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Abstract Recently, Dvořák, Norin, and Postle introduced flexibility as an extension
of list coloring on graphs [List coloring with requests, JGT ’19]. In this new setting,
each vertex v in some subset of V (G) has a request for a certain color r(v) in its list of
colors L(v). The goal is to find an L coloring satisfying many, but not necessarily all,
of the requests.

The main studied question is whether there exists a universal constant ε > 0 such
that any graph G in some graph class C satisfies at least ε proportion of the requests.
More formally, for k > 0 the goal is to prove that for any graph G ∈ C on vertex set V ,
with any list assignment L of size k for each vertex, and for every R ⊆V and a request
vector (r(v) : v ∈ R, r(v) ∈ L(v)), there exists an L-coloring of G satisfying at least
ε|R| requests. If this is true, then C is called ε-flexible for lists of size k.

Choi, Clemen, Ferrara, Horn, Ma, and Masařík [Flexibility of planar graphs—
sharpening the tools to get lists of size four, DAM ’21] introduced the notion of
weak flexibility, where R =V . We further develop this direction by introducing a tool
to handle weak flexibility. We demonstrate this new tool by showing that for every
positive integer b there exists ε(b) > 0 so that the class of planar graphs without

B. Lidický was supported in part by NSF grant DMS-1855653. T. Masařík received funding from the
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K4,C5,C6,C7,Bb is weakly ε(b)-flexible for lists of size 4 (here Kn, Cn and Bn are the
complete graph, a cycle, and a book on n vertices, respectively). We also show that
the class of planar graphs without K4,C5,C6,C7,B5 is ε-flexible for lists of size 4. The
results are tight as these graph classes are not even 3-colorable.

Keywords List coloring · Flexibility · Discharging

Mathematics Subject Classification (2020) 05C15

1 Introduction

A k-coloring of a graph G is a function f : V (G)→ S, where |S|= k. The elements of
S are often called colors. A k-coloring of G is called proper if adjacent vertices are
assigned different colors. Suppose that for each vertex v in G, we gave v a list L(v)
of available colors. A list coloring of a graph G is a proper coloring of G where each
vertex v is assigned a color from L(v). In particular, for two distinct vertices u and v,
L(u) and L(v) might be different. A graph is k-choosable if every assignment L of at
least k colors to each vertex guarantees an L-coloring. The choosability of a graph G

is the minimum k such that G is k-choosable.
In many applications of list coloring, such as scheduling, some vertices may have

preferences which are not directly captured by the lists themselves. For example, a
professor may be willing to teach classes X,Y, or Z but prefers to teach X. Ideally, the
scheduler can satisfy the specific requests of each professor, but it is often the case
that they cannot. The goal is then to satisfy as many requests as possible. This idea
motivates the following definitions.

A weighted request is a function w that assigns a nonnegative real number to each
pair (v,c) where v ∈ V (G) and c ∈ L(v). For ε > 0, we say that w is ε-satisfiable if
there exists an L-coloring ϕ of G such that

∑
v∈V (G)

w(v,ϕ(v))≥ ε · ∑
v∈V (G),c∈L(v)

w(v,c).

The unweighted variant is defined as follows. A request for a graph G with a list
assignment L is a function r with domain dom(r)⊆V (G) such that r(v) ∈ L(v) for all
v ∈ dom(r). In the special case that each vertex requests a color, i.e., dom(r) =V (G),
we call such a request widespread. Analogously, for ε > 0, a request r is ε-satisfiable

if there exists an L-coloring ϕ of G such that at least ε|dom(r)| vertices v in dom(r)
receive color r(v). We say that a graph G with list assignment L is ε-flexible, weakly

ε-flexible, or weighted ε-flexible if every request, widespread request, or weighted
request, respectively, is ε-satisfiable. Note that weak flexibility does not make sense in
the weighted setting since one can set some weights to 0 to turn off the requests for
these vertices. If G is (weighted/weakly) ε-flexible for every list assignment with lists
of length k, we say that G is (weighted/weakly) ε-flexible for lists of size k. Note that
for k-colorable graphs, if the lists are exactly the same the problem becomes trivial as
by permuting the colors we can achieve 1

k
-flexibility [6].
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The concept of ε-flexibility was introduced by Dvořák, Norin, and Postle [6].
Subsequently, it was studied for various sub-classes of planar graphs, e.g., triangle-
free [5], girth six [4], or C4-free [10]. Graphs of bounded maximum degree were
subsequently characterized in terms of flexibility [1].

A central notion in graph coloring is that of reducible configurations, which
are local subgraphs that cannot appear in a smallest counterexample because their
presence implies that the graph can be colored from a smaller subgraph by induction.
Reducible configurations for flexibility are slightly more delicate as we explain in
Section 2. Recently, Choi, Clemen, Ferrara, Horn, Ma, and Masařík [2] proposed a
strengthened tool (see Lemma 1 below) for designing reducible configurations for
flexibility. The authors of [2] also introduced the notion of weak flexibility defined
above. They demonstrated that the weak setting allows one to create stronger reducible
configurations.

We further develop this direction by strengthening the tools for handling weak
flexibility; see Lemma 2 in Section 3. We exhibit our new tool by showing the
following results for subclasses of planar graphs.

For an integer n ≥ 3 let Bn denote the book on n vertices, i.e., the graph consisting
of n− 2 triangles sharing an edge. Let Cn and Kn denote a cycle and a clique on n

vertices, respectively. Given a set of graphs F and a graph H, we say that H is F -free

if there is no subgraph of H isomorphic to any of the graphs in F .

Theorem 1 There exists ε > 0 such that every planar {K4,C5,C6,C7,B5}-free graph

is weighted ε-flexible for lists of size 4.

Theorem 2 There exists ε = ε(b)> 0 such that every planar {K4,C5,C6,C7,Bb}-free

graph is weakly ε-flexible for lists of size 4.

The results in Theorems 1 and 2 are tight as in general such graphs are not even
3-colorable. This is exemplified by the construction in Figure 1. This construction
implies:

Observation 3 For every ℓ,b ≥ 5 exists a {K4,Bb}-free planar graph G that does not

contain any cycle Ck of length 5 ≤ k ≤ ℓ, such that G is a not 3-colorable.

Furthermore, our results follow a recent line of research trying to narrow the
gap between known degeneracy upper-bounds and choosability lower-bounds, in
particular on subclasses of planar graphs, as is described below. We say that a graph
G is d-degenerate if each induced subgraph of G contains a vertex of degree at most
d. It is easy to observe that d-degenerate graphs are (d + 1)-choosable. A similar
statement holds for flexibility as well: in [6] it was proved that d-degenerate graphs
with lists of size d +2 are weighted ε-flexible. Therefore, as C5-free planar graphs are
3-degenerate [11], they are ε-flexible for lists of size 5. The same is true for C6-free
planar graphs [7]. For C3-free graphs, Dvořák, Masařík, Musílek, and Pangrác [5]
showed that they are weighted ε-flexible for lists of size 4 and that this the result
is tight. Surprisingly, the discharging proof in [5] is quite involved compared to
the easy observation that C3-free planar graphs are 3-degenerate, which implies 4-
choosability. An analogous result holds for {C3,C4,C5}-free graphs, where list of size
3 are sufficient for weighted ε-flexibility and the result is tight [4].
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Fig. 1 A construction proving Observation 3 with an attempt for a 3-coloring that fails.

When only C4 is forbidden, Masařík [10] proved that lists of size 5 are sufficient
for weighted ε-flexibility. However, it is unknown whether the result is tight as those
graphs are 4-choosable [8] (but not necessarily 3-degenerate). There were attempts to
bring down the list size to 4 but so far only partial results are known in this direction:
planar graphs that do not contain C4 and C3 at distance at most 1 [2] or {C4,C5}-free
planar graphs [12]. See [2, Table 1] for a comprehensive overview of known results
for various subclasses of planar graphs. Our results aim to improve this narrow gap
as they show that lists of size 4 are sufficient even for planar graphs in which some
copies of C3 and C4 are allowed.

2 Methods - informal discussion

The purpose of this section is to informally describe some of the difficulties one
faces when trying to extend a list-coloring proof to a flexibility proof. This discussion
serves as the intuition behind the formal definitions in the next section.

As in previous related papers mentioned above, we use the discharging method
to obtain our results. For an introduction to the discharging method see [3]. A typ-
ical discharging proof that a graph G is L-list-colorable gives a list of unavoidable
reducible configurations, which are subgraphs of G that cannot appear in a minimal
counterxample. The goal is to decompose G into subgraphs R1, . . . ,RN such that Ri

is a reducible configuration in G[Ri ∪ ·· · ∪RN ] (this will be defined as a resolution

later), so that any L-coloring of G[Ri+1 ∪·· ·∪RN ] can be extended to an L-coloring of
G[Ri ∪·· ·∪RN ]. Extending the coloring in a descending order from RN to R1 gives an
L-coloring of G.

