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Equation Solver for Maxwell’s Equations
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Abstract— This article introduces a new method for discretiz-
ing and solving integral equation formulations of Maxwell’s equa-
tions, which achieves spectral accuracy for smooth surfaces. The
approach is based on a hybrid Nyström-collocation method using
Chebyshev polynomials to expand the unknown current densities
over curvilinear quadrilateral surface patches. As an example,
the proposed strategy is applied to the magnetic field integral
equation (MFIE) and the N-Müller formulation for scattering
from metallic and dielectric objects, respectively. The convergence
is studied for several different geometries, including spheres,
cubes, and complex NURBS geometries imported from CAD
software, and the results are compared against a commercial
Method-of-Moments solver using RWG basis functions.

Index Terms— High-order accuracy, integral equations,
N-Müller formulation, scattering, spectral methods.

I. INTRODUCTION

DUE to the lack of analytical solutions for anything but the
simplest problems [1], efficient and accurate numerical

methods for solving Maxwell’s equations are crucial for a
plethora of engineering applications today, including antennas,
microwave devices, and nanophotonic structures. A recent
resurgence in inverse design approaches [2], which involve
the automated design of novel electromagnetic structures given
a set of desired performance metrics and design constraints,
require accurate field and gradient information at each itera-
tion, highlighting the need for fast Maxwell solvers. Although
finite-difference [3] and finite-element methods [4] are popular
approaches due to their relative ease of implementation, they
suffer from several major drawbacks: poor convergence due to
finite-difference approximations or low-order basis functions
and significant numerical dispersion due to relying on local
discrete differentiation, and they are often impractical for large
problems due to their volumetric nature. On the other hand,
boundary equation (BIE) formulations have been shown to be
highly effective in situations containing scatterers with small
surface area to volume ratios due to only solving for unknowns
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on surfaces rather than volumes. Recently, BIEs have been
successfully applied toward the modeling and optimization of
nanophotonic devices in two dimensions, showing significant
improvements in speed and accuracy over finite-difference-
based methods [5].

The majority of present day implementations of BIE meth-
ods rely on the discretization of objects via triangular dis-
cretizations. In the pioneering work by Rao et al. [6], the RWG
set of basis functions was introduced in order to solve the
electric field integral equation (EFIE) in conjunction with the
Method of Moments (MoM) for flat triangular discretizations.
Some of the limitations of RWG functions include that they
are only first order and cannot accurately approximate complex
surface current distributions without very fine meshing, which
often leads to poor convergence and conditioning of the
discretized system. Several efforts have been made to improve
performance, including the use of alternative basis functions
for testing or expansion [7] and use of higher order basis
functions [8]–[12]. In particular, Wandzura [8] extends the
RWG basis to curvilinear triangular patches, Wang and Webb
[9] present a p-adaptive scheme for high-order edge basis func-
tions that guarantee continuity of the normal component of the
surface currents across elements, and Graglia et al. [10] intro-
duced vector basis functions for divergence-conforming and
curl-conforming mixed-order Nédélec spaces [13]. In addition,
other MoM approaches that can handle defective meshes have
been proposed, including the high-order grid-robust method
from [14] and the mesh-free scheme from [15].

Other high-order approaches based on Galerkin [16]–[19]
and Nyström methods have also been proposed—for example,
in [20], the singularities in the integral operators are handled
by local corrections in the discretization of the kernels.
In [21]–[23], an alternative approach was introduced, which
achieves high-order accuracy by utilizing a Nyström method
and discretizing the integrals on the basis of local coordinate
charts together with fixed and floating partitions of unity.
While effective, the approach in [23] relies on overlapping
parameterized patches, which can both increase the number
of unknowns and significantly complicate the generation of
surface meshes. Recently, Bruno and Garza [24] demonstrated
a new high-order solution strategy for acoustic scattering
problems based on nonoverlapping parametric curvilinear
patches. The method presented in [24] and [25] discretizes the
unknowns on each patch on a Chebyshev grid, approximating
the unknown surface densities using Chebyshev polynomials.
A spectrally accurate Fejér quadrature rule is used for
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evaluating far interactions, and a Cartesian change of
variables is used to cancel the singularity of the integrals
associated with local and near interactions (similar in nature
to the annihilation procedure described in [12]), leading to
high-order accuracy in the numerical evaluation of both the
singular and near-singular integrals.

In this work, we extend the methods presented in [24] and
[25] from the scalar Helmholtz equation to the numerical
solution of the fully vectorial Maxwell case, demonstrating
that the same integration strategies for nonadjacent, singular,
and near-singular interactions work well in the electromagnetic
case. In order to demonstrate the generality of the approach,
we consider scattering from both perfect electrical conduc-
tor (PEC) and dielectric objects. We focus on the solution
of the MFIE formulation [26] for metallic objects and the
N-Müller formulation [27] for dielectric objects due to their
superior conditioning properties although we remark that all
the methods presented in this work can readily be extended to
the electric and combined field integral equations (EFIE/CFIE)
and other integral equation formulations designed for dielectric
objects, such as the Poggio–Chang–Miller–Harrington–Wu–
Tsai (PCMHWT) formulation [28].

