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Abstract

Turán’s famous tetrahedron problem is to compute the Turán density of the tetrahedron
K3

4 . This is equivalent to determining the maximum ℓ1-norm of the codegree vector of a K3
4 -

free n-vertex 3-uniform hypergraph. We will introduce a new way for measuring extremality
of hypergraphs and determine asymptotically the extremal function of the tetrahedron in our
notion.
The codegree squared sum, co2(G), of a 3-uniform hypergraph G is the sum of codegrees squared
d(x, y)2 over all pairs of vertices xy, or in other words, the square of the ℓ2-norm of the codegree
vector of the pairs of vertices. Define exco2(n, H) to be the maximum co2(G) over all H-free n-
vertex 3-uniform hypergraphs G. We use flag algebra computations to determine asymptotically
the codegree squared extremal number for K3

4 and K3
5 and additionally prove stability results.

In particular, we prove that the extremal function for K3
4 in ℓ2-norm is asymptotically the

same as the one obtained from one of the conjectured extremal K3
4 -free hypergraphs for the

ℓ1-norm. Further, we prove several general properties about exco2(n, H) including the existence
of a scaled limit, blow-up invariance and a supersaturation result.

1 Introduction

For a k-uniform hypergraph H (shortly k-graph), the Turán function (or extremal number)
ex(n, H) is the maximum number of edges in an H-free n-vertex k-uniform hypergraph. The
graph case, k = 2, is reasonably well-understood. The classical Erdős-Stone-Simonovits theo-
rem [15, 17] determines asymptotically the extremal number of graphs with chromatic number
at least three. However, for general k, the problem of determining the extremal function is
much harder and widely open. Despite enormous efforts, our understanding of Turán functions
is still limited. Even the extremal function of the tetrahedron K3

4 , the 3-graph on 4 vertices with
4 edges, is unknown. There are exponentially (in the number of vertices) many conjectured
extremal examples which is believed to be the root of the difficulty of this problem. Brown [10],
Kostochka [35], Fon-der-Flaass [23] and Frohmader [25] constructed families of K3

4 -free 3-graphs
which they conjectured to be extremal. For an excellent survey on Turán functions of cliques
see [53] by Sidorenko.
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Successively, the upper bound for extremal number of the tetrahedron has been improved by
de Caen [13], Giraud (unpublished, see [11]), Chung and Lu [11], and finally Razborov [46]
and Baber [2], both making use of Razborov’s flag algebra approach [45] (see also Baber
and Talbot [3]). Another relevant result towards solving Turán’s tetrahedron problem is by
Pikhurko [43]. Building on a result by Razborov [46], Pikhurko [43] determined the exact extre-
mal hypergraph when the induced 4-vertex graph with one edge is forbidden in addition to the
tetrahedron.

In this paper we study a different notion of extremality and solve the tetrahedron problem
asymptotically for this notion. It is interesting that the extremal function for K3

4 in our notion
is asymptotically the same as one of the conjectured one for the Turán density. For an integer
n, denote by [n] the set of the first n integers. Given a set A and an integer k, we write

(

A
k

)

for
the set of all subsets of A of size k. Let G be an n-vertex k-uniform hypergraph. For T ⊂ V (G)
with |T | = k −1 we denote by dG(T ) the codegree of T , i.e., the number of edges in G containing
T . If the choice of G is obvious, we will drop the index and just write d(T ). The codegree vector
of G is the vector

X ∈ Z(V (G)
k−1 ), where X(v1, v2, . . . , vk−1) = d(v1, v2, . . . , vk−1)

for all {v1, v2, . . . , vk−1} ∈
(

V (G)
k−1

)

. The ℓ1-norm of the codegree vector, or to put it in other
words, the sum of codegrees, is k times the number of edges. Thus, Turán’s problem for k-
graphs is equivalent to the question of finding the maximum ℓ1-norm for the codegree vector of
H-free k-graphs. We propose to study this maximum with respect to other norms. A particular
interesting case seems to be the ℓ2-norm of the codegree vector. We will refer to the square of
the ℓ2-norm of the codegree vector as the codegree squared sum denoted by co2(G),

co2(G) =
∑

T ⊂( [n]
k−1)

|T |=k−1

d2
G(T ).

Question 1.1. Given a k-uniform hypergraph H, what is the maximum codegree squared sum
a k-uniform H-free n-vertex hypergraph G can have?

Many different types of extremality in hypergraphs have been studied. The most related one
is the minimum codegree-threshold. For a given k-graph, the minimum codegree-threshold is
the largest minimum codegree an n-vertex k-graph can have without containing a copy of H.
This problem has not even been solved for H being the tetrahedron. For a collection of results
on the minimum codegree-threshold see [18–20, 38–42, 54]. Reiher, Rödl and Schacht [49, 50]
introduced new variants of the Turán density, which ask for the maximum density d for which H-
free hypergraph with certain quasirandomness properties of density d exists. Roughly speaking,
a quasirandomness property is a property the random hypergraph has with probability close
to 1. Reiher, Rödl and Schacht [49] determined such a variant of the Turán density of the
tetrahedron.
In this paper we solve asymptotically Question 1.1 for the tetrahedron. For a family F of
k-uniform hypergraphs, we define exco2(n, F) to be the maximum codegree squared sum a k-
uniform n-vertex F-free hypergraph can have, and the codegree squared density σ(F ) to be its
scaled limit, i.e.,

exco2(n, F) = max
G is an n-vertex

F-free
k-uniform hypergraph

co2(G) and σ(F) = lim
n→∞

exco2(n, F)
(

n
k−1

)

(n − k + 1)2
. (1)

We will observe in Proposition 1.8 that the limit in (1) exists. Denote by K3
ℓ the complete

3-uniform hypergraph on ℓ vertices. Our main result is that we determine the codegree squared
density asymptotically for K3

4 and K3
5 , respectively.

2



V1V2

V3

Cn

A B

Bn

Figure 1: Illustration of Cn and Bn.

Theorem 1.2. We have

σ(K3
4 ) =

1

3
and σ(K3

5 ) =
5

8
.

Denote Cn the 3-uniform hypergraph1 on n vertices with vertex set V (Cn) = V1 ∪ V2 ∪ V3

such that ||Vi| − |Vj || ≤ 1 for i , j and edge set

E(Cn) = {abc : a ∈ V1, b ∈ V2, c ∈ V3} ∪ {abc : a, b ∈ V1, c ∈ V2}
∪ {abc : a, b ∈ V2, c ∈ V3} ∪ {abc : a, b ∈ V3, c ∈ V1}.

Further, denote by Bn the balanced, complete, bipartite 3-uniform hypergraph on n vertices,
that is the hypergraph where the vertex set is partitioned into two sets A, B such that ||A|−|B|| ≤
1 and the edge set is the set of triples intersecting both A and B. See Figure 1 for an illustration
of Cn and Bn. The 3-graphs Cn and Bn are one of the asymptotically extremal examples in
ℓ1-norm for K3

4 and K3
5 respectively. We conjecture that Cn and Bn are the unique extremal

hypergraphs in ℓ2-norm.

Conjecture 1.3. There exists n0 such that for all n ≥ n0

exco2(n, K3
4 ) = co2(Cn)

and Cn is the unique K3
4 -free n-vertex 3-uniform hypergraph with codegree squared sum equal to

exco2(n, K3
4 ).

Note that Kostochka’s [35] result suggests that in the ℓ1-norm there are exponentially many
extremal graphs, Cn is one of them.

Conjecture 1.4. There exists n0 such that for all n ≥ n0

exco2(n, K3
5 ) = co2(Bn)

and Bn is the unique K3
5 -free n-vertex 3-uniform hypergraph with codegree squared sum equal to

exco2(n, K3
5 ).

We believe that existing methods could prove these conjectures, though the potential proofs
might be long and technical.