When requests are introduced, this method becomes more difficult. To explain this,
assume for simplicity that every vertex has a request. If we manage to accommodate
one request from each Ri and each Ri has at most b vertices, then we would satisfy
n/b requests, showing that G is ε-flexible for ε = 1/b, and our job would be done.
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However, this is not necessarily possible. Indeed, suppose v ∈ Ri has some request
r(v) and let ϕ be an L-coloring of G[Ri+1 ∪·· ·∪RN ]. Suppose further that v has one
neighbor u in Ri+1 ∪·· ·∪RN . If ϕ(u) = r(v), there is no way to simply extend ϕ and
accommodate the request of v. Thus more changes to ϕ , such as recoloring u, would
have to occur to accommodate r(v). In addition to this issue, it may also be the case
that r(v) cannot be satisfied because Ri itself prevents it.

This means that reducible configurations for flexibility need to provide slightly
more freedom in the colorings they allow. The easier problem to deal with is that
r(v) cannot be satisfied because Ri itself prevents it. This can be patched by adding
a requirement that for any one vertex x in Ri, the coloring ϕ extends to Ri even if
x has a list of size 1 after removing the colors of already colored neighbors of x in
Ri+1 ∪·· ·∪RN . For v, this would be used in case L(v) = {r(v)} and ϕ(u) 6= r(v). This
requirement will be called (FIX) in the formal definitions.

The problem occurring when r(v) cannot be satisfied because its neighbor u in
Ri+1 ∪·· ·∪RN is already colored r(v) is more complicated to solve. The idea is the
following. Instead of constructing just one L-coloring ϕ , one needs to construct L-
colorings ϕ1, . . . ,ϕℓ and in some of them, u gets colored by a color different than
r(v). Then ϕ1, . . . ,ϕℓ can be extended to ϕ ′

1, . . . ,ϕ
′
ℓ′ , where r(v) is satisfied in some

of them. At the end, this process gives a set of L-colorings of G and at least one of
them satisfies a positive fraction of the requests. Formally, this is done by creating a
probability distribution on L-colorings of G.

In order to make this idea work, there must be a sufficient variety of proper
colorings for each reducible configuration. In our example, if we want to color v by
r(v), we cannot use r(v) on u. We need to address this when we are coloring u and
remove r(v) from its list. Further, we would need to do this for each neighbor of v in
Ri+1 ∪·· ·∪RN . This is achieved in the following way. When we are L-coloring Ri, we
look at all subsets I ⊆V (Ri) of vertices that could form a neighborhood of a vertex in
R1 ∪ . . .∪Ri−1, i.e. in the set of not yet colored vertices. Individually for each I, we
show that any proper L-coloring ϕ of Ri+1 ∪·· ·∪RN can still be extended to Ri even
if we decrease the sizes of the lists of vertices in I by 1. This will be called (FORB) in
the formal definitions.

To summarize, the reducible configurations for flexibility must have size bounded
by a constant, any one vertex can be precolored (FIX), and for different subsets of
vertices, reducing their lists sizes by 1 does not break the extendability of the coloring
(FORB).

The main feature of weak flexibility is that instead of demanding in (FIX) that
“any one vertex in Ri can be precolored”, it is enough to ask for “at least one vertex in
Ri can be precolored”. It is then easier to satisfy this version of (FIX).

We introduce an additional trick, where we ask “at least one vertex in Ri with few
external neighbors can be precolored”. This makes satisfying (FIX) more difficult
since the reducible configurations need a vertex of small degree but it helps a lot with
checking (FORB).
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3 Methods - definitions and lemmas

We use some of the notation and tools introduced in [2, 4–6]. In particular, our
definitions are quite similar to those used in [2].

Let 1I denote the characteristic function of I, i.e., 1I(v) = 1 if v ∈ I and 1I(v) = 0
otherwise. Let G be a graph. Given a function f : V (G)→Z and a vertex v ∈V (G), let
f ↓ v denote the function satisfying ( f ↓ v)(w) = f (w) for w 6= v and ( f ↓ v)(v) = 1.
We will use f ↓ v to indicate that the list size at vertex v has been reduced to 1. In
other words, f ↓ v means that v has been “precolored”. A list assignment L is an
f -assignment if |L(v)| ≥ f (v) for all v ∈V (G). We will let degG be the function from
V (G) to Z which maps each vertex to its degree. If X ⊂V (G), then we let degX equal
degG[X ], where G[X ] is the induced subgraph of G consisting of the vertices in X .

Given a set of graphs F and a graph H, a set I ⊆V (H) is F -free if the graph H

together with one additional vertex u adjacent to all of the vertices in I does not contain
any subgraph isomorphic to a graph in F . Throughout the following definitions, let H

be an induced subgraph of a graph G, let F be a set of graphs, and let k be a positive
integer.

Definition 1 ((F ,k)-boundary-reducibility) We say that H is an (F ,k)-boundary-

reducible subgraph if there exists a set R ⊆V (H) such that R 6= /0 and

(FIX) for every v ∈ R, H[R] is L-colorable for every ((k−degG+degR) ↓ v)-assignment
L, and

(FORB) for every F -free set I ⊆ R of size at most k− 2, H[R] is L-colorable for every
(k−degG+degR−1I)-assignment L.

Definition 2 (weak (F ,k)-boundary-reducibility) We say that H is weakly (F ,k)-
boundary-reducible if it satisfies (FORB) and there exists at least one vertex v satisfy-
ing (FIX) from Definition 1. In this case, we denote v by Fix(H).

In both of the preceding definitions, we will occasionally refer to the set V (H)\R as
the boundary of the configuration and the set R as the reduced part of the configuration.
Note that (FORB) in particular implies that degG−degR ≤ k−2 for all v ∈ R.

Definition 3 ((F ,k,b)-resolution) Let G be an F -free graph with lists of size k. An
(F ,k,b)-resolution of G is a set {G0,G1, . . . ,GM} of subgraphs of G such that for
i ≥ 1, Hi is an induced (F ,k)-boundary-reducible subgraph of Gi−1 with reduced part
Ri and

Gi :=G−
i
⋃

j=1

R j.

Additionally, for each i ≥ 1 |Ri| ≤ b and GM is itself a (F ,k)-boundary-reducible
graph with empty boundary and order at most b. For technical reasons, let GM+1 := /0.

A weak (F ,k,b)-resolution is defined analogously, except that it uses weak (F ,k)-
boundary-reducibility in the place of (F ,k)-boundary-reducibility.

The following lemma is the main tool we use for proving weighted ε-flexibility.
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Lemma 1 (Lemma 13 in [2]) For integers k ≥ 3 and b ≥ 1 and for a set F of

forbidden subgraphs, let G be an F -free graph with an (F ,k,b)-resolution. Then

there exists an ε > 0 such that G is weighted ε-flexible for lists of size k. Furthermore,

if the request is widespread and G has a weak (F ,k,b)-resolution, then G is weakly
(

ε · 1
b

)

-flexible for lists of size k.

For the proof of Theorem 2 we prove a stronger version of Lemma 1 tailored to
the setting of weak flexibility. For this, we define new “enhanced” versions of weak
(F ,k)-boundary-reducibility and of a weak (F ,k,b)-resolution. We will now require
Fix(H) to contain only vertices v satisfying degG(v)−degR(v)≤ k−3. This change
will allows us to consider smaller sets for the (FORB) condition.

Definition 4 (enhanced weak (F ,k)-boundary-reducibility) A graph H is enhanced

weakly (F ,k)-boundary-reducible if there exist non-empty sets Fix(H)⊆ R ⊆V (H)
such that

(FIX) for every v ∈ Fix(H), degG(v)−degR(v)≤ k−3 and H[R] is L-colorable for every
((k−degG+degR) ↓ v)-assignment L, and

(FORB) for every F -free set I ⊆ R of size at most k− 3, H[R] is L-colorable for every
(k−degG+degR−1I)-assignment L.

Before proceeding further, observe that (FORB) in the enhanced version is easier
to check because I is of size at most k−3, instead of k−2 in the non-enhanced version.
However, (FIX) in the enhanced version has an additional restriction on the degree
of vertices in Fix(H), which makes it more difficult to satisfy. Note that in general,
the (FORB) condition on a single vertex v implies degG−degR ≤ k−2. However for
vertices in Fix(H), the (FIX) condition implies degG−degR ≤ k− 3. In particular,
a vertex of degree k− 2 is no longer reducible under the enhanced definition. We
overcome this obstacle by allowing (k − 2)-vertices in a resolution under special
conditions. Forbidding books Bℓ helps with satisfying these special conditions. By
doing this we can have both: a vertex of degree k − 2 is reducible in our setting,
and in addition we obtain subgraphs H that are reducible under the enhanced weak
(F ,k)-boundary-reducibility definition, given that certain special circumstances occur.
This rather technical improvement helps substantially in reducing the complexity of
the analysis of the discharging process for the graph classes studied in this paper. Note
that further generalization of this idea may be possible, but for lack of use in this paper
we will not aim to formulate this in the full generality.

For a subgraph H of a graph G, let NG(H) be the induced subgraph of G on all
neighbors of the vertices in H.

If G is a graph satisfying the conditions of Definition 4 and I ⊆ R is an F -free set
of size k−2 so that G[R] is L-colorable for every (k−degG+degR−1I)-assignment
L, then we call I loose.