This article is organized as follows. In Section II,
we briefly review the MFIE and the N-Müller formulations.
In Section III, we review the proposed high-order-accurate
Chebyshev-based boundary integral equation (CBIE) approach
[24], [25] and extend it to the vectorial case necessary
for discretizing the integral formulations. Finally, numerical
results are presented in Section IV, which evaluates the perfor-
mance of the CBIE method by comparing the numerical solu-
tions of plane wave scattering from a PEC/dielectric sphere
against analytical Mie-series solutions, as well as solving
a PEC/dielectric cube for which no closed-form solutions
exist. The accuracy is also compared against a commercial
RWG-based MoM solver. Finally, we present results for scat-
tering from two complex NURBS parameterized geometries
generated by commercial CAD software.

II. INTEGRAL EQUATION FORMULATIONS

A. Magnetic Field Integral Equation Formulation for Closed
Metallic Scatterers

We consider the problem of computing the scattered electric
and magnetic fields (Escat, Hscat) that result due to an incident
field excitation (Einc, Hinc), impinging on the surface � of a
closed perfect metallic object D, as illustrated in Fig. 1(a).
Based on the Stratton–Chu formulas [29], EFIE and magnetic
field integral equation (MFIE) can be derived, which express
the scattered electric and magnetic fields in terms of the
physical current J = n̂×H on the surface of a perfect metallic
conducting object [30]. Although either the EFIE, the MFIE,
or a linear combination of the two can be used to solve for the
scattered fields due to an incident excitation, only the MFIE is
considered in this work due to its good conditioning properties
as a result of the nature of Fredholm integral equations of the
second kind [29]. The classical MFIE can be expressed as

J
2

+ KJ = n̂ × Hinc (1)

Fig. 1. (a) EM scattering from a closed PEC object. (b) EM scattering from
a closed penetrable dielectric object.

where K is the operator

K[a](r) = n̂(r) ×
∫

�

a
(
r′) × ∇G

(
r − r′)dσ

(
r′). (2)

Note that ∇ denotes the gradient with respect to the coordi-
nates of observation points r, G corresponds to the free space
scalar Green’s function of the Helmholtz equation: G(r−r′) =
exp(−ik|r−r′|)/(4π |r−r′|) with wavenumber k = 2π/λ, and
n̂ denotes the outwardly pointing surface normal.

B. N-Müller Formulation for Dielectric Scatterers

The second scenario that we consider is scattering from
a penetrable dielectric object D with a permittivity εd and
a permeability μd embedded in a homogeneous background
medium characterized by permittivity εe and permeability μe

in the presence of an incident field excitation (Einc, Hinc).
As shown in Fig. 1(b), since the object is now penetrable,
the incident fields lead to scattered fields outside the object,
(Escat, Hscat), as well as transmitted fields inside, (Et, Ht).
Equivalent electric and magnetic current densities can then
be defined based on the boundary tangential magnetic and
electric fields, respectively, across the dielectric interface as:
J = n̂ × (Hinc + Hscat) = n̂ ×Ht and M = (Einc + Escat)× n̂ =
Et × n̂ on the surface � of D. By invoking the Stratton–Chu
formula for the electric and magnetic fields outside of the
object and crossing with the normal vector n̂, we obtain

M
2

+ KeM − ηeTeJ = −n̂ × Einc (3)

J
2

+ KeJ + 1

ηe
TeM = n̂ × Hinc (4)

where the Ke and Te operators are defined as

Ke[a](r) = n̂(r) ×
∫

�

a
(
r′) × ∇Ge

(
r − r′)dσ

(
r′) (5)

Te[a](r) = T s
e [a](r) + T h

e [a](r) (6)

T s
e [a](r) = jken̂(r) ×

∫
�

a
(
r′)Ge

(
r − r′)dσ

(
r′) (7)

T h
e [a](r) = j

ke
n̂(r) ×

∫
�

∇Ge
(
r − r′)∇′

s · a
(
r′)dσ

(
r′) (8)

where the subscript “e” in the operators indicates the exterior
medium, which has wavenumber ke = 2π/λe and impedance:
ηe = √

μe/εe.
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Similarly, another set of integral equations can be obtained
for the transmitted fields (Et, Ht) inside the object

M
2

− Kd M + ηdTd J = 0 (9)

J
2

− Kd J − 1

ηd
Td M = 0 (10)

where the Kd and Td operators are defined in the same manner
as Ke and Te, except the subscript “d” denotes the interior
medium with corresponding wavenumber kd = 2π/λd and
impedance ηd = √

μd/εd .
Equations (3), (4), (9), and (10) give four equations for two

unknowns (J, M). They can be linearly combined as follows
to reduce the system to two independent equations:

α1(3) + α2(9)

β1(4) + β2(10). (11)

Choosing α1 = εe, α2 = εd , β1 = μe, β2 = μd results in the
classical N-Müller formulation, which completely cancels the
singular terms arising from the gradient of Green’s function
in the T h

e and T h
d operators [31]. Thus, the combined system

in the matrix form is⎡
⎣ εeKe − εdKd + εe + εd

2
I −(

MT s + MT h
)

MT s + MT h μeKe − μdKd + μe + μd

2
I

⎤
⎦

×
[

M
J

]
=

[ −εen̂ × Einc

μen̂ × Hinc

]
(12)

where I is the identity operator, and MT s and MT h are
defined as

MT s [a](r) = (√
μeεeT s

e − √
μdεdT s

d

)
[a](r)

= j

ω
n̂(r) ×

∫
�

a
(
r′)(k2

e Ge − k2
d Gd

)
dσ

(
r′) (13)

MT h[a](r) = (√
μeεeT h

e − √
μdεdT h

d

)
[a](r)

= j

ω
n̂(r) ×

∫
�

(∇Ge − ∇Gd)∇′
s · a

(
r′)dσ

(
r′).
(14)

The difference of the hypersingular operators T h and MT h

cancels out the highest order singularity so that MT s +MT h

is only weakly singular.

