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Abstract

If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with
entries ±1, then the matrix formed by taking the columns as the eigenvectors is a
Hadamard matrix and the graph is said to be Hadamard diagonalizable.
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In this article, we prove that if n = 8k+4 the only possible Hadamard diagonal-
izable graphs are Kn, Kn/2,n/2, 2Kn/2, and nK1, and we develop a computational
method for determining all graphs diagonalized by a given Hadamard matrix of any
order. Using these two tools, we determine and present all Hadamard diagonaliz-
able graphs up to order 36. Note that it is not even known how many Hadamard
matrices there are of order 36.

Mathematics Subject Classifications: 05C50, 15B34, 05B20, 05C76, 05C85

1 Introduction

A real Hadamard matrix is an n× n matrix H with entries in ±1 with the property that
HTH = nI; in other words, the columns of H are orthogonal. These matrices have been
extensively studied, and it is known that a necessary condition for the existence of such
a matrix is that n = 1, 2, or is a multiple of 4. A well-known and still open problem
concerns the question of whether this is sufficient.

Conjecture 1. Hadamard matrices exist for all orders n of the form n = 4k.

Examples of Hadamard matrices of order 2k for k ! 0 were constructed by Sylvester
in 1867. Defining H0 = [1], we have

Hk+1 =
Hk Hk

Hk −Hk
,

for k ! 0. For example,

H1 =
1 1
1 −1

, H2 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

.

Two Hadamard matrices are said to be equivalent if we can produce one from the other
by some combination of the following operations: permuting rows, permuting columns,
negating some subset of rows, negating some subset of columns. A normalized Hadamard
matrix is one which has every entry in the first row and column equal to +1. It is easily
seen that every Hadamard matrix is equivalent to a normalized Hadamard matrix, by
negating combinations of rows and columns.

A graph G is defined in terms of a set of vertices V (G), and a set of edges E(G) which
consist of pairs of vertices. The vertices u and v are said to be adjacent if there is an
edge {u, v} ∈ E(G). The degree of a vertex u, denoted deg(u), is the number of vertices
adjacent to u. A graph G is said to be regular if all the degrees of the vertices of G are
equal.

Given a graph G, the Laplacian matrix L is defined entrywise by

Luv =

deg(u) if u = v,

−1 if u adjacent to v,

0 otherwise,
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where the notation Luv refers to the (u, v) entry of the matrix L. It is common to consider
what features of the graph G may be determined via the eigenvalues of the Laplacian.
Note that for any graph G, the row-sums of the Laplacian matrix are zero; hence it is
immediate that λ = 0 is an eigenvalue of L, with an eigenvector proportional to the
all-ones vector.

In this article, we are interested in graphs whose Laplacian matrix can be diagonalized
by a Hadamard matrix; that is, there exists a Hadamard matrix H such that

1

n
HTLH = Λ,

or equivalently,

L =
1

n
HΛHT ,

where Λ is a diagonal matrix consisting of the eigenvalues of L, and noting that H−1 =
1
n
HT . If this is the case, we refer to the graph as a Hadamard diagonalizable graph.

Clearly, this class of graphs corresponds to graphs for which there exists a full set of ±1
orthogonal eigenvectors of the Laplacian matrix.

Various properties of Hadamard diagonalizable graphs and a partial characterisation
of Hadamard diagonalizable graphs were explored by Barik, Fallat, and Kirkland [1].
A special type of Hadamard matrices, called balancedly splittable Hadamard matrices,
was introduced and studied by Kharaghani and Suda [6]; in particular, its connection to
Hadamard digonalizable strongly regular graphs was made. Johnston, Kirkland, Plosker,
Storey, and Zhang [4] showed that a graph is diagonalizable by a Sylvester’s matrix if and
only if it is a cubelike graph (a Cayley graph over Zd

2). In the same paper, Johnston et
al. explored the use of Hadamard diagonalizable graphs in quantum information transfer,
where a quantum spin network is represented by a graph and quantum information can
transfer between spins. An important notion in quantum information transfer is perfect
state transfer. Kay [5] showed that a necessary condition for perfect state transfer between
vertices j and k of a graph G, is that for a real orthogonal matrix Q which diagonalizes
L(G), the corresponding entries in its j-th row and k-th row are either equal to or are the
negative of each other. Hadamard diagonalizable graphs certainly satisfy this condition for
any pair of vertices, and therefore these graphs are good candidates to admit perfect state
transfer. A characterization of when a Hadamard diagonalizable graph admits perfect
state transfer was given in terms of its eigenvalues and the normalized diagonalization
Hadamard matrix in [4]. Chan, Fallat, Kirkland, Lin, Nasserasr, and Plosker [2] studied
complex Hadamard diagonalizable graphs (matrices H with H∗H = nI, where the entries
can be any complex number of modulus 1 rather than ±1). Properties and constructions
of such graphs were considered, as well as when such a graph admits interesting quantum
information transfer phenomena.

Most graphs are not Hadamard diagonalizable. For example, they must have order
n = 1, 2 or 4k (as Hadamard matrices only exist for these orders), but this is not sufficient.
The following conditions are well-known.

the electronic journal of combinatorics 29(2) (2022), #P2.16 3



Order H. matrices H. graphs
4 1 4
8 1 10
12 1 4
16 5 50
20 3 4
24 60 26
28 487 4
32 13,710,027 10,196
36 (unknown) 4

Table 1: The order, number of non-equivalent Hadamard matrices (H. matrices), and the
number of Hadamard diagonalizable graphs (H. graphs).

Proposition 2 ([1, 4]). Let G be a Hadamard diagonalizable graph. Then G is regular;
moreover, all eigenvalues must be even integers.

The proof that the graph is regular is given in Theorem 1.3 of [1]; we will give an
alternate proof that the eigenvalues must be even integers in Section 3.

We will also make use of the following result.