Let G be a graph, H its subgraph and v ∈ V (G−H). We say that v is H-tight if
degG(v) = k−2, NG(v)⊆V (H), and NG(v) is not loose in H.

Definition 5 (enhanced weak (F ,k,b,β )-resolution) Let G be an F -free graph
with lists of size k. An enhanced weak (F ,k,b,β )-resolution of G is a set {G0,G1, . . . ,
GM} of subgraphs of G, such that all the following three conditions hold:
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1. For 1 ≤ i ≤ M, there exists a subgraph Hi of Gi−1 satisfying that
– Hi is an induced enhanced weak (F ,k)-boundary-reducible subgraph of Gi−1

with reducible part Ri such that |Ri| ≤ b, or
– Hi is an induced weak (F ,k)-boundary-reducible subgraph of Gi−1 with

reducible part Ri, such that |Ri| ≤ b and for all v ∈ Fix(Hi) either

|NGi−1(v)∩H j| ≤ k−3 or NGi−1(v)∩H j

is a loose set in H j for all j > i, or
– Hi is a single vertex with degGi−1

(v) = k−2.
2. For every 1 ≤ i ≤ M−1,

Gi :=G−
i
⋃

j=1

R j,

GM is a weak (F ,k)-boundary-reducible graph with empty boundary and order at
most b, GM+1 := /0, and HM+1 :=GM .

3. The following is satisfied:
(TIGHT) For every 1 ≤ j ≤ M, there are at most β different H j-tight vertices vi, where

V (Hi) = {vi} with i < j.

Note that in Definition 5 Hi can be H j-tight only if Hi is a single vertex with
degGi−1

(v) = k − 2. A natural way to satisfy (TIGHT) condition is to show that
whenever there is an H j such that more than β subgraphs Ha1 , . . . ,Haβ

,Haβ+1
are

H j-tight, then

H j ∪
⋃

i∈{1,...,β ,β+1}

Hai
∈ F .

If two adjacent vertices have many common neighbors, we get a book, which will be
in F .

We are now ready to state and proof our main lemma.

Lemma 2 (Reducible configurations for weak flexibility) For integers k ≥ 4, b≥ 1,

β ≥ 0, and for a set F of forbidden subgraphs, let G be a F -free graph with an

enhanced weak (F ,k,b,β )-resolution. Then, there exists an ε > 0 such that G is

weakly ε-flexible for lists of size k.

The proof of the lemma is similar to the proof of Lemma 1 as it appeared in [2,
Lemma 13]. In particular, we explicitly formulate a few arguments in their proof as
a separate claim (Claim 4 below) that we use in our proof. We will also need the
following Lemma 3, which is Lemma 12 in [2].

Let G be a graph with a weak (F ,k,b)-resolution R. Let AllFix(G) denote the
union of all Fix(H) over all reducible subgraphs H in the resolution R.

Lemma 3 (Lemma 12 in [2]) Let b be an integer. Let G be a graph with list assign-

ment L of size k on V (G). Suppose G has a weak (F ,k,b)-resolution, G is L-colorable,

and there exists a probability distribution on the L-colorings ϕ of G such that for

every v ∈ AllFix(G) and c ∈ L(v), Prob[ϕ(v) = c] ≥ ε . Then G with L is weakly
(

ε · 1
b

)

-flexible.
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Proof (Proof of Lemma 2) For 1 ≤ j ≤ M + 1, let H j be the set of all H j-tight
subgraphs where the (TIGHT) property applies. Let Hi ∈ H j for some i and j. This
means that Hi is a single vertex with k−2 ≥ 2 neighbors in H j. Hence Hi = /0.

Now, we refactor the enhanced weak (F ,k,b,β )-resolution R into an enhanced
weak (F ,k,b+β ,0)-resolution R ′. To do so, we attach all H j-tight subgraphs to H j

and thus we create a larger configuration H ′
j. The vertices in tight subgraphs are not

part of any Fix set. Formally

H ′
j :=







/0 if exists i such that H j ∈ Hi

H j ∪
⋃

H∈H j

H otherwise

and Fix(H ′
i ) = Fix(Hi) if H ′

i 6= /0 and Fix(H ′
i ) = /0 otherwise. Observe that by the

(TIGHT) property, the size of the resulting H ′
j will be upper-bounded by b+β and that

H ′
j is enhanced weakly (F ,k)-boundary-reducible or only weakly (F ,k)-boundary-

reducible (provided its neighbourhood is always a loose or small set) if it is not empty.
We simultaneously remember both R and R ′, since each time we are using H ′

j (or G′
j)

we are referring to R ′ and each time we are using H j (or G j) we are referring to R.
The next step is to create a probability distribution on L-colorings ϕ of Gi for all i

starting with G′
M . Let p = k−(b+β ) and ε ′ = pk−1. We are going to show that each i

satisfies the following properties:

(i) for every v ∈ AllFix(G′
i) and a color c ∈ L(v), the probability that ϕ(v) = c is at

least ε ′, and
(ii) for every color c and every F -free set I in G′

i of size at most k−3, the probability
that ϕ(v) 6= c for all v ∈ I is at least p|I|, and

(iii) for every color c and every loose F -free set I in G′
i of size exactly k− 2, the

probability that ϕ(v) 6= c for all v ∈ I is at least p|I|.

Note that for G′
M+1 all of the properties trivially hold. Note that Property (i)

on G′
0 = G0 = G immediately implies that G with L is weakly

(

ε ′ · 1
b

)

-flexible by

Lemma 3 and therefore weakly ε-flexible for ε = ε ′

b
.

We will make use of the following claim proven implicitly in [2].

Claim 4 (Implicit in the proof Lemma 13 in [2])) Suppose that we have an enhan-

ced weak (F ,k,b+β ,0)-resolution and a probability distribution on L-colorings of

G′
i+1 satisfying Properties (i), (ii), and (iii) on G′

i+1. If for each vertex v ∈ Fix(H ′
i )

and for each I = N(v)∩H ′
j where j > i one of the following holds:

(a) |I|= k−2 and I is loose in H ′
j, or

(b) |I|< k−2

then there exists a probability distribution on L-colorings of G′
i such that Proper-

ties (i), (ii), and (iii) are satisfied on G′
i.

In order to use Claim 4, we need verify (a) and (b). If H ′
i is not a single vertex

v with degGi
(b) = k−2, then (a) or (b) hold by the definition of H ′

i . Hence we need
to check the case of H ′

i being a single vertex v with degGi
(v) = k− 2. We do it by
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showing v is not H ′
j tight for any j ≥ i in the following claim. It implies that for H ′

i ,
either (a) or (b) is satisfied. In particular, we will show that we got rid of all tight
subgraphs when we refactored R into R ′.

Claim 5 There are no i < j such that H ′
i is H ′

j-tight.

Proof Suppose for contradiction that H ′
i is H ′

j-tight for some i < j. By the definition,
H ′

i is one vertex v with degree k−2 in Gi−1. By the definition of R ′, v is not Hℓ-tight
for any ℓ > i. In particular, v is not H j-tight. Since v is H ′

j-tight, H j is not empty.
Hence H ′

j is a union of H j and vertices W , where every w ∈W has k−2 neighbors
in H j. Since v is not H j-tight, it has at most k−3 neighbors in H j and at least one in
W . Notice that every vertex w in W has k− 2 neighbors in H j hence a list of k− 1
colors suffices for extending any coloring of H j to w greedily. This and the (FORB)
property for H j imply that v is not H ′

j-tight because N(v) in H ′
j is loose, which is a

contradiction. ♦

We conclude that Claim 5 enables us to use Claim 4 directly on R ′. This finishes
the proof of Lemma 2. ⊓⊔

For a positive integer d, a d-vertex, a d+-vertex, and a d−-vertex are a vertex of
degree d, at least d, and at most d, respectively. A d-face, a d+-face, and a d−-face are
defined analogously. A (d1,d2,d3)-face is a 3-face where the degrees of the vertices
on the face are d1,d2,d3. We will sometimes call 3-faces triangles. A diamond D

is a graph isomorphic to K4 minus an edge. The 2-vertices of D are called the side

vertices, and the 3-vertices are called the middle vertices of D. Let G be a graph.
By T (a,b,c) we denote a triangle in G with vertices of degree a, b, and c in G, and
by Dia(a−b,c,d) a diamond in G with middle vertices of degrees a and b and side
vertices of degrees c and d.

Lemma 4 Let G be a plane {C5,C6,C7}-free graph. Suppose that v is the middle

vertex of k distinct diamonds, and v is adjacent to m faces of size 3 or 4 that are

not part of a diamond in which v is a middle vertex. Then deg(v) ≥ 3k + 2m and

k ≤ ⌊ deg(v)
3 ⌋.

Proof If not, then v is adjacent to three faces f ,g,h, each of them of size at most 4,
such that f ,g share an edge and g,h share an edge. But this induces a cycle Ci with
5 ≤ i ≤ 7, a contradiction. ⊓⊔

In all the figures in the paper, black vertices have all their incident edges drawn,
whereas a white vertex may have more edges incident than drawn (since white vertices
are in the boundary).