III. CHEBYSHEV-BASED BOUNDARY INTEGRAL

EQUATION APPROACH

A. Representation of Geometries and Densities

In order to solve (1) or (12), the surface � is first divided
into a number (M) of nonoverlapping curvilinear quadrilateral
patches �p, p = 1, 2, . . . , M . For each of these patches, a U V
mapping is used to map from the square [−1, 1]×[1, 1] in U V
space to the corresponding parameterized surface in Cartesian
coordinates, as illustrated in Fig. 2. Defining the position
vector on �p as r = r p(u, v) = (x p(u, v), y p(u, v), z p(u, v)),
we can define the tangential covariant basis vectors and surface
normal on �p as

ap
u = ∂r p(u, v)

∂u
, ap

v = ∂r p(u, v)

∂v
, n̂p = ap

u × ap
v

||ap
u × ap

v || . (15)

Fig. 2. Mapping from square [−1, 1] × [−1, 1] in parameter domain to a
patch on a sphere in Cartesian coordinates.

Thus, the vector triplet (ap
u , ap

v , n̂p) forms a local conformal
reference frame at each point on �p. The metric tensor is
defined as

G p =
[

g p
uu g p

uv

g p
vu g p

vv

]
(16)

where g p
i j = ap

i ·ap
j , and thus, we have a surface element Jaco-

bian ds = √|G p|dudv on �p, where |G p| is the determinant
of G p. We can now represent the surface current densities on
�p as

Jp(u, v) = J p,u(u, v)ap
u (u, v) + J p,v (u, v)ap

v (u, v)√|G p(u, v)| (17)

Mp(u, v) = M p,u(u, v)ap
u (u, v) + M p,v (u, v)ap

v (u, v)√|G p(u, v)| (18)

for p = 1, . . . , M , where Jp(u, v) ≡ J(r p(u, v)), Mp(u, v) ≡
M(r p(u, v)), and J p,u (respectively, M p,u) and J p,v (respec-
tively, M p,v ) are scalar functions representing the contravariant
components of the surface current density J (respectively, M)
on the pth patch normalized by the metric tensor,

√|G p|. The
densities are normalized by the surface element Jacobian in
order to simplify the numerical computation of their diver-
gence (see [29, sec. 6.2.5]). Due to their desirable spectral
convergence properties for approximating smooth functions,
we utilize Chebyshev polynomials to discretize the surface
current densities

J p,a =
N p

v −1∑
m=0

N p
u −1∑

n=0

γ p,a
n,m Tn(u)Tm(v), for a = u, v (19)

M p,a =
N p

v −1∑
m=0

N p
u −1∑

n=0

ζ p,a
n,m Tn(u)Tm(v), for a = u, v (20)

where the Chebyshev coefficients γ
p,a

n,m and ζ
p,a

n,m can be com-
puted from the values of the densities on Chebyshev nodes

γ p,a
n,m = αnαm

N p
u N p

v

N p
v −1∑

k=0

N p
u −1∑
l=0

J p,a(ul, vk)Tn(ul)Tm(vk) (21)

ζ p,a
n,m = αnαm

N p
u N p

v

N p
v −1∑

k=0

N p
u −1∑
l=0

M p,a(ul, vk)Tn(ul)Tm(vk) (22)

based on the discrete orthogonality property of Chebyshev
polynomials [32], with αn = 1 for n = 0 and αn = 2
otherwise. Therefore, only the unknowns at the Chebyshev
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nodes (37) are required to represent the continuous scalar
densities J p,a and M p,a over the whole patch �p, where a
can be either u or v.

In our specific implementation, these unknowns are ordered
in the vector form as

J p = [
J p,u(u0, v0), . . . , J p,u

(
uN p

u −1, vN p
v −1

)
,

J p,v (u0, v0), . . . , J p,v
(
uN p

u −1, vN p
v −1

)]T
(23)

and a similar expression holds for Mp.

B. Discretization of Operators

We now turn our attention toward discretization of the
K/Ke/Kd , MT s and MT h operators. We will begin by
discretizing the K operator first. It is clear that any integral
over � can be split into the sum of integrals over each of the
M patches

K[J](r) =
M∑

p=1

K
[
Jp

]
(r) (24)

K
[
Jp

]
(r) = n̂(r) ×

∫
� p

Jp
(
r′) × ∇G

(
r − r′)dσ

(
r′)

= n̂(r) ×
∫ 1

−1

∫ 1

−1

(
J p,u(u, v)ap

u (u, v)

+ J p,v (u, v)ap
v (u, v)

) × ∇G
(
r − r p(u, v)

)
dudv.

