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Abstract

A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring
of the complete graph Kn is asymptotically minimised by the random colouring. Burr and
Rosta, extending a famous conjecture of Erdős, conjectured that every graph is common. The
conjectures of Erdős and of Burr and Rosta were disproved by Thomason and by Sidorenko,
respectively, in the late 1980s. Collecting new examples of common graphs had not seen much
progress since then, although very recently a few more graphs were verified to be common by
the flag algebra method or the recent progress on Sidorenko’s conjecture.

Our contribution here is to provide several new classes of tripartite common graphs. The first
example is the class of so-called triangle-trees, which generalises two theorems by Sidorenko and
answers a question of Jagger, Št’ov́ıček, and Thomason from 1996. We also prove that, somewhat
surprisingly, given any tree T , there exists a triangle-tree such that the graph obtained by adding
T as a pendant tree is still common. Furthermore, we show that adding arbitrarily many apex
vertices to any connected bipartite graph on at most 5 vertices yields a common graph.

1 Introduction

Ramsey’s theorem states that for a fixed graphH, every 2-edge-colouring ofKn contains a monochro-
matic copy of H whenever n is large enough. Perhaps one of the most natural questions extending
Ramsey’s theorem is how many monochromatic copies of H can be guaranteed to exist. To for-
malise this question, let the Ramsey multiplicity M(H;n) be the minimum number of labelled
monochromatic copies of H over all 2-edge-colourings of Kn. We define the Ramsey multiplicity

constant C(H) as

C(H) := lim
n→∞

M(H,n)

n(n− 1) · · · (n− v + 1)
= lim

n→∞
M(H,n) · n−v,

where v is the number of vertices in H. A random 2-edge-coloring of Kn shows C(H) ≤ 21−e(H).
We say a graph is common if C(H) = 21−e(H). For example, Goodman’s formula [13] implies that
a triangle is common, i.e., C(K3) = 1/4.
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Figure 1: Examples of a triangle-vertex-tree, triangle-edge-tree, and triangle-tree.

In 1962, Erdős [8] conjectured that every complete graph Kt is common. This was later gener-
alised by Burr and Rosta [4], who conjectured that in fact every graph H is common. In the late
1980s, both conjectures were disproved. Sidorenko [25] proved that a triangle plus a pendant edge
is an uncommon graph, and Thomason [30] proved that Kt is uncommon for t ≥ 4.

Since then more examples of uncommon graphs have been found. For instance, Jagger, Št’ov́ıček
and Thomason [16] proved that every graph containingK4 as a subgraph is uncommon, and Fox [11]
proved that C(H) can be exponentially smaller than the commonality bound 21−e(H).

Despite many results on the topic, the full classification of common graphs is still a wide open
problem. All known examples of bipartite common graphs connect with progress on Sidorenko’s
conjecture [26], since the conjecture implies that every bipartite graph is common. The converse is
also an open question — does every bipartite common graph satisfies Sidorenko’s conjecture? Very
recently it was shown [17] that a bipartite graph satisfies Sidorenko’s conjecture if and only if it is
common in any multi-colour sense. There has been some progress on Sidorenko’s conjecture (see,
for example, [7] and references therein) but the full conjecture remains open.

There are not many non-bipartite graphs known to be common. For example, one of the
earliest applications of the flag algebra method established that the 5-wheel is common [15]. In
case of tripartite graphs, a few more examples have been collected, e.g., odd cycles [25] and even
wheels [16, 27].

Two examples of general classes of non-bipartite common graphs are triangle-vertex-trees and
triangle-edge-trees, obtained by Sidorenko [27] and reproved by Jagger, Št’ov́ıček, and Thoma-
son [16]. These can be described recursively. A single triangle is a triangle-tree and one may obtain
a triangle-tree by identifying a single vertex or an edge of a new triangle with a vertex or an edge,
respectively, in a triangle-tree. A triangle-tree is a triangle-vertex-tree (resp. triangle-edge-tree) if
it is obtained by identifying only vertices (resp. edges). See Figure 1 for examples.

Jagger, Št’ov́ıček and Thomason [16] asked whether tree-like structures other than triangle-
vertex (or triangle-edge) trees formed from triangles are common. In particular, they asked if the
triangle-tree formed by three triangles, as described in Figure 2, is common. We ultimately answer
these questions.

Figure 2: A triangle-tree suggested by Jagger, Št’ov́ıček and Thomason [16].

Theorem 1.1. Every triangle-tree is common.
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Non-bipartite graphs are more likely to be uncommon than bipartite graphs in many ways.
Firstly, no examples of bipartite uncommon graphs, which would disprove Sidorenko’s conjecture,
are known. Additionally, Fox [11, Lemma 2.1] observed that any graph with chromatic number at
least four and small enough average degree is always uncommon. And most importantly, there is
a well-known strategy [16, Theorem 4] to produce non-bipartite uncommon graphs. That is, by
adding a (possibly large) pendant tree, e.g., a long path, to a non-bipartite graph. Sidorenko’s
counterexample, the triangle plus a pendant edge, for the Burr–Rosta conjecture can be seen as
one of the earliest examples of this kind.

Our second result states that for some tripartite graphs this strategy of adding a pendant tree
fails when adding a small pendant tree. In other words, there are tripartite graphs that are ‘robustly
common’ in the sense that adding any tree of bounded size does not break their commonality. For
a tree T and a graph H, let T ∗vu H be the graph obtained by identifying u ∈ V (T ) and v ∈ V (H).

Theorem 1.2. Let t be a positive integer. If H is a triangle-tree with 2e(H)− 3v(H) + 3 ≥ t then
T ∗vu H is common for every choice of tree T with e(T ) ≤ t, u ∈ V (T ), and v ∈ V (H).

Julia Wolf, during her plenary talk at the Canadian Discrete and Algorithmic Mathematics
Conference in 2017 on the results from [24], prompted to complete the list of connected common
graphs on five vertices; Figure 3 depicts the four graphs that had an unknown status at the time
of her talk.

H1 H2 H3 H4

Figure 3: Wolf’s list of 5-vertex connected graphs that were not known to be (un)common in 2017.

