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Abstract—Boundary element methods (BEM) have been suc-
cessfully applied towards solving a broad array of complicated
electromagnetic problems. Most BEM approaches rely on flat
triangular discretizations and discretization via the Method of
Moments (MoM) and low-order basis functions. Although more
complicated from an implementation standpoint, it has been
shown that high-order methods based on curvilinear patch
mesh discretizations can significantly outperform low-order MoM
in both accuracy and computational efficiency. In this work,
we review a new high-order Nystrom method based on using
Chebyshev basis functions with curvilinear elements that we have
recently developed, present a few scattering examples, and discuss
related on-going and future work.

Index Terms—integral equations, spectral methods, Nystrom
method, scattering

I. INTRODUCTION

Boundary integral equations (BIEs) are a powerful class of
methods for solving many different electromagnetic problems,
including antennas [1], radar scattering [2], and most recently
nanophotonics [3]. Unlike volumetric methods such as the
Finite Difference (FD) method and the Finite Element Method
(FEM), which require generating complicated volume meshes,
boundary integral methods only require meshing of surface
boundaries between different material domains. This surface
meshing can also result in significantly reduced numbers of
unknowns over volumetric approaches, especially for problems
with large volume to surface area ratios. However, despite their
clear potential for high performance and accuracy, integral
equation methods are often overlooked due to difficulties
involving numerical evaluation of the integrals involving the
weakly singular and hypersingular Green’s function kernels.

The most well-known approach for discretization of integral
equations in electromagnetics is the Method of Moments
(MoM). Although various high-order MoM approaches have
been demonstrated, the majority of implementations rely on
the well-known, first-order Rao-Wilton-Glisson (RWG) basis
functions introduced in the seminal paper by the authors the
basis functions are named after [4]. Although MoM methods
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are convenient due to the ability to reduce the hypersingular
integrals to weakly singular by integrating by parts and moving
a gradient to the testing function, the required double integrals
due to Galerkin testing can greatly increase the computa-
tional effort required for applying the operator to a given
density (or building the system matrix for a direct matrix
implementation). The Nystrom method offers an alternative
approach for discretizing integral equations by directly using
a numerical quadrature rule and testing on the same set of
points used by the quadrature [5]-[9]. Due to this “point-
matching” testing approach, double surface integrals are not
required, leading to potentially more efficient evaluation. High-
order convergence can also be readily obtained via Nystrom
techniques without significant increases in computational costs
by employing high-order quadrature rules.

Unfortunately, dealing with the singular integral operators
in the Nystrom approach is far from trivial and require careful
consideration, which has limited their application and popu-
larity compared to MoM. Locally Corrected Nystrom (LCN)
are perhaps the most well-known approaches in the compu-
tational electromagnetics community for dealing with these
singular kernels. LCN methods typically work by numerically
computing a set of quadrature weights which absorb the kernel
and its singularity by solving least-squares problems in the far-
field [6], [10]. Although LCN methods can be highly effective,
the numerical determination of quadrature weights can lead
to increased error and it can be challenging or expensive to
increase the solution accuracy beyond a certain extent.

In this work, we will review a new, different approach that
we have developed for accurate, high-order discretization of
integral equations for Maxwell’s equations, recently published
in [11]. The approach was first demonstrated by [12] for the
3D Helmbholtz scalar case. Since the underlying mathematics
and specific implementation details of this Chebyshev-based
approach are covered in [11], in this work, we will summarize
the method at a high level, present some new scattering results,
and discuss recent applications that we are working towards.

II. THE CHEBYSHEV-BASED NYSTROM METHOD
A. Meshing

The Chebyshev-based method relies on representing the
geometry of the scattering obstacles by a set of nonoverlapping
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curvilinear quadrilateral patches. The primary advantage of
using curvilinear patches over flat triangular discretizations
is the ability to represent complex curvature accurately with
very coarse meshes. In order for high-order methods to exhibit
the most computational benefit over first-order methods such
as RWG Mo, it is necessary to use large patch sizes to
reduce the total number of unknowns—high-order methods
are capable of accurately representing the densities on large
patches due to the high expansion order, whereas they are
not needed for small, sub-wavelength patches over which the
density is not expected to vary considerably. Typically very
fine flat triangular discretizations are required to represent
a geometry accurately, which highlights the importance of
curvilinear discretizations when used in conjunction with high-
order integration techniques [13], [14].

