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Abstract

Kitaev, Potapov, and Vajnovszki [On shortening u-cycles and u-words for permutations, Discrete
Appl. Math, 2019] described how to shorten universal words for permutations, to length nl+n—1—i(n—1)
for any 4 € [(n — 2)!], by introducing incomparable elements. They conjectured that it is also possible to
use incomparable elements to shorten universal cycles for permutations to length n! — i(n — 1) for any
i € [(n —2)!]. In this note we prove their conjecture. The proof is constructive, and, on the way, we also
show a new method for constructing universal cycles for permutations.

1 Introduction

A universal cycle for a family F of combinatorial objects is a cyclic sequence whose consecutive substrings
of a given length n represent each object of F exactly once. The canonical type of universal cycle is a De
Bruijn sequence, which is a universal cycle for the words of length n over an alphabet A. De Bruijn sequences
have been widely studied [7]. Chung, Diaconis, and Graham [5] introduced the notion of universal cycles for
other combinatorial objects such as permutations, sets, and set partitions. A wniversal word for F is the
non-cyclic analogue of a universal cycle. A universal cycle has length |F|, while a universal word has length
|F|+ (n—1).

In this paper, we are focusing on permutations. We use [n] to denote {1,2,...,n} and S, to denote
all permutations of [n]. A wuniversal word for S, is a word w over N such that each permutation in S, is
order-isomorphic to exactly one consecutive substring of length n. Notice that entries in w are not restricted
to [n]. For example, 14524314 is a universal word for S3. The permutations in S3 represented by w from left
to right are 123, 231, 312, 132, 321, and 213. See Figure 1 for a way to plot the word that depicts the order
of its letters. We use similar figures throughout the paper to indicate relative order of letters. A wuniversal
cycle for S, is a cyclic universal word. For example, 145243 is a universal cycle for S3. Note that a universal
word has length n!+ (n — 1), and a universal cycle has length n!. Hurlbert [15] showed that universal cycles
for S,, exist for all n. Chung, Diaconis, and Graham [5] conjectured that it is sufficient to use n + 1 distinct
numbers in a universal cycle for S,,, which would be best possible for n > 3. This conjecture was proved
constructively by Johnson [20]. In addition, constructions of universal cycles for permutations, and variations
thereof, have been studied in [1,8,9,12-14,16,18,21,24]. Universal cycles for permutations have applications
in various areas such as molecular biology [6], computer vision [19], robotics [22], and psychology [23].

Universal cycles, for permutations and more generally for F, are useful because they represent the
elements of F compactly. In recent years there has been interest in shortening universal cycles to compress
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Figure 1: A universal word 14524314 for S3 depicted in a grid from left to right. A blue label to the right
of a node indicates a permutation of S3 starting at the node.

information even further. (These efforts are not to be confused with the study of shorthand universal cycles
for permutations, which are shorthand in the sense of using only n distinct symbols but have the same
length, n!, as universal cycles for S, ; see [8,12,21]. Here shortening means reducing the length of the cycle.)
De Bruijn sequences have been shortened, to universal partial cycles and universal partial words, using a
wildcard symbol ¢ that covers any letter of the alphabet, so that a window of length n may cover more than
one word of length n; see [4,10,11]. Graph universal cycles, introduced in [2], and graph universal cycles for
permutations, introduced in [3], have been shortened in [17].

Kitaev, Potapov, and Vajnovszki [18] shortened universal words for permutations in two different ways:
with wildcard symbols and with incomparable elements. Similarly to universal partial words and universal
partial cycles, they considered using the wildcard symbol ¢, which yielded many nonexistence results, but
they created shortened universal words for permutations using a wildcard symbol oy, ;) that covers either
of the two elements a and b.