(25)

Note that
√|G p(u, v)| in the denominator of the expansion

(17) for J cancels with the Jacobian
√|G p(u, v)| that appears

in the integral. In its current form, (25) contains the hyper-
singular kernel ∇G; however, it can be manipulated using the
BAC-CAB vector identity into

K
[
Jp

]
(r) =

∫ 1

−1

∫ 1

−1
J p,u(u, v)

×
(

ap
u (u, v)

∂G(r − r p(u, v))

∂ n̂(r)

− ∇G
(
r − r p(u, v)

)
n̂(r) · ap

u (u, v)

)
dudv

+
∫ 1

−1

∫ 1

−1
J p,v (u, v)

×
(

ap
v (u, v)

∂G(r − r p(u, v))

∂ n̂(r)

− ∇G
(
r − r p(u, v)

)
n̂(r) · ap

v (u, v)

)
dudv

(26)

which is weakly singular since n̂(r) · ap
u,v approaches 0 as

r p(u, v) → r. Substituting (26) into (1), we must obtain
2

∑M
p=1 N p

u N p
v linearly independent equations in order to

obtain a uniquely solvable linear system for approximating
J on �. This is achieved by using a collocation method and
testing (1) at same points as the unknowns.

To obtain the contravariant components of the vector equa-
tions (1) and (12), we dot each vector equation with the
normalized contravariant basis vectors

√
G pap,u and

√
G pap,v

where the contravariant basis vectors ap,u and ap,v are defined
via the orthogonality relation

ap,a · ap
b =

{
1, a = b

0, a �= b.
(27)

We can now define the linear system⎡
⎢⎢⎢⎢⎣

I

2
+ K 11 . . . K 1M

...
...

. . .
...

K M1 . . .
I

2
+ K M M

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣
J 1

...
J M

⎤
⎥⎦ =

⎡
⎢⎣
H1

inc
...

HM
inc

⎤
⎥⎦ (28)

where

Hp
inc = [−ap

v · Hp,inc(u0, v0), . . . ,

− ap
v · Hp,inc(uN p

u −1, vN p
v −1

)
,

ap
u · Hp,inc(u0, v0), . . . ,

ap
u · Hp,inc(uN p

u −1, vN p
v −1

)]T
(29)

represents the incident magnetic field on the pth patch and
J p, p = 1, 2, . . . , M , is given by (23).

The matrix block K qp represents contributions of the appro-
priately discretized K operator from the densities of the patch
p to the target points on patch q and consists of the individual
subblocks

K qp =
(

K qp
uu K qp

uv

K qp
vu K qp

vv

)
. (30)

For the operators used in the N-Müller formulation, the
matrix blocks corresponding to the Ke and Kd operator can be
obtained in exactly the same way as those for the K operator
by simply replacing the wavenumber k in Green’s function in
(26) with ke and kd , respectively. The integral of the MT s

and MT h operators can also be split over each patch in a
similar way as the K operator

MT s[J](r) =
M∑

p=1

MT s
[
Jp

]
(r) (31)

MT s
[
Jp

]
(r) = j

ω
n̂(r) ×

∫
� p

Jp
(
r′)G p

�dσ
(
r′)

= j

ω
n̂(r) ×

∫ 1

−1

∫ 1

−1

(
J p,u(u, v)ap

u (u, v)

+ J p,v(u, v)ap
v (u, v)

)
× G p

�(r, u, v)dudv (32)

MT h[J](r) =
M∑

p=1

MT h
[
Jp

]
(r) (33)

MT h
[
Jp

]
(r) = j

ω
n̂(r) ×

∫
� p

∇G p
�∇′

s · Jp
(
r′)dσ

(
r′)

= j

ω
n̂(r)×

∫ 1

−1

∫ 1

−1
∇G p

�

(
∂ J p,u

∂u
+ ∂ J p,v

∂v

)
dudv

= j

ω
n̂(r)×

∫ 1

−1

∫ 1

−1
∇G p

�(r, u, v)

N p
v −1∑

m=0

N p
u −1∑

n=0

× (
γ p,u

n,m T ′
n(u)Tm(v) + γ p,v

n,m Tn(u)T ′
m(v)

)
dudv
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=
N p

v −1∑
m=0

N p
u −1∑

n=0

j

ω
n̂(r)×

∫ 1

−1

∫ 1

−1

(
γ p,u

n,m T ′
n(u)Tm(v)

+ γ p,v
n,m Tn(u)T ′

m(v)
)

× ∇G p
�(r, u, v)dudv (34)

where G p
�(r, u, v) ≡ [k2

e Ge(r−r p(u, v))−k2
d Gd(r−r p(u, v))]

and ∇G p
�(r, u, v) ≡ [∇Ge(r−r p(u, v))−∇Gd(r−r p(u, v))].

The partial derivative of the densities can be readily computed
by taking the derivative of the corresponding Chebyshev
polynomials [33]. After the substitution of (32) and (34) into
(12) with the expansion defined in (19) and (20), testing (12)
at the same collocation points as the unknowns results in the
linear system⎡
⎣ εe Ke − εd Kd + εe + εd

2
I −(

MT s + MT h
)

MT s + MT h μe Ke − μd Kd + μe + μd

2
I

⎤
⎦

×
[
M
J

]
=

[−εeEinc

μeHinc

]
. (35)

The block in Einc corresponding to the incident electric field
on the pth patch is

E p
inc = [−ap

v · Ep,inc(u0, v0), . . . ,

− ap
v · Ep,inc

(
uN p

u −1, vN p
v −1

)
,

ap
u · Ep,inc(u0, v0), . . . ,

ap
u · Ep,inc

(
uN p

u −1, vN p
v −1

)]T
. (36)

The counterpart Hp
inc is defined in (29). The matrices Ke, Kd ,

MT s , and MT h all have the same block structure arranged
by patches as indicated in (28) and (30) for the matrix K .
A suitable numerical integration strategy must now be chosen
for evaluating the necessary operators to compute the above
matrix subblocks. In Sections III-C and III-D, we will detail
the approach for dealing with the nonadjacent interactions
(p �= q) and the singular and near-singular interactions arising
either when p = q or when p �= q , but the target point on q
is located very near to the source patch p, which is based on
the strategy put forth in [24].

