |�2| � . . . � |�n|. Suppose A has a
complete set of eigenvectors, i.e. the set of eigenvectors {⌫1, ⌫2, . . . , ⌫n} form a basis of Rn.
Then it can be easily seen that a solution to the system is ↵(t) = c1�

t
1⌫1+c2�

t
2⌫2+. . .+cn�

t
n⌫n

for some arbitrary constants c1, c2, . . . , cn. Also, c1�t1⌫1 + c2�
t
2⌫2 + . . . + cn�

t
n⌫n ! 0 i↵

|�1| < 1. This illustrates the Lemma above, in the most simplistic scenario, can be extended
to the case where A does not have a complete set of eigenvectors using Jordan Canonical
form of A (refer to Wood and O’Neill (2003)).

Appendix C. Proofs of Algorithmic Convergence Results in Section 4

Definition 21 Consider two n⇥ n real symmetric matrices A & B. Then we write,
(a) B - A if for any a 2 Rn such that, a 6= 0; we have, aT(A�B)a � 0, i.e. A�B is

a positive semi-definite matrix.
(b) B � A if for any a 2 Rn such that, a 6= 0; we have, aT(A� B)a > 0, i.e. A� B is

a positive definite matrix.

In the following, we first provide the proof of Theorems 7 in §C.1, calculation of spectral
radius for p = 1 in §C.2 and then provide the proofs of some of the auxiliary results used
in subsequent §C.3.

C.1 Proof of Theorem 7

For some fixed ↵ 2 (0, 1], the update equation in (8) can be rewritten as,

(⇠t+1)2 = diag[X{⌃↵(⇠
t)/↵+ ⌃↵(⇠

t)B↵B
T
↵⌃↵(⇠

t)}XT].

where B↵ = [XT(Y � 1/2 n) +⌃�1
� µ�/↵] and ⌃↵(⇠) = [⌃�1

� /↵� 2XTdiag{A(⇠)}X]�1. We
calculate the partial derivatives in order to get the Jacobian matrix,

@
�
⇠
t+1
i

�2

@

⇣
⇠
t
j

⌘2 =
A

0(⇠tj)

⇠
t
j

xT
i

⇥
⌃↵

�
⇠
t
�
xjx

T
j⌃↵

�
⇠
t
�
/↵+ 2⌃↵

�
⇠
t
�
xjx

T
j⌃↵

�
⇠
t
�
B↵B

T
↵⌃↵

�
⇠
t
�⇤

xi.

Then Jacobian Matrix(J↵) at ⇠ = ⇠
t is given by,

J↵ =


X⌃↵

�
⇠
t
�
XT

�X
�
⌃↵

�
⇠
t
�
/↵+ 2µ↵

�
⇠
t
�
µ

T
↵

�
⇠
t
� 

XT

�
diag

✓
A

0 �
⇠
t
�

⇠t

◆
, (45)
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where � denotes the Hadamard Product. Let us denote the maximum eigenvalue of a matrix
A by �1(A). Our objective is to show that �1(J↵)|⇠=⇠⇤ < 1. We call D = diag (A0(⇠)/⇠).
By Lemma 22 D

1/2 [X⌃↵(⇠⇤)XT
�X {⌃↵(⇠⇤)/↵+ 2µ↵(⇠⇤)µT

↵(⇠
⇤)}XT]D1/2 has the same set of

eigenvalues as with J↵|⇠=⇠⇤ . X⌃↵(⇠⇤)XT and X {⌃↵(⇠⇤)/↵+ 2µ↵(⇠⇤)µT
↵(⇠

⇤)}XT are posi-
tive semi-definite matrices which imply D1/2 [X⌃↵(⇠

⇤)XT �X {⌃↵(⇠
⇤)/↵ + 2µ↵(⇠

⇤)µT
↵(⇠

⇤)}XT]D1/2

is positive semi-definite as well as symmetric. Since the eigenvalues of a real symmetric pos-
itive semi-definite matrix are real and non-negative, the eigenvalues of J↵|⇠=⇠⇤ are real and
non-negative. We denote ⇠⇤ by ⇠ in the following discussion for notational simplicity.