Most relevantly to our work, in [18], Kitaev, Potapov, and Vajnovszki used incomparable elements at
distance n — 1 to shorten universal words for permutations of [n] to lengths n! +n — 1 —i(n — 1) for each
i €[(n—2)]. A word w of length n with incomparable elements covers all permutations of length n that
are linear extensions of the order given by w. In the case of incomparable elements at distance n — 1, w
covers two permutations. For example, the word 2132 covers the two permutations 2143 and 3142. We also
say that a longer word v containing w as a consecutive substring covers the permutations that w covers.
For example, 4321324 contains 2132 as a consecutive substring, so 4321324 covers 2143 and 3142; the other
4-permutations that 4321324 covers are 4321, 3214, 4213, and 1324.

Theorem 1 (Kitaev, Potapov, and Vajnovszki [18]). Using incomparable elements at distance n — 1, one
can obtain shortened universal words for Sy, of lengths n!+n —1—i(n —1) for each 0 < i < (n —2)..

They conjecture [18, Conjecture 8] that their result may be strengthened by obtaining shortened universal
cycles instead of shortened universal words. Here we prove their conjecture.

Theorem 2. Forn > 3 and each 0 < i < (n — 2)!, using incomparable elements at distance n — 1, one can
obtain a shortened universal cycle for S, of length n! —i(n —1).

Our proof is constructive and does not attempt to control the number of distinct symbols used. Examples
of shortened universal cycles for Sy arising from the construction include

(1,2,3,12,4,10,9,8,11,7,8,6,9,10,6,5,9,7,10,8,3) and (1,2,3,12,6,8,7,6,8,5,9,8,10,11,8, 10,6, 3).

See the Appendix for more detailed illustrations. The running time is O((n!)?), which comes from finding
the Euler tour in a graph with n! edges and (n — 1)! vertices in quadratic time, and finding a cyclic word
representing the tour, which involves relabeling at most n! symbols at most n! times. The memory required
to store the output is O(n!(log(n!))).

Getting from Theorem 1 to Theorem 2 requires several background definitions which we provide forthwith.
For a word w over comparable letters, we denote by red(w) the word obtained from w by replacing each copy
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Figure 2: The graph of overlapping 3-permutations on the left and the cluster graph for 3-permutations on
the right.

of the ith smallest element of w by i. For example, red(37361) = 24231. We say that w reduces to red(w),
and words w and v satisfying red(w) = red(v) are order-isomorphic.

For any n, the graph of overlapping n-permutations is a directed graph on n! vertices, each vertex
corresponding to one permutation in S,. There is an edge from z = z1z2- -2, to y = yrya -y, iff
red(xoxs -+ - p) = red(y1y2 - - - Yn—1), see Figure 2. Notice that a universal cycle for S,, gives a Hamiltonian
cycle in the graph of overlapping n-permutations.

The cluster graph, where a universal cycle corresponds to an Eulerian tour rather than a Hamiltonian
cycle, has also been used to study universal cycles for S,; see [5]. The cluster graph for n-permutations,
denoted here by G, identifies all permutations x and y where red(x; - zp,—1) = red(y; - yn—1). This
means the edges are grouped by their origin. Its vertices are the clusters of n-permutations whose first
n — 1 entries are order-isomorphic, and its edges are the m-permutations: it has an edge from o to 7 for
each n-permutation z satisfying o = red(z1 - zp—1) and 7 = red(z3 - - - x,,). This means that each cluster
contains n permutations, and the cluster graph is a directed multigraph. For example, on the right in
Figure 2 is the cluster graph for 3-permutations, where each edge corresponds to the 3-permutation at its
head. Compressing the parallel edges of the cluster graph for n-permutations to single edges yields the graph
of overlapping (n — 1)-permutations. For example, the cluster graph for 4-permutations is shown in Figure
3, and after compressing parallel edges it is the same as the graph of overlapping 3-permutations shown on
the left of Figure 2. The cluster graph G is balanced and strongly connected, as observed in [5].

Any Eulerian tour in the cluster graph gives a Hamiltonian cycle in the graph of overlapping n-permutations.
It is conjectured that these Hamiltonian cycles can be extended to universal cycles for n-permutations;
see [5,15].