In Section 3.3 we observe that giving upper bounds on σ(H) for some 3-graph H is equivalent
to giving upper bounds on a certain linear combination of densities of 4-vertex subgraphs in

1This hypergraph is often referred to as Turán’s construction.
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Figure 2: Left: The complement of H5. Right: A sketch of F3,3, which has 6 vertices and edge set
{123, 145, 146, 156, 245, 246, 256, 345, 346, 356}.

large H-free graphs, see (2). By now it is a standard technique in the field to use the computer-
assisted method of flag algebras to prove such bounds. If one gets an asymptotically tight upper
bound from a flag algebra computation, it is typically the case that there is an essentially unique
stable extremal example and that one can extract a stability result from the flag algebra proof.
This also happens for K3

4 and K3
5 . For ε > 0, we say a given n-vertex 3-graph H is ε-near to an

n-vertex 3-graph G if there exists a bijection φ : V (G) → V (H) such that the number of 3-sets
{x, y, z} satisfying xyz ∈ E(G), φ(x)φ(y)φ(z) < E(H) or xyz < E(G), φ(x)φ(y)φ(z) ∈ E(H) is
at most ε|V (H)|3.

Theorem 1.5. For every ε > 0 there exists δ > 0 and n0 such that for every n > n0, if G is a
K3

4 -free 3-uniform hypergraph on n vertices with

co2(G) ≥
(

1

3
− δ

)

n4

2
,

then G is ε-near to Cn.

Theorem 1.6. For every ε > 0 there exists δ > 0 and n0 such that for every n > n0, if G is a
K3

5 -free 3-uniform hypergraph on n vertices with

co2(G) ≥
(

5

8
− δ

)

n4

2
,

then G is ε-near to Bn.

There is a K3
5 -free 3-graph [52] with the same edge density as Bn, namely H5. The vertex

set of H5 is divided into 4 parts A1, A2, A3, A4 with ||Aj | − |Ai|| ≤ 1 for all 1 ≤ i ≤ j ≤ 4 and
say a triple e is not an edge of H5 iff there is some j (1 ≤ j ≤ 4) such that |e ∩ Aj | ≥ 2 and
|e ∩ Aj | + |e ∩ Aj+1| = 3, where A5 = A1, see Figure 2 for an illustration of the complement
of H5. While H5 is conjectured to be one of the asymptotically extremal examples in ℓ1-norm,
it is not an extremal example in ℓ2-norm, because Bn has an asymptotically higher codegree
squared sum.
Besides giving asymptotic result for cliques, we prove an exact result for F3,3. Denote by F3,3 the
3-graph on 6 vertices with edge set {123, 145, 146, 156, 245, 246, 256, 345, 346, 356}, see Figure 2.
We prove that the codegree squared extremal example of F3,3 is the balanced, complete, bipartite
hypergraph Bn. Keevash and Mubayi [33] and independently Goldwasser and Hansen [27] proved
that Bn is also extremal for ℓ1-norm.
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Theorem 1.7. There exists n0 such that for all n ≥ n0

exco2(n, F3,3) = co2(Bn).

Furthermore, Bn is the unique F3,3-free 3-uniform hypergraph G on n vertices satisfying

co2(G) = exco2(n, F3,3).

We also prove some general results on σ. First, we prove that the limit in (1) exists.

Proposition 1.8. Let F be a family of k-graphs. Then, exco2(n,F)

( n

k−1)(n−k+1)2
is non-increasing as n

increases. In particular, it tends to a limit σ(F) as n → ∞.

A classical result in extremal combinatorics is the supersaturation phenomenon, discovered
by Erdős and Simonovits [16]. For hypergraphs it states, that when the edge density of a
hypergraph H exceeds the Turán density of a different hypergraph G, then H contains many
copies of G. Proposition 1.9 shows that the same phenomenon holds for σ.

Proposition 1.9. Let F be a k-graph on f vertices. For every ε > 0, there exists δ = δ(ε, f) > 0
and n0 such that every n-vertex k-uniform hypergraph G with n > n0 and co2(G) > (σ(F ) +
ε)
(

n
k−1

)

n2 contains at least δ
(

n
f

)

copies of F .

Supersaturation has been used to show that blowing up a k-graph does not change its
Turán density [16]. We will use our Supersaturation result, Proposition 1.9, to show the same
conclusion holds for σ: Blowing up a k-graph does also not change the codegree squared density.
For a k-graph H and t ∈ N, the blow-up H(t) of H is defined by replacing each vertex x ∈ V (H)
by t vertices x1, . . . , xt and each edge x1 · · · xk ∈ E(H) by the tk edges xa1

1 · · · xak

k with 1 ≤
a1, . . . , ak ≤ t.

Corollary 1.10. Let H be a k-uniform hypergraph and t ∈ N. Then,

σ(H) = σ(H(t)).

Similarly to the Turán density [14], the codegree squared density has a jump at 0. Note that
this phenomenon is not happening for the minimum codegree threshold [38].

Proposition 1.11. Let H be a k-uniform hypergraph. Then

(i) (π(H))2 ≤ σ(H) ≤ π(H),

(ii) σ(H) = 0 or σ(H) ≥ (k−1)!
kk .

Our paper is organised as follows. In Section 2 we calculate the extremal ℓ2-norm for a clas-
sical, but easy, example in ℓ1-norm as a warm-up. Next, in Section 3 we introduce terminology
and give an overview of the tools we will be using. In Section 4 we present our general results on
maximal codegree squared sums. Section 5 is dedicated to proving our main results on cliques,
meaning proving Theorems 1.5 and 1.6. In Section 6 we present the proof of our exact result,
Theorem 1.7.
In a follow-up paper [4] we systematically study the codegree squared densities of several hy-
pergraphs. Also we discuss further open problems there.

2 A Toy Example: Forbidding F4 and F5

In this section we will provide an example of how a classical Turán-type result on the ℓ1-norm
can imply a result for the codegree squared density, ℓ2-norm. Denote by F4 the 4-vertex 3-
graph2 with edge set {123, 124, 234} and F5 the 5-vertex 3-graph with edge set {123, 124, 345},

2This hypergraph is also knows as K
3−
4

.
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Figure 3: Hypergraphs F4 and F5.

see Figure 3. The 3-graphs which are F4- and F5-free are called cancellative hypergraphs. Denote
by Sn the complete balanced 3-partite 3-graph on n vertices. This is the 3-graph with vertex
partition A ∪ B ∪ C with part sizes |A| = ⌊n/3⌋, |B| = ⌊(n + 1)/3⌋ and |C| = ⌊(n + 2)/3⌋,
where triples abc are edges iff a, b and c are each from a different class. Bollobás [8] proved that
the n-vertex cancellative hypergraph with the most edges is Sn. Using his result and a double
counting argument we show that Sn is also the largest cancellative hypergraph in the ℓ2-norm.

Theorem 2.1. We have

exco2(n, {F4, F5}) = co2(Sn),

and therefore also

σ({F4, F5}) =
2

27
.

The unique extremal hypergraph is Sn.

Proof. Let G be an F4- and F5-free hypergraph with n vertices. For an edge e = xyz ∈ E(G),
we define its weight w(e) = d(x, y) + d(x, z) + d(y, z). Then, w(e) ≤ n; otherwise G contains
an F4. Bollobás [8] proved that |E(G)| ≤ |E(Sn)| with equality iff G = Sn. This allows us to
conclude

co2(G) =
∑

xy∈([n]
2 )

d(x, y)2 =
∑

e∈E(G)

w(e) ≤ n|E(G)| ≤ n|E(Sn)| = co2(Sn). �

Frankl and Füredi [24] proved that for just F5-free 3-graphs, Sn is also the extremal example
in ℓ1-norm when n ≥ 3000. In a follow-up paper [4] we prove that for F5-free 3-graphs, Sn is also
the extremal example in the ℓ2-norm provided n is sufficiently large. However, this requires more
work than the proof of Theorem 2.1 and it is not derived by just applying the corresponding
Turán result.