Theorem 1.2 proves that H1 and H2 are common. The graph H3 was proven to be common
in an RSI project at MIT [21] using flag algebras. Another flag algebra application shows that H4

is common; in the Appendix, we give a proof that both H3 and H4 are common. This completely
resolves Wolf’s question.

Analogous applications of flag algebras allow us to show that also various 4-chromatic graphs
are common. Specifically, we prove that the 7-wheel as well as all the connected 7-vertex K4-free
non-3-colourable graphs are common; see Figure 4 for their complete list. Note that the only
previously known examples of non-3-colorable graphs were the 5-wheel or graphs constructed from
gluing copies of the 5-wheel. We suspect that all the odd wheels except K4 are common, although
the plain flag algebra approach for the 9-wheel is already beyond our computational capacity.

Figure 4: The 7-wheel and all connected non-3-colourable common graphs on 7 vertices.
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Another interesting class of tripartite common graphs was obtained by Sidorenko [27]. If a
connected bipartite graph H satisfies Sidorenko’s conjecture, then adding an apex vertex v, i.e.,
adding all the edges between the new vertex v and each vertex of H, gives a tripartite common
graph. We conjecture that adding more apex vertices still produces common graphs. For a graph
H and a positive integer a, let H+a be the graph obtained from H by adding a additional vertices,
each new vertex fully connected to H and not connected to any other new vertex.

Conjecture 1.3. If a connected bipartite graph H satisfies Sidorenko’s conjecture, then for every

positive integer a the graph H+a is common. In particular, every complete tripartite graph Kr,s,t is

common.

We verify this conjecture for all connected bipartite graphs H on at most 5 vertices, so, in
particular, the complete tripartite graphs K2,2,a and K2,3,a are common for every a ≥ 1.

Theorem 1.4. For every connected bipartite graph H on at most 5 vertices and positive integer a
the graph H+a is common.

The proof of Theorem 1.4 relies on the computer-assisted flag algebra method, but we also give
a computer-free proof for some cases. In particular, we prove without using computers that the
octahedron graph, i.e., C+2

4 = K2,2,2, is common, and generalise it to the so-called beachball graphs
C+2
2k for every k ≥ 2 (see Theorem 4.3).

2 Preliminaries

A graph homomorphism from a graph H to a graph G is a vertex map that preserves adjacency.
Let Hom(H,G) denote the set of all homomorphisms from H to G and let tH(G) be the probability

that a uniform random mapping from H to G is a homomorphism. i.e., tH(G) = |Hom(H,G)|
v(G)v(H) .

The graph homomorphism density tH(G) naturally extends to weighted graphs and their limit
object graphons, i.e., measurable symmetric functions W : [0, 1]2 → [0, 1]. We define

tH(W ) := E





∏

uv∈E(H)

W (xu, xv)



 ,

where E denotes the integration with respect to the Lebesgue measure on [0, 1]v(H). One may see
that the original definition of tH(G) corresponds to the case W = WG, where WG is the block
0-1 graphon constructed by the adjacency matrix of G. As nonnegativity of W is unnecessary

for the definition, we shall also use tH(U) := E

(

∏

uv∈E(H) U(xu, xv)
)

for signed graphons U , i.e.,

measurable symmetric functions U : [0, 1]2 → [−1, 1].
Given a graphon W , a W -random graph of order n is a graph obtained from W by sampling n

points from [0, 1] independently and uniformly at random, associating each point with one of the n
vertices, and joining two vertices x, y ∈ [0, 1] by an edge with probability W (x, y). It can be proven
(see, for example, [19]) that if Gn is a W -random graph on n vertices, then for every graph H the
homomorphism density tH(Gn) converges to tH(W ) with probability one.

The number of monochromatic copies of a graph H in any 2-edge-colouring of a complete graph
can be viewed as the number of copies of H in the graph formed by edges in the first color summed
up with the number of copies of H in its complement. Similarly, the density of monochromatic
(labelled) copies of H in a 2-edge-colouring can be rewritten as

mH(W ) := tH(W ) + tH(1−W ).
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Note that mH(W ) = mH(1−W ) and C(H) = minW mH(W ), where the minimum is taken over all
graphons W . Indeed, the minimum exists by the compactness of the space of graphon under the
cut norms and the latter follows from considering the W -random graphs explained in the previous
paragraph. Thus, a graph H is common if and only if mH(W ) ≥ 21−e(H) for each graphon W .

Let E(H) be the family of subgraphs of H with even number of edges and let E+(H) be the
collection of nonempty graphs in E(H). Then, with U := 2W − 1,

mH(W ) = tH

(

1 + U

2

)

+ tH

(

1− U

2

)

= 21−e(H)
∑

F∈E(H)

tF (U) = 21−e(H)



1 +
∑

F∈E+(H)

tF (U)



 . (1)

Hence, H is common if and only if
∑

F∈E+(H) tF (U) ≥ 0 for every signed graphon U .
An immediate consequence of this expansion is a well-known formula by Goodman [13].

Lemma 2.1 (Goodman’s formula). For every graphon W , mK3(W ) = 3
2mK1,2(W )− 1

2 .

Proof. By (1), mK3(W ) = 3
4 tK1,2(U) + 1

4 and mK1,2(W ) = 1
2 tK1,2(U) + 1

2 .

The following is an easy consequence of Hölder’s inequality, which will be repeatedly used.

Lemma 2.2. Let H,F , and J be graphs, W a graphon, and k and ℓ positive integers with ℓ ≥ k.
If

tH(W ) ≥ tJ(W )ℓ

tF (W )k−1
and tH(1−W ) ≥ tJ(1−W )ℓ

tF (1−W )k−1
,

then

mH(W ) ≥ 2k−ℓ mJ(W )ℓ

mF (W )k−1
.