4 Proof of Theorem 1

4.1 Reducible Configurations

Let F = {K4,C5,C6,C7,B5}. In this section we will provide a handful of (F ,4)-
boundary-reducible configurations.
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Lemma 5 The following configurations are (F ,4)-boundary-reducible. See Figures 2

and 3 for reference. If boundary is not mentioned, it is empty.

(C1) A vertex of degree at most 2.

(C2) Three 3-vertices appearing on a path of length 2.

(C3) The triangle T (3,3,3).
(C4) Let u be a 3-vertex adjacent to the middle 4-vertex of the diamond D = Dia(4−

3,4,5+). Let v denote the 5+-vertex that is a side vertex of D. Then D∪{u} is

reducible with boundary v.

(C5) Dia(3−3,5+,5+) with 5+-vertices in the boundary.

(C6) Dia(3−5+,3,5+) with 5+-vertices in the boundary.

(C7) The diamond Dia(5−4,3,3).
(C8) Let D1 = Dia(4− 4,5,3) and D2 = (5− 3,4,4+) be two diamonds sharing the

same 5-vertex. Let v denote the 4+-vertex that is a side vertex of D2. Then the

subgraph D1 ∪D2 is reducible with v in the boundary.

(C9) Let D1 = D2 = Dia(3− 4,4,5+) be two diamonds whose middle 4-vertices are

connected by an edge. Let v1 and v2 denote the two 5+-vertices that are the side

vertices of D1 and D2. Then the subgraph D1 ∪D2 is reducible with v1 and v2 in

the boundary.

(C10) Let D1 = Dia(4−3,5+,5) and D2 = Dia(5−3,4,4+) be two diamonds sharing

a middle 5-vertex. Let v1 denote the 5+-vertex that is a side vertex of D1 and let

v2 denote the 4+-vertex that is a side vertex of D2. Then the subgraph D1 ∪D2 is

reducible with v1 and v2 in the boundary.

(C11) A diamond Dia(4− 4,3,4) along with a 3-vertex adjacent to one of the middle

4-vertices.

(C12) Let D1 = Dia(3− 4,4,5+) and D2 = Dia(4− 4,4,3) be two diamonds whose

middle 4-vertices are connected by an edge. Let v denote the 5+-vertex that is a

side vertex of D1. Then the subgraph D1 ∪D2 is reducible is reducible with v in

the boundary.

(C13) Let D1 = Dia(3−5,5,5) and D2,D3 = Dia(5−3,4,5+) be two diamonds where

the two side 5-vertices of D1 are middle vertices of D2 and D3. Let v1 and v2

denote the two side 5+-vertices of D2 and D3, respectively. Then D1 ∪D2 ∪D3 is

reducible with v1 and v2 in the boundary.

We wish to point out that the reducible configurations are meant to be induced
subgraphs by definition, and we will use them as such in the discharging part of the
proof. The only configuration, where two external edges can be identified is (C2)
and it gives (C3), which we explicitly list. It can be straightforwardly checked that
no identification of vertices in (C1)–(C15) is possible since otherwise, it creates a
forbidden subgraph.

Proof (Proof of Lemma 5) It is straightforward to check that each configuration (C1)–
(C15) satisfies the (FIX) and (FORB) conditions in Definition 1. However, checking all
the cases is rather tedious. Hence we developed a simple computer program that does
it, see http://lidicky.name/pub/flexibility1. In particular, a greedy coloring

1 This program is also available as a part of the sources in our arXiv submission [9] (file
reducible_configurations.sage).
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(C1)
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2

(C2)

3

3

3

(C3)

3 3

2

2

+

(C4)
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+

+

(C5)

2

2

+

+

(C6)

2 3

3

3

(C7)

3 3

3

3

3

2

+

(C8)

2 3

2

33

2

++

(C9)

2 3

3

3

2+

+

(C10)

4 3

3

2

2

(C11)

Fig. 2 Reducible Configurations for Theorem 1 (Part 1). The labels give the list sizes remaining after
accounting for the external neighbors and boundary vertices.
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4 3

3

2

33

2

+

(C12)

3 3

2

33

2 2

4 ++

(C13)

Fig. 3 Reducible Configurations for Theorem 1 (Part 2). The labels give the list sizes remaining after
accounting for the external neighbors and boundary vertices.

works in all cases. For an interested reader who wishes to check some cases by hand,
we added list sizes to Figures 2 and 3. We also provide here proofs showing that
(C2) and (C5) are (F ,4)-boundary-reducible. Together, these two configurations
demonstrate how to prove that the remaining configurations are reducible.

The two reducible configurations H1 and H2 corresponding to (C2) and (C5),
respectively are depicted in Figure 4. The reduced parts R1 = H1 and R2 ⊂ H2 are
provided as well. Finally, we have labeled each vertex in the figure with the value of
the function 4−degHi

+degRi
for i ∈ {1,2}.

(C2) H1

2 2

3

a c

b

R2

+

u1

v

u2 u3

u4

2

2

3 3

(C5) H2

Fig. 4 Reducible configurations (C2) and (C5). The reduced parts consist of the black vertices.

By definition, checking the (FIX) condition for any subgraph H with reducible
part R is equivalent to showing that for each v ∈V (R), R can be properly colored after
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assigning each vertex a list of size ((4−degH +degR) ↓ v). It is clear by inspection
that this is the case for (C2) = H1 = R1, and hence we only need to check the (FORB)
condition for (C2). Since (FIX) is already verified, it implies (FORB) for subsets of
size one in R. It remains to verify (FORB) for subsets of size two in R.

If we apply (FORB) to a and c, then both a and c will be left with one available
color in their lists. Vertex b still has three colors in its list. Therefore, we can greedily
color a, c, and b in this order to obtain a proper coloring for (C2). If we apply (FORB)
to a and b, then the color for a will be fixed, and each of b and c will be left with two
possible colors. Therefore, we can greedily color a, b, and c in this order to obtain a
proper coloring for (C2). By symmetry, the case of applying (FORB) to b and c is also
verified, implying that (C2) is reducible.

Let H2 be a subgraph of G isomorphic to (C5). Let R2 ⊂ H2 denote the reducible
part of (C5), i.e. the subgraph of H2 induced by vertices u1, . . . ,u4. For each i= 1, . . . ,4,
we will check the (FIX) condition for ui. Let Li be an arbitrary list assignment where
each vertex in R is assigned a list of size ((4−degH +degR) ↓ ui). We will now show
that R can be properly colored. In each case we list the order of vertices in greedy
coloring.

– L1 : u1,u2,u4,u3.
– L2 : u2,u1,u4,u3.
– L3 : u3,u4,u2,u1.
– L4 : u4,u3,u2,u1.

Next we need to verify that H satisfies the (FORB) condition. However, only one
subset of R of size two is F -free: {u1,u2}. In that case R can be colored greedily in
the following order u1,u2,u4,u3. Thus, (C5) is a reducible configuration. ⊓⊔

4.2 Discharging

In this section we prove the following lemma, which by Lemma 1 implies Theorem 1.

Lemma 6 Let G be a connected {K4,C5,C6,C7,B5}-free plane graph. Then G con-

tains at least one of the reducible configurations (C1)–(C13).

Proof Suppose for contradiction that G is a connected {K4,C5,C6,C7,B5}-free plane
graph that contains none of the configurations (C1)–(C13). We use discharging to
obtain a contradiction with Euler’s formula.

We denote the initial charge by ch. For every vertex v, we let ch(v) = deg(v)−4,
and for every face f we let ch( f ) = ℓ( f )−4, where ℓ(F) is the length of the facial
walk. For convenience we will also assign charge to the edges of G. The initial charge
is 0 for each edge. By Euler’s formula, the total sum of initial charges is −8.

We sequentially apply the following rules (see also Figures 5 and 6) that move the
charge around, while keeping the sum of charges unchanged. The charge at the end is
called the final charge. The final charges will be all nonnegative, contradicting that
their sum is −8.

(R1) Every 8+-face sends charge 1/2 to every incident 3-face and 4-face for every edge
they have in common.
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(R2) For every edge e that is not incident with any 3-face or 4-face the following applies.
If e is a bridge, e receives charge 1 from the unique face incident with e. If e is not
a bridge, e receives charge 1/2 for each of the two faces incident to e.

(R3) For every vertex u and an incident edge e = uz with charge 1:
(R3a) If u and z are both 3-vertices, then e sends charge 1/2 to u.
(R3b) If u is a 3-vertex and z is 4+-vertex, then e sends charge 1 to u.
(R3c) If z is a 4+-vertex, u is the middle 4-vertex of the diamond Dia(4−3,4,4+),

and v is the 3-vertex on this diamond, then e sends 1 to v.
(R3d) If z is a 4+-vertex, u is one of the middle 4-vertices of the diamond Dia(4−

4,3,4), and v is the 3-vertex on this diamond, then e sends 1/2 to v.
(R4) Every 4-face sends charge 1 to every incident 3-vertex.
(R5) Let f be a 3-face that is not part of a diamond. If exactly one vertex u of f has

degree 3, then f sends 1/2 to u.
(R6) The following rules apply for a 5-vertex u. If u is a middle vertex in

(R6a) Dia(5−3,4,4) or Dia(5−3,5,4), then u sends 1 to the middle 3-vertex;
(R6b) Dia(5−3,6+,4+) or Dia(5−3,5,5), then u sends 1/2 to the middle 3-vertex;
(R6c) Dia(5−5+,3,3), then u sends 1/4 to every of the two side 3-vertices;
(R6d) Dia(5−4+,4+,3), then u sends 1/2 to the side 3-vertex.