For words, translating a Hamiltonian cycle in the De Bruijn graph to a De Bruijn sequence is straightfor-
ward since the universal cycle uses just n letters. This is not the case for n-permutations. A universal cycle
or a universal word for n permutations may use many more distinct entries than n. Building a universal
cycle for n-permutations by following a Hamiltonian cycle in the graph of overlapping n-permutations could
possibly lead to a situation where the beginning and the end are not compatible. To illustrate this potential
misalignment, consider the following simple example. Recall S3 has a universal word 14524314 that can be
turned into universal cycle by removing the last two letters. On the other hand 14625415 is still a universal
word, but removing the last two letters does not turn it into a universal cycle since it would contain a
sub-word 414. It is, however, easy to construct a universal word by following a Hamiltonian path.

The proof of Theorem 1 utilizes the cluster graph of n-permutations and performs a compression on the
cluster graph. We use the same shortening ideas as Kitaev, Potapov, and Vajnovszki [18]. In order to obtain
a universal cycle instead of a universal word, we identify a particular part of the cluster graph that allows
for the beginning and the end of the word coming from traversing an Eulerian tour to be connected. We use
many of the lemmas as Kitaev, Potapov, and Vajnovszki [18], we include also proofs for completeness.



Figure 3: Cluster graph for 4-permutations. Grey boxes indicate pairs of twins. A double edge represents
parallel edges corresponding to the permutations in the gray box. Double edges with filled insides and white
insides form two cycles that could be used for shortening the universal cycle. Blue dashed edges denote
permutations in the family P*, defined in the upcoming equation (3). They are used in the gluing part
depicted in Figure 7.

2 Proof of Theorem 2

We start by introducing and restating some technical definitions. Then we describe several properties of the
cluster graph from Kitaev, Potapov, and Vajnovszki [18]. Finally, we describe the procedure to obtain a
shortened universal cycle.

Two permutations 7y - - -, and o7 - - - o, are called twins if they belong to the same cluster and |7 —7,| =
|o1 — 0| = 1. For example, 3142 and 2143 are twins, and 134562 and 234561 are twins. Pairs of twins are
depicted in Figure 3 in gray boxes, and they correspond to a pair of parallel edges.

The cluster graph G is balanced and strongly connected, as observed in [5]. Recall G has an edge e
from o to 7 for each n-permutation x satisfying o = red(x; ---2,—1) and 7 = red(z2 - - - x,). We write L(e)
for x. Later, when we compress pairs of twins and have only one edge e from o to 7, we write L(e) for
x =z 2, € N* where 1 =z, 0 =red(z1 - 2p_1), and 7 = red(xy - - - x,).

The proof of Theorem 2 is constructive. Here is a sketch of the proof, omitting compression of twins.

Proof sketch (omitting compression of twins).

1. In the cluster graph G, we identify a cycle given by permutations P defined in the upcoming Eq (1).

2. We remove them from G and find a word w whose n-windows are the permutations of S, \ P, exactly
once each.



(a) Lemma 5 guarantees that G — P is strongly connected, which we use to show G — P is Eulerian.

(b) Given an Eulerian trail of G — P, Lemma 6 shows how to build w.

3. Finally, we extend w to a cyclic word that includes P in Lemma 7.

A series of Lemmas in [18] describe the following additional properties of the cluster graph.
Lemma 3 (Kitaev, Potapov, and Vajnovszki [18]). The following are true for each cluster graph G.
(i) Each cluster has exactly one pair of twins.

(ii) For each cluster X, there exists a unique cluster Y such that there are two edges from X to'Y. Also,
there are no clusters X and 'Y such that there are three or more edges from X to Y.

(iii) For each cluster Y, there exists a unique cluster X such that there are two edges from X to Y.
(iv) Any of the disjoint cycles formed by the double edges goes through exactly n — 1 distinct clusters.

