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Abstract

The planar Turán number exP(Cℓ, n) is the largest number of edges in an n-vertex planar
graph with no ℓ-cycle. For n ∈ {3, 4, 5, 6}, upper bounds on exP(Cℓ, n) are known that hold with
equality infinitely often. Ghosh, Györi, Martin, Paulo, and Xiao [arxiv:2004.14094] conjectured
an upper bound on exP(Cℓ, n) for every ℓ ≥ 7 and n sufficiently large. We disprove this
conjecture for every ℓ ≥ 11. We also propose two revised versions of the conjecture.

1 Introduction

The Turán number ex(n,H) for a graph H is the maximum number of edges in an n-vertex graph

with no copy ofH as a subgraph. Turán famously showed that ex(n,Kℓ) ≤ (1− 1
ℓ−1)

n2

2 ; for example,
see [1, Chapter 32]. The Erdős–Stone Theorem [8, Exercise 10.38] generalizes this result, by

asymptotically determining ex(n,H) for every non-bipartite graph H: ex(n,H) = (1− 1
χ(H)−1)

n2

2 +

o(n2); here χ(H) is the chromatic number ofH. Dowden [3] considered the problem when restricting
to n-vertex graphs that are planar. The planar Turán number exP(n,H) exP (n,H)for a graph H is the
maximum number of edges in an n-vertex planar graph with no copy of H as a subgraph (not
necessarily induced). This parameter has been investigated for various graphs H in [6] and [4];
but here we focus mainly on cycles. It is well-known that if G is an n-vertex planar graph with
no triangle, then G has at most 2n − 4 edges; further, this bound is achieved by every planar
graph with each face of length 4. Thus, exP(n,C3) = 2n − 4 for all n ≥ 4. Dowden [3] proved

that exP(n,C4) ≤ 15(n−2)
7 for all n ≥ 4 and exP(n,C5) ≤ 12n−33

5 for all n ≥ 11. He also gave
constructions showing that both of these bounds are tight infinitely often.

For each k ∈ {4, 5}, form Θk from Ck by adding a chord of the cycle. Lan, Shi, and Song [7]

showed that exP(n,Θ4) ≤
12(n−2)

5 for all n ≥ 4, that exP(n,Θ5) ≤
5(n−2)

2 for all n ≥ 5, and that

exP(n,C6) ≤
18(n−2)

7 for all n ≥ 7. The bounds for Θ4 and Θ5 are tight infinitely often. However,
the bound for C6 was strengthened by Ghosh, Györi, Martin, Paulos, and Xiao [5], who showed
that exP(n,C6) ≤ 5n−14

2 for all n ≥ 18. They also showed that this bound is sharp infinitely
often. In the same paper, Ghosh et al. conjectured a bound on exP(n,Cℓ) for each ℓ ≥ 7 and each
sufficiently large n. In this note, we disprove their conjecture.
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Conjecture 1 ([5]; now disproved). For each ℓ ≥ 7, for n sufficiently large, if G is an n-vertex

planar graph with no copy of Cℓ, then e(G) ≤ 3(ℓ−1)
ℓ

n− 6(ℓ+1)
ℓ

. That is, exP(n,Cℓ) ≤
3(ℓ−1)

ℓ
n− 6(ℓ+1)

ℓ
.

In fact, we disprove the conjecture in a strong way.

Theorem 1. For each ℓ ≥ 11 and each n sufficiently large (as a function of ℓ), we have exP(n,Cℓ) >
3(ℓ−1)

ℓ
n − 6(ℓ+1)

ℓ
. Furthermore, if there exists a function s : Z

+ → Z
+ such that exP(n,Cℓ) ≤

3(s(ℓ)−1)
s(ℓ) n for all ℓ and all n sufficiently large (as a function of ℓ), then s(ℓ) = Ω(ℓlg2 3).

We prove the first statement of Theorem 1 in Section 2, and sketch a proof of the second
statement in Section 3. Our constructions modify that outlined by Ghosh et al. [5]. The main
building blocks, which we call gadgets, are triangulations, in which every cycle has length less than
ℓ. Clearly, a set of vertex-disjoint gadgets will have no Cℓ. To increase the average degree, we can
identify vertices on the outer faces of these gadgets as long as we avoid creating cycles. We can also
allow ourselves to create cycles among the gadgets as long as each created cycle has length more
than ℓ. So we must find the way to do this most efficiently.