(R7) The following rules apply for every 5-vertex u and a diamond D, where v is a side
vertex of D. If D is

(R7a) Dia(4−4,5,3), then u sends 1/2 to the side 3-vertex;
(R7b) Dia(4−3,5,5+), then u sends 1/2 to the middle 3-vertex;
(R7c) Dia(5−3,5,4+) and u has not already sent 1 to another diamond under rule

(R6a), then u sends 1/2 to the middle 3-vertex.
(R8) The following rules apply for every 6+-vertex u and a diamond D, where u is a

side vertex of D. If D is
(R8a) Dia(5−3,6+,4+), then u sends 1/2 to the middle 3-vertex;
(R8b) Dia(4−4,6+,3), then u sends 1/2 to the side 3-vertex;
(R8c) Dia(4−3,6+,4+), then u sends 1/2 to the middle 3-vertex.

(R9) The following rules apply for every 6+-vertex u and a diamond D, where u is a
middle vertex of D. If D is

(R9a) Dia(6+−4+,3,3) then u sends 1/2 to each of the side vertices;
(R9b) Dia(6+−4+,4+,3), then u sends 1 to the side 3-vertex;
(R9c) Dia(6+−3,4+,4+) then u sends 1 to the other middle 3-vertex.

u

1/2

(R3a)

u

1

(R3b)

+

1

+

u

(R3c)

Fig. 5 Discharging rules described in Lemma 6 used for Theorem 1 (Part 1)
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+

+

(R6b)

1/4
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+

(R6c)

1/2 +

+

(R6d)

1/2

(R7a)

1/2

+

(R7b)
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(R7c)

1/2

+
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1/2

+

(R8b)
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+

+

(R8c)

1/2

1/2+ +

(R9a)

1

+ +

+

(R9b)

1
+

+

+

(R9c)

Fig. 6 Discharging rules described in Lemma 6 used for Theorem 1 (Part 2)
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Claim 6 The final charge of every face of G is nonnegative.

Proof Given that G does not contain any faces of length 5,6 or 7, we consider 8+-faces,
4-faces, and 3-faces as three separate cases covering everything.

Suppose that f is an 8+-face. Then the initial charge of f is equal to ℓ( f )−4. By
(R1) and (R2), f sends at most 1

2 for each of these edge that is not a bridge and charge

1 to each bridge by (R2). This means that f sends at most
⌈

ℓ( f )
2

⌉

≤ ℓ( f )− 4 total

charge. Since (R1) and (R2) are the only rules requiring an 8+-face to send out charge,
every 8+-face has nonnegative final charge.

Suppose that f is a 4-face. Then f has its initial charge 0. Since C5, C6, and C7

are forbidden subgraphs, f must be incident with four 8+-faces. By (R1), each face
sharing an edge with f sends charge 1

2 to f for every edge they have in common,
leaving f with a total charge of 2 before applying (R2)–(R9). Given that (C2) is a
reducible configuration, f cannot contain more than two 3-vertices. Thus, (R4) applies
to f at most twice, which decreases the charge at f by at most 2. Since no other rules
apply to 4-faces, f has nonnegative final charge.

Next suppose that f is a 3-face that is not contained in a diamond. Every face
incident to f must be an 8+-face since C5, C6, and C7 are forbidden subgraphs. This
means that after applying (R1), f has charge 1

2 . Among rules (R2)–(R9), only (R5)
requires a 3-face to send out charge. If (R5) applies to f , then it only requires f to
send a charge of 1

2 . This means that f has nonnegative final charge.
Lastly, assume that f is a 3-face contained in a diamond D. Then f shares one

edge with another 3-face. Since C5, C6, and C7 are forbidden subgraphs, f shares its
other two edges with 8+-faces. By (R1), f receives charge at least 1

2 for each edge it
shares with an 8+-face, leaving f with charge at least 0 before applying (R2)–(R9).
None of these rules, however, demand charge from a 3-face that is contained in a
diamond, implying that f will end with nonnegative charge. As we have considered
all possible faces in G, this completes the proof of Claim 6. ♦

Claim 7 The final charge of every edge of G is nonnegative.

Proof Let e = uz be an edge of G. If e is incident with a 3-face or a 4-face, then none
of the rules apply to e and there is nothing to prove. Otherwise, e has charge 1 after
applying (R2). As (R3) is the only rule that requires any edge to send out charge, it
suffices to verify that e will never be asked to give more than 1 charge under (R3).

If u and z are both 3-vertices, then only (R3a) applies to e and the edge sends
exactly 1

2 to each of u and z. If u is a 3-vertex and z is a 4+-vertex, then only (R3b)
applies, and e send exactly 1 to u.

If u is a 4+-vertex and z is a 5+-vertex, then (R3) does not apply with z and e sends
charge at most 1 using either (R3c) or (R3d).

The remaining case is that both u and z are 4-vertices. The rules demand e to send
charge more than 1 if by symmetry (R3c) applies with u and one of (R3c) and (R3d)
applies with z. However, this would give reducible configurations (C9) and (C12),
respectively. Therefore, no edge in G that begins with charge 1 will ever be asked to
send out more than 1 total charge, completing the proof of Claim 7. ♦
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Claim 8 The final charge of every 4+-vertex is nonnegative.

Proof Suppose that v is a 4-vertex. The initial charge of v is 0, and there are no rules
requiring v to send out charge, so v will end with nonnegative charge.

Next suppose that v is a 5-vertex. Then the initial charge of v is 1. Only (R6)
and (R7) require a 5-vertex to distribute charge. Therefore, we may assume that v is
incident with at least one diamond. Given that G does not contain any C5, C6, C7, or
B5 subgraphs, v is incident with at most two diamonds.

First suppose that v is incident with exactly one diamond D. If v is a middle vertex
of D then only (R6) applies to v, and if v is a side vertex of D then only (R7) applies
to v. As neither of these two rules will require v to send out charge more than 1, v will
end with nonnegative charge.

Next suppose that v is incident with two diamonds D1 and D2. Since G does not
contain any C5, C6, C7, or B5 subgraphs, D1 and D2 must be edge disjoint. Since
deg(v) = 5, v cannot be a middle vertex of both diamonds. If v is a side vertex of both
diamonds, then only (R7) applies to v. As (R7) will not require v to send charge more
than 1

2 to either diamond, v will end with nonnegative charge.
Therefore, we may assume that v is a middle vertex of D1 and a side vertex of D2.

In this case, it is possible that both (R6) and (R7) apply to v. Among the subcases
of (R6), only (R6a) requires v to send out charge for more than 1

2 , and (R7) will
never ask v send out charge more than 1

2 . Given that configuration (C8) is reducible,
(R6a) cannot apply with (R7a). Next, given that configuration (C10) is reducible,
(R6a) cannot apply with (R7b). By assumption of (R7c), (R6a) cannot apply with
(R7c). Therefore v is never asked to send more than 1, implying that v will end with
nonnegative charge.

Now suppose that v is a 6+-vertex. The only rules that apply to v are (R8) and
(R9). Under these rules, v sends at most 1 to all diamonds that contain v as a middle
vertex, and v sends at most 1/2 to all diamonds that contain v as a side vertex. Assume
that v is the middle vertex of k distinct diamonds, and incident to m other faces of size
3. By Lemma 4, the final charge of v is at least

deg(v)−4− k−
m

2
= deg(v)−4−

3k+2m

4
−

k

4
≥

3deg(v)
4

−4−
1
4

⌊deg(v)
3

⌋

≥
2deg(v)

3
−4,

and 2deg(v)
3 − 4 is nonnegative whenever deg(v) ≥ 6. This completes the proof of

Claim 8. ♦

Claim 9 The final charge of every 3-vertex that is not contained in a diamond is

nonnegative.

Proof Let v be a 3-vertex that is not contained in a diamond. Then the initial charge
of v is −1. As there are no rules requiring v to send out charge, we only need to verify
that v will receive charge at least 1. First suppose that v is not incident to any 3-faces
or 4-faces. Then each of the three edges incident to v receive charge 1 under (R2).
Next, each of these edges sends 1

2 to v by (R3), leaving v with a charge of 1
2 .
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Now suppose that v is incident to at least one 4-face f . By (R4), v receives 1 from
f and we are done. Therefore, we may assume that v is not incident to any 4-face,
and that v is incident to at least one 3-face T . By assumption, T is not contained in a
diamond.

– Case 1: T contains another 3-vertex. In this case, v must be adjacent to a 4+-vertex
u that is not contained T , since (C2) is reducible. Then by (R3b), v receives a
charge of 1 from the edge uv.

– Case 2: T contains two 4+-vertices. Again, let u be the neighbor of v that in not
contained in T . Here, v will receive at least 1

2 from (R3). With that being said, T

will send the remaining 1
2 to v under (R5).

This completes the proof of Claim 9. ♦

Claim 10 The final charge of every 3-vertex that is incident to a diamond is nonnega-

tive.