Proof. We use Hölder’s inequality of the form

k
∏

i=1

∫

fi(x)
kdx ≥

(

∫ k
∏

i=1

fi(x)dx

)k

for nonnegative functions fi. Let the integration be the sum of two terms. Then

k
∏

i=1

(aki + bki ) ≥





k
∏

i=1

ai +

k
∏

j=1

bj





k

(2)

for nonnegative numbers ai and bj , it follows that

mH(W ) = tH(W ) + tH(1−W ) ≥ tJ(W )ℓ

tF (W )k−1
+

tJ(1−W )ℓ

tF (1−W )k−1

=

(

tJ(W )ℓ

tF (W )k−1
+

tJ(1−W )ℓ

tF (1−W )k−1

)

(

tF (W ) + tF (1−W )
)k−1

mF (W )−k+1

≥(2)

(

tJ(W )
ℓ
k + tJ(1−W )

ℓ
k

)k
mF (W )−k+1

≥ 2k−ℓ mJ(W )ℓ

mF (W )k−1
.
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Indeed, the first inequality is Hölder’s inequality (2) and the second follows from convexity of the
function f(z) = zℓ/k, as ℓ ≥ k.

For the proof of Theorem 1.2, we take an information-theoretic approach. We state the following
fact about entropy without proof and refer the reader to [1] for more detailed information on entropy
and conditional entropy.

Lemma 2.3. Let X be a random variable taking values in a set S and let H(X) be the entropy

of X. Then H(X) ≤ log |S|.

3 Triangle-trees

To describe triangle-trees, it is convenient to use the notion of tree decompositions, introduced by
Halin [14] and developed by Robertson and Seymour [23].

Definition 3.1. A tree-decomposition of a graph H is a pair (F , T ) consisting of a family F of
vertex-subsets of H and a tree T with V (T ) = F such that

1.
⋃

X∈F X = V (H),

2. for each e ∈ E(H), there exists a set X ∈ F such that X contains e, and

3. for X,Y, Z ∈ F , X ∩ Y ⊆ Z whenever Z lies on the path from X to Y in T .

Following [6, 18], we say that H is a J-tree if and only if there exists a tree decomposition
(F , T ) such that the subgraph H[X] of H induced on X ∈ F is isomorphic to J and moreover,
there is an isomorphism between H[X] and H[Y ] that fixes H[X ∩Y ] whenever XY ∈ E(T ). Such
a tree-decomposition (F , T ) of H is called a J-decomposition. When J = K3, we simply say that
H is a triangle-tree with a triangle-decomposition (F , T ). It is straightforward to see that this
definition is equivalent to the recursive one given in the introduction.

For a triangle-tree H with a triangle-decomposition (F , T ), one may easily relate |F| to v(H)
and e(H). Let ϕ(H) := e(H)− v(H) + 1 and κ(H) := 2e(H)− 3v(H) + 3.

Lemma 3.2. If H is a triangle-tree with a triangle-decomposition (F , T ), then |F| = ϕ(H) and

the number of edges XY ∈ E(T ) such that the subgraph H[X ∩ Y ] is a single edge equals to κ(H).
In particular, κ(H) ≤ ϕ(H)− 1 for every triangle-tree H.

Proof. Let k := k(F) be the number of edges XY ∈ E(T ) such that the subgraph H[X ∩ Y ] is an
edge. For an edge e ∈ E(H), let te be the number of contributions of e in the sum

∑

X∈F e(H[X]).
That is,

3|F| =
∑

X∈F
e(H[X]) =

∑

e∈E(H)

te.

On the other hand, te − 1 is equal to the number of edges XY ∈ E(T ) such that H[X ∩ Y ] is
the single-edge {e}, which proves e(H) = 3|F| − k. Analogously, v(H) = 2|F| + 1 − k and hence,
|F| = e(H) − v(H) − 1 = ϕ(H) and k(F) = 2e(H) − 3v(H) + 3 = κ(H). Finally, κ(H) = k ≤
e(T ) = |F| − 1 = ϕ(H)− 1.

The key ingredient in the proof of Theorem 1.1 is the following lemma.
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Lemma 3.3 ( [18], Theorem 2.7). If H is a J-tree with a J-decomposition (F , T ) and W is a

graphon with tJ(W ) > 0, then

tH(W ) ≥ tJ(W )|F|
∏

XY ∈E(T ) tH[X∩Y ](W )
. (3)

Lemma 3.3 is basically just simplifying multiple applications of the Cauchy–Schwarz inequality
or Jensen’s inequality. For example, K1,1,t is a triangle-tree, since there is a triangle decomposition
(F , T ) that consists of |F| = t and the star T on F with t− 1 leaves, where each vertex subset in
F induces a triangle; see Figure 5. Thus, Lemma 3.3 gives tK1,1,t(W ) ≥ tK3(W )t/tK2(G)t−1, which
also follows from a standard application of Jensen’s inequality.

x y

v1 v2 v3 v4

x, y, v1

x, y, v2 x, y, v3 x, y, v4

Figure 5: K1,1,4 and its tree decomposition (F , T ).

In order to prove Theorem 1.1, we are going to apply Lemma 3.3 for J = K3.

Corollary 3.4. If H is a triangle-tree and W is a nonzero graphon, then

tH(W ) ≥ tK3(W )ϕ(H)

tK2(W )κ(H)
. (4)

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let H be a triangle-tree. If W = 1 or W = 0 almost everywhere, then
mH(W ) = 1. Otherwise, two applications of (4) yields

tH(W ) ≥ tK3(W )ϕ(H)

tK2(W )κ(H)
and tH(1−W ) ≥ tK3(1−W )ϕ(H)

tK2(1−W )κ(H)
.

Therefore, by Lemma 2.2 with J = K3, H = K2, ℓ = ϕ(H) and k = κ(H) + 1, we have

mH(W ) ≥ 2κ(H)+1−ϕ(H) · mK3(W )ϕ(H)

mK2(W )κ(H)
= 2κ(H)+1−ϕ(H) ·mK3(W )ϕ(H) ≥ 2κ(H)+1−3ϕ(H) = 21−e(H).

Indeed, the last inequality uses the commonality of a triangle, i.e., mK3(W ) ≥ 1/4.