3 Preliminaries

3.1 Terminology and notation

Let H be a 3-uniform hypergraph, x ∈ V (H) and A, B ⊆ V (H) be disjoint sets.

1. L(x) denotes the link graph of x, i.e., the graph on V (H) \ {x} with ab ∈ E(L(x)) iff
abx ∈ E(H).
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2. LA(x) = L(x)[A] denotes the induced link graph on A.

3. LA,B(x) denotes the subgraph of the link graph of x containing only edges between A and
B. This means V (LA,B(x)) = V (H) \ {x} and ab ∈ E(LA,B(x)) iff a ∈ A, b ∈ B and
abx ∈ E(H).

4. Lc
A,B(x) denotes the subgraph of the link graph of x containing only non-edges between A

and B. This means V (LA,B(x)) = V (H) \ {x} and ab ∈ E(Lc
A,B(x)) iff a ∈ A, b ∈ B and

abx < E(H).

5. e(A, B) denotes the number of cross edges between A and B, this means
e(A, B) := |{xyz ∈ E(H) : x, y ∈ A, z ∈ B}| + |{xyz ∈ E(H) : x, y ∈ B, z ∈ A}|.

6. ec(A, B) denotes the number of missing cross edges between A and B, this means

ec(A, B) :=
(|A|

2

)

|B| +
(|B|

2

)

|A| − e(A, B).

7. For an edge e = xyz ∈ E(H), we define its weight as

wH(e) = d(x, y) + d(x, z) + d(y, z).

3.2 Tool 1: Induced hypergraph removal Lemma

We will use the induced hypergraph removal lemma of Rödl and Schacht [51].

Definition 3.1. Let F , P be families of k-graphs.

• Forbind(F) denotes the family of all k-graphs H which contain no induced copy of any
member of F .

• For a constant µ ≥ 0 we say a given k-graph H is µ-far from P if every k-graph G on the
same vertex set V (H) with |G△H| ≤ µ|V (H)|k satisfies G < P, where G△H denotes the
symmetric difference of the edge sets of G and H. Otherwise we call H µ-near to P.

Theorem 3.2 (Rödl, Schacht [51]). For every (possibly infinite) family F of k-graphs and every
µ > 0 there exist constants c > 0, C > 0, and n0 ∈ N such that the following holds. Suppose H
is a k-graph on n ≥ n0 vertices. If for every ℓ = 1, . . . , C and every F ∈ F on ℓ vertices, H
contains at most cnℓ induced copies of F , then H is µ-near to Forbind(F ).

3.3 Tool 2: Flag Algebras

In this section we give an insight on how we apply Razborov’s flag algebra machinery [45]
for calculating the codegree squared density. The main power comes from the possibility of
formulating a problem as a semidefinite program and using a computer to solve it.

The method can be applied in various settings such as graphs [28, 44], hypergraphs [3, 19],
oriented graphs [29,37], edge-coloured graphs [5,12], permutations [6,55], discrete geometry [7,
36], or phylogenetic trees [1]. For a detailed explanation of the flag algebra method in the setting
of 3-uniform hypergraphs see [22]. Further, we recommend looking at the survey [47] and the
expository note [48], both by Razborov. Here, we will focus on the problem formulation rather
than a formal explanation of the general method.

Let F be a fixed 3-graph. Let F denote the set of all F -free 3-graphs up to isomorphism.
Denote by Fℓ all 3-graphs in F on ℓ vertices. For two 3-graphs F1 and F2, denote by P (F1, F2)
the probability that |V (F1)| vertices chosen uniformly at random from V (F2) induce a copy
of F1. A sequence of 3-graphs (Gn)n≥1 of increasing orders is convergent, if limn→∞ P (H, Gn)
exists for every H ∈ F . Notice that if this limit exists, it is in [0, 1].
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For readers familiar with flag algebras and its usual notation, for a convergent sequence
(Gn)n≥1 of n-vertex 3-graphs Gn, we get

lim
n→∞

co2(Gn)
(

n
2

)

(n − 2)2
=

u
wwv







1 2







2
}
��~

1,2

=
1

6
+

1

2
+ , (2)

where J·K denotes the averaging operator and the terms on the right are interpreted as

lim
n→∞

1

6
P (K3=

4 , Gn) +
1

2
P (K3−

4 , Gn) + P (K3
4 , Gn),

where K3=
4 is the 3-graph with 4 vertices and 2 edges and K3−

4 the 3-graph with 4 vertices and
3 edges, also known as F4. It is a routine application of flag algebras to find an upper bound
on the right-hand side of (2).

For readers less familiar with flag algebras, the following paragraphs give a slightly less formal
explanation of the problem formulation. Let G be a 3-graph. Let θ be an injective function
{1, 2} → V (G). In other words, θ labels two distinct vertices in G. We call the pair (G, θ) a
labelled 3-graph although only two vertices in G are labelled by θ.

Let (H, θ′) and (G, θ) be two labelled 3-graphs. Let X be a subset of V (G) \ Im θ of size
|V (H)| − 2 chosen uniformly at random. By P ((H, θ′), (G, θ)) we denote the probability that
the labelled subgraph of G induced by X and the two labelled vertices, i.e., (G[X ∪ Im θ], θ), is
isomorphic to (H, θ′), where the isomorphism maps θ(i) to θ′(i) for i ∈ {1, 2}.

Let E be a labelled 3-graph consisting of three vertices, two of them labelled, and one edge
containing all three vertices. Notice that P (E, (G, θ))(n − 2) is the codegree of θ(1) and θ(2) in

a 3-graph G. The square of the codegree of θ(1) and θ(2) is (P (E, (G, θ))(n − 2))
2
. One of the

tricks in flag algebras is that calculating P (E, (G, θ))2 in G of order n can be done with error
O(1/n) by selecting two distinct vertices in addition to θ(1) and θ(2) and examining subgraphs
on four vertices instead. In our case, it looks like the following, where P (H, (G, θ)) is depicted
simply as H.







1 2







2

=

1 2

+

1 2

+

1 2

+

1 2

+ o(1) (3)

The next step is to sum over all possible choices for θ, there are n(n−1) of them, and divide by 2
since the codegree squared sum is over unordered pairs of vertices, unlike θ. When summing over
all possible θ, one could look at all subsets of vertices of size 4 of G and see what the probability
is that randomly labelling two vertices among these four by θ gives one of the labelled 3-graphs
from the right hand side of (3). This gives the coefficients on the right-hand side of (2).

We use flag algebras to prove Lemmas 5.1, 6.1, and 5.3. The calculations are computer
assisted. We use CSDP [9] for finding numerical solutions of semidefinite programs and Sage-
Math [56] for rounding the numerical solutions to exact ones. The files needed to perform the
corresponding calculations are available at http://lidicky.name/pub/co2/.

4 General results: Proofs of Propositions 1.8, 1.9 and 1.10

4.1 The limit exists

Proof of Proposition 1.8. Let n ≥ k be a positive integer and let G be an F-free k-graph on
vertex set [n] satisfying co2(G) = exco2(n, F). Take S to be a randomly chosen (n − 1)-subset
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of V (G). Now, we calculate the expectation of co2(G[S]),

E[co2(G[S])] =
∑

T ∈( [n]
k−1)

E[1{T ⊂S}d2
G[S](T )] =

∑

T ∈( [n]
k−1)

P(T ⊂ S)E[d2
G[S](T )|T ⊂ S]

=
∑

T ∈( [n]
k−1)

(

n−1
k−1

)

(

n
k−1

)E[d2
G[S](T )|T ⊂ S] ≥

∑

T ∈( [n]
k−1)

(

n−1
k−1

)

(

n
k−1

)E[dG[S](T )|T ⊂ S]2

=
∑

T ∈( [n]
k−1)

(

n−1
k−1

)

(

n
k−1

)

(

dG(T )
n − k

n − k + 1

)2

=

(

n−1
k−1

)

(

n
k−1

)

(

n − k

n − k + 1

)2

co2(G).