Proposition 3 ([1]). A graph G is Hadamard diagonalizable if and only if Gc (the com-
plement of G) is Hadamard diagonalizable.

This follows immediately by noting that the eigenspaces for the Laplacian matrix of
a graph and its complement are the same (although the eigenvalues are different).

Previous research into Hadamard diagonalizable graphs has characterized Hadamard
diagonalizable graphs up through order n = 12 (see [1]), as well as all Hadamard diag-
onalizable graphs for the Sylvester construction for Hadamard matrices of order 2k [4].
The goal of this current paper is to develop further tools to determine the Hadamard di-
agonalizable graphs of a given order, and to then list all Hadamard diagonalizable graphs
up through order n = 36. We prove that for n = 8k+4, there are only four Hadamard di-
agonalizable graphs of order n in Section 2, and we develop computational tools to search
for all possible Hadamard diagonalizable graphs of small order in Section 3. Information
about the Hadamard diagonalizable graphs is given in Section 4. Concluding comments
will be given in Section 5.

In Table 1 we summarize the number of Hadamard diagonalizable graphs as well as
the number of inequivalent Hadamard matrices of the indicated order.

2 Hadamard diagonalizable graphs of order n = 8k + 4

We show that for order n = 8k + 4 there are at most four possible graphs which are
Hadamard diagonalizable. We start with the following graph characterization property.
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Lemma 4. Suppose G is a connected graph on n vertices. Then G is a complete graph
or a complete bipartite graph if and only if the following condition holds: for any four
distinct vertices {u, v, w, x} ⊆ V (G) if uv, vw,wx ∈ E(G) then xu ∈ E(G).

Proof. Assume that G satisfies the stated condition for all distinct vertices u, v, w, x ∈

V (G).
If G is acyclic, then G contains no path on three edges, so G is a star—that is, the

complete bipartite graph K1,n−1.
Now suppose that G is not acyclic. Then the girth of G (the length of a shortest cycle

in G) is either 3 or 4.
Suppose the girth of G is 3, and let U be a maximal clique. Then |U | ! 3. Suppose

for contradiction that uv ∈ E(G) such that u ∈ U and v ∕∈ U . Since v ∕∈ U , there exists
x ∈ U such that xv ∕∈ E(G). Since |U | ! 3, there exists y ∈ U \ {u, x}. Then xyuv is a
path of length 3. By assumption, xv are adjacent, which is a contradiction. So it must
be the case that no other vertices in V (G) \ U are connected to a vertex in U ; since G is
connected, we can conclude that G is a complete graph.

Now suppose the girth of G is 4, and let U be a maximal induced complete bipartite
subgraph of G, with bipartition U = U1 ∪U2 such that |U1|, |U2| ! 2. By symmetry of U1

and U2, suppose for contradiction uv ∈ E(G) where u ∈ U1 and v ∕∈ U . If v was adjacent
to any vertex z ∈ U2, there would be a triangle uvz, violating the girth condition. By
the maximality of U2, v ∕∈ U2 because there exists x ∈ U1 such that xv /∈ E(G). Pick any
w ∈ U2. The path vuwx of length 3 implies that xv ∈ E(G), which is a contradiction. So
it must be the case that no other vertices in G are connected to a vertex in U ; and since
G is connected we can conclude that G is a complete bipartite graph.

The reverse implication holds by inspection.

We can now use this characterization of graphs to establish the possible Hadamard
diagonalizable graphs of order n = 8k + 4.

Theorem 5. Let G be a graph of order n. If n = 8k+4 and G is Hadamard diagonalizable,
then G ∈ {Kn, Kn/2,n/2, nK1, 2Kn/2}.

Proof. Suppose for the sake of contradiction that n = 8k + 4, G is a Hadamard diago-
nalizable graph of order n, and G /∈ {Kn, Kn/2,n/2, nK1, 2Kn/2}. Let L be the Laplacian
matrix of G. Then there exists a diagonal matrix Λ = diag(λ1, . . . ,λn), where λk is an
eigenvalue of L and λk is an even integer, for all k = 1, . . . , n (see Proposition 2) and

L =
1

n
HΛHT =

1

n

n

k=1

λkhkh
T
k ,

for some n×n Hadamard matrix H, with columns h1, h2, . . . , hk. For any i, j ∈ {1, . . . , n},

Lij =
1

n

n

k=1

λk(hk)i(hk)j
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where the notation (hk)i refers to the i-th entry of the vector hk.
If G is not connected, then the complement Gc is connected. By Lemma 4, then, we

have that G or Gc contains a path of length 3 whose endpoints are not adjacent (note
that since G must be regular, the only possible connected complete bipartite graph is
Kn/2,n/2). Without loss of generality, we assume uvwx is a path of length 3 in G. Since
Luv = Lvw = Lwx = −1 and Lux = 0, we have

−3n = n(Luv + Lvw + Lwx + Lux)

=
n

k=1

λk((hk)u(hk)v + (hk)v(hk)w + (hk)w(hk)x + (hk)u(hk)x)

=
n

k=1

λk((hk)u + (hk)w)((hk)v + (hk)x).

Since each λk is even and each hij ∈ {−1, 1}, it follows that each term in the sum is
divisible by 8, meaning that 8 divides the right hand side. This implies that n is a
multiple of 8. But that contradicts the assumption that n = 8k + 4, concluding the
proof.

The preceding result shows that if a graph is Hadamard diagonalizable of order n =
8k+4 it must be one of the graphs mentioned. We now must argue that all four of these
graphs are realizable, and that they are realizable by any normalized Hadamard matrix
H.

Proposition 6. If H is a normalized Hadamard matrix of order n ! 4, then the graphs
Kn, Kn/2,n/2, nK1, and 2Kn/2 are Hadamard diagonalizable by H.