From the assumptions of the theorem and fixed point equation, it is clear that ⇠i > 0 for
all i 2 {1, 2, . . . , n}. We begin with the fact that, A(x) + xA

0(x) < 0 for all x 2 R. Then,
recalling the Definition 21, we have the following,

2[XTdiag{A(⇠) + ⇠A
0(⇠)}X] � ⌃�1

� /↵,

Since for all non-zero a 2 Rp, we have a
T(⌃�1

� /↵ � 2[XTdiag{A(⇠) + ⇠A
0(⇠)}X])a > 0,

assuming ⌃� to be a positive definite matrix. Then,

2XTdiag{⇠A0(⇠)}X � ⌃�1
� /↵� 2XTdiag{A(⇠)}X. (46)

Now, X⌃↵(⇠)XT = X[⌃�1
� /↵ � 2XTdiag{A(⇠)}X]�1XT is a positive semi-definite matrix.

This implies D1/2 [X⌃↵(⇠)XT
�X⌃↵(⇠)XT] D1/2

/↵ is positive semi-definite by Schur prod-
uct theorem. Then we have the following,

D1/2 [X⌃↵(⇠)X
T
�X {⌃↵(⇠)/↵+ 2µ↵(⇠)µ

T
↵(⇠)}X

T] D1/2

- 2D1/2 [X⌃↵(⇠)X
T
�X {⌃↵(⇠)/↵+ µ↵(⇠)µ

T
↵(⇠)}X

T] D1/2
. (47)

Recall (⇠)T1⇥n = [⇠1, ⇠2, . . . , ⇠n] and denote [⇤↵(⇠)]p⇥p = ⌃↵(⇠)/↵ + µ↵(⇠)µT
↵(⇠) and

[Q↵]n⇥n = X⇤↵XT. ThenQ↵ = �(⇠)��↵ where,�(⇠) = ⇠ ⇠
T and �↵ = diag(1/⇠)Q↵ diag(1/⇠).

Now, �↵ is positive definite because Q↵ is positive definite and 1/⇠ > 0 for all ⇠ 2 R+. Note
that, [�↵]ii = 1 for all i 2 {1, 2, . . . , n} because at the fixed point solution ⇠2i = [Q↵]ii for
all i 2 {1, 2, . . . , n}. Using the above expression and properties of Hadamard product, we
rewrite (47) as

2D1/2[X⌃↵(⇠)X
T
�X {⌃↵(⇠)/↵+ µ↵(⇠)µ

T
↵(⇠)}X

T]D1/2

= 2D1/2
{X⌃↵(⇠)X

T
��(⇠)}D1/2

� �↵. (48)

Next we can write,

D1/2
{X⌃↵(⇠)X

T
��(⇠)}D1/2 = diag

h
{⇠A

0(⇠)}1/2
i
X⌃↵(⇠)X

Tdiag
h
{⇠A

0(⇠)}1/2
i
.

The above equality follows from the fact that the (i, j)th entry of the matrices on the
both side of the equation is given by, {⇠iA

0(⇠i)}1/2 [X⌃↵(⇠)XT]ij {⇠jA0(⇠j)}1/2. Let us
call R↵ = 2diag[{⇠A0(⇠)}1/2]X⌃↵(⇠)XTdiag[{⇠A0(⇠)}1/2]. Then R↵ has the same set of

non-zero eigenvalues with R(1)
↵ = 2⌃↵(⇠)XTdiag {⇠A0 (⇠)}X. Using Lemma 24 with B =

2XTdiag {⇠A0 (⇠)}X and A = ⌃�1
� /↵ � 2XTdiag{A(⇠)}X = ⌃�1

↵ (⇠), along with (46) we
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have, �1(R
(1)
↵ ) < 1. Hence we can write, �1(2⌃↵(⇠)XTdiag {⇠A0 (⇠)}X) < 1 which implies

�1(R↵) < 1. Also, we can rewrite (48)

2D1/2
{X⌃↵(⇠)X

T
��(⇠)}D1/2

� �↵ = R↵ � �↵. (49)

Finally we use Lemma 23 on (49) with A = �↵ and B = R↵ for k = 1. This concludes the
proof.