Proof Assume that v is a 3-vertex incident to a diamond D. Since (C2) and (C3) are
reducible, there is at most one other 3-vertex incident to D. Since the initial charge of
v is −1, and there is no rule requiring a 3-vertex to send charge, it suffices to show that
v will always receive charge at least 1 after applying rules (R1)–(R9). We consider the
following cases.

Case 1: v is the only 3-vertex incident to D and v is a side vertex of D. Given the
list of forbidden subgraphs in G, the other two faces incident to v must be 8+-faces.
Hence by (R3), v receives charge at least 1

2 from the only edge incident to v that is
not a part of D. There are three subcases to Case 1 showing how v gets another 1

2 of
charge.

1. D = Dia(4−4,4,3)
Let x and y denote the two middle vertices of D. Since (C11) is reducible, each of
the neighbors of x and y that are not contained in D must be 4+-vertices. Therefore
by (R3d), v receives 1

2 from the each of two edges incident to x and y that are not
contained in D.

2. D = Dia(4−4,5+,3)
Let u denote the other side vertex in D. If u is a 5-vertex, then v receives 1

2 from u

by (R7a). If u is a 6+-vertex, then v receives 1
2 from u by (R8b).

3. D = Dia(5+−4+,4+,3)
Let u denote the 5+-vertex that is the middle vertex of D. If d(u) = 5, then u sends
charge 1

2 to v by (R6d). If d(u)≥ 6, then u sends charge 1
2 by (R9b).

In all three cases, the final charge of v is nonnegative.

Case 2: v is the only 3-vertex incident to D and v is a middle vertex of D. There
are four subcases to Case 2. In each v receives charge 1 which leads to nonnegative
final charge.

1. D = Dia(4−3,4,4+)
Let u denote the middle 4-vertex of D. Since (C4) is reducible, the unique neighbor
z of u not contained in D must be a 4+-vertex. Therefore, the edge uz will send
charge 1 to v by (R3c), leaving v with nonnegative charge.
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2. D = Dia(4−3,5+,5+)
Let x and y denote the two side vertices of D. If d(x) = 5, then x will send charge
1
2 to v by (R7b). If d(x)≥ 6, then x will send charge 1

2 to v by (R8c). As the rules
apply to y identically as they do to x, it follows that v will end with nonnegative
charge.

3. D = Dia(5−3,4+,4+).
Let u denote the middle 5-vertex of D and let x and y denote each of the side
4+-vertices of D with d(x)≤ d(y). If d(x) = d(y) = 4, then u sends charge 1 to v

by (R6a). If d(x) = 4 and d(y) = 5, then u sends charge 1 to v by (R6a). If d(x) = 4
and d(y)≥ 6, then u sends charge 1

2 to v by (R6b) and y sends 1
2 to v by (R8a).

If d(x) = d(y) = 5, then u sends charge 1
2 to v by (R6b). Since (C13) is reducible,

x and y will not both send charge 1 to a vertex of a different diamond under rule
(R6a). Therefore, v receives charge 1

2 from either x or y by (R7c). If d(y)≥ 6, y

sends charge 1
2 to v by (R8a) and u sends charge 1

2 to v by (R6b). This leaves v

with nonnegative charge.
4. D = Dia(6+−3,4+,4+)

Let u denote the middle vertex of D. Then u sends charge 1 to v by (R9c). This
leaves v with nonnegative charge.

Case 3: There are two 3-vertices incident to D, one of which is v. Let x denote the
other 3-vertex incident to D. Since (C5) and (C6) are reducible configurations, both x

and v are side verties of D. Since (C7) is reducible, we may assume that if one of the
middle vertices of D is a 4-vertex, then the other middle vertex is a 6+-vertex. There
are two subcases to Case 3.

1. D = Dia(6+−4,3,3).
Let u denote the 6+-vertex incident to D. By (R9a), u sends charge 1

2 to v. Since v

is a side vertex of D, and deg(v) = 3, it follows that v is incident to exactly one
edge that is not contained in D. By (R3), v will receive charge at least 1

2 from this
edge, leaving v with nonnegative charge. The case of x is symmetric.

2. D = Dia(5+−5+,3,3)
Since v is a side vertex of D, and deg(v) = 3, it follows that v is incident to exactly
one edge that is not contained in D. By (R3), v will receive charge at least 1

2 from
this edge.
Let a and b denote the middle vertices of D. If d(a) = 5, then v receives charge
1
4 from a by (R6c). If d(a) ≥ 6, then v receives charge 1

2 from a by (R9a). As
the rules apply to b identically as they do to a, it follows that v will end with
nonnegative charge. Again, the case of x is symmetric.

Since we have covered all cases where v is contained in a diamond, this completes the
proof of Claim 10. ♦

Claims 6–10 show that the final charge of every vertex, face, and edge is nonnega-
tive. Hence the sum of the charges is also nonnegative, which is a contradiction with
the sum of the initial charges being −8. This finishes the proof of Lemma 6. ⊓⊔
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5 Proof of Theorem 2

5.1 Reducible configurations

We will use the following list of enhanced weakly reducible configurations. See
Figure 8 for illustration of these configurations.

(D1) A vertex of degree at most 2.
(D2) T (3,3,3) and T (3,3,4).
(D3) Two diamonds D1 = Dia(6−3,4,3) and D2 = Dia(6−3,4,4) sharing a middle

6-vertex.
(D4) Dia(3−3,4+,4+) where the side vertices are in the boundary.
(D5) Dia(4−5,3,3).
(D6) Dia(4−3,4,4).
(D7) Dia(5−3,4,4) with another 3-vertex adjacent to the 5-vertex.
(D8) Dia(5−5,3,3) with another 3-vertex adjacent to one of the 5-vertices.
(D9) Three 3-vertices u,v,w such that uv and vw are edges, and u and w are independent.

(D10) Dia(5−3,4,3).
(D11) T (5,3,3) with another 3-vertex adjacent to the 5-vertex.
(D12) Two triangles T1 = T2 = T (6,3,3) sharing the 6-vertex.

In the next section we will prove the following theorem, showing that (D1)–(D12)
are unavoidable. We remark that no identification of vertices in (D1)–(D12) is possible
since otherwise, it creates a forbidden subgraph. It is possible that some external edges
can be identified in (D8), (D9), and (D11). We explicitly list those cases in Figure 8 as
(D8’), (D9’), (D11’), and (D11”).

Theorem 11 Every {K4,C5,C6,C7}-free planar graph contains one of (D1)–(D12).

Let F = {K4,C5,C6,C7,Bℓ} for any fixed ℓ. We will show that (D2), (D3), and
(D5)–(D12) are enhanced weakly (F ,4)-boundary-reducible configurations. We will
also show that (D4) is only a weakly (F ,4)-boundary-reducible configuration. How-
ever, the only neighbors of the vertices in the reducible part of (D4) are the non-
adjacent vertices in the boundary, and all non-adjacent pairs that do not forbid F

in each of (D1)–(D12) form loose sets, implying that the condition required by the
enhanced weak resolution is satisfied.

In order to use Lemma 2, we want to have an enhanced weak (F ,4,b,β )-
resolution for some β and b. First, we check the condition (TIGHT) in the following
lemma.

Lemma 7 Let G be an F -free graph containing H, where H is one of (D2)–(D12).

The number of H-tight vertices is at most β ≤ 10ℓ.

Proof Let H be one of (D2)–(D12) and v be an H-tight vertex adjacent to u and w in H.
First, suppose that u and w are not adjacent. There are no non-edges in (D2) and (D4).
The non-edge in (D9) forms a loose set. By inspection of each pair of non-adjacent
vertices in (D5)–(D8) and (D10)–(D12), we observed that if v was adjacent to any of
these pairs, we would obtain a C5 or a C6, contradicting that G is F -free.
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Second, suppose that uw is an edge. As Bℓ is in F , the number of H-tight vertices
for uv is at most ℓ−3. Since H is one of (D2)–(D12), it has at most 10 edges. This
bounds that the total number of H-tight vertices as β ≤ 10(ℓ−3)≤ 10ℓ. ⊓⊔

Lemma 8 The configurations (D2), (D3), (D5)–(D12) are enhanced weakly (F ,4)-
boundary-reducible. See Figure 8 for illustration.

Proof Given the rules for enhanced weak (F ,k)-boundary reducibility, it is straight-
forward to verify that configurations (D2)–(D12) are reducible. We also provide a
computer program at http://lidicky.name/pub/flexibility2 to do so. One
notable difference is that the greedy algorithm is not always sufficient. We also added
test for Gallai tree, which helped. Just greedy algorithm could end with a diamond,
where middle vertices have lists L of size 3 and side vertices would have lists of size 2,
which is not a Gallai tree and hence it is L-colorable, but not in a greedy way.

In order to highlight the difference between regular and weak reducibility, we will
give a short proof that (D10) is weakly (F ,k)-boundary reducible, but not (F ,k)-
boundary reducible. Let R be a subgraph of a graph G defined by configuration (D10).
Let a,b,c and d be vertices of R. The initial list sizes of a list assignment L as defined
by the function (4− (degG +degR)) are given in Figure 7.

d

b

a c

3

2

4 2

Fig. 7 Configuration (D10)

First we will show that we cannot fix the color of a and still properly color R.
Indeed, if the lists of b and c are identical and both contained the color assigned to a,
there would be no proper L-coloring of R.