Let P be the following set of 2n permutations:

(n,n—1,...,2,1), (1,2,....,n—2,n,n—1),
(n,m—1,...,3,1,2), (1,2,...,n—3,n,n—2,n—1),
(n,m—1,...,4,1,2,3), (1,2,...,n—4,n,n—3,n—1,n—2),
P=< (n,n—1,...,k1,....k—1), (1,2,...;kn,k+1,n—1,n—2...,k+2),,. (1)
(n,n—1,1,2,...,n—2), (1,n,2,n—1,n—2,...,3),
(n,1,2,...,n—1), (n,l,n—1,n—2,...,2),
(1,2,...,n), (ILmyn—1,n—2,...,2)

The permutations in P form a tour in the cluster graph when read first from top to bottom of the first
column, and then from top to bottom of the second column. For example, when n = 6 we have

(6,5,4,3,2,1), (1,2,3,4,6,5),
(6,5,4,3,1,2), (1,2,3,6,4,5),
p_ (6,5,4,1,2,3), (1,2,6,3,5,4), . @)
(6,5,1,2,3,4), (1,6,2,5,4,3),
(6,1,2,3,4,5), (6,1,5,4,3,2),
(1,2,3,4,5,6), (1,6,5,4,3,2)

We will use P to glue together the ends of a universal word for S,, \ P, creating a universal cycle for S,,. To
accommodate shortening, we also need to consider twins of permutations in P. The only permutations in P
that have twins are (n,1,2,...,n—1) and (1,n,n—1,n —2,...,2). Let

P*=PU{(n—1,1,2,3,...,n—2,n),(2,n,n—1,...,4,3, )} (3)

Hence P~* is obtained from P by adding twin permutations to those already in P. Blue dashed edges in
Figure 3 correspond to P*.

Remark 4. By inspection of cases, for n > 4, the permutations in P* do not contain a 3-window that is
order-isomorphic to 213 or 231.
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Figure 4: The effect of compressing one cycle in the cluster graph for n = 4. See Figure 3 for the entire
cluster graph.

If TW is a set of twins in a cluster graph G, the compressed cluster graph for TW is obtained from G
by replacing each pair of parallel edges in TW, labeled by L as (z129 - @p—12,) and (z,29 -+ xp—_121), by
one edge e with L(e) = red(z1x2 - - - xp—121). See Figure 4 for an illustration where TW forms a cycle.

Lemma 5. Forn > 4, the graph obtained from a compressed cluster graph by removing all edges correspond-
ing to P* is strongly connected.

Proof. Notice that a compressed cluster graph is obtained from the (uncompressed) cluster graph G by
replacing parallel edges with single edges. Hence it is enough to show that G — P* is strongly connected.
We prove there exists a walk between any two vertices in G — P*.

Let a = ajas---a,—1 and b = biby---b,_1 be permutations in S,,_; corresponding to two vertices in
G — P*. We construct a word ) that corresponds to a walk in G — P* starting at a and ending at b. We
define Q = axb’, where z is an integer and b’ is created from b as follows:

- {’I’L if ap_9 > ap_1, b — {bl +n if b; > (bl —|—b2)/27

0 ifa, o<a,_1, ! b; —n  otherwise.

See Figure 5 for sketch of the construction of a general () and for a particular example see Figure 6. Notice
that red(d’) = b and {red(a,—2a,—12),red(zb1be)} C {231,213}. Hence any n-permutation in ¢ contains
x and contains a consecutive triple that reduces to 213 or 231. Neither of these are contained in any
permutation in P* by Claim 4. Therefore, Q corresponds to a path in G —P* from «a to b, and hence G — P*
is strongly connected. O

For a word w, an n-window of w is a substring of n consecutive letters of w. A trail in a directed
multigraph is a walk without repeated edges.

Lemma 6. Let T = (e, e, ..., ¢er) be a trail in a compressed cluster graph for n-permutations. There exists
a word w = wy * +* Wegn—1, where red(w; - - - wiyn—1) = L(e;) for all 1 <i < L.

Proof. If £ = 1, we let w = L(ey). If £ > 2, let w' = wj---wy,, 5 be a word for (ej,ez,...,e0—1) by
induction. Let ajag---a, be L(eg). If a, = ay, i.e. e; is a compressed edge, then w is obtained from w’ by
appending wj, which is the letter corresponding to a;. Otherwise, a; # a,, and we may need to modify w’
and determine a letter to append as follows.