Proof. Let H be a normalized Hadamard matrix of order n ! 4. Thus H is a Hadamard
matrix where h1 is the all 1s vector and h2 has exactly

n
2
1s and n

2
−1s. It suffices to show

how to write L as a linear combination of the projection matrices hkh
T
k for the graphs Kn

and 2Kn/2 (since this will have the Laplacian with the correct eigenvalues).
For G = Kn we have

L =
n

k=1

hkh
T
k − h1h

T
1 ,

since the sum becomes nI and h1h
T
1 is the all-ones matrix which we denote by J .

For G = 2Kn/2 we have

L =
1

2

n

k=1

hkh
T
k −

1

2
h1h

T
1 −

1

2
h2h

T
2 ,

since the sum becomes n2I and the last two terms combine to give a matrix which is
permutationally equivalent to the matrix − J

O
O
J

(note that this permutation similarity
is equivalent to a relabelling of the vertices so that those in one clique correspond to the
+1s in h2 and the vertices in the other clique correspond to the −1s).
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Remark 7. This result also follows from Observations 1 and 2 in [1] (in which it is shown
that Kn and Kn/2,n/2 are Hadamard diagonalizable) and the fact that the complement
of a Hadamard diagonalizable graph is also Hadamard diagonalizable. We note that the
statement of Proposition 6 is a slightly stronger statement than saying that the four graphs
are Hadamard diagonalizable, as it makes it explicit that no matter the H we are using,
as long as it is normalized, these four graphs are diagonalized by H. In particular this
says that any normalized Hadamard matrix will always diagonalize at least four graphs.

3 Finding all graphs diagonalizable by a given Hadamard matrix

In this section, we describe a procedure to search for and produce Hadamard diagonaliz-
able graphs. In particular, given a Hadamard matrix H, we give an algorithm by which
all graphs which are diagonalized by H are produced. We assume that H is a normalized
Hadamard matrix, since every graph which is Hadamard diagonalizable is also diagonal-
ized by a normalized Hadamard matrix (see [1, Lemma 4]). We note that two inequivalent
normalized Hadamard matrices may produce the same graph via this procedure.

3.1 An algorithmic procedure

Proposition 8. Let G be a Hadamard diagonalizable graph with its Laplacian matrix L.
Let H be a normalized Hadamard matrix diagonalizing L. Let Λ be the diagonal matrix
with its diagonal entries λ1 = 0,λ2, . . . ,λn, the eigenvalues of L corresponding to the
columns of H as their associated eigenvectors. Then the entries L12, . . . , L1n uniquely
determine λ2, . . . ,λn.

Proof. Suppose that G is a Hadamard diagonalizable graph, and let H be a normalized
Hadamard matrix such that L = 1

n
HΛHT . It follows that the first row of LH is equal to

0 λ2 · · · λn . Hence

λj =
u∼1

(1−Huj),

a quantity determined precisely by the vertices of G adjacent to vertex 1; i.e. determined
by the entries L12, . . . , L1n of L and Huj of H.

The preceding can be used to give a new proof that all Laplacian eigenvalues of a
Hadamard diagonalizable graph are even integers (see Proposition 2, originally proven in
[1]).

Proof that the eigenvalues are even integers. We have

λj =
u∼1

(1−Huj),

and each entry in the sum is either 0 or 2; hence λj is even.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1

Table 2: Hadamard matrix had.16.1.

Suppose we are given an n × n normalized Hadamard matrix H and wish to find all
graphs which are Hadamard diagonalizable by H. Using Proposition 8, we can narrow
our search space down to size 2n−1 by looking at all possible {0,−1} assignments to
L12, . . . , L1n, and rewriting all of the off-diagonal entries of L as linear combinations of
L12, . . . , L1n. This rewrite can be done because each entry is some linear combination
of the λ2, . . . ,λn, while the proof of Proposition 8 shows that each of the λi is a linear
combination of L12, . . . , L1n. Then every assignment will produce a matrix via these linear
combinations, though not every assignment will correspond to a graph, as there might be
other entries Lij /∈ {0,−1}. For any assignment of the values {0,−1} to the ‘variables’
L12, . . . , L1n, the goal will be to determine if the linear combinations that arise elsewhere
in the matrix (off the diagonal) are all equal to either 0 or −1; if so, that assignment
produces a graph. The search could also turn up isomorphic copies of the same graph.
Note that many distinct entries of the Laplacian may be expressed using the same linear
combination of the variables L12, . . . , L1n.

To illustrate this, we carry this procedure out for the Hadamard matrix had.16.1

from Sloane [8], see Table 2, to produce an auxiliary matrix determining the linear com-
binations. For the 120 entries above the diagonal of a possible Laplacian matrix (by
symmetry the entries below the diagonal will be equal) there were 27 distinct linear com-
binations produced. The auxiliary matrix is given in Table 3 where the (i, j)th entry
corresponds to the coefficient of L1j in the ith linear combination. For notational conve-
nience, we have labeled the sixteen rows and columns of L using hexadecimal symbols
{0, 1, · · · , 9, A,B, · · · , F} to more easily indicate which entries of L correspond to the ith

linear combination in the accompanying table.
Looking at the auxiliary matrix in Table 3, the identity matrix induced on the first 15

rows is a reflection that the linear combination for an entry from the first row is trivial.
Let us view an assignment of L12, . . . , L1n to values of 0 or −1 as selecting some subset

of the columns (so if L1j is −1 take the jth column; if it is 0 do not take the column). Then
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1