C. Nonadjacent Interactions

The integrals (26), (32), and (34) are smooth for target
points far away from the source patch p. Since the current
density J/M is discretized on a Chebyshev grid on each patch,
we can use the Fejér’s first quadrature rule to numerically eval-
uate these integrals with high-order accuracy. The quadrature
nodes and weights for an order N open rule are given by

xi = cos

(
π

2i + 1

2N

)
, i = 0, . . . , N − 1 (37)

wi = 2

N

(
1 − 2

N/2∑
k=1

1

4k2 − 1
cos

(
kπ

2i + 1

N

))
(38)

and the discretized versions of (26), (32), and (34) become
(with a = {u, v} and b = {u, v} to represent the u and v
contravariant components)

K qp
ba

[
J p,a

](
u′, v ′) =

N p
v −1∑

k=0

N p
u −1∑
l=0

Aqp
ba

(
u′, v ′, ul, vk

)

× √|Gq(u′, v ′)|wlwk J p,a(ul, vk)

(39)

MT s,qp
ba

[
J p,a

](
u′, v ′) =

N p
v −1∑

k=0

N p
u −1∑
l=0

Bqp
ba

(
u′, v ′, ul , vk

)
× √|Gq(u′, v ′)|wlwk J p,a(ul, vk)

(40)

MT h,qp
ba

[
J p,a

](
u′, v ′) =

N p
v −1∑

k=0

N p
u −1∑
l=0

Cqp
ba

(
u′, v ′, ul , vk

)
× √|Gq(u′, v ′)|wlwk

∂ J p,a

∂a
(ul, vk)

(41)

with

Aqp
ba (u′, v ′, ul, vk) = aq,b(u′, v ′) · ap

a (ul, vk)

× ∂G(rq(u′, v ′) − r p(ul, vk))

∂ n̂q(u′, v ′)
− n̂q(u′, v ′) · ap

a (ul, vk)

× aq,b(u′, v ′)·∇G(rq(u′, v ′)−r p(ul, vk))

(42)

Bqp
ba (u′, v ′, ul, vk) = j

ω
aq,b(u′, v ′) · (n̂q(u′, v ′) × ap

a (ul, vk))

× [
k2

e Ge − k2
d Gd

]
(rq(u′, v ′)−r p(ul , vk))

(43)

Cqp
ba (u′, v ′, ul, vk) = j

ω
aq,b(u′, v ′) · n̂q(u′, v ′)

× [∇Ge − ∇Gd ](rq(u′, v ′) − r p(ul, vk))

(44)

where ul and vk are the discretization points on the Chebyshev
grid corresponding to the xi nodes: ul = xl |l = 0, . . . , N p

u −
1, vk = xk |k = 0, . . . , N p

v − 1, and wl and wk are the
quadrature weights in the u- and v-directions, respectively.

D. Singular and Near-Singular Interactions

When the observation point (u′, v ′) is on the same patch as
the source patch p, the integrals (26), (32), and (34) become
singular.1 In order to accurately compute the resulting integrals
with high-order accuracy, we consider the following smoothing
change of variables [24], [34, Sec. 3.5]:

u(s) = ξu′(s), v(t) = ξv ′(t), for −1 ≤ s, t ≤ 1 (45)

where

ξα(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

α +
(

sgn(τ ) − α

π

)
w(π |τ |), for α �= ±1

α ∓
(

1 ± α

π

)
w

(
π |τ ∓ 1

2
|
)

, for α = ±1

w(τ) = 2π
[ν(τ )]d

[ν(τ )]d + [ν(2π − τ )]d
, 0 ≤ τ ≤ 2π

ν(τ) =
(

1

d
− 1

2

)(
π − τ

π

)3

+ 1

d

(
τ − π

π

)
+ 1

2
. (46)

The derivatives of w(τ) vanish up to order d − 1 at the
endpoints, and therefore, d −1 derivatives of ξα(τ ) also vanish

1In fact, the integral (34) for MT h remains regular due to the Müller can-
cellation and does not require special consideration; however, for simplicity,
we treat it in the same way as the other operators in our implementation.
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at τ = 0, corresponding to ξα(0) = α. Now, since J p,a(a =
u, v) is expanded in terms of Chebyshev polynomials, which
satisfies a discrete orthogonality property on the Chebyshev
grid points, we can accurately precompute the action of the
Kqp

ba , MT s,qp
ba , and MT h,qp

ba operators on each Chebyshev
polynomial individually

K qp
ba [Tmn]

(
u′, v ′) = √|Gq(u′, v ′)|

N v
β −1∑

k=0

N u
β −1∑

l=0

wlwk

× Aqp
ba

(
u′, v ′, ξu′(sl), ξv ′ (tk)

)
× ∂u

∂s
(sl)

∂v

∂ t
(tk)Tmn(ξu′(sl), ξv ′ (tk)) (47)

where Tmn(u, v) ≡ Tn(u)Tm(v), and where (∂u)/(∂s) → 0
and (∂v)/(∂ t) → 0 as ξu′(s) → u′ and ξv ′ (t) → v ′, respec-
tively, canceling the singularity in A up to a degree d−1. Note
that the expressions for MT s,qp

ba and MT h,qp
ba are the same but

with A replaced by B and C , respectively. It is important that
Nu,v

β is chosen sufficiently large to accurately compute each
of the precomputation integrals in (47). A numerical analysis
of the resulting forward map accuracy versus Nu,v