If a, = n, let £ = max{w,:1<i</l+n-2}+1 If a, <mn, let i be the index such that a; = a,, + 1
and x = wé_Hi be the letter in w’ corresponding to a;. Then we define w = wy -+ - weyp_1 as

w if w, <zandi</l+n-—2,
wy = w,+1 ifw,>zandi<{l+n-—2,
T ifi=~0+n—1.
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Figure 5: Transitioning between two clusters in Lemma 5. (i) depicts a,—1 < an—2 and by > by and (ii)
depicts a,—1 > an—2 and by < by. The remaining two cases are similar.

Since all n-windows of wj - - - wyq,_2o are order isomorphic to n-windows of wf - - - wé +n—g, W still represents
the same permutations as w’ in the part before the last letter. The choice of x makes the last n-window in
w be order isomorphic to L(ey). O

The next lemma describes how to use P to turn a particular word w into a cyclic word z. It adds
n + 1 letters at the beginning of w. The result is a cyclic word covering the permutations in w and also all
permutations in P. A result of the operation, where w is indicated by a box, can be seen in the Appendix
for n = 4.

Lemma 7. Let n > 4. Let P’ be such that P C P’ C P*. Let w = wiwsy---wy, be a word with k >n —1
that covers each n-permutation in S, at most once, and let W be the set of n-permutations covered by w. If
red(wiwsy - Wy_1) = red(Wg—_pio - wr_1wg) = (n—1,...,2,1) and WN P’ =0, then there exists a cyclic
word z of length k + n + 1 such that each permutation in WU P’ is covered by exactly one n-window of z.
The permutations in P’ \ P are covered in a compressed way.

Proof. The cyclic word z = 2125 - - - 2,414k can be defined as follows; see Figure 7 for guidance:

z; = min{wy, we,...,wx}—n—14+ifor 1 <i<n-—1,
Zpn = max{wy, wa, ..., wi}+ 1,

I Zn—1+1 i (2,nn—1,...,4,31) ¢ P,

ot Wh—1 otherwise,

Znt14i =w; for 1 <i <k —1,

W if(n—1,1,2,3,...,n—2,n) ¢ P/,
Z. =
itk Zn—1 otherwise.

The n-windows of the cyclic word z that start at indices k + 3 through n + 1 (the first n — 1 of which wrap
around to the beginning of z) cover each permutation in P’ exactly once, in the order given by reading
the left column in (1) first and the right column second, and with the permutations in P’ \ P covered in
a compressed way. Notice that the possible shortenings are obtained by n-windows starting at z,4; and
Antl+k-
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Figure 6: Cluster graph for 4-permutations with P* deleted. This figure demonstrates using the procedure
in Lemma 5 to obtain a walk from a = 132 to b = 123, depicted using dashed edges. Here n =4, x =4,/ =
(=3,6,7),and Q = (1,3,2,4,—3,6,7). Reducing the 4-windows of @Q yields the walk (1324, 3241, 2314, 2134).
On the right is a picture of @ with red rectangles bounding regions for a and o'. The filled red rectangle
indicates a region not containing any letter from b’ regardless of the letters in b.

Since zp49 - Zpak = W1 - Wi_1, all permutations in W except the last one containing wy, are covered
by z. In the case that 2,14, = wg, the last one is there as well. We need to check that red(wg_pn41 - wg) =
red(2x42 - Znt1+k) When zp 414k = 2n—1. By hypothesis, wg_ni2 > - > wp_1 > wy, 80, if wr > wr_pi1,
then red(wg—ni1 - wk) = (I,n,n—1,...,2) € P or red(Wg—nt1 - w) = (1,n—1,n —2,...,1), in both
cases contradicting P N W = (). Therefore, wy < Wg_p+1, S0 wg < mMin{wg_y41,--.,Wk_1}, and decreasing
Wk t0 Zpt1+k = 2Zn—1 = min{wy, ws, ..., wr} — 2 does not change the relative order of wy_p41 -+ - wg. O

Now we are ready to prove Theorem 2, restated below.