Our notation is standard, but for completeness we record a few things here. We let e(G) and
n(G) denote the numbers of edges and vertices in a graph G. We write Cℓ for a cycle of length ℓ.

2 Disproving the Conjecture: a First Construction

To disprove Conjecture 1, we start with a planar graph in which each face has length ℓ + 1 (and
each cycle has length at least ℓ+ 1), and then we “substitute” a gadget for each vertex. As a first
step, we construct the densest planar graphs with a given girth g, for each fixed g ≥ 6. We will
also need that our dense graphs have maximum degree 3, as we require in the following definition.

Definition 1. If G is a planar graph of girth g with each vertex of degree 2 or 3, and e(G) =
g

g−2(n− 2), then G is a dense graph of girth g

dense

graph.

An easy counting argument shows that if G is an n-vertex dense graph of girth g, where
n = (5g − 10)k2 − g + 4 (for some positive even integer k), then G has 10k − 8 vertices of degree 3
and all other vertices of degree 2.

Lemma 2. Fix an integer g ≥ 3. If G is an n-vertex planar graph with girth g, then e(G) ≤
g

g−2(n− 2). For each g ≥ 6, this bound holds with equality infinitely often; specifically, it holds with

equality if k is a positive even integer and n = (5g − 10)k2 − g + 4. In fact, for each such k and n,
there exists a graph G that attains this bound and that has every vertex of degree 2 or 3.

Proof of Lemma 2. Let G be an n-vertex planar graph with girth g. Denote by n, e, and f the
numbers of vertices, edges, and faces in G. Every face boundary contains a cycle,1 so every face
boundary has length at least g. Thus, 2e ≥ gf . Substituting into Euler’s formula and simplifying
gives the desired bound: e ≤ g

g−2(n− 2).
Now we construct graphs for which the bound holds with equality. Before giving our full

construction, we sketch a simpler construction which has the desired properties except that it has

1To see this, form G
′ from G by deleting all cut-edges. Since each component of G′ is 2-connected, each face

boundary is either a cycle or a disjoint union of cycles (if G′ is disconnected). Note that each face boundary in G

contains all edges of a face boundary in G
′.
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maximum degree 6 (rather than each degree being 2 or 3, as we require). Begin with a 4-connected
n-vertex planar triangulation with maximum degree 6. We will find a set M of edges such that
every triangular face contains exactly one edge in M . To see that such a set exists, we consider the
planar dual G∗. Since G is a triangulation and 2-connected, G∗ is 3-regular. By Tutte’s Theorem,
G∗ contains a perfect matching M∗ (in fact, this was proved earlier by Petersen). The set M of
edges in G corresponding to the edges of M∗ in G∗ has the desired property: each triangle of G
contains exactly one edge of M .

To get the desired graph G′ with each face of length g, we replace each edge of G not in M with
a path of length ⌊(g+1)/3⌋ and replace each edge of G in M with a path of length g−2⌊(g+1)/3⌋.
Now each face of G′ has length 2⌊(g + 1)/3⌋+ (g − 2⌊(g + 1)/3⌋) = g. Thus, for G′ the inequality
2e(G′) ≥ gf(G′) in the initial paragraph holds with equality. So e(G′) = g

g−2(n(G
′) − 2). Since

each non-facial cycle of G has length at least 4, each non-facial cycle of G′ has length at least g.
Now we show how to also guarantee that each vertex of G′ has degree 2 or 3. The construction

is similar, except that it starts from a particular planar graph G with every face of length 6 and
every vertex of degree 2 or 3. Again, we find a subset M of edges such that each face of G contains
exactly one edge of M . To form G′ from G, we replace each edge not in M with a path of length
⌊(g+1)/6⌋ and we replace each edge in M with a path of length g− 5⌊(g+1)/6⌋. Thus, each face
of G′ has length exactly 5⌊(g + 1)/6⌋+ (g − 5⌊(g + 1)/6⌋) = g.

