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Abstract

The Pentagon Problem of Erd6s problem asks to find an n-vertex triangle-free
graph that is maximizing the number of 5-cycles. The problem was solved using flag
algebras by Grzesik and independently by Hatami, Hladky, Kral’, Norin, and Razborov.
Recently, Palmer suggested a more general problem of maximizing the number of 5-
cycles in Kj1-free graphs. Using flag algebras, we show that every Kj,i-free graph
of order n contains at most

1

W<k4 — 5k% 4 10k — 10k + 4)n® + o(n®)

copies of Cs for any k£ > 3, with the Turan graph being the extremal graph for large
enough n.

1 Introduction

All graphs in this paper are simple. Let G, H, and F be graphs. We define v(H, G) as the
number of (possibly non-induced) subgraphs of G isomorphic to H. If G does not contain
any subgraph isomorphic to F', then we say that G is F-free. Let ex(n, H, F') denote the
maximum value of v(H, G) among all F-free graphs G on n vertices. The function ex(n, H, F)
is well-studied when H is an edge. As such, it is convention when H = K, to let ex(n, F)
denote ex(n, Ky, F'). The value of ex(n, F') for any graph F' is called the Turdn number of
F.

One of the first results in extremal graph theory was Mantel’s Theorem [27] which states
that for all n > 3, ex(n, K3) < L”TQJ When £ > 3, the value of ex(n, Ki.1) was determined
by Turan.

Theorem 1.1 (Turan’s Theorem [34]) For all k > 3, and all n,

1\ n?
K <[l1l—=|—.
6x(n7 k+1) — ( k) 2
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Moreover, the Turdn graph Ty(n), which is the complete balanced (k — 1)-partite graph on n
vertices, is the unique Ky, 1-free graph on n vertices which contains the mazimum possible
number of edges.

The Erdds-Stone-Simonovits Theorem [11] determined the asymptotic value of ex(n, F')
when F is not a complete graph. Let x(F') denote the chromatic number of . Then for all
F for which x(F) > 2,

X(F) -2
2(x(F) = 1)
The systematic study of the function ex(n, H, F') was initiated by Alon and Shikhel-
man [2], although there were some prior results. When t < k + 1, Zykov [35] showed that
the Turan graph Tj(n) is also the unique graph with the maximum number of K; subgraphs
among all Ky, -free graphs.

ex(n, F) = n® + o(n?).

Theorem 1.2 (Zykov [35]) Let k and t be integers such that t < k+ 1. Then for all n,
the Turdn graph Ty(n) is the unique Kyy1-free graph on n vertices containing the maximum
number of K; subgraphs.

We will need the following corollary in our calculations.
Corollary 1.3 Let G be a Kj1-free graph on n vertices. Then

k* — 10k + 35k — 50k + 24
v(Ks, G) < = n® + o(n®).

Alon and Shikhelman [2] proved the following analogue of the K6vari-Sés-Turdan Theorem:
ex(n, K3, Ky;) = O(n*%/%),

They also proved that for fixed integers t < k, if F' is a k-chromatic graph:

ex(n, Ky, F) = (’“;1) <kﬁ1>t+o(nt).

In [23], Gyéri, Pach, and Simonovits studied a handful of cases where F' = K,. The
order of magnitude of ex(n,Cy, Cy) is known for all £ > 3 and k > 3, see Gishboliner and
Shapira [19]. The asymptotic value of ex(n,Cy,C,) was determined by Gerbner, Gyori,
Methuku, and Vizer [16]. They proved a variety of results on ex(n, F, H) when F and H
were both cycles. This includes showing that ex(n, Cy, Cai,) = O(nf) for k, £ > 2 and

(k= 1(k-2) ,

ex(n, Cy, Car) = (1 + o(1)) 1

for K > 2. In [I7], Gerbner and Palmer provided more general bounds on ex(n, H, F). In
particular, they showed that if H and F' are graphs and x(F') = k, then

ex(n, H,F) < ex(n, H, K3,) + o (nf1) .
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Additionally, they extended the result of Gishboliner and Shapira to show that for all k£ and
2

1
ex(n, Cy, Koy) = (ﬁ + 0(1)) (t — 1)k/2nk/2’
and

extin Pr o) = (5 0(1) ) (¢ = 10200202
where Py is a path on k vertices.