2

1

2
0 0 0 0 0 0 1

2
−

1

2

0 0 0 0 0 1

2

1

2
0 0 0 0 0 0 −

1

2

1

2

0 0 0 1

2

1

2
0 0 0 0 0 0 1

2
−

1

2
0 0

0 0 0 1

2

1

2
0 0 0 0 0 0 −

1

2

1

2
0 0

0 0 0 0 0 1

2
−

1

2
0 0 0 0 0 0 1

2

1

2

0 0 0 0 0 −
1

2

1

2
0 0 0 0 0 0 1

2

1

2

0 0 0 1

2
−

1

2
0 0 0 0 0 0 1

2

1

2
0 0

0 0 0 −
1

2

1

2
0 0 0 0 0 0 1

2

1

2
0 0

0 1

2

1

2
0 0 0 0 0 0 1

2
−

1

2
0 0 0 0

0 1

2

1

2
0 0 0 0 0 0 −

1

2

1

2
0 0 0 0

0 1

2
−

1

2
0 0 0 0 0 0 1

2

1

2
0 0 0 0

0 −
1

2

1

2
0 0 0 0 0 0 1

2

1

2
0 0 0 0

Row Entries
1 01, 23, 45, 67, 89, AB,CD,EF
2 02, 13, 8A, 9B
3 03, 12, 8B, 9A
4 04, 15, 8C, 9D
5 05, 14, 8D, 9C
6 06, 17, 8E, 9F
7 07, 16, 8F, 9E
8 08, 19, 2A, 3B, 4C, 5D, 6E, 7F
9 09, 18, 2B, 3A, 4D, 5C, 6F, 7E

Row Entries
10 0A, 1B, 28, 39
11 0B, 1A, 29, 38
12 0C, 1D, 48, 59
13 0D, 1C, 49, 58
14 0E, 1F, 68, 79
15 0F, 1E, 69, 78
16 24, 35, AC,BD
17 25, 34, AD,BC
18 26, 37, AE,BF

Row Entries
19 27, 36, AF,BE
20 2C, 3D, 4A, 5B
21 2D, 3C, 4B, 5A
22 2E, 3F, 6A, 7B
23 2F, 3E, 6B, 7A
24 46, 57, CE,DF
25 47, 56, CF,DE
26 4E, 5F, 6C, 7D
27 4F, 5E, 6D, 7C

Table 3: The auxiliary matrix for the Hadamard matrix had.16.1 where each row cor-
responds with a distinct linear combination appearing in L in terms of the off-diagonal
entries in the first row. In the accompanying table, we indicate for each row which entries
Lij correspond to this linear combination, with i, j in hexadecimal.
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this will produce a Laplacian matrix for a graph if and only if the sum of the columns
produce a vector with entries in {0, 1}, since this is only the case when the off-diagonal
entries will be 0 and −1.

To run through all possible assignments of L12, . . . , L1n, we need to consider all subsets
of columns of the auxiliary matrix. However, to reduce the search space, we proceed via
a tree-like exploration of the space, where at each step we decide to either add or not add
a particular column. After we add a new column to our subset, we then do the following
check: if for each entry there is a possibility that the sum of some combination of the
remaining columns can result in the value being 0 or 1, proceed; if not then we ‘prune the
tree’ and don’t explore any further on that branch.

For example, if we take the columns 2, 3, and 11 in the matrix in Table 3, then
the last entry in the sum of these column vectors will be 1/2. The last entries in the
remaining columns which we could add to our subset are all equal to 0, so no matter
which combination of columns 12, 13, 14, 15 we take we can never change that value from
1/2, and so there is no need to explore that part of the space. To get the most out of
this, it is useful to first pre-sort the columns so that such conflicts will arise early.

If we get down to a leaf in the tree and the resulting combination of columns is a
0-1 vector, then we have found a Hadamard diagonalizable graph. To produce the graph
we find where the 1s are located and the corresponding Laplacian entries to which they
correspond. These corresponding Laplacian entries represent the edges in the graph. As
an example if we take the sum of the first three columns in Table 3 then this will produce
a 1 in rows 1, 2, 3, 24, and 25 of the resulting vector. So this will be the graph on the
vertex set with vertices {0, 1, . . . , F} and with edges

01, 23, 45, 67, 89, AB,CD,EF

row 1

, 02, 13, 8A, 9B

row 2

, 03, 12, 8B, 9A

row 3

, 46, 57, CE,DF

row 24

, 47, 56, CF,DE

row 25

which becomes the graph 4K4 (cliques on the vertices 0, 1, 2, 3; and 4, 5, 6, 7; and 8, 9, A,B;
and C,D,E, F ). As graphs are found they are tested to see whether they have been seen
before, and we only keep those graphs which have not been seen before; this can be done,
for example, by using canonical labeling methods.

The procedure outlined here was implemented in both SageMath and C++ with all
computations done using integer variables. The only external call needed is to determine
which graphs are discovered up to isomorphism. The program can be downloaded at
http://lidicky.name/pub/hadamard/.

3.2 Equivalency of Hadamard matrices

We know that if G is Hadamard diagonalizable, then it is Hadamard diagonalizable by
some normalized Hadamard matrix. However, given a normalized Hadamard matrix H,
there are many other normalized Hadamard matrices which are equivalent to H. It is not
the case that if G is diagonalized by H that it is also diagonalizable by any H ′ equivalent
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to H. For example, consider the standard normalized Hadamard matrix of order 4:

H =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

.

This Hadamard diagonalizes the complete graph K4. However, an equivalent Hadamard
matrix is obtained by negating the second row:

H ′ =

1 1 1 1
−1 1 −1 1
1 1 −1 −1
1 −1 −1 1

.

Note that every Laplacian matrix has 0 as an eigenvalue, with an eigenvector proportional
to the all-ones vector. Since the columns of a Hadamard matrix that diagonalize a graph
represent the eigenvectors of that graph’s Laplacian, and this matrix H ′ has no constant
column, it is clear that H ′ does not diagonalize any connected graph.

We suggest, however, that it may be possible to show the following:

Question 9. Let H1 and H2 be equivalent normalized Hadamard matrices. Is it true that
G is Hadamard diagonalizable by H1 if and only if G (up to some relabeling) is Hadamard
diagonalizable by H2?