We used that dG[S](T ) conditioned on T ⊂ S has hypergeometric distribution. By averaging, we
conclude that there exists an (n − 1)-vertex subset S′ ⊂ V (G) with co2(G[S′]) ≥ E[co2(G[S])].
Thus, we conclude that G[S′] is an (n − 1)-vertex k-graph satisfying

co2(G[S′]) ≥
(

n−1
k−1

)

(

n
k−1

)

(

n − k

n − k + 1

)2

co2(G).

Therefore, since G[S′] is F-free,

exco2(n − 1, F)
(

n−1
k−1

)

(n − k)2
≥ co2(G[S′])
(

n−1
k−1

)

(n − k)2
≥ co2(G)
(

n
k−1

)

(n − k + 1)2
=

exco2(n, F)
(

n
k−1

)

(n − k + 1)2
. �

4.2 Supersaturation

In this section we prove Proposition 1.9. We will make use of the following tail bound on the
hypergeometric distribution.

Lemma 4.1 (e.g. [30] p.29). Let β, λ > 0 with β + λ < 1. Suppose that X ⊆ [n] and |X| ≥
(β + λ)n. Then

∣

∣

∣

∣

{

S ∈
(

[n]

m

)

: |S ∩ X| ≤ βm

}∣

∣

∣

∣

≤
(

n

m

)

e− λ2m
3(β+λ) ≤

(

n

m

)

e−λ2m/3.

Mubayi and Zhao [41] used Lemma 4.1 to prove a supersaturation result for the minimum
codegree threshold. We adapt their proof to our setting.

Lemma 4.2. Let α > 0, ε > 0 and k ≥ 3. Then there exists m0 such that the following holds.
If n ≥ m ≥ m0 and G is a k-graph on [n] with co2(G) ≥ (α + ε)

(

n
k−1

)

(n − k + 1)2, then the

number of m-sets S satisfying co2(G[S]) > α
(

m
k−1

)

(m − k + 1)2 is at least ε
4

(

n
m

)

.

Proof. Given a (k − 1)-element set T ⊂ [n], we call an m-set S with T ⊂ S ⊂ [n] bad for T

if |d(T ) ∩ S| ≤
(

d(T )
n−k+1 − ε

6

)

(m − k + 1). An m-set is bad if it is bad for some T . Otherwise,

it is good. We will show that there are few bad sets. Denote by Φ the number of bad m-sets,
and let ΦT be the number of m-sets that are bad for T . Then, by applying Lemma 4.1 with

β = d(T )
n−k+1 − ε

6 and λ = ε/7, we get

Φ ≤
∑

T ∈( [n]
k−1)

ΦT =
∑

T ∈( [n]
k−1)

∣

∣

∣

∣

{

S′ ∈
(

[n] \ T

m − k + 1

)

: |d(T ) ∩ S′| ≤
(

d(T )

n − k + 1
− ε

6

)

(m − k + 1)

}∣

∣

∣

∣

≤
∑

T ∈( [n]
k−1)

(

n − k + 1

m − k + 1

)

exp

(

−ε2(m − k + 1)

147

)

≤
(

n

k − 1

)(

n − k + 1

m − k + 1

)

exp

(

−ε2(m − k + 1)

147

)

=

(

n

m

)(

m

k − 1

)

exp

(

−ε2(m − k + 1)

147

)

≤ ε

4

(

n

m

)

,
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where the last inequality holds for m large enough. So the number of bad m-sets is at most
ε
4

(

n
m

)

. Now let ℓ
(

n
m

)

be the number of m-sets S satisfying

∑

T ∈( S

k−1)

d2
G(T ) ≥

(

α +
ε

2

)

(

m

k − 1

)

(n − k + 1)2. (4)

On one side

∑

|S|=m

∑

T ∈( S

k−1)

d2
G(T ) =

(

n − k + 1

m − k + 1

)

co2(G) =

(

n − k + 1

m − k + 1

)(

n

k − 1

)

(n − k + 1)2(α + ε).

On the other side,

∑

|S|=m

∑

T ∈( S

k−1)

d2
G(T ) ≤ (α +

ε

2
)

(

m

k − 1

)

(n − k + 1)2

(

n

m

)

+ ℓ

(

m

k − 1

)

(n − k + 1)2

(

n

m

)

= (α +
ε

2
+ ℓ)

(

m

k − 1

)

(n − k + 1)2

(

n

m

)

.

By this double counting argument, we conclude ℓ ≥ ε/2. Since the number of bad m-sets is at
most ε

4

(

n
m

)

, there are at least ε
4

(

n
m

)

good m-sets satisfying (4). All of these m-sets satisfy

co2(G[S]) =
∑

T ∈( S

k−1)

d2
G[S](T ) ≥

∑

T ∈( S

k−1)

((

dG(T )

n − k + 1
− ε

6

)

(m − k + 1)

)2

=
(m − k + 1)2

(n − k + 1)2

∑

T ∈( S

k−1)

(

dG(T ) − ε

6
(n − k + 1)

)2

≥ (m − k + 1)2

(n − k + 1)2

∑

T ∈( S

k−1)

(

d2
G(T ) − ε

3
(n − k + 1)2

)

≥ (m − k + 1)2

(n − k + 1)2

(

(

α +
ε

2

)

(

m

k − 1

)

(n − k + 1)2 −
(

m

k − 1

)

ε

3
(n − k + 1)2

)

> α

(

m

k − 1

)

(m − k + 1)2,

proving the statement of this lemma. �

Proof of Proposition 1.9. This proof follows Erdős and Simonovits’ proof [16] of the supersatu-
ration result for the Turán density.

Let F be a k-graph on f vertices, ε > 0 and G be an n-vertex k-graph satisfying co2(G) >
(σ(F ) + ε)

(

n
k−1

)

n2 for n large enough. By Lemma 4.2, there exists an m0 such that for m ≥ m0

the number of m-sets S satisfying co2(G[S]) > (σ(F ) + ε/2)
(

m
k−1

)

(m − k + 1)2 is at least ε
8

(

n
m

)

.

There exists some fixed m1 ≥ m0 such that exco2(m1, F ) ≤ (σ(F ) + ε/2)
(

m1

k−1

)

(m1 − k + 1)2.

Thus, there are at least ε
8

(

n
m1

)

m1-sets S such that G[S] contains F . Each copy of F may be

counted at most
(

n−f
m1−f

)

times. Therefore, the number of copies for F is at least

ε
8

(

n
m1

)

(

n−f
m1−f

) = δ

(

n

f

)

,

for δ = ε

8(m1
f )

. �
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4.3 Proof of Corollary 1.10 and Proposition 1.11

Now we use a standard argument to show that blowing-up a k-graph does not change the
codegree squared density. We will follow the proof of the analogous Turán result given in [31].

Proof of Corollary 1.10. Since H ⊂ H(t), exco2(n, H(t)) ≤ exco2(n, H) holds trivially. Thus,
σ(H(t)) ≤ σ(H).
For the other direction, let ε > 0 and G be an n-vertex k-uniform hypergraph satisfying
co2(G)/(

(

n
k−1

)

(n − k + 1)2) > σ(H) + ε. Then, by Proposition 1.9, G contains at least δ
(

n
v(H)

)

copies of H for δ = δ(ε, k) > 0. We create an auxiliary v(H)-graph F on the vertex set V (G).
A v(H)-set A ⊂ V (G) is an edge in F iff G[A] contains a copy of H. The auxiliary hypergraph
F has density at least δ/v(H)!. Thus, as it is well-known [14], for any t′ > 0 as long as n is large

enough, F contains a copy of K
v(H)
v(H) (t′), the complete v(H)-partite v(H)-graph with t′ vertices

in each part.