To prove Theorem 1.2, we need a slightly more careful analysis than just a simple application
of Lemma 3.3. The main tool is [18, Theorem 2.6], which will be stated shortly. Let F be a family
of subsets of [k] := {1, 2, . . . , k}. A Markov tree on [k] is a pair (F , T ) with T a tree on vertex set
F that satisfies

1.
⋃

F∈F F = [k] and

2. for A,B,C ∈ F , A ∩B ⊆ C whenever C lies on the path from A to B in T .
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This is an abstract tree-like structure without the graph structure considered in defining tree-
decompositions. In particular, a tree-decomposition of H is a Markov tree on V (H). For more
detailed explanation, we refer to [18]. Let V be a finite set and for each F ∈ F let XF = (Xi;F )i∈F
be a random vector taking values in V F . The following theorem states that there exist random
variables Y1, Y2, . . . , Yk such that, for each F ∈ F , the two random vectors (Yi)i∈F and XF are
identically distributed over V F and, moreover, the maximum entropy under such constraints can
always be attained.

Lemma 3.5 ( [18], Theorem 2.6). Let (F , T ) be a Markov tree on [k]. Let V be a finite set and

for each F ∈ F let XF = (Xi;F )i∈F be a random vector taking values in V F . If (Xi;A)i∈A∩B and

(Xj;B)j∈A∩B are identically distributed whenever AB ∈ E(T ), then there exists Y = (Y1, . . . , Yk)
with entropy

H(Y) =
∑

F∈F
H(XF )−

∑

AB∈E(T )

H((Xi;A)i∈A∩B) (5)

such that (Yi)i∈F and XF are identically distributed over V F for all F ∈ F .

An entropy analysis using this lemma give the following corollary. Recall that for a tree T and
a graph H, we denote by T ∗vu H the graph obtained by identifying u ∈ V (T ) and v ∈ V (H).

Lemma 3.6. If H is a triangle-tree and T a tree with at most κ(H) edges, then

tT∗vuH(W ) ≥ tK3(W )ϕ(H)

tK2(W )κ(H)−e(T )
(6)

for every u ∈ V (T ) and v ∈ V (H).

Using this lemma, the proof of Theorem 1.2 is almost identical to that of Theorem 1.1.

Proof of Theorem 1.2. Let H be a triangle-tree such that κ(H) ≥ t, T a tree with at most t edges,
and W a nonzero graphon. By Lemma 3.2, e(H) = 3ϕ(H)− κ(H) and thus,

e(T ∗vu H) = e(T ) + e(H) = 3ϕ(H)− κ(H) + e(T ).

Combining (6) and Lemma 2.2 for J = K3, H = K2, ℓ = ϕ(H) and k = κ(H)− e(T ) + 1 yields

mT∗vuH(W ) ≥ 2κ(H)+1−e(T )−ϕ(H) ·mK3(W )ϕ(H).

Note that in order to apply Lemma 2.2, we required κ(H) ≥ e(T ). As mK3(W ) ≥ 1/4, we have

mT∗vuH(W ) ≥ 2κ(H)+1−e(T )−3ϕ(H) = 21−e(H)−e(T ) = 21−e(T∗vuH).

Therefore, T ∗vu H is common.

It remains to prove Lemma 3.6.

Proof of Lemma 3.6. Let (F , T ) be a triangle-decomposition of H and k := κ(H). Recall that k is
the number of edges XY ∈ E(T ) such that the subgraph H[X ∩ Y ] ∼= K2. The first step is to find
a natural tree-decomposition of T ∗vu H that extends (F , T ).

Let T be rooted at a leaf x ∈ V (T ) and suppose that we orient each edge of T away from the
root. Let S be a tree on E(T ), where the oriented edges (u1, v1) and (u2, v2) are adjacent if and only
if v1 = u2. One may easily check that (E(T ),S) is a tree decomposition of T . Now pick an edge
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uu′ ∈ E(T ), which is a vertex of S, and connect it to a vertex bag X ∈ F that contains v ∈ V (T )
while identifying u and v. This new tree T ′, obtained by adding an edge between two vertices uu′

and X, gives a tree-decomposition (F ′, T ′) of T ∗vu H, where F ′ := V (T ′) = V (T ) ∪ V (S).
Since the homomorphic density in a sequence of W -random graphs of increasing sizes converges

to the homomorphic density in W , as explained in the preliminaries, it is enough to prove the
inequality (6) for an n-vertex graph G instead of a graphon W . For brevity, we identify the vertex
set V (T ∗vu H) with the set [t] and let 1 ∈ [t] be the vertex shared by H and T . For each F ∈ F ′

with |F | = 3, let XF = (Xi;F )i∈F be a uniform random triangle in G, labelled by vertices in F . If
|F | = 2 then let XF = (Xi;F )i∈F be a random edge labelled by vertices in F sampled in such a way
that P[XF = (v1, v2)] is proportional to the number of triangles that contains the edge v1v2 ∈ E(G).
We call this possibly non-uniform edge distribution triangle-projected.

We claim that (Xi;A)i∈A∩B and (Xi;B)i∈A∩B are identically distributed. If |A ∩ B| = 2, then
both distributions are triangle-projected. If |A ∩ B| = 1, i.e., A ∩ B = x ∈ V (T ∗vu H), then both
distributions are proportional to the weighted degree sum

∑

x⊂e pe where pe is the probability of an
edge being sampled by the triangle-projected distribution. Therefore, by Lemma 3.5, there exists
Y = (Y1, . . . , Yt) with entropy

H(Y) =
∑

F∈F ′

H(XF )−
∑

AB∈E(T ′)

H((Xi;A)i∈A∩B)

=
∑

F∈F
H(XF ) +

∑

F∈E(T )

H(XF )−
∑

AB∈E(T )

H((Xi;A)i∈A∩B)−
∑

AB∈E(S)
H((Xi;A)i∈A∩B)−H(Y1).