If true, this would significantly shorten the computational time. We note, in addition,
that of the four operations by which an equivalent Hadamard matrix is produced, three
of them preserve the graphs diagonalized by that Hadamard matrix. Permuting columns
of H corresponds to a permutation of the eigenvectors of L; permuting rows corresponds
simply to a relabelling of the vertices of the graph. Negating columns does not change
the eigenspaces, it simply scales our representative eigenvectors of L.

4 Hadamard diagonalizable graphs of small order

In this section, we present complete lists of all Hadamard diagonalizable graphs for all
orders n ∈ {1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36}, obtained using the theoretical tools of Sec-
tion 2 and the computational tools of Section 3. Hadamard diagonalizable graphs are
characterized in the literature up to order 12 in Barik, Fallat, and Kirkland [1], but we
present these as well for completeness. The most significant contributions here on the
computational side are for orders n = 16, 24, 32.

We will use the following notations:

• Gc is the graph complement of G.

• G+H is the disjoint union of the graphs G and H. In particular, we denote by kG
the graph consisting of k disjoint copies of G.
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• G□H is the Cartesian product of G and H. That is V (G□H) = V (G)× V (H) and
(u, x), (v, y) ∈ V (G□H) are adjacent if and only if u = v and xy ∈ E(H) or x = y
and uv ∈ E(G).

• G∨H is the join of G and H. The join is obtained from G+H by adding all edges
uv, where u ∈ V (G) and v ∈ V (H).

• G◦H is the lexicographic product of G withH; that is, the graph formed by replacing
each vertex of G with a copy of H, and adding all possible edges between the vertices
in the copies of H corresponding to adjacent vertices in G (a form of a blow-up).
This product is sometimes referred to as graph composition. It has also occasionally
appeared in the past as a wreath product, due to its connection with wreath products
in group theory (see [10]).

• Hn,n is the graph Kn,n minus a perfect matching (note that H4,4 = Q3 is the cube
graph on eight vertices);

• CP2n is the cocktail party graph on 2n vertices formed by taking the complete graph
and removing a perfect matching, so CP2n = K2,2,...,2.

• Let G be a finite group, and let S be some subset of the elements of G. Then G(S)
is a Cayley graph with vertices representing elements of the group G, and an edge
between u and v whenever u− v ∈ S.

There are many ways to write some of the graphs in what follows, and in the interest of
future theoretical research in this area (that is, a pursuit of theoretical characterizations
of Hadamard diagonalizable graphs), we will often give several isomorphic representations
of the same graph. In particular, many can be written as a Cartesian or lexicographic
product of two graphs. This is pursued in earnest for the graphs of order 24, as we suspect
(based on these and the preliminary data available for orders 40 and 56) that in a manner
similar to orders 8k + 4, k ! 0, there are at most 26 distinct graphs which are Hadamard
diagonalizable of order 16k + 8 (see more discussion in Question 11).

It is shown in [1] that G + G ∼= 2K1□G and G ∨ G ∼= K2 ◦ G are Hadamard diago-
nalizable graphs if G is Hadamard diagonalizable, and that the Cartesian product of two
Hadamard diagonalizable graphs is also Hadamard diagonalizable. It is also shown in [4]
that the direct product of two Hadamard diagonalizable graphs is also Hadamard diago-
nalizable. We now show that the lexicographic product of two Hadamard diagonalizable
graphs is also Hadamard diagonalizable, giving further methods to construct Hadamard
diagonalizable graphs.

Lemma 10. Let G1 and G2 be Hadamard diagonalizable. Then G1 ◦ G2 is Hadamard
diagonalizable.

Proof. Assume that the graph G1 onm vertices is diagonalized by a normalized Hadamard
matrix H1, and the graph G2 on n vertices is diagonalized by a normalized Hadamard
matrix H2. Since Hadamard diagonalizable graphs are regular, a Hadamard matrix H
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diagonalizes the Laplacian of a graph L(G) if and only if it also diagonalizes the adjacency
matrix, which we denote A(G). We show that the adjacency matrix of the lexicographic
product of G1 and G2, A(G1 ◦ G2), is diagonalizable by the Hadamard matrix H1 ⊗H2,
where ⊗ denotes the Kronecker product (or tensor product) of two matrices.

Assume that

H−1
1 A(G1)H1 = Λ1, and H−1

2 A(G2)H2 = Λ2.

The adjacency matrix of the lexicographic product can be written

A(G1 ◦G2) = Im ⊗ A(G2) + A(G1)⊗ Jn,

where Im is the identity of order m and Jn is the n× n matrix of all ones.
For any normalized Hadamard matrix H of size n, H−1JnH = ne1e

T
1 = nE1,1, where

e1 is the vector with a 1 in the first position and zeros elsewhere, and E1,1 is a matrix
of all-zeros except a 1 in the (1, 1) position. Using this and the fact that the Kronecker
product is bilinear and satisfies the properties, (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) and
(A⊗ B)−1 = A−1 ⊗ B−1, we have

(H1 ⊗H2)
−1A(G1 ◦G2)(H1 ⊗H2) = (H1 ⊗H2)

−1(Im ⊗ A(G2) + A(G1)⊗ Jn)(H1 ⊗H2)

= (H−1
1 ImH1)⊗ (H−1

2 A(G2)H2)

+ (H−1
1 A(G1)H1)⊗ (H−1

2 JnH2)

= (Im ⊗ Λ2) + (nΛ1 ⊗ E1,1),

which is a diagonal matrix.

Note that Lemma 1.7 of [2] indicates that the tensor product of a matrix diagonalizable
by H1 with a matrix diagonalizable by H2 is Hadamard diagonalizable, and so is any linear
combination of such matrices, so the latter half of the proof above follows from this result,
once it is observed that the adjacency matrix is of the given form, that Im and A(G1) are
diagonalizable by H1, and that A(G2) and Jn are diagonalizable by H2.