B. Quadrature

The unknown densities on each patch are expanded in terms
of Chebyshev polynomials. Traditionally, when discretizing
integral equations (and often times when discussing accelera-
tion techniques such as the Fast Multipole Method [15]-[18]),
interactions between nearby and far away elements are con-
sidered differently in order to maintain overall accuracy while
maximizing computational efficiency. For the non-singular
far interactions, we use Fejér’s first quadrature—which is a
high-order accurate open integration rule over the Chebyshev
nodes—to evaluate the integrals with high degree of accuracy.

If a target point is on the integration source patch itself or
nearby, then the resulting integral kernels are either singular
or nearly singular. In order to deal with these integrals ac-
curately, we precompute the integral of each kernel against
each Chebyshev polynomial on each patch for each target
point. By leveraging the discrete orthogonality property of
Chebyshev polynomials, this allows efficient expansion of the
density into the corresponding Chebyshev coefficients. Due to
linearity, the integral of each kernel against the density can
now be rapidly found by multiplying each coefficient against
the corresponding precomputated integral and summing them
up.

The issue of the singularity still remains for the precomputa-
tion integrals against the Chebyshev basis. Although there exist
various effective approaches for dealing with such singular
integrals [6], [10], [19]-[21], we employ simple yet effective
technique relying on a change of variables which maps the
unit UV square back onto itself but clusters points on and
around the singular target point (see Fig. 1) and in doing so
results in a Jacobian which vanishes at the singularity and
cancels it [11], [12]. It should be noted that this technique
only works for weakly singular integrands. Hypersingular
integrands must be reduced to a weakly singular form prior
to applying the change of variables singularity cancellation
approach. In the case of dielectric objects, this can be readily
accomplished by employing the N-Miiller formulation [11],
[22], [23]. For the EFIE operator, the gradient of the Green’s
function with respect to the target coordinate can be pulled
outside of the integral, resulting in the integrand becoming

weakly singular. This requires numerical differentiation of the
resulting integral on the surface after the integration, which can
be readily accomplished by Chebyshev differentiation, since
the unknowns are already on the Chebyshev nodes [24].
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Fig. 1. (a) Two-dimensional Chebyshev grids used to evaluate the integral
operators when the target points are sufficiently far away from the integration
patch. (b) In the case of target points on-grid, or near the integration patch, an
auxiliary clustered grid is used to precompute the integral operators applied
to Chebyshev polynomials.
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Fig. 2. Convergence in the far field for the Chebyshev-based integral equation
method compared to a first-order MoM using a commercially available
implementation.

III. SCATTERING FROM LARGE AND COMPLEX OBIJECTS

Given that BIEs reduce the problem from solving for the
fields in a volume to finding the currents on the surface
of material interfaces, the advantages of these methods over
volumetric techniques, such as finite differences and finite
elements, are further highlighted when the ratio of scattering
volume to surface is high. In Fig. 3 we show the results
of dielectric scattering by a large sphere of diameter 20,
(=28.3);), where )\, and \; are the wavelengths in the exterior
and interior domains. In this case, we used a discretization of
600 patches, each consisting of Chebyshev grids of 18 x 18
points resulting in 194, 400 discretization points and 777,600
unknowns. The resulting pointwise error in the current densi-
ties (compared to the Mie solution) is less than 0.1% for this
configuration.

Although most boundary integral methods can be for-
mulated by assuming a very general representation of the
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geometry of the scattering objects, for example a triangulation
or a set of curved patches, obtaining such representation from
a CAD design is usually nontrivial. Typically, for low-order
MoM discretizations, a flat triangulation of the scatterer in
question is all that is needed, making the process geometrically
robust. In fact, one of the biggest hurdles in applying high-
order methods in realistic settings is representing complex
scatterers using curved patches. However, recent advances in
quadrilateral meshing have allowed for easier CAD processing
of complex geometries that can be converted to untrimmed,
quadrilateral NURBS surfaces [25]. In Fig. 4 we show PEC
scattering by a complex geometry using the Chebyshev-based
method. The geometry was obtained from a CAD design freely
available [26] and processed onto nonoverlapping quadrilateral
curvilinear patches using Rhino3D [25].