It will turn out that each non-facial cycle of G has either (i) length at least 10 or (ii) length at
least 8 and at least one edge in M . The corresponding non-facial cycle in G′ thus has length at
least g. In Case (ii) this follows from the calculation in the previous paragraph. In Case (i), when
g ≥ 10 this holds because 10⌊(g+1)/6⌋ ≥ 10(g− 4)/6 ≥ g. So consider Case (i) when g ≤ 9. Since
each path in G′ replacing an edge in G has length at least 1, each non-facial cycle in G′ has length
at least 10, which is at least g since g ≤ 9. Thus, what remains is to construct our graph G, specify
the set of edges M , and check that each non-facial cycle in G either has length at least 10 or has
length 8 and includes an edge in M .

We construct an infinite family of planar graphs Gk on 10k−2 vertices, with 5k−2 faces (each of
length 6), and with all vertices of degree 2 or 3; here k is an arbitrary positive even integer. Figure 1
shows Gk. (By Euler’s formula, each Gk has 6 vertices of degree 2 and 10k−8 vertices of degree 3.)
Each of k “diagonal columns” contains 10 vertices, except for the first and last, which each contain
one vertex fewer. We write vi,j to denote the jth vertex down from the top in column i, except
that we start column 1 with v1,2. So V = {vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ 10, (i, j) /∈ {(1, 1), (k, 10)}}.
The edge set consists of the boundary cycles of 4(k−1) 6-faces in the hexagonal grid, k−1 “curved
edges” vi,1vi−1,10, when 2 ≤ i ≤ k, as well two “end edges” v1,2v1,7 and vk,4vk,9. The matching M
contains vi,4vi+1,3 and vi,8vi+1,7 when 1 ≤ i ≤ k − 1, edge vi,1vi−1,10 for each odd i ≥ 3 if k ≥ 4,
and the end edges v1,2v1,7 and vk,4vk,9. It is easy to check that the only vertices with degree 2 are
v1,3, v1,5, v1,9, vk,2, vk,6, vk,8; the remaining 10k − 8 vertices all have degree 3.

We now show that every non-facial cycle has either (i) length at least 10 or (ii) length at least
8 and at least one edge in M . We denote by C2, C3, . . . , C5k−5 the facial cycles that do not use any
end-edge. Informally, C2 is the “top left” of these (containing v1,2), and subscripts increase as we
move down the first diagonal and then wrap around toroidally with the facial cycle containing v1,10
and two curved edges (see Figure 1), and continue on to the facial cycle containing vk,9. Formally,
each of these is Ck, where X denotes its vertex set and k := max{j/2 : vi,j ∈ X}+ 5 ∗min{i− 1 :
vi,j ∈ X}+ (|{i : vi,j ∈ X}| − 2). The facial cycles containing the left end-edge are C0 and C1, and
those containing the right end-edge are C5k−4 and C5k−3.

3



v1,2

v1,10

vk,1

vk,9

C2

C3

C4

C5

C6

C7

C8

C9

C10

. . .

. . .

. . .

. . .C0

C1

C5k−3

C5k−4

Figure 1: The planar graph Gk has 10k−2 vertices, 15k−6 edges, and every face of length 6. Every
vertex of Gk has degree 2 or 3 and every non-facial cycle either (i) has length at least 10 or (ii) has
length 8 and includes a blue edge. The set of blue edges intersects every face exactly once.

Note that the edge-set of any non-facial cycle C is the symmetric difference of the edge-sets
of the facial cycles “inside” (or “outside”) of C. Consider first a non-facial cycle C that does
not contain any end-edge. Pick the side of C that does not contain the right end-edge; take the
symmetric difference of the edge-sets of the facial cycles on this side incrementally, in order of
increasing subscripts. The symmetric difference of the first two facial cycles has size at least 10
and this size never decreases. Now consider the non-facial cycles that contain exactly one end-edge;
by (rotational) symmetry, assume it is the left end-edge. For these cycles, take the symmetric
difference incrementally as above for the side not containing the right end-edge; the symmetric
difference of the first two facial cycles has size at least 8 and again this size never decreases.