We also note that for any given Hadamard diagonalizable graphs G1 and G2 with
corresponding diagonalizing Hadamard matrices H1 and H2, respectively, it is interesting
to see that the Hadamard matrix H1 ⊗ H2 diagonalizes both G1□G2 and G1 ◦ G2. As
two graphs G1□G2 and G1 ◦G2 are nonisomorphic, in general, they may admit different
Hadamard matrices as their diagonalizing matrices as well. See for example, K2□K6,6

and K2 ◦K6,6 in Table 6 below.

4.1 Order 1

The graph K1 is Hadamard diagonalizable.

4.2 Order 2

Both graphsK2 and 2K1 are Hadamard diagonalizable by the unique normalized Hadamard

matrix
1 1
1 −1

.
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4.3 Orders 4, 12, 20, 28 and 36

From the results of Section 2, the only Hadamard diagonalizable graphs are Kn, Kn/2,n/2,
2Kn/2, and nK1 for n ∈ {4, 12, 20, 28, 36}.

4.4 Order 8

There is a unique (up to equivalence) normalized Hadamard matrix of order 8, and it is
the Sylvester construction. The graphs diagonalizable by a Sylvester Hadamard matrix
have been characterized in [4], and for order 8 consist of all Cayley graphs for Z

3
2. We

can also represent them as follows: Note that all of them can be expressed in terms of

Graph Graph complement

K2 ◦K4
∼= K8 2K1□4K1

∼= 2(4K1)
K2 ◦K2,2 K2□4K1

∼= 2K1□2K2
∼= 2(2K2)

K2 ◦ 2K2 K2□2K2
∼= 2K1□K2,2

∼= 2K2,2

K2 ◦ 4K1
∼= K4,4 2K1□K4

∼= 2K4

K2□K4 K2□K2,2
∼= (K2)

□3 ∼= Q3

Table 4: Hadamard diagonalizable graphs of order 8.

products of the Hadamard diagonalizable graphs of orders 2 and 4.

4.5 Order 16

There are five non-equivalent normalized Hadamard matrices of order 16. We will follow
Sloane [8] and denote them by had.16.j for j ∈ {0, 1, 2, 3, 4}; note that had.16.0 is
the Sylvester construction. We use the computational tools of Section 3 to produce all
non-isomorphic graphs diagonalized by one (or more) of these Hadamard matrices.

There are a total of 50 non-isomorphic Hadamard diagonalizable graphs on 16 vertices,
all of which are Cayley graphs. The graphs are given in Table 5. Many of these graphs,
not all, can be identified as the products of smaller Hadamard diagonalizable graphs,
products of order 2 and order 8, products of order 4 and identical or another graph
of order 4, etc. Graphs come in pairs (namely the graph and its complement) and we
sometimes only present one of the graphs (to get the other take the complement, for which
a simple product notation is not available). We also provide the Cayley expression for
some graphs, including the strongly regular graphs, Shrikhande graph, and its cospectral
mate, the (2, 4)-Hamming graph K4□K4.

The column indicating ‘Family’ presents information regarding the graphs which are
diagonalized by the same Hadamard matrices—that is, if G1 and G2 are in the same
family, then a normalized Hadamard matrix had.16.j diagonalizing the Laplacian of G1

will also diagonalize the Laplacian of G2. We now list which graphs are associated with
which Hadamard matrices as follows:

• 46 graphs for had.16.0 are from families A, B, C, D
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• 50 graphs for had.16.1 are from families A, B, C, D, E

• 48 graphs for had.16.2 are from families A, B, C, E

• 24 graphs for had.16.3 are from families A, B

• 10 graphs for had.16.4 are from family A

Family Graph Graph complement

A K16 16K1

A K8,8 2K8

A 2K4,4 K2 ◦ 2K4

A 4K4 K4,4,4,4

A (K2□K4) ◦ (2K1) H4,4 ◦K2

B 8K2 K8 ◦ 2K1

B 4K2,2 K4 ◦ (2K2)
B K2 ◦ 4K2 2K1 ◦ (K4 ◦ 2K1)
B K2 ◦ 2K2,2 2K1 ◦ (K2 ◦ 2K2)
B (K2□K4) ◦K2 H4,4 ◦K

c

2

B K2□(K4 ◦ 2K1)
B K2□K8

C K4,4□K2

C 2(K4□K2)
C 2(K2,2 ◦K2)
C K2,2□K2,2

C K2,2 ◦K4

C 2H4,4

C Z
4

2
({(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1)})

C Z
4

2
({(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1})

C Z
4

2
({(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0)}) ((2,4)-Hamming)

C Z
4

2
({(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)})

D Z
4

2
({(0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 1, 0, 0)})

E Z
2

4
({(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1,−1)}) (Shrikhande)

E Z
2

4
({(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1,−1), (2, 2)})

Table 5: Hadamard diagonalizable graphs of order 16.

4.6 Order 24

There are 60 non-equivalent normalized Hadamard matrices of order 24. We will follow
Sloane [8] and denote them by had.24.j for j ∈ {1, 2, . . . , 60}.

There are a total of 26 Hadamard diagonalizable graphs on 24 vertices, all of which are
Cayley graphs. The graphs are given in Table 6. Graphs are presented in complementary
pairs, with multiple representations for each. The graph 12K2 as a subgraph of G will
be denoted by M (a matching) and the graph G − M refers to the graph obtained by
the removal of the edges of a matching from G. Again, we indicate equivalence classes
in the column ‘Family’, where graphs from the same family are diagonalized by the same
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Hadamard matrices. Note that we use the notation G×H when G ◦H is isomorphic to
G□H.