C.2 Calculation of spectral radius for p = 1

For a fixed ↵ 2 (0, 1], One can write the updtaes from (8) for p = 1

�
⇠
t+1
i

�2
= x

2
i [�↵(⇠

t)/↵+ {c�↵(⇠
t)}2] (i = 1, 2, . . . , n), (50)

where �↵(⇠t) = {�
�2
� /↵�2

Pn
i=1 x

2
iA(⇠ti)}

�1 and c = x
0(y�1/2 n)+µ�/{↵�

2
�}. We calculate

@(⇠t+1
i )2/@(⇠tj)

2 to get the Jacobian Matrix.

@
�
⇠
t+1
i

�2

@(⇠tj)
2

= 2x2ix
2
j{A

0(⇠tj)/2⇠
t
j} {�

2
↵(⇠

t)/↵+ 2c2�3↵(⇠
t)}.

Denote ⌘↵(⇠t) = �
2
↵(⇠

t)/↵+2c2�3↵(⇠
t) and aij = 2x2ix

2
jA

0(⇠tj)/2⇠
t
j . Then the (i, j)th entry of

the Jacobian Matrix Jt
↵ at ⇠ = ⇠

t is given by [Jt
↵]ij = ⌘

t
aij . Since [Jt

↵]⇤j = [Jt
↵]⇤1⇥x

2
j/x

2
1⇥

A
0(⇠tj)/A

0(⇠t1) ⇥ ⇠
t
1/⇠

t
j it follows Rank(J↵)=1. Here, [Jt

↵]⇤j is the j
th column of Jt

↵. Order
the eigenvalues �1 � �2 � . . . � �n. Then assuming tr(Jt

↵) 6= 0 and using Lemma 25 we
obtain that the non-zero eigenvalue of Jt

↵ is given by,

�1 =
nX

i

⌘↵(⇠
t)aii =

nX

i

x
4
iA

0(⇠ti)/⇠
t
i{�

2
↵(⇠

t)/↵+ 2c2�3↵(⇠
t)}. (51)

Further Simplification at ⇠t = ⇠
⇤. In case of p = 1, the self-consistency or the fixed point

equation (9) for (50) is given by

(⇠⇤i )
2 = x

2
i [�↵(⇠

⇤)/↵+ {c�↵(⇠
⇤)}2]. (52)

From (51), we can calculate �1 at ⇠ = ⇠
⇤ ,

�1 =
nX

i=1

x
4
i {A

0(⇠⇤i )/⇠
⇤
i }{�

2
↵(⇠

⇤)/↵+ 2c2�3↵(⇠
⇤)}.

Substituting (52) into the (53) gives us,

�1 =
nX

i=1

x
4
i {A

0(⇠⇤i )/⇠
⇤
i }�↵(⇠

⇤)[2(⇠⇤i )
2
/x

2
i � �↵(⇠

⇤)/↵],



Pn
i=1 2x

2
iA

0(⇠⇤i )⇠
⇤
i

�
�2
� /↵�

Pn
i=1 2x

2
iA(⇠⇤i )

. (53)
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The above inequality follows from the fact that
Pn

i=1{x
4
iA

0(⇠⇤i )/⇠
⇤
i }{�

2
↵(⇠

t)/↵} > 0 since
A(⇠⇤i )/⇠

⇤
i > 0 for all ⇠⇤i 2 R+. From (56) as �� > 0, we obtain

2
nX

i

�
A

0(⇠⇤)⇠⇤ +A(⇠⇤)
 
x
2
i < 0 < �

�2
� /↵.

By rearranging the terms it follows that �1 < 1.

C.3 Auxiliary Results for the Proofs in Section 4

Lemma 22 For a symmetric matrix Mn⇥n and a invertible diagonal matrix Nn⇥n, the set
of eigenvalues of MN and N1/2MN1/2 are the same.

Proof The characteristic equation for MN is given by, |MN��I| = 0. Since, N is invertible
we can write, |N1/2

||MN � �I||N�1/2
| = 0 which implies |N1/2MN1/2

� �I| = 0. Hence the
proof.