Finally, consider a non-facial cycle C that contains both end-edges. Now take the symmetric
difference incrementally as above for the side of C that includes C1; the size of the symmetric
difference is now initially at least 8, and never decreases until the final facial cycle (C5k−4 or C5k−3)
is added and the symmetric difference is complete. The final facial cycle C ′ may reduce the size of
the symmetric difference by at most 4, but the final symmetric difference still has size at least 12
(due to the position of C ′ relative to C1, and the fact that k ≥ 2).

To finish the proof, we should verify that |V (G′)| = (5g − 10)k2 − g + 4, as claimed. By
construction, each vertex of G′ has degree 2 or 3. Each vertex with degree 3 in G′ also has degree 3
in G, and we have exactly 10k − 8 of these. Let n, e, and f denote the numbers of vertices, edges,
and faces in G′. Now summing degrees gives

3(10k − 8) + 2(n− (10k − 8)) = 2e = gf =
g

g − 2
(2n− 4),

where the last two equalities hold as at the start of the proof. Thus, n = (5g − 10)k2 − g + 4.
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Definition 2. Let G be a 2-connected plane graph, with every vertex of degree 2 or 3. Let B be a
plane graph with 3 vertices specified on its outer face. To substitute B into G

substi-

tute B

into G
we do the following.

Subdivide every edge of G. For each vertex v in G, delete v from the subdivided graph and identify
d(v) vertices on the outer face of a copy of B with the neighbors of v in the subdivided graph.

Now we consider the result of substituting B into G, as in Definition 2.

Lemma 3. Let G be a plane graph; denote by n2 and n3 the numbers of vertices with degree 2
and 3 in G. Let B be a plane graph with nB vertices and eB edges, and with 3 vertices specified
on its outer face. Form G′ by substituting B into G. Now e(G′) = (n2 + n3)eB and n(G′) =
n2(nB − 1) + n3(nB − 3/2). Further, if G has no cycle of length ℓ or shorter, and B has no cycle
of length ℓ, then G′ has no cycle of length ℓ.

Proof. Each vertex in G gives rise to an edge-disjoint copy of B in G′; thus e(G′) = (n2 + n3)eB.
Each vertex of degree 2 in G contributes nB−1 vertices to G′, since exactly two of its vertices lie in
two copies of B in G′ (and all others vertices lie in one copy of B). Similarly, each vertex of degree
3 in G contributes nB − 3/2 vertices to G′. Finally, assume G and B satisfy the hypotheses on the
lengths of their cycles. Now consider a cycle C ′ in G′. If C ′ is contained entirely in one copy of B,
then C ′ has length not equal to ℓ. If C ′ visits two or more copies of B, then C ′ maps to a cycle C
in G with length no longer than the length of C ′. Since each cycle in G has length longer than ℓ,
we are done.

Now suppose that we plan to substitute some plane graph B into a dense planar graph of
girth ℓ + 1. Which B should we choose? Since B must not contain any ℓ-cycle, a natural choice
is a triangulation of order ℓ − 1. Indeed, every such B yields a graph that attains the bound in
Conjecture 1. This is Corollary 5, which follows from our next lemma.

Lemma 4. Let G be a dense graph of girth ℓ + 1. Form G′ by substituting into G a plane graph

B with 3 vertices specified on its outer face. Now e(G′) = eB(ℓ−1)
(nB−1)(ℓ−1)−2

(

n(G′)− 2(ℓ+1)
ℓ−1

)

, where

eB = e(B) and nB = n(B).

Proof. Let G be a dense graph of girth ℓ+ 1 on n vertices, and let n2 and n3 denote, respectively,
its numbers of vertices with degree 2 and 3. Recall from Lemma 2 (with g = ℓ + 1) that n =
(5ℓ−5)k2 −ℓ+3 for some even integer k, that n3 = 10k−8, and that n2 = n−n3. Lemma 3 implies
that e(G′) = (n2+n3)eB = neB and that n(G′) = n2(nB − 1)+n3(nB − 3/2) = (n−n3)(nB − 1)+

n3(nB − 3/2) = n(nB − 1)− n3/2. Now we show that e(G′) = eB(ℓ−1)
(nB−1)(ℓ−1)−2(n(G

′)− 2(ℓ+1)
ℓ−1 ). The

final equality comes from substituting for n3 and simplifying (using that n = (5ℓ− 5)k2 − ℓ+ 3).

e(G′)

n(G′)− 2(ℓ+1)
ℓ−1

=
neB(ℓ− 1)

(n(nB − 1)− n3/2)(ℓ− 1)− 2(ℓ+ 1)

=
eB(ℓ− 1)

(nB − 1)(ℓ− 1)− n3(ℓ−1)+4(ℓ+1)
2n

=
eB(ℓ− 1)

(nB − 1)(ℓ− 1)− 2
.