()

©

Fig. 3. Scattering by a dielectric sphere of diameter 28.3);. (a) Real part
of the magnetic current density (z-component). (b) Pointwise error using 600
patches of 18 X 18 points. (c) Absolute value of the electric field.

IV. RESEARCH DIRECTIONS

Integral equation methods have proven to be highly-effective
in the two-dimensional case for the simulation [27] and
optimization of nanophotonic devices [3]. The advantages of
using BIE in this context—reducing the problem to boundary
integrals, the design parameters translating to parametrizing
design constraints directly, high-order accuracy, and reduction
in simulation times—all translate to the three-dimensional
case. Hence, our current efforts are directed towards applying
the high-order methods described in previous sections to the
simulation and optimization of nanophotonic devices in the
three dimensional context.

Some progress has already been made in this direction,
in particular, the effective simulation of three-dimensional

(@) (b)

Fig. 4. PEC scattering by a complex geometry represented by quadrilateral
NURBS patches. (a) Absolute value of the electric currents induced by plane
wave scattering. (b) Close-up of the 402 patch distribution and the 12 x 12
Chebyshev grids used for this example.

waveguides using BIEs in conjunction with the windowed
Green function (WGF) method has been demonstrated in [24],
[28]. We have interfaced the Chebyshev BIE representations,
together with the WGF method, and with CAD libraries,
allowing for highly-complex nanophotonic device prototypes
to be simulated. In Fig. 5 we show the simulation a complex
branching silicon waveguide structure buried in silicon oxide.
For this case, the structure spans about 30 interior wavelengths
and was discretized using 308, 896 unknowns.

(b)

Fig. 5. Scattering by a complex dielectric waveguide structure. (a) Real part
and (b) absolute value of the magnetic currents.

Authorized licensed use limited to: University of Southern California. Downloaded on November 28,2022 at 12:41:00 UTC from IEEE Xplore. Restrictions apply.



[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

G. J. Burke and A. Pogio, “Numerical electromagnetics code (nec)-
method of moments. a user-oriented computer code for analysis of
the electromagnetic response of antennas and other metal structures,”
Lawrence Livermore National Lab, CA, Tech. Rep., 1981.

B. Guan, J. F. Zhang, X. Y. Zhou, and T. J. Cui, “Electromagnetic
scattering from objects above a rough surface using the method of
moments with half-space Green’s function,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 47, no. 10, pp. 3399-3405, 2009.
C. Sideris, E. Garza, and O. P. Bruno, ‘“Ultrafast simulation and
optimization of nanophotonic devices with integral equation methods,”
ACS Photonics, vol. 6, no. 12, pp. 3233-3240, 2019.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by
surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., vol. 30,
no. 3, pp. 409418, 1982.

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M.
Wandzura, “Numerical solution of the Helmholtz equation in 2D and
3D using a high-order Nystrom discretization,” J. Comput. Phys., vol.
146, no. 2, pp. 627-663, Nov. 1998.

S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis
functions for the locally corrected Nystrom method,” IEEE Trans.
Antennas Propag., vol. 52, no. 11, pp. 2996-3004, Nov. 2004.

O. P. Bruno and L. A. Kunyansky, “Surface scattering in three dimen-
sions: an accelerated high-order solver,” Proc. R. Soc. Lond. A., vol.
457, no. 2016, pp. 2921-2934, Dec. 2001.

, “A fast, high-order algorithm for the solution of surface scattering
problems: Basic implementation, tests, and applications,” J. Comput.
Phys., vol. 169, no. 1, pp. 80-110, may 2001.

O. Bruno, T. Elling, R. Paffenroth, and C. Turc, “Electromagnetic inte-
gral equations requiring small numbers of Krylov-subspace iterations,”
J. Comput. Phys., vol. 228, no. 17, pp. 6169-6183, 2009.