Lemma 23 Let A,B be n⇥n given positive semidefinite Hermitian matrices. Arrange the
eigenvalues of A � B and B and the main diagonal entries di(A) of A in decreasing order
�1 � �2 � . . . � �n and d1(A) � d2(A) � . . . � dn(A). Then,

kX

i=1

�i(A �B) 
kX

i=1

di(A)�i(B), k = {1, 2, . . . n} ,

Proof See Theorem 5.5.12 in Horn and Johnson (1994).

Lemma 24 For two n⇥n symmetric matrices A and B, such that B � A where A is positive
definite and B is positive semi-definite. Then the largest eigenvalue of A�1/2 BA�1/2 given
by �1(A

�1/2 BA�1/2) is less than 1.

Proof Since A�B is positive definite and A is invertible, it is easy to see that A�1/2(A�

B)A�1/2 is also positive definite. Then the smallest eigen value of In � A�1/2 BA�1/2 is
bigger than 0. This implies �1(A

�1/2 BA�1/2) < 1.

Lemma 25 For an n ⇥ n matrix with rank 1, the number of non-zero eigenvalues is at
most 1. If trace of the matrix (denoted tr(A)) is non-zero then a non-zero eigenvalue exists
and equal to trace of the matrix.

Proof Suppose an n⇥n matrix A has two non-zero eigenvalue �1,�2 with non-zero linearly
independent eigenvectors v1, v2. Then Av1 = �1v1 and Av2 = �2v2. This contradicts the
fact rank(A) = 1. Now assuming that tr(A) 6= 0, and using the fact tr(A) =

Pn
i=1 �i, we

claim that a non-zero eigenvalue exists and �1 = tr(A).
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C.4 Global Convergence Rate in a Semi-Orthogonal Case: Proof of Theorem 9

Recall that throughout this proof we are going to assume �� = 1. We consider two separate
cases, given by n = 1 and n � 2.
Case n = 1: For notational convenience, let us call h01,n(z) = h

0
n(z). For n = 1 we have,

h
0
1(z) =

A
0(
p
z)

p
z

(1� 2A(
p
z))�2


1 +

1

2
(1� 2A(

p
z))�1

�
.

From Proposition 26 we have 1  [1� 2A(
p
z)]  5/4 which h

0
1(z)  3A0(

p
z)/2

p
z. In the

following, we derive an upper bound for A0(x)/x for x 2 R+.

A
0(x)

x
=

(ex � x)2 � (1 + x
2)

4x3(1 + ex)2
,

=
2
P1

n=3 x
n�3

/n! +
P1

n=4 x
n�3[1/{2!(n� 2)!}+ 1/{3!(n� 3)!}+ · · ·+ 1/{(n� 2)!2!}]

4(1 + ex)2
,


2ex

4(1 + ex)2
+

8e2x

4(1 + ex)2
. (54)

The inequality in (54) is due to
P1

n=3 x
n�3

/n! < e
x and x

n�3[1/{2!(n � 2)!} + 1/{3!(n �

3)!}+ · · ·+1/{(n� 2)!2!}] and
P1

n=1 x
n�3 2n/n!  23 exp(2x). Using exp(x)+exp(�x) � 2

for all x 2 R, we further obtain,

2ex

4(1 + ex)2
+

8e2x

4(1 + ex)2


1

2(e�x + ex + 2)
+

8

4(e�x + ex)2


1

8
+

8

16
= 5/8.

Hence kh
0
1k1  15/16.

Case n � 2: We begin with the function h
0
n(z) which is given by,

h
0
n(z) =

A
0(
p
z)

p
z

�
�2
n


1

n
+

1

2�n

�
, (55)

where, �n = {1/n � 2A(
p
z)}. In Lemma 27 we show that for any z 2 R+, h0n(z) is a

monotonically increasing function of n, provided n � 2. And also h
0
n converges pointwise

to h
0(z) := �A

0(
p
z)/{16

p
zA

3(
p
z)} and h

0(z) < 1 for z 2 R+. So for any fixed z 2 R+

and n 2 {2, 3, 4, . . .} we have h
0
n(z)  h

0(z) < 1. Hence kh
0
nk1 < 1 for any fixed n.