Recall that the vertex 1 is the vertex shared by T and H, so Y1 means the random image of the
vertex with respect to Y. For F ∈ F , H(XF ) = log |Hom(K3, G)|, since XF is a uniform random
triangle. For F ∈ E(T ), H(XF ) is the entropy he of the triangle-projected edge distribution. There
are exactly k cases such that |A∩B| = 2 and AB ∈ E(T ), and for such cases, H((Xi;A)i∈A∩B) = he.
Thus,

H(Y) = |F| log |Hom(K3, G)|+
∑

F∈E(T )

H(XF )−
∑

AB∈E(T ′)

H((Xi;A)i∈A∩B)

≥ |F| log |Hom(K3, G)| − (k − e(T ))he − (e(T ′)− k) log |V (G)|
≥ |F| log |Hom(K3, G)| − (k − e(T )) log |Hom(K2, G)| − (e(T ′)− k) log n

Indeed, the first inequality follows from the bound H((Xi;A)i∈A∩B) ≤ log n by Lemma 2.3 when
|A∩B| = 1, and the second follows from the bound he ≤ log |Hom(T ∗vuH,G)| by the same lemma.
Again by Lemma 2.3, H(Y) ≤ log |Hom(H,G)|. Thus,

tT∗vuH(G) =
|Hom(T ∗vu H,G)|

nv(H)+v(T )−1
≥ |Hom(K3, G)||F|

|Hom(K2, G)|k−e(T )ne(T ′)−k
· 1

nv(H)+v(T )−1

=
tK3(G)|F|

tK2(G)k−e(T )ne(T ′)+k−2e(T )
· n3|F|

nv(H)+v(T )−1
=

tK3(G)|F|

tK2(G)k−e(T )
,

where the last equality follows from the identity e(T ′) = e(T ) + e(S) + 1 = |F| + e(T ) − 1 and
Lemma 3.2.

4 Beachball graphs and bipartite graphs with apex vertices

The proof of Theorem 1.4 combines our novel ideas and the flag algebra method developed by
Razborov [22]. To demonstrate how the new method works without using flag algebras, we firstly
prove that K2,2,2 is common.
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Theorem 4.1. The octahedron K2,2,2 is common.

By a standard application of the Cauchy–Schwarz inequality (or Lemma 3.3), it is easy to see
that tK2,2,2(W ) ≥ tK1,2,2(W )2/tC4(W ). Then by Lemma 2.2, we immediately obtain

mK2,2,2(W ) ≥
mK1,2,2(W )2

mC4(W )
. (7)

By Sidorenko’s theorem [27], the 4-wheel K1,2,2 is common; however, mC4(W ) = 1/8 if and only
if W = 1/2 almost everywhere, i.e., W is quasirandom, the naive approach using commonality
ofK1,2,2 while boundingmC4 from above does not work. We circumvent this difficulty by comparing
mK1,2,2(W ) and mC4(W ). Another application of the Cauchy–Schwarz inequality, together with
Lemma 2.2, gives

mK1,2,2(W ) ≥
mK1,1,2(W )2

mK1,2(W )
.

For brevity, denote D := K1,1,2, which is the diamond graph obtained by adding a diagonal edge
to the 4-cycle. The following lemma, partly motivated by [15], enables us to compare mD(W ) and
mC4(W ).

Lemma 4.2. Let 0 ≤ c ≤ (3−
√
5)/4. For any graphon W , the following inequality holds:

mD(W )− 1/16 ≥ c(mC4(W )− 1/8).

Proof. Using (1) with U := 2W − 1 and H = D, we obtain

mD(W )− 1

16
=

1

16

∑

F∈E+(D)

tF (U) =
1

16

(

2t2·K2(U) + 8tK1,2(U) + 4tK+
3
(U) + tC4(U)

)

,

where K+
3 denotes the triangle plus a pendant edge. The same argument for mC4(W ) yields

mC4(W )− 1

8
=

1

8

(

2t2·K2(U) + 4tK1,2(U) + tC4(U)
)

,

and thus,

mD(W )− 1

16
− c(mC4(W )− 1

8
)

=
1

16

(

(2− 4c)t2·K2(U) + (8− 8c)tK1,2(U) + 4tK+
3
(U) + (1− 2c)tC4(U)

)

. (8)

Recall that U = 2W−1 is not necessarily nonnegative, but tK1,2(U), t2·K2(U), and tC4(U) are always
nonnegative, since tK1,2(U) ≥ tK2(U)2 = t2·K2(U) and tC4(U) ≥ tK1,2(U)2. The key inequality we
shall prove is

|tK+
3
(U)| ≤

√

tK1,2(U)tC4(U). (9)

Suppose that this is true. Then (8) gives the lower bound

(2− 4c)t2·K2(U) + (8− 8c)tK1,2(U)− 4
√

tK1,2(U)tC4(U) + (1− 2c)tC4(U)

10



for 16
(

mD(W )− 1/16− c(mC4(W )− 1/8)
)

. This is nonnegative whenever (8− 8c)(1− 2c) ≥ 4 and

c ≤ 1/2. Taking 0 ≤ c ≤ 3−
√
5

4 suffices for this purpose.
It remains to prove (9). Denote ν(x, z) := Ey U(x, y)U(y, z) and µ(z) := Ew U(z, w). Then

|tK+
3
(U)| =

∣

∣E
[

U(x, y)U(y, z)U(z, x)U(z, w)
]∣

∣ =
∣

∣E
[

ν(x, z)U(z, x)µ(z)
]∣

∣

≤ (E[ν(x, z)2])1/2(E[U(z, x)2µ(z)2])1/2

≤ (E[ν(x, z)2])1/2(E[µ(z)2])1/2 =
√

tK1,2(U)tC4(U).

Proof of Theorem 4.1. Recall that repeated applications of Lemma 2.2 yield

mK2,2,2(W ) ≥ mD(W )4

mK1,2(W )2mC4(W )
.

By Goodman’s formula (Lemma 2.1), mK1,2(W ) = 2
3mK3(W ) + 1

3 . Together with the inequality
mD(W ) ≥ mK3(W )2 that follows from Lemma 2.2 and the inequality tD(W ) ≥ tK3(W )2/tK2(W ),
we obtain

mK1,2(W ) =
2

3
mK3(W ) +

1

3
≤ 2

3

√

mD(W ) +
1

3
. (10)

Therefore, by using Lemma 4.2,

mK2,2,2(W ) ≥ mD(W )4

mK1,2(W )2mC4(W )
≥ c ·mD(W )4
(

2
3

√

mD(W ) + 1
3

)2
(

mD(W )− 1
16 + c

8

)

.