Corollary 5. The bound in Conjecture 1 holds with equality for each graph formed by substituting
a triangulation on ℓ− 1 vertices into a dense graph of girth ℓ+ 1.
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Proof. This follows from the above lemma when B is a plane triangulation on ℓ − 1 vertices, so
nB = ℓ− 1 and eB = 3(ℓ− 1)− 6 = 3ℓ− 9. We get

eB(ℓ− 1)

(nB − 1)(ℓ− 1)− 2
=

3(ℓ− 3)(ℓ− 1)

(ℓ− 2)(ℓ− 1)− 2

=
3(ℓ− 3)(ℓ− 1)

ℓ2 − 3ℓ+ 2− 2

=
3(ℓ− 1)

ℓ
.

To beat the bound of Conjecture 1, it will suffice to instead substitute into a dense graph of
girth ℓ + 1 any triangulation with order larger than ℓ − 1, as long as it has each cycle of length
at most ℓ − 1. This is because the conjectured average degree is less than 6, and is attained by
substituting a triangulation of order ℓ − 1, as shown in Corollary 5. However, the average degree
of a triangulation tends to 6 (from below) as its order grows. For each ℓ ∈ {3, . . . , 10}, every
triangulation on ℓ vertices is Hamiltonian, i.e., it contains an ℓ-cycle. But for each ℓ ≥ 11, there
exists a triangulation on ℓ vertices with no ℓ-cycle; this is a consequence of Lemma 6, which we
prove next. (In fact, much more is true, as we show in Section 3.)

Lemma 6. For every integer t ≥ 5, there exist a plane triangulation with 3t− 4 vertices and each
cycle of length at most 2t, and a plane triangulation with 3t − 3 vertices and each cycle of length
at most 2t+ 1.

Proof. We start with a plane triangulation on t vertices. First we add into the interior of each face
a new vertex, making it adjacent to each vertex on the face. Let A denote the set of vertices in the
original triangulation, and let B denote the set of added vertices. Since |A| = t and |B| = 2t − 4,
the resulting graph G1 has order 3t− 4. Further, B is an independent set. Thus, on every cycle C,
at least half of the vertices must be from A. Hence, C has length at most 2|A| = 2t.

Now we obtain G2 by adding a single vertex inside some face of G1. It is easy to check that G2

is a (3t− 3)-vertex triangulation with each cycle of length at most 2t+ 1.

We have already outlined the proof of our main result. We let B be a plane triangulation with
no ℓ-cycle, and with order at least ℓ, as guaranteed by Lemma 6. We simply substitute B into a
dense graph of girth ℓ+ 1. For completeness, we include more details in the proof of Theorem 7.

Theorem 7. For each ℓ ≥ 11, Conjecture 1 is false. In particular, whenever k is positive if

ℓ ≥ 11 and ℓ is odd then, exP(n,Cℓ) ≥ 9(ℓ−5)(ℓ−1)
(3ℓ−13)(ℓ−1)−4

(

n− 2(ℓ+1)
ℓ−1

)

for n = ((5ℓ − 5)k2 − ℓ +

3)(3(ℓ−1)
2 − 5)− (5k − 4) and if ℓ ≥ 11 and ℓ is even, then exP(n,Cℓ) ≥

3(3ℓ−16)(ℓ−1)
(3ℓ−14)(ℓ−1)−4

(

n− 2(ℓ+1)
ℓ−1

)

for n = ((5ℓ− 5)k2 − ℓ+ 3)(3( ℓ2 − 1)− 4)− (5k − 4).