C.5 Auxiliary Results for the Global Convergence Rate Result

The function A(·) plays a crucial role in studying the convergence of the EM. The following
proposition provides some properties of A(⇠).

Proposition 26 The following are true for the function A(⇠) := � tanh (⇠/2)/4⇠, defined
on R+. A : R+

! R� is monotonically increasing and twice continuously di↵erentiable with
A(0) = �1/8.

Proof It is easy to see that the range of A(·) ✓ R� since tanh(⇠/2) > 0 for all ⇠ 2

R+. A(0) = �1/8 follows from the fact that, lim⇠!0{exp(⇠) � 1}/⇠ = 1 and A(⇠) =
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�{exp(⇠)� 1}/4⇠{exp(⇠) + 1}. Di↵erentiating ⇠A(⇠) gives the following for all ⇠ 2 R+,

A(⇠) + ⇠A
0(⇠) = �

1

2

e
⇠

(e⇠ + 1)2
< 0. (56)

It follows immediately that,

A
0(⇠) =

(e⇠ � ⇠)2 � (1 + ⇠
2)

4⇠2(1 + e⇠)2
. (57)

Since (e⇠ � ⇠)2 � (1 + ⇠
2) > 0 for all ⇠ 2 R+, A0(⇠) > 0 for all ⇠ 2 R+. Also, A00(⇠) =

�2A0(⇠)/⇠ + 4A(⇠)
⇥
A(⇠) + ⇠A

0(⇠)
⇤
is a continuous function, thus completing the claim.

Lemma 27 For any n � 2, the following claims are true for the function h
0
n : R+

! R+,
(a) For any fixed z 2 R+, h0n(z) is an increasing function of n.
(b) For any fixed z 2 R+, define h

0(z) = �A
0(
p
z)/{16

p
zA

3(
p
z)}. Then, h0n(z) converges

pointwise to h
0(z). Also, h0(z) < 1 for all z 2 R+.

Proof Part (a): From Proposition 26 it is clear that h
0
n(z) > 0 for all z 2 R+. For any

fixed z 2 R+, it is easy to see ��2
n increases with n. Next we show that for n � 2,

1

n
+

1

2�n
<

1

n+ 1
+

1

2�n+1
. (58)

We begin with the fact that for n � 2, {(n+1)�1+1/4}(1/n+1/4) < 1/2. From Proposition
26 we know that �1/8  A(

p
z) < 0 for all z 2 R+. Then for any fixed z on R+ we have

�n+1 �n < 1/2 which when multiplied on the both sides by 1/n�1/(n+1) yields (58). This
proves the first part of Lemma 27.
Part (b): For a fixed z 2 R+, it is easy to see that, �n ! �2A(

p
z) as n ! 1. This leads

to

lim
n!1


1

n
+

1

2�n

�
= �

1

4A(
p
z)

. (59)

Multiplying (59) with A
0(
p
z)/

p
z for a fixed z 2 R+, we get limn!1 h

0
n(z) = h

0(z). Next
we show that for h0(z) < 1 for any z 2 R+. From Proposition 26,

�A
0(
p
z)

16
p
z A3(

p
z)

=

�
e
2
p
z
� 2

p
ze

p
z
� 1

��
1 + e

p
z
�

�
e
p
z � 1

�3 > 0. (60)

Next, write  (x) = 2(ex � 1) � x(ex + 1). Then  0(x) = e
x
� xe

x
� 1 and  00(x) = �xe

x.
Hence  (0) = 0,  0(0) = 0 and  0 is decreasing, which entails  is decreasing for x > 0 and
 (x) < 0 for x > 0. Hence 2(e

p
z
� 1)�

p
z(e

p
z + 1) < 0 for z 2 R+ and the numerator of

the right hand side of (60) is
�
e
2
p
z
� 2

p
ze

p
z
� 1

��
1 + e

p
z
�
�
�
e

p
z
� 1

�3
= 2e

p
z
�
2(e

p
z
� 1)�

p
z(e

p
z + 1)

 
< 0.

This proves the second part of Lemma 27.
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