That being said, if we fix the color of any other vertex in R, then we will still
be able to properly L-color R. Therefore, we can only apply (FIX) to a subset of the
vertices of R. Given the graphs in F , it immediately follows that the graph H = R is
weakly (F ,k)-boundary reducible, but as we have show, it is not (F ,k)-boundary
reducible.

In the enhanced version, the main trick is that we never need to check (FORB)
on two adjacent vertices. We do that by allowing (FIX) only on vertices, where their
external neighbors are non-adjacent. The easiest way to do so is to use (FIX) only on
vertices that have at most 1 external neighbor. In case of (D10), the only option for
(FIX) is the vertex d. ⊓⊔

2 This program is also available as a part of the sources in our arXiv submission [9] (file
reducible_configurations.sage).
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3
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3

(D2)

4 4

3

2

2

2

4

(D3)

2 2

(D4)

3 2

3

3

(D5)

3 4

2

2

(D6)

4 3

2

2

2

(D7)

2 3

3

3

2

(D8)

3 3

3

3

3

(D8’)

2

3

2

(D9)

3

3

3

(D9’)

4 2

2

3

(D10)

3

3

2 2

(D11)

4

3

2 3

(D11’)

3

4

2

3

(D11”)

3

3

2 3

3

(D12)

Fig. 8 Reducible configurations for Theorem 2. The labels give the list sizes remaining after accounting
for the external neighbors and boundary vertices. The vertices whose colors cannot be fixed are drawn
as squares. These vertices cannot be fixed because either their coloring does not extend or they have two
external neighbors, with the one exception being (D4).
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The above works in all cases except (D1) and (D4). As the case (D1) was already
discussed, we now justify the usage of the configuration (D4).

Lemma 9 The configuration (D4) is weakly (F ,4)-boundary-reducible and for all

vertices x in its reducible part holds that |N(x)∩R j| ≤ 1 or N(x)∩R j is a loose set,

where R j is a reducible part of some other configuration.

Proof The check of the reducibility is straightforward.
The only vertices adjacent to the vertices in the reducible part are the two vertices

in the boundary which are non-adjacent as K4 ∈ F . Therefore, it is sufficient to
check non-adjacent non-F -forbidding vertices in configurations (D1)–(D12). As was
already discussed the only such a non-edge is the non-edge in (D9) which forms a
loose set. ⊓⊔

5.2 Discharging rules

In this section, we prove the following Lemma 10, that makes Theorem 2 a corollary
of Lemma 2.

Lemma 10 Let G be a connected {K4,C5,C6,C7}-free plane graph. Then G contains

at least one of the reducible configurations (D1)–(D12).

Proof Assume for contradiction that G is a {K4,C5,C6,C7}-free plane graph with no
(D1)–(D12). We will use discharging to arrive to a contradiction.

For every vertex v assign the initial charge ch(v) := 2deg(v)− 6, and for every
face f assign ch( f ) := ℓ( f )−6, where ℓ(F) is the length of the facial walk around
f . By Euler’s formula, the total initial charge of all vertices and faces is −12. We
sequentially apply the following rules (see also Figures 9 and 10) that transfer charge.
The charge after applying all the rules is called the final charge. We will show that the
final charge is nonnegative for every vertex and every face, which is a contradiction
with the total sum of all charges being −12.

(R1) Every 8+-face sends charge 1
4 to every incident 3-face and 4-face for every edge

they have in common.
(R2) For every 3-vertex v that is incident to a triangle t and an edge uv that is not part

of any triangle, the following applies. The two faces3 that are incident to uv, each
send the following charge to t:

(R2a) 1
8 if deg(u) = 3,

(R2b) 1
4 if deg(u)≥ 4.

(R3) Every 4-vertex sends charge 1 to every 3-face and 4-face adjacent to it.
(R4) Every 5-vertex sends charge 1 to every 4-face adjacent to it.
(R5) Every 5-vertex that is a middle vertex in Dia(5− 3,4,4), Dia(5− 3,3,5+), or

Dia(5−5,3,3) sends charge 3
2 to every 3-face of such diamond.

(R6) Every 5-vertex v, where rule (R5) does not apply, sends charge 1 to every 3-face
of a diamond having v as a middle vertex.

3 may be the same face twice if uv is a bridge
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(R7) For every 3-face f = {v,u,w} and 5-vertex v such that f is not part of a diamond
having v as a middle vertex, the following applies.

(R7a) If both deg(u)≥ 4 and deg(w)≥ 4, then v sends charge 1 to f .
(R7b) Otherwise v sends charge 2 to f .

(R8) Every 6+-vertex v sends charge 1 to every 4-face adjacent to it, and 2 to every
3-face f adjacent to it, unless f is part of a diamond having v as a middle vertex.

(R9) Every 6-vertex v sends charge 7
4 to every 3-face of every Dia(6− 3,3,4) that

contains v.
(R10) Every 6-vertex v sends charge 3

2 to every 3-face of Dia(6−3,4,4) that contains v.
(R11) Every 6-vertex v sends charge 5

4 to every 3-face of any diamond d having v as a
middle vertex, where (R9) and (R10) did not apply.

(R12) Every 7+-vertex v sends charge 7
4 to every 3-face of any diamond having v as a

middle vertex.
(R13) For every two 3-faces f ,g that form a diamond, if g has positive charge while f

has negative charge, then g gives f all its positive charge.

v

1

(R3)

v

1

(R3)

v

1

(R4)

v 1.5

1.5

(R5)

v

+

1.5

1.5

(R5)

v 1.5

1.5

(R5)

v 1

1

(R6)

v

1

(R7a)

v

2

(R7b)

v

1

(R8)

v

2

(R8)

v 1.75

1.75

(R9)

Fig. 9 Discharging rules described in Lemma 10 used for Theorem 2 (Part 1)



26 Lidický, Masařík, Murphy, and Zerbib

v 1.5

1.5

(R10)

1.25

1.25

(R11)

1.75

1.75

(R12)

Fig. 10 Discharging rules described in Lemma 10 used for Theorem 2 (Part 2)

Claim 12 The final charge of every vertex is nonnegative.

Proof There are no vertices of degree less than 3, by (D1). The initial charge of a
3-vertex is 0, and this does not change in the discharging process. A 4-vertex v has
initial charge 2. It can be adjacent to at most two 4−-faces, or otherwise a cycle Ck

with 5 ≤ k ≤ 7 is created. Therefore (R3) applies on v at most twice and no other rules
apply. Hence v has a nonnegative final charge.

Let v be a 5-vertex that is not a middle vertex of a diamond. Note that v can be
adjacent to at most two faces of size at most 4, or otherwise a cycle Ck with 5 ≤ k ≤ 7
is created. Thus, the initial charge of v is 4, and (R4) and (R7) are applied together at
most twice, implying that v has nonnegative final charge.

Let v be a 5-vertex that is a middle vertex of a diamond d. Then v is adjacent
to at most one more face f of size at most 4, and f does not share any edge with d,
or otherwise a cycle Ck with 5 ≤ k ≤ 7 is created. If (R5) does not apply to v, then
by (R4), (R6) and (R7), v sends 1 to each of the two 3-faces in d and at most 2 to
f , leaving v with final nonnegative charge. Suppose (R5), where v sends charge 3
to the faces in d, applies to v. If v sends charge of at most 1 to f , then it has final
nonnegative charge. So by (R4) and (R7a) we may assume that f is a triangle {v,u,w}
with d(u) = 3 (and d(w)≤ 4). See Figure 11 for an illustration. But then G contains
(D7), (D11), or (D8) as d is Dia(5− 3,4,4), Dia(5− 3,3,5+), or Dia(5− 5,3,3),
respectively. Hence (R7b) does not apply to v and the final charge is nonnegative.

Let v be a 6-vertex that is the middle vertex of k diamonds and it is adjacent to m

faces of size 3 or 4 that are not part of a diamond in which v is a middle vertex. By
Lemma 4, 6 ≥ 3k+2m. Recall that ch(v) = 6. Suppose k = 2, then m = 0. By (D12)
and (D3), (R9) cannot apply twice and (R9) cannot apply at the same time as (R10).
Then by (R9)–(R11), the final charge of v is at least 6−3.5−2.5 = 0 or 6−3−3 = 0.
If k = 1 and m ≤ 1, then by (R8)–(R11), the final charge of v is at least 6−3.5−2 > 0.
Finally, if k = 0 and m ≤ 3 then by (R8), the final charge of v is at least 6−3 ·2 = 0.

Let v be a 7+-vertex that is the middle vertex of k distinct diamonds, and v is
adjacent to m faces of sizes 3 and 4 that are not part of a diamond in which v is a
middle vertex. Then by Lemma 4, deg(v)≥ 3k+2m. By (R12) v sends total weight
of 3.5k to the k diamonds in which v is a middle vertex, and by (R8) it sends at most
2m to the other faces of size at most 4 it is adjacent to.
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v
u

w

f
v

u

w

f

v
u

w

f

Fig. 11 Three options in a subcase of Claim 12 where v is a 5-vertex that is a middle vertex of a diamond.