We choose t′ large enough such that the following is true. We colour each edge of K
v(H)
v(H) (t′)

by one of v(H)! colours, depending on which of the v(H)! orders the vertices of H are mapped
to in the corresponding copy of H in G. By a classical result in Ramsey theory (for a density

version see [14]), there is a monochromatic copy of K
v(H)
v(H) (t), which contains a copy of H(t) in

G. We conclude σ(H(t)) ≤ σ(H) + ε for all ε > 0. �

Proof of Proposition 1.11. Let H be a k-graph. For any k-graph G, we have by the Cauchy-
Schwarz inequality

co2(G) =
∑

T ∈( [n]
k−1)

dG(T )2 ≥

(

∑

T ∈( [n]
k−1)

dG(T )
)2

(

n
k−1

) =
(k|E(G)|)2

(

n
k−1

) .

After scaling this implies σ(H) ≥ π(H)2. For the upper bound we have

co2(G) =
∑

T ∈( [n]
k−1)

dG(T )2 =
∑

e∈E(G)

wG(e) ≤ kn|E(G)|,

where wG(e) :=
∑

T ∈( e

k−1)
dG(T ). After scaling this implies σ(H) ≤ π(H), completing the proof

of part (i). Erdős [14] proved that the Turán density of a k-partite k-graph is 0. In this case,
the codegree squared density is also 0 by part (i).

If H is not k-partite then the complete k-partite k-graph does not contain H and provides
a construction for lower bounds. It gives that the Turán density of H is at least k!/kk and
σ(H) ≥ (k − 1)/kk. �

5 Cliques

In this section we will prove Theorems 1.5 and 1.6.

5.1 Proof of Theorem 1.5

Flag algebras give us the following results for K3
4 .

Lemma 5.1. For all ε > 0 there exists δ > 0 and n0 such that for all n ≥ n0: if G is a K3
4 -free

3-uniform graph on n vertices with co2(G) ≥ (1 − δ) 1
3 n4/2, then the densities of all 3-graphs on

4, 5 and 6 vertices in G that are not contained in Cn are at most ε. Additionally,

σ(K3
4 ) =

1

3
.
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The flag algebra calculation proving Lemma 5.1 is computer assisted and not practical to
fit in the paper. The calculation is available at http://lidicky.name/pub/co2/. For proving
Theorem 1.5 we will make use of the following stability result due to Pikhurko [43].

Theorem 5.2 (Pikhurko [43]). For every ε > 0 there exists δ > 0 and n0 such that for every
n > n0, if G is a K3

4 -free 3-uniform hypergraph on n vertices not spanning exactly one edge on
four vertices and with

e(G) ≥
(

5

9
− δ

)(

n

3

)

,

then G is ε-near to Cn.

Proof of Theorem 1.5. Let ε > 0 be fixed. We choose n0 sufficiently large for the following proof
to work. We will choose constants

1 ≫ ε ≫ δ3 ≫ δ2 ≫ δ1 ≫ δ ≫ 0

in order from left to right where each constant is a sufficiently small positive number depending
only on the previous ones. Let G be a K3

4 -free 3-uniform hypergraph on n ≥ n0 vertices with

co2(G) ≥
(

1

3
− δ

)

n4

2
.

By applying Lemma 5.1, we get that the density of the 4-vertex 3-graph with exactly one edge
in G is at most δ1. Now, we apply the induced hypergraph removal lemma, Theorem 3.2, to
obtain G′ where G′ is δ2-near to G, and G′ is K3

4 -free and does not induce exactly one edge on
four vertices. We have

co2(G′) ≥ co2(G) − 6δ2n4 ≥
(

1

3
− δ

)

n4

2
− 6δ2n4 ≥ (1 − 37δ2)

1

6
n4,

where the first inequality holds because when one edge is removed from a 3-uniform hypergraph,
then the codegree squared sum can go down by at most 6n. By a result of Falgas-Ravry and
Vaughan [21, Theorem 4], P (K3−

4 , G′) ≤ 16/27 + o(1). Let x ∈ [0, 1] such that P (K3−
4 , G′) =

16/27(1 − x) + o(1). By (2) and the fact that G′ is K3
4 -free, we have

1

3
(1 − 37δ2) ≤ co2(G′)

(

n
2

)

(n − 2)2
=

1

6
P (K3=

4 , G′) +
1

2
P (K3−

4 , G′) ≤ 1

6
P (K3=

4 , G′) +
8

27
(1 − x) + o(1).

Thus,

P (K3=
4 , G′) ≥ 2 + 16x

9
− 75δ2.

Since G′ does not contain a 4-set spanning exactly 1 or 4 edges, a result of Razborov [46] says

|E(G′)|
(

n
3

) ≤ 5

9
+ o(1). (5)

Since

|E(G′)|
(

n
3

) =
1

2
P (K3=

4 , G′) +
3

4
P (K3−

4 , G′) + o(1) ≥ 5 + 4x

9
− 38δ2,

this implies that x ≤ 100δ2. Thus, by Pikhurko’s stability theorem (Theorem 5.2), G′ is δ3-near
to Cn. Since G′ is δ2-near to G, we conclude that G is ε-near to Cn. �
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5.2 Proof of Theorem 1.6

Flag algebras give us the following for K3
5 .

Lemma 5.3. For all ε > 0 there exists δ > 0 and n0 such that for all n ≥ n0: if G is a K3
5 -free

3-uniform graph on n vertices with co2(G) ≥ (1 − δ) 5
8 n4/2, then the densities of all 3-graphs on

4, 5 and 6 vertices in G that are not contained in Bn are at most ε. In particular,

σ(K3
5 ) =

5

8
.

Again, the flag algebra calculation proving Lemma 5.3 is computer assisted and available at
http://lidicky.name/pub/co2/. We use this result to prove Theorem 1.6.

Proof of Theorem 1.6. Let ε > 0. During the proof we will use the following constants:

1 ≫ ε ≫ δ2 ≫ δ1 ≫ δ ≫ 0.

The constants are chosen in this order and each constant is a sufficiently small positive number
depending only on the previous ones. Apply Lemma 5.3 and get δ = δ(δ1) > 0 such that for all
n large enough: If G is an K3

5 -free 3-uniform graph on n vertices with co2(G) ≥ (1 − δ) 5
8 n4/2,

then the densities of all 3-graphs on 4, 5 and 6 vertices in G that are not contained in Bn are at
most δ1.
Now, apply the induced hypergraph removal lemma Theorem 3.2 to obtain G′ where G′ is δ2-
near to G, and G′ contains only those induced subgraphs on 4, 5 or 6 vertices which appear as
induced subgraphs in Bn. Note that

co2(G′) ≥ co2(G′) − 6δ2n4 ≥ (1 − δ)
5

8

n4

2
− 6δ2n4 ≥ (1 − 20δ2)

5

8

n4

2
,

because when one edge is removed the codegree squared sum can go down by at most 6n. Next
we show that G′ has to have the same structure as Bn. We say that a 3-graph H is 2-colourable,
if there is a partition of the vertex set V (H) = V1 ∪ V2 such that V1 and V2 are independent
sets in H.

Claim 5.4. G′ is 2-colourable.