β is done in
Section IV. Finally, on the basis of these precomputations, the
action of each of these operators on any J p,a or M p,a can
be readily computed using the Chebyshev expansion of the
density, e.g.,

K qp
ba

[
J p,a

](
u′, v ′) =

N p
v −1∑

m=0

N p
u −1∑

n=0

γ p,a
m,n K qp

ba [Tmn]
(
u′, v ′) (48)

where γ
p,a

m,n are the Chebyshev expansion coefficients defined
in (19). An analogous relation also holds true for the MT s and
MT h operators. This precomputation approach is also used
in order to accurately compute the K qp

ba , MT s,qp
ba , and MT h,qp

ba
blocks corresponding to target points that are on different
patches but are still in close proximity to the source patch,
making the integration near-singular. The only difference in
this scenario arises in the selection of α in the change
of variable expression (46). Instead of simply choosing the
(u′, v ′) corresponding to the target point, since it is on a
different patch, we search for(

u∗, v∗) = arg min
(u,v)∈[−1,1]2

∣∣rq
(
u′, v ′) − r p(u, v)

∣∣ (49)

for the change-of-variables as the point on the source patch
nearest to the target patch, which can be readily found by an
appropriate minimization algorithm. We adopted the golden
section search algorithm in our specific implementation [33],
[35], with initial bounds given by the points on the grid of
the source patch, which minimizes the distance, and then
using the golden section search to improve that initial guess.
We found, just as in [24], that this approach is robust and
does not incur significant computational expense since it is
only performed while precomputing the action of the operators
onto the Chebyshev polynomials from (47).

As in [24], the computational cost of the singular and
near-singular integrals (for N p

u = N p
v = N and Nu

β =
Nv

β = Nβ ) is given by O(M N2
β N(N2 + Nclose)), where

Nclose represents the number of points per patch that require

near-singular integrations. This bound is obtained by perform-
ing the precomputations on (47) via partial summation [36,
Sec. 10.2], and it differs only from the acoustic case by a
constant factor given that multiple integrals of kernels against
the Chebyshev polynomials need to be precomputed, while the
acoustic case only involves one kernel. For an implementation
that relies on an iterative linear algebra solver, where the
matrices are not explicitly formed, the storage of the pre-
computations requires O(M N2(N2 + Nclose)) complex-valued
numbers. Hence, in practice, one must consider a balance
between M , N , and Nβ : a large value of N will give a higher
order expansion of the currents but will incur in larger storage
and precomputation times. On the other hand, increasing the
number of patches M while keeping N constant results in only
linear growth in the storage and precomputation times needed,
at the cost of lower polynomial representations of the current
densities.

IV. NUMERICAL RESULTS

We first present the convergence of the forward map—
namely, the action of the discretized integral operators on
a given set of currents—for both the MFIE and N-Müller
formulations with respect to the number of points per patch per
dimension N (Nu = Nv = N , corresponding to polynomial
representations of the current densities of order N − 1, as can
be seen from (19) and (20)) for varying levels of singular
integration refinement Nβ . Following this, several numerical
examples involving scattering from PEC and dielectric spheres
and cubes are presented and compared against a commercial
RWG-based MoM solver to demonstrate the high accuracy
that can be achieved using the proposed CBIE method. Finally,
we present scattering and near-field density results from scat-
tering by highly intricate 3-D NURBS objects parameterized
with commercial CAD software [37], which shows that the
approach can be readily applied to simulate objects arising in
realistic applications.

A. Forward Map Convergence

Fig. 3 shows the plots of the forward mapping error (i.e., the
error in the action of the integral operators when applied to
a fixed reference current density) on a 2λe diameter sphere
geometry for both the PEC and dielectric cases versus N
for various different choices of Nβ . In the dielectric case,
the exterior εe = 1.0 and the interior εd = 2.0. The Mie
series solution due to an incident plane wave is used as the
reference solution [38]. As can be seen, depending on the
desired accuracy, it is important to choose Nβ judiciously such
that it does not limit the overall solution accuracy. Increasing
Nβ does not increase the number of unknowns (controlled
by N); however, it can significantly increase the amount of
time required to precompute the singular and near-singular
interactions.

B. PEC Scattering: MFIE Formulation

In this section, we test the proposed approach for the MFIE
formulation by computing scattered fields from three PEC
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Fig. 3. (a) Forward mapping error with respect to N for various choices
of Nβ on a PEC sphere (D = 2λ) using the MFIE formulation. (b) Forward
mapping error on a dielectric sphere (D = 2λe, εe = 1.0, and εd = 2.0) using
the N-Müller formulation.

objects: two spheres of diameters 1.2λ and 4λ and a cube
with side length 1.2λ. All three objects are parameterized
by using six patches, and each patch is discretized with the
same number of points per patch per dimension N = Nu =
Nv . Thus, the total number of unknowns per problem is
Q = 2 × 6 × N2. The spheres are illuminated by the same
plane wave source, Einc = exp(−ikz)x̂. Since a closed-form
solution does not exist for scattering from a cube, we use
an electric dipole excitation, Hinc(r) = −∇ × {G(r, r′)p},
placed at position r′ = (0.06λ, 0.06λ, 0.06λ) inside the cube
with polarization p = (1, 1, 1). This allows us to determine
convergence of the numerical solution since the scattered
electric field must cancel the incident field outside the cube,
and thus, Hscat(r) = ∇ × {G(r, r′)p} for points r outside of
the cube. Note that, in this case, the density solutions do not
have a singularity at the cube edges, resulting in a similar
convergence rate as in the case of the sphere. The results for
the sphere cases are compared against the analytical Mie series
solutions.