Family Graph Graph complement

A K2 ◦K12
∼= K24 2K1 × 12K1

∼= 24K1

A K2 ◦ 12K1
∼= K12,12 2K1 ×K12

∼= 2K12

B K2 ◦K6,6
∼= K6,6,6,6 2K1 × 2K6

∼= 4K6

B K2 ◦ 2K6
∼= K2,2 ◦K6 2K1 ×K6,6

∼= 2K6,6

B (K2)
□3 ◦K3

∼= Q3 ◦K3 (K4□K2) ◦ 3K1 ∗

C K2□12K1
∼= 12K2 K2 ◦K12 −M ∼= CP24

C K2□K12 K2 ◦ 12K1 −M ∼= H12,12

C K6,6 ◦K2 2K6 ◦ 2K1
∼= 2K12 −M

D K2□K6,6 K2 ◦ 2K6 −M ∼= K2,2 ◦K6 −M
D K2□2K6 K2 ◦K6,6 −M
D K2 ◦ (K6□K2) 2(H6,6) ∼= 2K6,6 −M ∗

D (K4□K2) ◦ 3K1 −M Q3 ◦K3 +M ∗

D (K4□K2) ◦ 3K1 +M Q3 ◦K3 −M ∗

Table 6: Hadamard diagonalizable graphs of order 24.

We now list which graphs are associated with which Hadamard matrices as follows:

• 26 graphs for had.24.j for 1 # j # 7 are from families A, B, C, D

• 10 graphs for had.24.8 are graphs from families A, C

• 10 graphs for had.24.j for 9 # j # 59 are from families A, B

• 4 graphs for had.24.60 are from family A

One interesting thing to note is that the graph 2K1◦(K6◦2K1) (i.e. two disjoint copies
of the cocktail party graph CP12) is Hadamard diagonalizable by a Hadamard matrix of
order 24, but the cocktail party graph CP12

∼= K6 ◦2K1 is not diagonalized by the unique
Hadamard matrix of order 12. In fact, those graphs in the table that are marked by an
asterisk can be expressed as products of smaller graphs but some of their factors are not
necessarily Hadamard diagonalizable ones. However, all remaining graphs are coming as
the products of Hadamard diagonalizable graphs of smaller orders as expressed in the
product notation.

4.7 Order 32

The calculation for order 32 is much more involved, as the search space for each individual
matrix grows substantially. In addition, the number of Hadamard matrices of order 32 is
far greater—there are 13,710,027 non-equivalent normalized Hadamard matrices of order
32. To run the computation, a program was written in C++ and used on nauty [7] (for
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graph isomorphism testing) and parallel [9] (to speed up the computation). The calcu-
lation was performed on a server maintained by the Department of Applied Mathematics
at Charles University in Prague. The calculation took 179,736,390 seconds of CPU time,
which was about 2 months of real time due to parallel processing. If the answer to Ques-
tion 9 were positive, the calculation would take only 2 days. The source code, inputs, and
outputs can be downloaded from http://lidicky.name/pub/hadamard/; this includes
all Hadamard matrices stored as strings, all Hadamard diagonalizable graphs stored as
graph6-strings, and an additional file that can be used to determine which graphs are
associated with which matrix.

There are a total of 10,196 different (i.e. non-isomorphic) Hadamard diagonalizable
graphs, and unlike smaller orders, many of them are not Cayley graphs. We can partition
the Hadamard matrices according to which graphs they diagonalize: the result is 53,420
different equivalence classes. In Figure 1 we mark the distribution of these equivalence
classes in log-log scale; each point is an equivalence class.
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Number of Hadamard matrices

N
u
m
b
er

of
gr
ap

h
s

Figure 1: The sizes of the equivalence classes of Hadamard matrices based on which
graphs they diagonalize.

Here are a few additional notes about the order 32 Hadamard diagonalizable graphs
and the equivalence classes; much remains to be explored.

• The equivalence class corresponding with the fewest number of graphs is associated
with only four graphs (K32, K16,16, 2K16, 32K1); there are 29,270 Hadamard matri-
ces in this group. These Hadamard matrices only diagonalize these four graphs—
in particular, the four graphs listed here are the only ones which are universally
Hadamard diagonalizable for all Hadamard matrices of order 32.

• The equivalence class corresponding with the greatest number of graphs is associ-
ated with 3,430 graphs, and it has a unique Hadamard matrix in the class. This
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Hadamard matrix is represented pictorially in Figure 2(a).

• There are 26,064 different equivalence classes which consist of a single Hadamard
matrix. The number of graphs associated with these equivalence classes range from
12 at the low end, up to 3,430 at the high end. All Hadamard matrices which
diagonalize over 956 graphs are in equivalence classes of size 1; on the other hand
there does exist an equivalence class associated with 956 Hadamard diagonalizable
graphs which has two non-equivalent Hadamard matrices in the class.

• The largest equivalence class consists of 10,012,656 Hadamard matrices (out of a
possible 13,710,027). There are ten graphs associated with this equivalence class:
(32K1, 4K8, 2K16, K32, 2K8,8, K16,16, K8,8,8,8, K2 ◦ (2K8), H4,4 ◦ K4, (K4□K2) ◦
(4K1)).

• There are 970 Hadamard diagonalizable graphs for which each graph is associated
with a unique equivalence class; moreover for 966 of these graphs the equivalence
class has size 1. These 966 graphs are spread among 13 different Hadamard matrices;
92 of these graphs are associated with the Hadamard matrix in Figure 2(a) and 224
of these graphs are associated with the Hadamard matrix in Figure 2(b).

(a) (b)

Figure 2: Two Hadamard matrices of order 32 presented pictorially with white cells
corresponding with 1 and black cells with −1. The Hadamard matrix in (a) diagonalizes
3, 430 graphs (92 unique to this matrix). The Hadamard matrix in (b) diagonalized 1, 684
graphs (224 unique to this matrix).