This lower bound is a rational function hc of x :=
√

mD(W ), which simplifies to

hc(x) :=
144cx8

(2x+ 1)2(16x2 − 1 + 2c)
.

We are looking at the range x ≥ 1/4, as mD(W ) ≥ 1/16 by commonality of D. Taking, for

example, c = 1/7 < 3−
√
5

4 makes the function hc monotone increasing on x ≥ 1/4, and thus,
hc(z) ≥ fc(1/4) = 2−11. This proves that K2,2,2 is common.

B4 = K2,2,2 B6 D2 D4

Figure 6: Graphs B4, B6, D2, and D4.

Let the k-beachball graph Bk be the graph obtained by gluing two copies of k-wheels along the
k-cycle. In particular, K2,2,2 is the 4-beachball, since it can be obtained by gluing two copies of
4-wheels along a 4-cycle. See Figure 6, where the 4-cycle is marked bold. As a straightforward
generalisation of Theorem 4.1, we also prove the following theorem.

Theorem 4.3. For every k ≥ 2, the 2k-beachball B2k is common.
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Proof. The proof is essentially the same as Theorem 4.1 despite a slightly general setting. Let Dk

be the graph obtained by adding two apex vertices to a k-edge path, i.e., it consists of k copies of
diamonds glued along K1,2’s centred at the vertices of degree three in a path-like way, as described
in Figure 6. In particular, D1 = D and D2 is the 4-wheel. Lemma 3.3 then gives

tDk
(W ) ≥ tD(W )k

tK1,2(W )k−1

and thus, mDk
(W ) ≥ mD(W )k/mK1,2(W )k−1 by Lemma 2.2.

The 2k-beachball is then obtained by gluing two copies of Dk along the 4-cycle that contains two
vertices of degree three. The standard application of the Cauchy–Schwarz inequality (or Lemma 3.3)
gives tB2k

(W ) ≥ tDk
(W )2/tC4(W ), and thus,

mB2k
(W ) ≥ mDk

(W )2

mC4(W )
≥ mD(W )2k

mK1,2(W )2k−2mC4(W )

by Lemma 2.2. Then again by (10) and Lemma 4.2,

mB2k
(W ) ≥ c ·mD(W )2k

(

2
3

√

mD(W ) + 1
3

)2k−2
(

mD(W )− 1
16 + c

8

)

.

It remains to minimise rational function

hk,c(x) :=
16 · 32k−2cx4k

(2x+ 1)2k−2(16x2 − 1 + 2c)

of x :=
√

mD(W ) subject to x ≥ 1/4. Taking c = 1/7, hk,1/7 is a positive constant times the
function gk, where the derivative

g′k(x) = (2x+ 1)1−2k(112x2 − 5)−2x4k−1(112kx3 + (112k − 56)x2 − (5k + 5)x− 5k).

Thus, it suffices to check pk(x) = 112kx3+(112k−56)x2−(5k+5)x−5k > 0 on x ≥ 1/4. Rearranging
the terms we get pk(x) = 112k(x−1/4)3+(196k−56)(x−1/4)2+(72k−33)(x−1/4)+(10k−19)/4,
which is positive for x ≥ 1/4 and k ≥ 2. Therefore, hk,1/7(x) is minimised when x = 1/4, which
implies B2k is common.

We remark that the constant c = 1/7 has been judiciously chosen. Indeed, if c is too large,
then it gets tougher or even impossible to obtain the inequality in Lemma 4.2. Otherwise, if c is
too small, then the rational function hc(x) may attain its local minimum at some x0 > 1/4 and the
optimisation does not work. This does happen if one tries to apply the same argument to prove
that K2,2,t is common for t > 2.

However, flag algebras allow us to prove inequalities that resemble Lemma 4.2 and can be
directly applied to (7), which gives tighter bounds than the previous approach does. In particular,
the following generalises Lemma 4.2 to any connected bipartite graph on at most 5 vertices.

Lemma 4.4. If H is a connected bipartite graph on at most 5 vertices and W is a graphon, then

mH+1(W ) ≥ 2−v(H) ·mH(W ). (11)

Moreover, if H 6= K2, then mH+1(W ) = 2−v(H) ·mH(W ) if and only if mC4(W ) = 1/8.
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K2 K1,2 = P3 K1,3 P4 C4

K1,4 P4 ∗vu K2 P5
K−

2,3 K2,3

Figure 7: The ten connected bipartite graphs on at most 5 vertices from Lemma 4.4.

Proof. For any of the ten considered graphs, the proof of (11) is a straightforward flag algebra
application. As the proof of (11) for H 6= K2 uses mC4(W ) ≥ 1/8, the moreover part follows by
complementary slackness. The flag algebra calculations certifying (11) can be downloaded from
http://lidicky.name/pub/common/.

Given a common graph H, if the inequality (11) holds then a direct application of Lemma 2.2
yields that H+a is common for every positive integer a. In particular, we are now ready to prove
Theorem 1.4.

Proof of Theorem 1.4. Fix an integer a ≥ 2 and a graph H. By convexity (or Lemma 3.3), we have

tH+a(W ) ≥ tH+1(W )a

tH(W )a−1
.

Lemma 2.2 then yields that

mH+a(W ) ≥ mH+1(W )a

mH(W )a−1
,

and thus, by Lemma 4.4, we conclude that

mH+a(W ) ≥ mH(W )

2a·v(H)
.

Since H is common, i.e., mH(W ) ≥ 21−e(H), we have that mH+a(W ) ≥ 21−e(H)−a·v(H) = 21−e(H+a).
In other words, the graph H+a is common.