Proof. Take an arbitrary non-edge abc in G′. For 0 ≤ i ≤ 4, define Ai to be the set of vertices
v ∈ V (G) \ {a, b, c} such that G′ induces i edges on {a, b, c, v}. Then, A1 = A2 = ∅ because on 4
vertices there are either 0, 3 or 4 edges in Bn, hence in G′ as well. Further A4 = ∅, because abc is a
non-edge. Clearly, A0 is an independent set, because if there is an edge v1v2v3 in G′[A0], then the
induced graph of G′ on {a, b, c, v1, v2, v3} spans a forbidden subgraph, i.e., a hypergraph which
is not an induced subhypergraph of Bn. Similarly, A3 is an independent set else G′ contains
a copy of F3,3, which is not an induced subhypergraph of Bn. Let A′ = A0 ∪ {a, b, c}. Then
V (G′) = A3 ∪ A′ and A′ also forms an independent set. To observe the second statement, let
v1, v2, v3 be three vertices in A0. The number of edges induced on v1, v2, v3, a, b, c is at most nine,
because every edge needs to be incident to exactly two vertices of {a, b, c} by the definition of
A0. However, 6-vertex induced subgraphs of Bn have either 0, 10, 16, or 18 edges. We conclude
that {v1, v2, v3, a, b, c} induces no edge in G′. Thus, A′ is also an independent set in G′ and
therefore G′ is 2-colourable. �

Claim 5.5. We have |E(G′)| ≥ (1 − 2
√

δ2) n3

8 .
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Proof. By Claim 5.4, G′ is 2-colourable and we can partition the vertex set V (G′) = A∪B such
that A and B are independent sets. Let a ∈ [0, 1] such that |A| = an and |B| = (1 − a)n. We
have

(1 − 20δ2)
5

8

n4

2
≤ co2(G′) ≤

(

a2

2
(1 − a)2 +

(1 − a)2

2
a2 + a(1 − a)

)

n4 ≤ 5

4
a(1 − a)n4.

Thus, 4a(1 − a) ≥ 1 − 20δ2. We conclude 1/2 − 3
√

δ2 ≤ a ≤ 1/2 + 3
√

δ2, otherwise

4a(1 − a) < 4

(

1

2
− 3

√

δ2

)(

1

2
+ 3

√

δ2

)

= 1 − 36δ2,

a contradiction. For every edge e ∈ E(G′), we have wG′(e) ≤
(

5/2 + 3
√

δ2

)

n. Therefore,

(1 − 20δ2)
5

8

n4

2
≤ co2(G′) =

∑

e∈E(G′)

wG′(e) ≤ |E(G′)|
(

5

2
+ 3

√

δ2

)

n.

Thus,

|E(G′)| ≥ (1 − 20δ2)
(

1 + 6
5

√
δ2

)

n3

8
≥ (1 − 2

√

δ2)
n3

8
.

�

The 3-graph G is δ2-near to G′. By Claims 5.4 and 5.5, G′ is ε/2-near to Bn. Therefore we
can conclude that G is δ2 + ε/2 ≤ ε-near to Bn. �

5.3 Discussion on Cliques

Keevash and Mubayi [31] constructed the following family of 3-graphs obtaining the best-known
lower bound for the Turán density of cliques. Denote Dk the family of directed graphs on k − 1
vertices that are unions of vertex-disjoint directed cycles. Cycles of length two are allowed, but
loops are not. Let D ∈ Dk and V = [n] = V1 ∪ . . . ∪ Vk−1 be a vertex partition with class
sizes as balanced as possible, that is ||Vi| − |Vj || ≤ 1 for all i , j. Denote G(D) the 3-graph
on V where a triple is a non-edge iff it is contained in some Vi or if it has two vertices in Vi

and one vertex in Vj where (i, j) is an arc of D. The 3-graph G(D) is K3
k-free and has edge

density 1 − (2/t)2 + o(1). While all 3-graphs D ∈ Dk give the same edge density for G(D),
up to isomorphism there is only one where G(D) is maximising the codegree squared sum. Let
D∗

k ∈ Dk be the directed graph on k − 1 vertices v1, . . . , vk−1 such that if k odd, then

(vivi+1), (vi+1vi) ∈ E(D∗
k) for all odd i,

and if k even, then

(vivi+1), (vi+1vi) ∈ E(D∗
k) for all odd i ≤ k − 5

and (vk−3vk−2), (vk−2vk−1), (vk−1vk−3) ∈ E(D∗
k).

Note that D∗
k is maximising the number of directed cycles. The 3-graph G(D∗

4) is isomorphic to
Cn and G(D∗

5) is isomorphic to Bn. See Figure 4 for a drawing of D∗
7 , D∗

8 and the complements
G(D∗

7) and G(D∗
8) of G(D∗

7) and G(D∗
8), respectively. Next, we observe that among all directed

graphs D ∈ Dk, D∗
k maximises the codegree squared sum of G(D).

For a function f : X → R, and S ⊆ X, define

arg max
x∈S

f(x) := {x ∈ S : f(s) ≤ f(x) for all s ∈ S} .
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Figure 4: Representations of D∗
7, D∗

8 and the complements G(D∗
7
) and G(D∗

8
) of G(D∗

7) and G(D∗
8),

respectively.

Lemma 5.6. Let k ≥ 4. For n sufficiently large, D∗
k is isomorphic to any directed graph in

arg max
D∈Dk

co2(G(D)).

Proof. Let D ∈ arg maxD∈D co2(G(D)). Suppose for contradiction that D contains a directed
cycle v1, v2, . . . , vℓ of length ℓ ≥ 4. Construct a directed graph D′ by replacing that ℓ-cycle with
an (ℓ − 2)− cycle v1, v4, . . . , vℓ−2 and a 2-cycle v2, v3. Let V1, V2, . . . , Vℓ be the corresponding
classes in G. The only pairs of vertices x, y for which the codegree changes by more than O(1)
are described in the following.

• For x ∈ V1, y ∈ V2, d(x, y) increased from n − n/(k − 1) + O(1) to n + O(1).

• For x ∈ V3, y ∈ V4, d(x, y) increased from n − n/(k − 1) + O(1) to n + O(1).

• For x ∈ V2, y ∈ V3, d(x, y) decreased from n − n/(k − 1) + O(1) to n − 2n/(k − 1) + O(1).

• For x ∈ V1, y ∈ V4, d(x, y) decreased from n − n/(k − 1) + O(1) to n − 2n/(k − 1) + O(1)
if ℓ = 4 or from n + O(1) to n − n/(k − 1) + O(1) if ℓ > 4.

Thus,

co2(G(D′)) − co2(G(D)) ≥ O(1) +
n2

(k − 1)2

(

n2 −
(

n − 2n

k − 1

)2
)

> 0,

a contradiction. Thus, D contains no cycle of length at least 4. Next, towards contradiction,
suppose that D contains at least two cycles of length 3. Denote v1, v2, v3 and v4, v5, v6 those
two 3-cycles. Let D′ be the directed graph constructed from D by replacing those two 3-cycles
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with three 2-cycles v1, v2 and v3, v4 and v5, v6. The pairs of vertices x, y for which the codegree
changed by more than O(1) are among those pairs where x, y ∈ V1 ∪ . . . ∪ V6 and where x and
y were in different classes. It follows that

co2(G(D′)) − co2(G(D)) = O(1) +
n2

(k − 1)2
n2

(

3 + 3

(

1 − 2

k − 1

)2

− 6

(

1 − 1

k − 1

)2
)

> 0,

a contradiction. Thus, we can conclude that D contains at most one 3-cycle. Hence, D is
isomorphic to D∗

k. �

Depending on the parity of k, D∗
k either contains a 3-cycle or not. In the case k is odd, D∗

k

contains no 3-cycles and based on Lemma 5.6 it seems reasonable to conjecture that in this case
G(D∗

k) could be an asymptotical extremal hypergraph in the ℓ2-norm.

Question 5.7. Let k ≥ 7 odd and ℓ = (k − 1)/2. Is

σ(K3
k) = lim

n→∞
co2(G(D∗

k))
(

n
2

)

(n − 2)2
= 1 − 2

ℓ2
+

1

ℓ3
?

The situation is slightly different for odd k. It is better to consider an unbalanced version of
G(D∗

k). Denote G∗(D∗
k) the 3-graph with the largest codegree squared sum among the following

3-graphs G. Partition the vertex set of G into [n] = V1 ∪ . . . ∪ Vk−1, where the class sizes are
balanced as follow

• ||Vi| − |Vj || ≤ 1 for all i , j with i, j ≤ k − 4 and

• ||Vi| − |Vj || ≤ 1 for all i , j with k − 3 ≤ i, j ≤ k − 1.