Among the 10,196 Hadamard diagonalizable graphs of order 32 we have the following
data. (Recall that both a graph and its complement are always diagonalized by the same
Hadamard matrix.)
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• The graphs are regular, and the degrees of the graphs, denoted d(G), are distributed
as follows (we only give information up through degree 15, the rest follow by sym-
metry):

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|{G : d(G)=k}| 1 1 1 2 4 6 16 29 56 101 208 343 584 877 1241 1628

• The clique number of a graph, denoted ν(G), is the size of the largest complete
subgraph and its distribution for this class of graphs is as follows:

k 1 2 3 4 5 6 7 8 9 10 16 32
|{G : ν(G)=k}| 1 53 43 4115 1205 1847 443 2435 1 8 44 1

Note that taking complements sends cliques to independent sets and so this also
gives information about the sizes of maximal independent sets in graphs.

• There are 10,142 graphs which have girth 3, 51 graphs which have girth 4, 1 graph
which has girth 6, and 2 graphs which have no cycles.

• There are 54 disconnected graphs; among the remaining 10,142 connected graphs
the diameter of the graph, denoted diam(G), which is the maximal distance between
two vertices is distributed as follows:

k 1 2 3 4 5
|{G : diam(G)=k}| 1 9001 1128 11 1

• By Proposition 2 we know that the eigenvalues for the Laplacian of these graphs
consist of even integers. There are 1,228 distinct spectra which are achieved. For
518 of these graphs the spectrum is unique among these graphs (e.g. no other graph
from among this list has the same spectrum); the remaining 9,678 graphs each
have one or more cospectral mates in the list. The largest cospectral family is for
the spectra {0(1), 12(10), 16(15), 20(6)} and {0(1), 12(6), 16(15), 20(10)} (here exponents
represent multiplicity); each family having 528 distinct graphs with that spectra.

The algebraic connectivity of a graph is the second smallest eigenvalue (counting
multiplicity) of the Laplacian matrix of a graph. The algebraic connectivity, α(G),
for the graphs are as follows:

k 0 2 4 6 8 10 12 14
|{G : α(G)=k}| 54 56 398 604 2241 1771 3231 822

k 16 18 20 22 24 26 28 30 32
|{G : α(G)=k}| 774 122 88 17 12 2 2 1 1

• 4,130 of the graphs are vertex-transitive; 45 of the graphs are edge-transitive; 38 of
the graphs are distance-regular; 32 of the graphs are cographs; and 6 of the graphs
are chordal (namely those which are unions of cliques).
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5 Concluding remarks

The obstacles to moving forward with larger Hadamard matrices are the size of the com-
putations for any individual Hadamard matrix, combined with a lack of a classification
of all Hadamard matrices of order 36 or above. However, we can run the computation
on some known Hadamard matrices of higher orders and we summarize the computation
results in Table 5.

Hadamard matrix Number of H. graphs
had.40.tpal 26
had.40.ttoncheviv 26
had.40.twill 26
had.48.pal 4
had.56.tpal2 26
had.56.twll 26

Table 7: Some Hadamard matrices from Sloane [8] and the number of graphs for which
that matrix Hadamard diagonalizes the graph.

For the three Hadamard matrices of order 40 the 26 graphs are the same; similarly,
for the two Hadamard matrices of order 56. The data, combined with what we know for
order 24, suggest the following question.

Question 11. For n = 16k + 8, k = 1, 2, . . . , there are at most 26 distinct graphs which
are Hadamard diagonalizable for some Hadamard matrix of order n.

An affirmative answer to this question would come from finding an argument similar
to the one used for order n = 8k + 4. A negative answer to this question would likely
come from computations on additional Hadamard matrices, say of order 40 or order 56,
to find additional graphs. (The existing code can readily handle Hadamard matrices of
this order.)

We have seen that there exist Hadamard diagonalizable graphs of order 8k + 4 for all
k < 250 except for the 13 values of k, namely, k = 83, 89, 111, 125, 141, 155, 173, 179, 209,
221, 239, 243 and 245 for each of which it is not known whether there exists a Hadamard
matrix of order 8k+ 4 as of 2018. Thus we see the existence of Hadamard diagonalizable
graphs of various orders. For instance, we know that there are many Hadamard diagonal-
izable graphs of order 48, as 48 is factored as 2×24 and 4×12 and there are 26 Hadamard
diagonalizable graphs of order 24, and 4 for each of order 4 and 12. On the other hand,
through the computational search, the Hadamard matrix of order 48 from Sloane [8] has
few Hadamard diagonalizable graphs. When we reran the computation using a Hadamard
matrix generated by SageMath there were 762 distinct Hadamard diagonalizable graphs.
Given the lack of classification for Hadamard matrices of order 48, it is not clear how to
determine all Hadamard diagonalizable graphs of order 48.
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Finally, as a by-product, we have the following interesting observation. We have
seen that the Shrikhande graph, say S, shown in Table 6 is the Cayley graph of Z2

4 with
connecting set {±(0, 1),±(1, 0),±(1, 1)}. Both S and the (2, 4)-Hamming graphH(2, 4) =
K4□K4 are strongly regular graph with parameters (v, k,λ, µ) = (16, 6, 2, 2). They are
known as co-spectral graphs. Now as both of them are Hadamard diagonalizable graphs,
their Cartesian and lexicographic products and powers are all Hadamard diagonalizable
graphs.

The Hamming graph H(d, q) is isomorphic to the Cartesian product of d copies of Kq

(i.e., H(d, q) ∼= K□d
q ), which is a distance-regular graph of diameter d.1 The Cartesian

product of l copies of S and one copy of Hamming graph H(d, 4) is known as a Doob graph
D(l, d) of diameter 2l+ d. The Doob graph D(l, d), the Hamming graph H(2l+ d, 4), the
Cartesian product of l copies of H(2, 4) with H(d, 4) are cospectral. As a consequence,
we state this as the following:

Corollary 12. The Hamming graphs H(d, 4), d ! 1, and Doob graphs D(l, d), l, d ! 1
are all Hadamard diagonalizable graphs.
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