I. Jeffrey, J. Aronsson, M. Shafieipour, and V. Okhmatovski, “Er-
ror controllable solutions of large-scale problems in electromagnetics:
MLFMA-accelerated locally corrected Nystrom solutions of CFIE in
3D,” IEEE Antennas and Propagation Magazine, vol. 55, no. 3, pp.
294-308, 2013.

J. Hu, E. Garza, and C. Sideris, “A Chebyshev-based high-order-accurate
integral equation solver for Maxwell’s equations,” IEEE Transactions on
Antennas and Propagation, pp. 1-1, 2021.

O. P. Bruno and E. Garza, “A Chebyshev-based rectangular-polar inte-
gral solver for scattering by geometries described by non-overlapping
patches,” J. Comput. Phys., vol. 421, p. 109740, Nov. 2020.

M. Djordjevic and B. M. Notaros, “Double higher order method of
moments for surface integral equation modeling of metallic and di-
electric antennas and scatterers,” IEEE Transactions on antennas and
propagation, vol. 52, no. 8, pp. 2118-2129, 2004.

V. Okhmatovski, “On higher order imperative in computational electro-
magnetics,” in 2019 International Conference on Electromagnetics in
Advanced Applications (ICEAA). 1EEE, 2019, pp. 1423-1423.

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. Comput. Phys., vol. 73, no. 2, pp. 325-348, Dec. 1987.

L. Greengard, Jingfang Huang, V. Rokhlin, and S. Wandzura, “Ac-
celerating fast multipole methods for the Helmholtz equation at low
frequencies,” IEEE Comput. Sci. Eng., vol. 5, no. 3, pp. 32-38, 1998.
N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the
Helmholtz Equation in Three Dimensions, 1st ed. Kidlington, Oxford:
Elsevier Ltd., 2004.

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The
fast multipole method (FMM) for electromagnetic scattering problems,”
IEEE Trans. Antennas Propag., vol. 40, no. 6, pp. 634-641, 1992.

C. Pérez-Arancibia, C. Turc, L. M. Faria, and C. Sideris, “Planewave
density interpolation methods for the EFIE on simple and composite
surfaces,” IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 317-331,
Jan. 2021.

C. Pérez-Arancibia, C. Turc, and L. Faria, “Planewave density interpo-
lation methods for 3D Helmholtz boundary integral equations,” SIAM J.
Sci. Comput., vol. 41, no. 4, pp. A2088-A2116, 2019.

E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order
hierarchical Legendre basis functions for electromagnetic modeling,”
IEEE Trans. Antennas Propag., vol. 52, no. 11, pp. 2985-2995, Nov.
2004.

C. Miiller, Foundations of the mathematical theory of electromagnetic
waves. Springer Science & Business Media, 2013, vol. 155.

(23]
[24]
[25]
[26]

[27]

[28]

P. Yl4-Oijala and M. Taskinen, “Well-conditioned Miiller formulation for
electromagnetic scattering by dielectric objects,” IEEE Trans. Antennas
Propag., vol. 53, no. 10, pp. 3316-3323, 2005.

E. Garza, “Boundary integral equation methods for simulation and
design of photonic devices,” Ph.D. dissertation, California Institute of
Technology, 2020.

Robert McNeel & Associates,
https://www.rhino3d.com/
“GrabCAD.” [Online]. Available: https://grabcad.com/library/

O. P. Bruno, E. Garza, and C. Pérez-Arancibia, “Windowed Green func-
tion method for nonuniform open-waveguide problems,” IEEE Trans.
Antennas Propag., vol. 65, no. 9, pp. 4684-4692, 2017.

E. Garza, C. Sideris, and O. P. Bruno, “Windowed Green function
method for three-dimensional simulation of nonuniform open-waveguide
problems,” Unpublished, 2021.

“Rhino3D.” [Online]. Available:

Authorized licensed use limited to: University of Southern California. Downloaded on November 28,2022 at 12:41:00 UTC from IEEE Xplore. Restrictions apply.