5 Concluding remarks

Stability. When a graph H is known to be common, it is natural to ask a stability question,
i.e., whether the random colouring is (asymptotically) the unique minimiser of the number of
monochromatic copies of H. In other words, is mH(W ) uniquely minimised by W = 1/2 almost
everywhere? For bipartite graphs, this question connects to the so-called Forcing Conjecture [5,28]
stating that if H is bipartite with at least one cycle and p ∈ (0, 1), then W = p almost everywhere
uniquely minimises the number of copies of H among all graphons of density p.
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For our results, one may check that that the random colouring is the unique minimiser of
mH whenever H is a triangle-tree with κ(H) ≥ 1, i.e., a triangle-tree that is not a triangle-
vertex-tree. Indeed, as both W and 1 − W must be tight for (3), inspecting the proof of [18,
Theorem 2.7] yields that any minimiser of mH must be 1/2-regular and have the ‘correct’ codegrees,
i.e.,

∫

W (x, y)dy = 1/2 and
∫

W (x, z)W (z, y)dz = 1/4 for almost every x, y ∈ [0, 1], respectively.
In particular, Lemma 4.2 and its applications immediately proves that K1,1,2, K1,2,2, and K2,2,2

has a unique minimiser. On the other hand, there are infinitely many minimisers of mK3 . Indeed,
mK3(W ) = 1/4 for every 1/2-regular graphon W . Analogusly, any 1/2-regular graphon minimizes
mH when H is a fixed triangle-vertex-tree.

In all the cases covered in Theorem 1.4 except H = K2, the ‘moreover’ part of Lemma 4.4 yields
that the random colouring is the unique minimiser. When H = K2, the graph H+a is simply the
complete tripartite graph K1,1,a. Therefore, the case a = 1 corresponds to H+a = K3, so every
1/2-regular graphon minimises mK3 . On the other hand, if a ≥ 2, then H+a is a triangle-tree
with κ(H+a) = a − 1, hence by the discussion in the previous paragraph, mH+a(W ) is uniquely
minimised when W = 1/2 almost everywhere.

Theorem 1.1 for odd cycles. It is certainly possible to generalise Theorem 1.1 by replacing
triangles by odd cycles. One way is to define C2k+1-vertex-tree and C2k+1-edge-tree by allowing
recursive additions of odd cycles along vertices or edges, respectively. It is then straightforward to
check these graphs are common by using 3.3. Furthermore, one may also generalise Theorem 1.1
by allowing both types of vertex- and edge-additions of odd cycles of length 2k + 1; however, it is
unclear that one can allow even more general additive operation between odd cycles, e.g., along a
multi-edge path. It might be interesting to obtain a full generalisation of Theorem 1.1 along this
line to obtain that C2k+1-trees are common for every k.

Optimal pendant trees. Let H be a common graph. Then one may ask what is the smallest T
that makes T ∗vu H uncommon. To formalise, let

UC(H) := min{e(T ) : T ∗vu H is uncommon}.

Note that this parameter might not exist for some bipartite graphs H. Indeed, if H satisfies
Sidorenko’s conjecture, then T ∗vu H satisfies the conjecture as well. In particular, H is common,
and we let UC(H) = ∞. On the other hand, if H is a triangle-edge-tree, then Lemma 3.6 and the
proof of Theorem 1.2 yield a lower bound for UC(H) that is linear in e(H). Also, Fox’s result [11]
implies that UC(Kt,t,t) = O(t2), which is again linear in terms of the number of edges. It would be
interesting to see more precise estimates for UC(H) for various non-bipartite graphs H.

Ramsey multiplicity constant of small graphs. The smallest graph whose Ramsey multi-
plicity constant is not known is K4, and determining the value of C(K4) is a well-known open
problem in extremal combinatorics with no conjectured value. A direct flag algebra calculation
using expressions with 9-vertex subgraph densities yields C(K4) ≥ 1/33.77 ≈ 0.0296, which is a
slight improvement over previously known lower bound 1/33.9739 ≈ 0.0294343 [9,12,20,29,32,33].
Unfortunately, there is still a non-negligible gap from the best upper bound 1/33.0205 ≈ 0.030284
by Even-Zohar and Linial [10], who improved an upper bound 1/33.0135 of Thomason [30,31].

As noted in the introduction, flag algebra method can be used to prove commonality of many
small graphs. In Appendix we give a proof that the graphs H3 and H4 from Wolf’s list on Figure 3
are common. Although it is possible to fully inspect the presented proof by hand, some of the steps
were obtained by using computers. It would still be interesting to find simpler ‘human-friendly’
proofs of the commonality of H3 or H4.
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A Proof of commonality of H3 and H4

We present proofs of the inequalities mH3(W ) ≥ 2−5 and mH4(W ) ≥ 2−6 for all graphons W , where
H3 and H4 are depicted on Figure 3. The proofs were obtained with a computer assistance using
libraries CSDP [3] and QSOPT [2].

Firstly, the following three subgraph density expressions will evaluate to a nonnegative number
for every graphon W due to the commonality of the corresponding graphs:

(1) 465 ·
(

mH1(W )− 2−5
)

, (2) 465 ·
(

mH2(W )− 2−5
)

and (3) 48 ·
(

mC5(W )− 2−4
)

.

Moreover, each of these expression will be written as a linear combination of 5-vertex induced

subgraph densities; recall that τH(W ), the induced density of H in W , is defined as follows:

τH(W ) := E





∏

ij∈E(H)

W (xi, xj)
∏

ij /∈E(H)

(1−W (xi, xj))



 .

As we aim to exploit the symmetry of the colours in Ramsey multiplicity, we let f(τH(W )) :=
τH(W ) + τH(W ) for every graph H and extend f linearly to formal linear combinations of graphs.