Fig. 4(a) shows the error in the surface density between
the computed and analytical solution on the 4λ sphere for
N = 26. As can be seen, the numerical solution differs from
the exact solution by less than 5.7 × 10−7 at every point on
the sphere. Fig. 4(b) shows the plots of the computed surface
current distribution on the cube resulting from the internal
dipole source.

Fig. 4. (a) Error in the surface current distribution of a 4λ diameter sphere.
The worst error is 5.7 × 10−7. (b) Surface current distribution on a 1.2λ edge
length cube.

Fig. 5. Far-field error for the three scatterer examples versus the number of
unknowns. The performance of a commercial MoM RWG-based solver is also
plotted for the sphere case with D = 4λ for comparison. First- and 12th-order
asymptotes are drawn for reference.

Fig. 5 shows the plots of the error of the CBIE method
versus the number of unknowns (Q) used to discretize each
scatterer. As a comparison, the convergence of a commer-
cial MoM RWG-based solver for the 4λ sphere case is
also plotted. For reference, first- and 12th-order slopes are
drawn in dashed lines. As can be seen, the MoM solver
only approaches first-order convergence, requires a much finer
discretization than the proposed CBIE method, and, even for
a very high-resolution mesh, barely exceeds two digits of
accuracy. In contrast, the CBIE method converges spectrally
fast for all three examples, which makes it a significantly more
accurate and efficient approach.

C. Dielectric Scattering: N-Müller Formulation

The scattered fields from two dielectric objects are com-
puted to evaluate the performance of the CBIE method for
the N-Müller formulation: a dielectric sphere of 2λe diameter
with permittivity εd = 2εe and a dielectric cube of 2λe side
length with permittivity εd = 2εe, where λe = 2π/ke is the
wavelength corresponding the background exterior medium,
which is set to free-space for all problems considered here
(εe = ε0). The magnetic permeability for both objects is also
set to the vacuum permeability: μd = μe = μ0. The surfaces
of the objects are discretized in the same manner as for the
MFIE formulation, which results in Q = 2 × 2 × 6 × N2
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Fig. 6. (a) Surface M distribution on 2λe diameter dielectric sphere with
εd = 2εe. (b) Error of surface M distribution. Max error: 3.5×10−9. (c) Patch
configuration for a defective mesh. (d) Error of surface M distribution for the
defective mesh. Max error: 3.6 × 10−9.

Fig. 7. Convergence of far-field error for the two dielectric scatterer examples
versus number of unknowns. Convergence for the dielectric cube using edge
refinement is also plotted. Performance of commercial MoM RWG-based
solver is shown for comparison. First- and 14th-order asymptotes are drawn
for reference.

unknowns. They are both illuminated by a plane wave excita-
tion Einc = exp(−ikz)x̂. The results are compared against the
Mie series analytical solution for the dielectric sphere [38] and
against a highly refined numerical solution for the dielectric
cube since an analytical solution does not exist.

Fig. 6(a) shows the absolute value of the magnetic (M) cur-
rent density distribution on the surface of the 2λe sphere
for N = 24, and Fig. 6(b) shows the error difference of
the computed current density distribution with the Mie Series
solution. Fig. 6(c) shows the patch configuration for a “defec-
tive” mesh, i.e., one or more patch edges are only partially
shared by another quadrilateral patch, and Fig. 6(d) shows

TABLE I

CONDITION NUMBERS FOR THE DISCRETIZED MFIE AND N-MÜLLER
SYSTEMS. THE SPHERES AND CUBES ARE OF DIAMETER AND SIDE

LENGTHS OF 2λ, RESPECTIVELY, WITH εd = 2εe FOR THE

DIELECTRIC CASE

TABLE II

CONVERGENCE BY INCREASING THE NUMBER OF PATCHES AND KEEPING

THE DEGREE OF THE EXPANSION N CONSTANT FOR A DIELECTRIC

SPHERE OF DIAMETER 2λe . THE TIMES FOR THE PRECOMPUTA-
TIONS AND FOR FINDING THE CURRENT DENSITY SOLUTIONS

VIA GMRES ARE ALL IN SECONDS

the corresponding pointwise error on the magnetic current
density using 30 points per patch along the largest dimension
and 20 for the smallest patch dimension. This example demon-
strates one of the advantages of using a Nyström method and
quadrilateral patches with an open-grid quadrature.

Fig. 7 shows the plots of the error of the CBIE method
versus the number of unknowns (Q) used to discretize each
scatterer. As expected, the convergence for the cube is consid-
erably worse than that of the sphere due to the edge and corner
singularities in the current densities. The convergence rate can
be recovered, however, by using the same edge refinement
approach proposed in [24], which clusters unknowns near the
edges to better resolve the singularities. This improvement can
be seen in the edge refined curve plotted in Fig. 7. As a com-
parison, the convergence of a commercial MoM RWG-based
solver for both objects is also plotted. For reference, first-
and 14th-order slopes are drawn in dashed lines. As with
the PEC case, the MoM solver only approaches first-order
convergence and requires a much finer discretization than the
proposed CBIE method due to the linear basis functions and
flat triangular discretization used to represent the geometry.