Again, a triple is a non-edge in G∗(D∗
k) iff it is contained in some Vi or if it has two vertices in

Vi and one vertex in Vj where (i, j) is an arc of D∗
k.

Question 5.8. Let k ≥ 6 even. Is

σ(K3
k) = lim

n→∞
co2(G∗(D∗

k))
(

n
2

)

(n − 2)2
?

6 Proof of Theorem 1.7

In this section we prove Theorem 1.7, i.e., we determine the codegree squared extremal number
of F3,3. Flag algebras give us the following corresponding asymptotical result and also a weak
stability version.

Lemma 6.1. For all ε > 0 there exists δ > 0 and n0 such that for all n ≥ n0: if G is an
F3,3-free 3-uniform graph on n vertices with co2(G) ≥ (1 − δ) 5

8 n4/2, then the densities of all
3-graphs on 4, 5 and 6 vertices in G that are not contained in Bn are at most ε. Additionally,

σ(F3,3) =
5

8
.

This result implies the following stability theorem.

Theorem 6.2. For every ε > 0 there is δ > 0 and n0 such that if G is an F3,3-free 3-uniform

hypergraph on n ≥ n0 vertices with co2(G) ≥ (1 − δ) 5
8

n4

2 , then we can partition V (G) as A ∪ B
such that e(A) + e(B) ≤ εn3 and e(A, B) ≥ 1

8 n3 − εn3.

Proof. The proof is the same as the proof of Theorem 1.6, except instead of applying Lemma 5.3
we apply Lemma 6.1. �
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We now determine the exact extremal number by using the stability result, Theorem 6.2,
and a standard cleaning technique, see for example [26, 32, 34, 43]. To do so we will first prove
the statement under an additional universal minimum-degree-type assumption.

Theorem 6.3. There exists n0 such that for all n ≥ n0 the following holds. Let G be an
F3,3-free n-vertex 3-graph such that

q(x) :=
∑

y∈V,y,x

d(x, y)2 + 2
∑

{v,w}∈E(L(x))

d(v, w) ≥ 5

4
n3 − 6n2 =: d(n) (6)

for all x ∈ V (G). Then,

co2(G) ≤ co2(Bn) =

(
⌈

n
2

⌉

2

)

⌊n

2

⌋2

+

(
⌊

n
2

⌋

2

)

⌈n

2

⌉2

+
⌈n

2

⌉ ⌊n

2

⌋

(n − 2)2.

Furthermore, Bn is the unique such 3-graph G satisfying co2(G) = exco2(n, F3,3).

Proof. Let G be a 3-uniform F3,3-free hypergraph which has a codegree squared sum of at least
co2(G) ≥ co2(Bn) and satisfies (6). Choose ε = 10−10 and apply Theorem 6.2. We get a vertex
partition A ∪ B with e(A) + e(B) ≤ εn3 and ec(A, B) ≤ εn3. Among all such partitions choose
one which minimises e(A) + e(B). We can assume that |LB(x)| ≥ |LA(x)| for all x ∈ A and
|LA(x)| ≥ |LB(x)| for all x ∈ B, as otherwise we could switch a vertex from one class to the
other class and strictly decrease both e(A) + e(B) and ec(A, B), a contradiction. This is not
possible, because we chose A and B minimising e(A)+e(B). We start by making an observation
about the class sizes.

Claim 6.4. We have
∣

∣

∣|A| − n

2

∣

∣

∣ ≤ 2
√

εn and
∣

∣

∣|B| − n

2

∣

∣

∣ ≤ 2
√

εn.

Proof. Assume that |A| < n/2 − 2
√

εn. Then, we have

e(A, B) ≤
(|A|

2

)

|B| + |A|
(|B|

2

)

≤ 1

2
|A|(n − |A|)n

<
1

2

(n

2
− 2

√
εn
)(n

2
+ 2

√
εn
)

n <
1

8
n3 − εn3,

a contradiction. Thus, |A| ≥ n/2 − 2
√

εn. Similarly, we get |B| ≥ n/2 − 2
√

εn. �

Define junk sets JA, JB to be the sets of vertices which are not typical, i.e.,

JA :=
{

x ∈ A : |Lc
A,B(x)| ≥ √

εn2
}

∪
{

x ∈ A : |LA(x)| ≥ √
εn2
}

, and

JB :=
{

x ∈ B : |Lc
A,B(x)| ≥ √

εn2
}

∪
{

x ∈ B : |LB(x)| ≥ √
εn2
}

.

These junk sets need to be small.

Claim 6.5. We have |JA|, |JB | ≤ 5
√

εn.

Proof. Towards contradiction assume that |JA| > 5
√

εn. Then the number of vertices x ∈ JA

satisfying |Lc
A,B(x)| ≥ √

εn2 is at least 2
√

εn or the number of vertices x ∈ JA satisfying

|LA(x)| ≥ √
εn2 is at least 3

√
εn. If the first case holds, then we get ec(A, B) > εn3. In the

second case we have e(A) > εn3. Both are in contradiction with the choice of the partition
A ∪ B. Thus, |JA| ≤ 5

√
εn. The second statement of this claim, |JB | ≤ 5

√
εn, follows by a

similar argument. �
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Claim 6.6. A \ JA and B \ JB are independent sets.

Proof. If there is an edge a1a2a3 with a1, a2, a3 ∈ A \ JA, since all its vertices satisfy |Lc
B(ai)| ≤√

εn2, we can find a triangle in LB(a1) ∩ LB(a2) ∩ LB(a3), call its vertices b1, b2, b3. However,
now {b1, b2, b3, a1, a2, a3} spans an F3,3 in G, a contradiction. A similar proof gives that B \ JB

is an independent set. �

Claim 6.7. There is no edge a1a2a3 with a1 ∈ JA, a2, a3 ∈ A \ JA or with a1 ∈ JB, a2, a3 ∈
B \ JB.

Proof. Let a1a2a3 be an edge with a1 ∈ JA, a2, a3 ∈ A \ JA. We show that q(a1) < d(n), to get
a contradiction with (6). Let Mi, for i = 2, 3, be the set of non-edges in LB(ai) and LA,B(ai).
Set K = L(a1) − M2 − M3. Since |M2|, |M3| ≤ 2

√
εn2, we have |E(K)| ≥ |L(a1)| − 4

√
εn2. Let

∆ =

max
x∈A\{a1,a2,a3}

|NK(x) ∩ B|

n
,

be the maximum size of a neighbourhood in the graph K in B of a vertex in A, scaled by n. We
have 0 ≤ ∆ ≤ |B|/n ≤ 1/2+

√
ε. Let z ∈ A\{a1, a2, a3} such that |NK(z)∩B)| = ∆n. Observe

that NK(z) ∩ B is an independent set in K, otherwise if v, w ∈ NK(z) ∩ B with vw ∈ E(K),
then {v, w, z, a1, a2, a3} spans a F3,3 in G. Now,

∑

x∈V \{a1}
d(a1, x)2 =

∑

x∈V \{a1}
degL(a1)(x)2 ≤ 16

√
εn3 +

∑

x∈V (K)

degK(x)2, (7)

because for each edge removed from the linkgraph L(a1) the degree squared sum can go down
by at most 4n. Now, we bound the sum on the right hand side of (7) from above. For x ∈
A, degk(x) ≤ |A| + ∆n and for x ∈ N(z) ∩ B, degk(x) ≤ n − ∆n. Thus, we get

∑

x∈V \{a1}
d(a1, x)2 ≤ 16

√
εn3 + |A|(|A| + ∆n)2 + ∆n(n − ∆n)2 + (|B| − ∆n)n2

≤
(n

2
+ 2

√
εn
)(n

2
+ 2

√
εn + ∆n

)2

+ ∆n(n − ∆n)2 +
(n

2
+ 2

√
εn − ∆n

)

n2 + 16
√

εn3

≤ n3

(

1

2

(

1

2
+ ∆

)2

+ ∆ (1 − ∆)
2

+

(

1

2
− ∆

)

+ 25
√

ε

)

= n3

(

5

8
+

∆

2
− 3

2
∆2 + ∆3 + 25

√
ε

)

.