Let Pab(W ) be the probability measure on [0, 1]2 which, given a graphon W , corresponds to
a uniformly sampled pair (a, b) that induces an edge. Let T∅(W ) and Tbc(W ) be the probability
measures on [0, 1]3 that correspond to sampling (a, b, c) inducing an independent set and a single-
edge graph {bc}, respectively. We consider the following 13 density expressions represented as
sum-of-squares (we note that (6) and (7) were suggested by a computer search):

(4) 10 · f
(

E
T∅(W )

[

(

P

[

x ∈ ⋂z∈{a,b,c} Nz

]

− P

[

x /∈ ⋃z∈{a,b,c} Nz

])2
])

,

(5) 10 · f
(

E
T∅(W )

[

(

8 · P
[

x /∈
⋃

z∈{a,b,c} Nz

]

− 1
)2
])

,

(6) 30 · f
(

E
Tbc(W )

[

(

2 · P[x ∈ Nb∆Nc] + 3 · P [x ∈ (Nb∆Nc) \Na]
)2
])

,

(7) 30 · f
(

E
Tbc(W )

[

(

2 · P[x ∈ Nb∆Nc]− 7 · P [x ∈ (Nb∆Nc) \Na]
)2
])

,

(8) 30 · f
(

E
Tbc(W )

[

(

P

[

x ∈
⋂

z∈{a,b,c} Nz

]

− P

[

x /∈
⋃

z∈{a,b,c} Nz

])2
])

,

(9) 30 · f
(

E
Tbc(W )

[

(

P

[

(x ∈ Na \
⋃

z∈{b,c} Nz

]

− P

[

x /∈ ⋃z∈{a,b,c} Nz

])2
])

,

(10) 30 · f
(

E
Tbc(W )

[

(

P

[

x ∈ ⋂z∈{b,c} Nz \Na

]

− P

[

x /∈ ⋃z∈{a,b,c} Nz

])2
])

,

(11) 30 · f
(

E
Tbc(W )

[

(

P [x ∈ (Nb∆Nc) \Na]− 2 · P
[

x /∈ ⋃z∈{a,b,c} Nz

])2
])

,

(12) 30 · f
(

E
Tbc(W )

[

(

P [x ∈ (Nb∆Nc) ∩Na]− 2 · P
[

x /∈ ⋃z∈{a,b,c} Nz

])2
])

,

(13) 15 · E
a∈[0,1]

[

(

(

2 · P[x ∈ Ny]− 1
)

·
(

P [x ∈ Na ∧ y ∈ Na]− P [x /∈ Na ∧ y /∈ Na]
)

)2
]

,

(14) 15 · f
(

E
Pab(W )

[

(P [x ∈ Na]− P [x ∈ Nb])
2
]

)

,

(15) 15 · E
a∈[0,1]

[

(2 · P [x ∈ Na ∧ y ∈ Na] + 2 · P [x /∈ Na ∧ y /∈ Na]− 1)
2
]

, and

(16) 30 · f
(

E
Pab(W )

[

P[x ∈ Na ∩Nb] ·
(

2 · P [y ∈ Na∆Nb]− 1
)2
]

)

,
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Figure 8: Non-isomorphic partitions of E(K5) into two parts represented by black and white edges.

where x and y are uniformly sampled vertices of W , and x ∈ N⋆ abbreviates the event of sampling
an edge between x and ⋆. Clearly, each expression evaluates to a nonnegative number for any W
and can be written as a linear combination of 5-vertex induced subgraph densities.

As there are 34 non-isomorphic 5-vertex graphs and two of them are self-complementary, there
are exactly 18 non-isomorphic partitions of E(K5) into two parts (see Figure 8). Therefore, we
may identify each expression described in the previous paragraph with a vector from R

18 simply
by letting its i-th coordinate to be the coefficient of the i-th graph in Figure 8 in the corresponding
linear combination. We denote these vectors by w1, w2, . . . , w16, and let M := (w1|w2| · · · |w16) be
the corresponding 18 × 16 matrix. Next, let vA and vB be the vectors from R

18 representing the
expressions 480 ·

(

m(H3)− 2−5
)

and 960 ·
(

m(H4)− 2−6
)

, respectively. Then vA, vB, and M are










































465
177
33
81
−15
−15
17
1

−15
−15
−15
−7
−15
−15
−15
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−15
−15
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





































,











































945
273
17
113
−15
−15
17
−15
−15
−15
−15
−15
−15
−15
−15
−15
−15
−15











































, and











































465 465 45 10 490 0 0 0 0 0 0 0 15 0 15 0
177 177 21 1 7 0 0 3 3 3 12 12 3 0 3 3
49 65 5 0 −27 0 0 1 0 0 −8 0 −3 1 3 −3
49 17 13 0 4 0 0 2 −2 2 8 8 3 −2 −9 6
9 9 −3 −1 −28 75 12 0 0 0 3 0 −3 3 −9 6

−15 33 −3 1 4 0 0 0 0 −6 0 0 −3 3 15 6
1 −15 5 0 2 0 0 1 −1 0 0 0 1 −3 −9 0
1 1 1 0 3 −25 −4 0 0 0 −3 −4 −1 0 3 −5

−15 −15 −3 −4 −28 0 0 0 0 6 0 0 3 6 −9 6
−15 −7 −3 0 3 25 4 −1 0 −1 1 0 1 3 3 −1
−7 −15 −3 0 2 24 5 0 0 0 0 −3 −1 0 −9 0
−15 −15 1 0 1 −24 −5 0 0 0 0 1 1 −3 3 −3
−15 −15 −3 0 2 −100 −16 0 0 0 4 0 −1 0 15 8
−15 −15 −3 1 1 0 0 0 3 0 0 0 −3 −3 3 9
−15 −15 −3 0 3 0 0 −2 0 1 0 0 3 4 3 −1
−15 −15 −3 0 1 −16 45 0 0 0 0 1 −1 −2 3 1
−15 −15 −3 0 2 40 −40 0 0 0 0 0 1 1 −9 0
−15 −15 5 0 0 −40 −250 0 0 0 0 10 5 −5 15 10
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
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









,

respectively. Let MA and MB be the submatrices of M obtained by deleting the last and the second
to last column, respectively. It follows both MA and MB have rank 15 and the unique xA and xB
that satisfy vA = MAxA and vB = MBxB have nonnegative entries, explicitly given as follows:

xA =
1

133168
×














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




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
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10730
448079
6584
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22852
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513184
43384
7888
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329614
45472
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xB =
1

13601
×
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
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
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















9628
2465
19430
780
2520
56144
9628

133168
19952
19488
14268
6728
71746
14268
18676













































.

Thus, mH3(W ) ≥ 2−5 and mH4(W ) ≥ 2−6 for every graphon W .
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