Theorem 2. Forn > 3 and each 0 < i < (n — 2)!, using incomparable elements at distance n — 1, one can
obtain a shortened universal cycle for S, of length nl —i(n — 1).

Proof of Theorem 2. If n = 3, then possible universal cycles are for example 1232 and 145243 for ¢ = 1 and
1 = 0, respectively. Let n > 4 and 0 < i < (n —2)!. Let G be the cluster graph for n-permutations. By
Lemma 3, G contains (n—1)!/(n—1) = (n—2)! disjoint cycles formed by double edges. Let C; be a union of
i of these cycles. Let P’ be the set satisfying P C P’ C P*, where each permutation in P*\ P is included in
P’ if and only if it is a twin in C;. Let G; be the compressed cluster graph for the set of twins in C;. Notice
that G; has n! — i(n — 1) edges and is still Eulerian since cycles of double edges were replaced by cycles of
single edges. Let T be a tour in G; corresponding to all of the permutations in P’. Let G be obtained from
G; by removing T. Then G} is balanced because G; and T are balanced, and G is strongly connected as
Lemma 5 implies G} has a strongly connected spanning subgraph, so G} is Eulerian. Hence, using Lemma 6
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Figure 7: The word z from Lemma 7 for n = 4 depicted. Dashed lines indicate relative order of entries.
Arrows indicate the “otherwise” cases for z, 111 and z,41.

with an Eulerian trail of G} that starts and ends at (n—1,n—2,...,1), there exists a word w = wyws - - - wy,
whose n-windows are L(e) for the edges e of G, in the order of the Eulerian trail, and which in particular has
red(wyws -+ - wp_1) = red(Wg—pyo - wg) = (n—1,n—2,...,1). By Lemma 7, there exists a cyclic word z,
which covers each n-permutation exactly once, and covers the twins in C; in a compressed way. This cyclic
word z is a shortened universal cycle for S,, of length n! —i(n — 1). O

3 Conclusion

In this note we proved a conjecture of Kitaev, Potapov, and Vajnovszki [18] on shortening universal words by
adding repeated elements. Our construction does not control how many different entries are in the resulting
universal cycle. It would be interesting to investigate the smallest number of symbols needed to create a
shortened universal cycle of a given length. As suggested in [9], it would also be interesting to determine a
greedy algorithm for constructing shortened universal cycles for S, .

The case i = 0 in Theorem 2 gives a new way to construct universal cycles for S,,. It is an open question
whether every Eulerian tour of the cluster graph for n-permutations corresponds to a universal cycle for
Sn; see [5,15]. Our proof shows that the Eulerian tours containing the specific tour for P all correspond to
universal cycles for .S,.
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Appendix

3.1 Constructions

Here we describe Figures 8, 9, and 10 depicting constructions coming from Theorem 2 for n = 4 of three
different lengths. Recall that the construction of w in the proof of Theorem 2 uses an Eulerian tour but does
not explicitly say which one. Hence there are many possible outputs of the described algorithm. Here we
present one for each length of the resulting universal cycle.

In addition to writing a sequence of numbers forming a universal cycle, we depict the word in a grid,
where each node corresponds to a letter. The letter is depicted below as a number. The number with four
digits to the right of each node is a permutation of 1234 whose representation starts at the given letter.
Since the word is cyclic, the first three nodes are repeated at the end as gray nodes to make it easier to see
the cycle. Blue permutations are in P*. Red sequences are compressed permutations, where the first and
last entries are the same. The black rectangle denotes the word w as in Figure 7.

We made no attempt to minimize the number of letters used in the depicted universal cycles.
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Figure 8: (1,2,3,19,4,16,13,12,15,14,16,17,12,18,11, 14,8, 10, 16,9, 6,17,7,5), a universal cycle for S,.
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Figure 9: (1,2,3,12,4,10,9,8,11,7,8,6,9,10,6,5,9,7, 10,8, 3), a universal cycle for Sy shortened by 3.
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Figure 10: (1,2,3,12,6,8,7,6,8,5,9,8,10,11,8, 10, 6, 3), a universal cycle for Sy shortened by 6.
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