For all the previous examples, a direct linear algebra solver
was used to obtain the density solutions, and in Table I,
we show the condition number for various discretizations on
both the MFIE and N-Müller systems. Indeed, these condition
numbers compare well to other high-order methods, including
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Fig. 8. (a) Real part of the x-component of the current density M for
scattering by a sphere of diameter 20λe (=28.3λd ). (b) Pointwise error for a
discretization consisting of 600 patches each with 18 points per dimension.
(c) and (d) Real part (of the x−component) and the absolute value of the
electric field, respectively.

the mixed-order basis, locally corrected method from [39,
Tables I–III]. To further show the ease at which this method-
ology can be incorporated with an iterative solver that does
not require the explicit formation of the system matrices,
we present in Table II the convergence of the method while
performing “h-refinement”—increasing the number of patches
M while keeping the number of points per patch per dimension
N constant—for a dielectric sphere with the same parameters,
as shown in Fig. 6. In Table II, we also show the total number
of unknowns Q and the number of iterations needed by the

Fig. 9. (a) Surface electric current density induced on 16λ tall PEC
CAD humanoid bunny model by incident plane wave. The model consists
of 402 curvilinear quadrilateral NURBS-parameterized patches. (b) RCS at
φ = 90◦ corresponding to plane wave scattering for N = 10 and N = 12
Chebyshev points per patch discretizations.

iterative method GMRES. The tolerance for GMRES was set
to 10−5 for N = 6 and N = 8 and 10−7 for N = 10. All
timings correspond to simulations using six cores of an Intel
i9-9900KF running at 4.7 GHz.

In Fig. 8, we show a simulation of a large dielectric
sphere with diameter 20λe (= 28.3λd) using a discretization
of 600 patches and N = 18 for a total of 194 400 discretization
points and 777 600 unknowns. Fig. 8(a) shows the real part
of the x-component of the density M. Fig. 8(b) shows the
pointwise error in the density M, with a maximum value
of 3.7 × 10−4 (for a GMRES tolerance of 10−5). The real
part of the x-component of the electric field and the absolute
value of the total electric field are shown in Fig. 8(c) and (d),
respectively.

D. Scattering From Complex NURBS CAD Models

In order to demonstrate that the proposed approach can be
readily used to solve scattering from complex CAD generated
models with an arbitrary curvature, we solve for the scattered
fields from two different NURBS models freely available
for download online [40]. As in the previous examples, the
incident excitation is an x-polarized plane wave propagating
in the +z direction. In the first example, we consider scattering
off of a 16 wavelength tall humanoid bunny character. Fig. 9(a)
shows the induced surface current density, and Fig. 9(b) shows
the plots of the RCS versus θ at a φ = 90◦ angle for two
different discretizations (N = 10 and N = 12 Chebyshev
points per side per patch or 100 and 144 points per patch
total, respectively). The model is comprised of 402 curvilinear
quadrilateral patches total and was directly imported from a
standard CAD software without any special postprocessing
required [37]. Despite the large size of the model, significant
variation in curvature, and regions with sharp geometrical
features (e.g., the ears), the match in the RCS for the two
relatively coarse discretizations is excellent, and they are
almost indistinguishable from one another, varying less than
1 × 10−4 from each other.

For the second CAD model example, we computed scat-
tering from a glider with a length of 7.7 wavelengths and a
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Fig. 10. (a) Surface electric current density induced on 79 patch PEC glider
CAD model by an incident plane wave. The glider spans 7.7 wavelengths from
wing to wing. (b) RCS at φ = 90◦ corresponding to plane wave scattering
for N = 10 and N = 12 Chebyshev points per patch discretizations.

wingspan of 5.6 wavelengths from the end of one wing to the
other. Fig. 10(a) shows the induced surface current density,
and Fig. 10(b) shows the plots of the RCS versus θ at a
φ = 90◦ angle for two different discretizations (N = 10 and
N = 12 Chebyshev points per side). The glider is comprised
of 79 curvilinear quadrilateral patches in total. As before, the
RCS curves resulting from the two different discretizations
match very well and vary less than 2.5×10−2 from each other.

V. CONCLUSION

This article presents a high-order accurate CBIE approach
for solving Maxwell’s equations. The CBIE method is applied
toward the discretization of the MFIE and the N-Müller for-
mulation. The performance is evaluated by solving scattering
from the sphere and cube PEC/dielectric objects and compar-
ing against analytical solutions and a commercial MoM-based
solver. We have also demonstrated a couple of examples of
scattering from complex 3-D CAD models that contain many
intricate features and variations in curvature. The proposed
method achieves spectral convergence on sufficiently smooth
surfaces with respect to the number of unknowns, signifi-
cantly reducing the number of unknowns required for the
desired accuracy over low-order MoM approaches. Further-
more, the CBIE approach also converges well for geometries
with edges and corners when an edge-refinement change of
variables is utilized as demonstrated by the dielectric cube

example. Current and future works involve applying the CBIE
method in conjunction with the windowed Green function
(WGF) [41] method toward the simulation and design of
3-D waveguiding structures with unbounded boundaries for
modeling nanophotonic devices [5], treating multimaterial and
composite objects [42]–[44], and incorporating acceleration
techniques, such as the fast multiple method [45]–[48] or
FFT-based methods [22], [49].
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