Proof. Let a1 := 9(ℓ−5)(ℓ−1)
(3ℓ−13)(ℓ−1)−4 and a2 := 3(3ℓ−16)(ℓ−1)

(3ℓ−14)(ℓ−1)−4 . Since ℓ ≥ 11, easy algebra implies that

ai >
3(ℓ−1)

ℓ
, for each i ∈ {1, 2}. Thus, ai(n − 2(ℓ+1)

ℓ−1 ) > 3(ℓ−1)
ℓ

(

n− 2(ℓ+1)
ℓ−1

)

= 3(ℓ−1)
ℓ

n − 6(ℓ+1)
ℓ−1 for

each i ∈ {1, 2}. So it suffices to show that exP(n,Cℓ) ≥ a1(n − 2(ℓ+1)
ℓ−1 ) when ℓ ≥ 11 and ℓ is odd;

and that exP(n,Cℓ) ≥ a2(n− 2(ℓ+1)
ℓ−1 ) when ℓ ≥ 11 and ℓ is even (for the claimed values of n). Let

G be a dense graph of girth ℓ + 1. Recall that n(G) = (5ℓ − 5)k2 − ℓ + 3 for some even integer k,
and that G has 10k − 8 vertices of degree 3; let n3 := 10k − 8.
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When ℓ ≥ 11 and ℓ is odd, let t1 :=
ℓ−1
2 and nB1

:= 3t1 − 4 = 3(ℓ−1)
2 − 4. We have t1 ≥ 5; so by

Lemma 6, there exists a plane triangulation B1 with nB1
vertices and with each cycle of length at

most 2t1 = ℓ− 1. By Euler’s formula, eB1
= e(B1) = 3(3t1 − 4)− 6 = 9t1 − 18 = 9( ℓ−1

2 − 2). Form
G′

1 by substituting B1 into G. Lemma 3 implies that G′ is a plane graph with no cycle of length ℓ,

and that n(G′
1) = n(G)(nB1

− 1)− n3/2 = ((5ℓ− 5)k2 − ℓ+3)(3(ℓ−1)
2 − 5)− (5k− 4). By Lemma 4,

we have

e(G′
1) =

eB1
(ℓ− 1)

(nB1
− 1)(ℓ− 1)− 2

(

n(G′
1)−

2(ℓ+ 1)

ℓ− 1

)

=
9(ℓ− 5)(ℓ− 1)

(3ℓ− 13)(ℓ− 1)− 4

(

n(G′
1)−

2(ℓ+ 1)

ℓ− 1

)

= a1

(

n(G′
1)−

2(ℓ+ 1)

ℓ− 1

)

.

Hence, if ℓ ≥ 11 and ℓ is odd, then whenever k is positive and even and n = ((5ℓ − 5)k2 − ℓ +

3)(3(ℓ−1)
2 − 5)− (5k − 4), we have exP(n,Cℓ) ≥ a1

(

n− 2(ℓ+1)
ℓ−1

)

> 3(ℓ−1)
ℓ

n− 6(ℓ+1)
ℓ

.

Now suppose ℓ ≥ 11 and ℓ is even. Let t2 := ℓ
2 − 1 and nB2

:= 3t2 − 3 = 3ℓ
2 − 6. Form G′

2 by
substituting B2 into G, where B2 is a plane triangulation with nB2

vertices and each cycle of B2

has length at most 2t2 + 1 = ℓ − 1. (The existence of B2 is guaranteed by Lemma 6.) By Euler’s
formula, eB2

= e(B2) =
9ℓ
2 − 24. Similarly, it follows from Lemma 3 that G′

2 is a plane graph with

no cycle of length ℓ, and that n(G′
2) = n(G)(nB2

−1)−n3/2 = ((5ℓ−5)k2 − ℓ+3)(3ℓ2 −7)− (5k−4).
Lemma 4 implies that

e(G′
2) =

eB2
(ℓ− 1)

(nB2
− 1)(ℓ− 1)− 2

(

n(G′
2)−

2(ℓ+ 1)

ℓ− 1

)

=
3(3ℓ− 16)(ℓ− 1)

(3ℓ− 14)(ℓ− 1)− 4

(

n(G′
2)−

2(ℓ+ 1)

ℓ− 1

)

= a2

(

n(G′
2)−

2(ℓ+ 1)

ℓ− 1

)

>
3(ℓ− 1)

ℓ
n(G′

2)−
6(ℓ+ 1)

ℓ
.

This completes our proof.