Altogether, the final charge of v is at least

2deg(v)−6−3.5k−2m = 2deg(v)−6− (3k+2m)− k/2

≥ deg(v)−6−
1
2
·
⌊deg(v)

3

⌋

,

where the last inequality follows from Lemma 4, and deg(v)− 6− 1
2 ·

⌊

deg(v)
3

⌋

≥ 0

whenever deg(v)≥ 7. ♦

Claim 13 The final charge of every face that is not contained in a diamond is nonneg-

ative.

Proof By (R1) and (R2), an 8+-face f sends out a total charge of at most ℓ( f )
4 . Thus

the final charge of f is at least ℓ( f )− 6− ℓ( f )
4 = 3ℓ( f )

4 − 6 which is nonnegative if
ℓ( f )≥ 8.

Let f be a 3-face that is not part of any diamond. Then the faces sharing an edge
with f must be of size at least 8, since otherwise one of them is of size at most 4,
which forces a diamond or a cycle Ci with 5 ≤ i ≤ 7 together with f . Hence (R1)
applies three times with f and f has charge −3+ 3

4 =−2.25 after (R1).
By (D1) and (D2), one of the following holds (see Figure 12):

(1) f is T (3,3,5+), or
(2) f is T (3,4+,4+), or
(3) f if T (4+,4+,4+).
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T (3,3,5+) T (3,4+,4+) T (4+,4+,4+)

Fig. 12 Three possible triangles distinguished within Claim 13 that depicts Cases (1), (2), and (3), from
left to right.

In case (1), (R2a) applies twice giving charge 4
8 to f . In addition, (R7b) or (R8)

applies and the final charge of f is at least −3+ 3
4 +

1
2 +2 ≥ 0.

In case (2), (R2) applies once, giving charge 2
8 to f . Rules (R3), (R7) and (R8)

apply together twice with f , each time f receives charge at least 1, and thus the final
charge of f is at least −3+ 3

4 +
1
4 +2 ≥ 0.

In case (3), rules (R3), (R7), and (R8) together apply three times to f and thus the
final charge of f is at least −3+ 3

4 +3 > 0.
If f is a 4-face, the faces sharing an edge with f must be of size at least 8, since

otherwise one of them is of size at most 4, which forces a cycle Ci of size 5 ≤ i ≤ 7
with f . Hence (R1) applies four times with f contributing charge 4

4 . By (D9) f has at
least two 4+-vertices. Thus at least one of (R3), (R4), and (R8) applies to f , giving
charge 1 to f . Hence the final charge of f is at least −2+1+1 ≥ 0. ♦

Claim 14 The final charge of every 3-face that is contained in a diamond is nonnega-

tive.

Proof In the light of (R13), we will consider the faces that form a diamond together
in pairs and show that as a pair, they receive sufficient charge. Let f and g be 3-
faces sharing an edge, i.e., they form a diamond. Observe that in this case the other
faces sharing edges with f and g must be of size at least 8, for otherwise one of
them is of size at most 4, which forces a cycle Ci of size 5 ≤ i ≤ 7 with f and
g. Therefore, (R1) applies twice to each f and g resulting in charge ch′ such that
ch′( f ) = ch′(g) = −3+ 2

4 = −2.5. Hence we aim to show that f and g together
receive at least 5 more charge. We denote the vertices of f by u,v,x where u,v are
shared with g, and by y the third vertex of g.

By symmetry, we assume that deg(u)≥ deg(v) and deg(y)≥ deg(x). Note that by
(D4), deg(u)≥ 4 and by (D1) the degree of each of the other vertices is at least 3.

We split the analysis into cases based on the type of diamond f and g form.

– Dia(4−3,⋆,⋆)
By (D2) and (D6), deg(x) ≥ 4 and deg(y) ≥ 5. Hence we are in case Dia(4−
3,4+,5+). For u, (R3) applies twice, for x one of (R3), (R7b), or (R8) applies, and
for y one of (R7b), or (R8) applies. Thus the charge f and g receive using these
rules is at least 3 ·1+2 = 5. Hence the final charges of f and g are nonnegative.
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– Dia(5−3,3,3), Dia(5−3,3,4)
Reducible by (D9) and (D10).

– Dia(5−3,3,5+)
In this case, (R5) applies to u and (R7b) or (R8) applies to y. This gives charge
2 ·1.5+2 = 5. Hence the final charges of f and g are nonnegative.

– Dia(5−3,4,4)
In this case, (R5) applies to u. In addition (R3) applies to both x and y. This gives
charge 2 ·1.5+1+1 = 5. Hence the final charges of f and g are nonnegative.

– Dia(5−3,4+,5+)
In this case, (R6) applies to u. In addition (R3), (R7b), or (R8) applies to x and
(R7b), or (R8) to y. This gives charge at least 2 · 1+ 1+ 2 = 5. Hence the final
charges of f and g are nonnegative.

– Dia(6−3,3,3)
Reducible by (D9).

– Dia(6−3,3,4)
By (R9), u contributes charge 3.5 and by (R4), y contributes charge 1. Let z be
a neighbor of x that is not u or v. By (D9), deg(z) ≥ 4 Hence the application of
(R2b) around x contributes charge 1/2. This gives charge 3.5+1+0.5 = 5 in total.
Hence the final charges of f and g are nonnegative.

– Dia(6−3,3,5+)
By (R11), u contributes charge 2.5 and by (R7b) or (R8), y contributes charge 2.
Let z be a neighbor of x that is not u or v. By (D9), deg(z)≥ 4 Hence the application
of (R2) around x contributes charge 1/2. This gives charge 2.5+2+0.5 = 5 in
total. Hence the final charges of f and g are nonnegative.

– Dia(6−3,4,4)
By (R10), u contributes charge 3 and by (R3), x and y each contribute charge 1.
This gives charge 3+ 1+ 1 = 5 in total. Hence the final charges of f and g are
nonnegative.

– Dia(6−3,4+,5+)
By (R11), u contributes charge 2.5, by (R3), (R7b) or (R8), x contributes charge
at least 1, and by (R7b) or (R8), y contributes charge 2. This gives charge at least
2.5+1+2 = 5 in total. Hence the final charges of f and g are nonnegative.

– Dia(7+−3,3,3)
Reducible by (D9).

– Dia(7+−3,3,4+)
By (R12), u contributes charge 3.5, by (R3), (R7b) or (R8), y contributes charge at
least 1. Let z be the neighbor of x that is not u or v. By (D9), deg(z)≥ 4 Hence the
application of (R2b) around x contributes charge 1/2. This gives charge at least
3.5+1+0.5 = 5 in total. Hence the final charges of f and g are nonnegative.

– Dia(7+−3,4+,4+)
By (R12), u contributes charge 3.5, by (R3), (R7b) or (R8), x and y each contribute
charge at least 1. This gives charge at least 3.5+1+1 = 5.5 in total. Hence the
final charges of f and g are nonnegative.

– Dia(4−4,⋆,⋆) and Dia(5−4,⋆,⋆)
By (D5), deg(y) ≥ 4. By (R3) or (R6), u and v together contribute charge 4, by
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(R3), y each contributes charge 1. This gives charge at least 4+ 1 = 5 in total.
Hence the final charges of f and g are nonnegative.

– Dia(6+−4+,⋆,⋆)
By (R3), (R6), (R11), and (R12), u and v together contribute charge at least
1.25+1.25+1+1. If (R3), (R7), or (R8) applies to y, then the total charge is at
least 5.5. Hence we can assume the case Dia(6+−4+,3,3). Then (R2a) or (R2b)
applies at each x and y and the total contribution is at least 0.5. This gives charge
at least 4.5+0.5 = 5 in total. Hence the final charges of f and g are nonnegative.

– Dia(5−5,3,3)
By (R5), u and v together contribute charge at least 4×1.5 = 6. Hence the final
charges of f and g are nonnegative.

– Dia(5−5,3+,4+)
By (R6), u and v together contribute charge at least 4×1 = 4. By (R3), (R7a), or
(R8), y contributes charge at least 1. This gives charge at least 4+1 = 5 in total.
Hence the final charges of f and g are nonnegative.

This concludes the proof of Claim 14. ♦

Since all final charges are nonnegative, this concludes the proof of Lemma 10. ⊓⊔
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10. Tomáš Masařík. Flexibility of planar graphs without 4-cycles. Acta Mathematica Universitatis

Comenianae, 88(3):935–940, 2019. URL: http://www.iam.fmph.uniba.sk/amuc/ojs/index.

php/amuc/article/view/1182.
11. Weifan Wang and Ko-Wei Lih. Choosability and edge choosability of planar graphs without five cycles.

Applied Mathematics Letters, 15(5):561–565, 2002. doi:10.1016/s0893-9659(02)80007-6.
12. Donglei Yang and Fan Yang. Flexibility of planar graphs without C4 and C5. arXiv preprint, 2020.

doi:10.48550/ARXIV.2006.05243.

Statements and Declarations

B. Lidický was supported in part by NSF grant DMS-1855653. T. Masařík received
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