(8)

Furthermore, we can give an upper bound for the second summand in q(a1):

2
∑

{x,y}∈E(L(a1))

d(x, y) ≤ 8
√

εn3 + 2
∑

{x,y}∈E(K)

d(x, y), (9)

where we used that for each edge removed from G, the sum on the left hand side in (9) is
lowered by at most n. Now, we will give an upper bound for the right hand side of (9). For
edges xy ∈ E(K[A]) not incident to JA we have dG(x, y) ≤ |JA|+ |B| because by Claim 6.6 they
have no neighbour in A \ JA. Similarly, for edges xy ∈ E(K[B]) not incident to JB we have
dG(x, y) ≤ |JB |+ |A|. For all other edges xy ∈ E(K), we will use the trivial bound dG(x, y) ≤ n.
We have

2
∑

{x,y}∈E(L(a1))

d(x, y) ≤ 8
√

εn3 + 2
(

e(K[A, B])n + e(K[A])(|JA| + |B|) + |JA||A|n

+ e(K[B])(|JB | + |B|) + |JB ||B|n
)

. (10)
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By the choice of our partition we have |LA(x1)| ≤ |LB(x1)| and thus e(K[A]) ≤ e(K[B]) +
4

√
εn2. Therefore, by upper bounding the right hand side in (10) we get

2
∑

{x,y}∈E(L(a1))

d(x, y) ≤ 2
(

∆n2|A| + 2e(K[B])
(

7
√

εn +
n

2

)

+ 18
√

εn3
)

≤ 2n3

(

∆

2
+

e(G[B])

n2
+ 30

√
ε

)

≤ 2n3

(

∆

2
+ ∆

( |B|
n

− ∆

)

+
1

4

( |B|
n

− ∆

)2

+ 30
√

ε

)

≤ 2n3

(

∆

2
+ ∆

(

1

2
− ∆

)

+
1

4

(

1

2
− ∆

)2

+ 40
√

ε

)

≤ n3

(

−3

2
∆2 +

3

2
∆ +

1

8
+ 80

√
ε

)

, (11)

where we used that e(K[B]) ≤ ∆n(|B|−∆n)+ (|B|−∆n)2

4 , because K[B] contains an independent
set of size ∆n and is triangle-free. Now, we can combine (8) and (11) to upper bound q(a1).

q(a1) ≤ n3

(

5

8
+

∆

2
− 3

2
∆2 + ∆3 + 25

√
ε

)

+ n3

(

−3

2
∆2 +

3

2
∆ +

1

8
+ 80

√
ε

)

= n3

(

∆3 − 3∆2 + 2∆ +
3

4
+ 105

√
ε

)

≤
(

2

3
√

3
+

3

4
+ 105

√
ε

)

n3 <
5

4
n3 − 6n2,

contradicting (6). In the second-to-last inequality we used that the polynomial ∆3 − 3∆2 + 2∆
obtains its maximum in [0, 1] at ∆ = 1 − 1√

3
. �

Now, we can make use of Claim 6.7 to show that there is no edge inside A, respectively
inside B.

Claim 6.8. A and B are independent sets.

Proof. Let {a1, a2, a3} ⊂ A span an edge. Again, LB(a1)∩LB(a2)∩LB(a3) is triangle-free. Thus,
|LB(a1) ∩ LB(a2) ∩ LB(a3)| ≤ |B|2/4. By the pigeon-hole principle, we may assume without
loss of generality that |LB(a1)| ≤ 5|B|2/12. Furthermore, by Claims 6.6 and 6.7, |LA(a1)| ≤
|JA||A| ≤ 5

√
εn2. Again, our strategy will be to give an upper bound on q(a1). Let L be the

graph obtained from L(a1) by removing all edges inside A.

∑

x∈V \{a1}
d(a1, x)2 =

∑

x∈V \{a1}
degL(a1)(x)2 ≤ 20

√
εn3 +

∑

x∈V (L)

degL(x)2

≤ 20
√

εn3 + |B|n2 + |A||B|2 ≤ n3

(

5

8
+ 30

√
ε

)

. (12)

Furthermore,

2
∑

{x,y}∈E(L(a1))

d(x, y) ≤ 10
√

εn3 + 2
∑

xy∈E(L)

d(x, y)

≤ 2

(

5

12
|B|2 (|A| + |JB |) + 5

√
εn3 + |A||B|n

)

≤ 2n3

(

5

96
+ 20

√
ε +

1

4

)

= n3

(

29

48
+ 40

√
ε

)

. (13)
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Thus, by combining (12) and (13), we can give an upper bound on q(a1),

q(a1) ≤
(

5

8
+ 30

√
ε

)

n3 + n3

(

29

48
+ 40

√
ε

)

= n3

(

59

48
+ 70

√
ε

)

<
5

4
n3 − 6n2,

contradicting (6). Therefore A is an independent set. By a similar argument B is also an
independent set.

�

By Claim 6.8, G is 2-colourable. Since among all 2-colourable 3-graphs Bn has the largest
codegree squared sum, we conclude co2(G) ≤ co2(Bn). This completes the proof of Theorem 6.3.

�

We now complete the proof of Theorem 6.3 by showing that imposing the additional as-
sumption (6) is not more restrictive.

Proof of Theorem 1.7. Let G be an n-vertex 3-uniform F3,3-free hypergraph which has a code-
gree squared sum of at least co2(G) ≥ co2(Bn). Set d(n) = 5/4n3 − 6n2 and note that
co2(Bn) − co2(Bn−1) > d(n) + 1. We claim that we can assume that every vertex x ∈ V (G) sat-
isfies (6). Otherwise, we can remove a vertex x with q(x) < d(n) to get Gn−1 with co2(Gn−1) ≥
co2(Bn) − d(n) ≥ co2(Bn−1) + 1. By repeating this process as long as possible, we obtain a se-
quence of hypergraphs Gm on m vertices with co2(Gm) ≥ co2(Bm)+n−m, where Gm is the hy-
pergraph obtained from Gm+1 by deleting a vertex x with q(x) ≤ d(m+1). We cannot continue
until we reach a hypergraph on n0 = n1/4 vertices, as then co2(Gn0) > n − n0 >

(

n0

2

)

(n0 − 2)2

which is impossible. Therefore, the process stops at some n′ where n ≥ n′ ≥ n0 and we
obtain the corresponding hypergraph Gn′ satisfying q(x) ≥ d(n′) for all x ∈ V (Gn′) and
co2(Gn′) ≥ co2(Bn′) (with strict inequality if n > n′). Hence, we can assume that G satis-
fies q(x) ≥ d(n′) for all x ∈ V (Gn′). Applying Theorem 6.3 finishes the proof. �

Acknowledgements

We thank an anonymous referee for many useful comments and suggestions, in particular for
pointing out a shorter proof of Theorem 1.5.

References

[1] N. Alon, H. Naves, and B. Sudakov. On the maximum quartet distance between phyloge-
netic trees. SIAM J. Discrete Math., 30(2):718–735, 2016. doi:10.1137/15M1041754.

[2] R. Baber. Turán densities of hypercubes. arXiv preprint, 2012. arXiv:1201.3587.

[3] R. Baber and J. Talbot. Hypergraphs do jump. Combin. Probab. Comput., 20(2):161–171,
2011. doi:10.1017/S0963548310000222.
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