Now for each ℓ ≥ 11, we extend the construction in Theorem 7 to all sufficiently large n (which
will prove the first sentence of Theorem 1). Our general idea is to build a counterexample with
order n′, larger than n, and delete vertices to get a counterexample of order precisely n. To see that
this works, note that we can substitute different gadgets for different vertices in a sparse planar
graph of girth ℓ + 1. As long as each gadget has more than ℓ vertices, we will beat the bound
in Conjecture 1. In fact, we still beat the bound if a bounded number of gadgets have exactly ℓ
vertices, and all other gadgets have more vertices (this is only needed in the case that ℓ ∈ {11, 12},
since that is when the gadget has precisely ℓ vertices). So we follow the construction in Theorem 7,
and then repeatedly remove vertices of degree 3 (that lie in B in Lemma 6). We can remove up
to t − 4 of these from each gadget. And the increase to the order of G′ when we increase k in
Theorem 7 is less than (5g − 10)(3t − 5). So it suffices that the number of vertices in the sparse
planar graph G is greater than ⌈(5g−10)(3t−5)/(t−4)⌉ ≤ 50(g−2). This proves the first sentence
of Theorem 1.
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T1 T2 T3

Figure 2: Triangulations T1, T2, and T3.

3 Denser Constructions and a Revised Conjecture

In this short section, we construct counterexamples to Conjecture 1 that are asymptotically much
denser than those in the previous section. We also propose two revised versions of Conjecture 1.

By iterating the idea in Lemma 6, Moon and Moser [9] constructed planar triangulations where
the length of the longest cycle is sublinear in the order. These triangulations will serve as the
gadgets in our denser constructions.

Theorem 8 ([9]). For each positive integer k there exists a 3-connected plane triangulation Gk

with n(Gk) =
3k+1+5

2 and with longest cycle of length less than 7
2n(Gk)

log3 2.

Corollary 9. There exists a positive real D1 such that for all integers ℓ ≥ 6 there exists a plane
triangulation Gℓ with n(Gℓ) ≥ D1ℓ

lg2 3 such that Gℓ has no cycle of length at least ℓ.

Chen and Yu [2] showed that Theorem 8 is essentially best possible.

Theorem 10 ([2]). There exists a positive real D2 such that every 3-connected n-vertex planar
graph contains a cycle of length at least D2n

log3 2.

We briefly sketch the Moon–Moser construction, which proves Theorem 8. For a more detailed
analysis, we recommend Section 2 of [2]. Start with a planar drawing of K4, which we call T1. To
form Ti+1 from Ti, add a new vertex vf inside each face f (other than the outer face), making vf
adjacent to each of the three vertices on the boundary of f , see Figure 2. It is each to check that
the order of Ti is 3 + (1 + 3 + . . .+ 3i−1) ≈ 3i

2 .
To bound the length of the longest cycle in Ti, we note that the vertices added when forming Tj

from Tj−1 form an independent set, for each j. Thus, for any cycle in Ti, at most half of the vertices
were added at the final step. Of those added earlier, at most half were added at the penultimate
step, etc. So the length of a longest cycle grows roughly by a factor of 2 at each step (while the
order of Ti grows roughly by a factor of 3).

To prove the second statement of Theorem 1, we substitute into a sparse planar graph of girth
ℓ+1 a gadget with no cycle of length ℓ, as guaranteed by Corollary 9. We suspect this construction
is extremal. So we conclude with the following two conjectures, which are each best possible.

Conjecture 2. Fix ℓ ≥ 7, let G be a dense graph of girth ℓ + 1, and let B be a n-vertex planar
triangulation with no ℓ-cycle, where B is chosen to maximize n. If G′ is formed by substituting B
into G and n′ := |V (G′)|, then exP(n

′, Cl) = |E(G′)|.
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Proving Conjecture 2 seems plausible for some small values of ℓ. But proving it in general
seems difficult. So we also pose the following weaker conjecture. Note that Conjecture 3 would be
immediately implied by Conjecture 2 (together with Theorem 10).

Conjecture 3. There exists a constant D such that for all ℓ and for all sufficiently large n we

have exP(n,Cℓ) ≤
3(Dℓlg2 3−1)

Dℓlg2 3 n.
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