In [10], Cutler, Nir, and Radcliffe determined the asymptotic value of ex(n, Sy, Kyi1),
where S; is the star with ¢ leaves. In particular, they showed that while the extremal graph
must be complete multi-partite, it is not always isomorphic to the Turan graph Ty (n). The
study of the function ex(n, K3, H) has seen recent attention as well. In particular, the
function ex(n, K3, Cs) was studied in [2 8, [13]. In [29], Mubayi and Mukherjee studied the
function ex(n, K3, H) for a handful of other 3-chromatic graphs H.

In [I8], Gerbner and Palmer found a handful of cases where the value of ex(n, H, F) is
achieved by the Turdn graph and in [I5], Gerbner studied the function ex(n, H, F') when H
and F each have at most 4 vertices. Recently, the authors of [25] studied the problem of
maximizing the number of copies of a graph H in some graph G embedded in a particular
surface.

In 1984, Erdos conjectured that the balanced blow-up of Cs on n vertices maximizes
the number of five-cycles among all triangle-free graphs of order n. If GG is a graph on m
vertices, then the balanced blow-up of G on n vertices is the graph G(n) obtained from G
by replacing each vertex of G with an independent set of size \_%J or (%L and replacing
each edge in G with a complete bipartite graph on the corresponding sets. The problem
of determining ex(n, Cs, K3) was known as the Pentagon Problem of Erdds. In a sense, a
graph with ex(n, Cs, K3) five-cycles is the “least bipartite” triangle-free graph on n vertices
when measured by the number of 5-cycles. In posing this question, Erdds also proposed the
following two measures of “non-bipartiteness” [12].

1. The minimal possible number of edges in a subgraph spanned by half the vertices.

2. The minimal possible number of edges that have to be removed to make the graph
bipartite, which is equivalent to the problem of max cut.

In 1989, Gyéri [22] showed that a triangle-free graph on n vertices contains at most 1.03 (%)5
five-cycles. In 2012, Grzesik [2I] and independently in 2013, Hatami Hladky, Krél’, Norin,
and Razborov [24] showed that a triangle-free graph on n vertices contains at most (%)5 +
o(n®) five cycles. Moreover, a matching lower bound is given by the balanced blow-up of
C5 when n is divisible by 5. The authors of [24] also proved that for large enough n, the
balanced blow-up of a C5 on n vertices is the unique extremal graph. In 2018, Lidicky and
Pfender [26] proved that a balanced Cj blow-up is the unique extremal construction for all
n, with the exception of n = 8. This observation was made by Michael [28], who showed
that the Mobius ladder on 8 vertices contains the same number of five cycles as the balanced
Cs blow-up.

Palmer [30] suggested a generalization to the Pentagon Problem of Erdés: maximizing
the number of five-cycles in Ky, -free graphs for £ > 3. Observe that in the more general

3



case, the problem of maximizing the number of non-induced Cj subgraphs is different from
maximizing the number of induced C5 subgraphs.

In this paper, we will discuss the non-induced case. Let H and G be graphs on n; and
ny vertices, respectively. The density d(H,G) of H in G is given by

d(H,G) = v(H,G) (”2) B

ni

—n1

Normally, n, ™" would be used as the scaling factor for defining the density of H in G. We
will use (Zf)fl, since this is more natural in proofs involving the flag algebra method. Let

OPTy(C5) = lim max d(Cs, G,), (1)

n—oo G,eFk

where F* is the set of all K} -free graphs on n vertices. Note that since d(Cs, G) measures
the density of non-induced Cy subgraphs in a graph G, this parameter will often have a value
greater than one. For example, d(Cs, K;) = 12 for all £ > 5. Our main goal is to prove the
following theorem.

Theorem 1.4 Let k > 3 be an integer. Then
(i) OPT(Cs5) = 5(12k* — 60k* 4 120k? — 120k + 48).

(ii) If n is sufficiently large, then Ty(n) is the unique Kjy1-free graph on n wvertices for
which v(Cs, Tp(n)) = ex(n, Cs, Kii1).

Since our result forbids (k+1)-cliques, Turdn’s Theorem implies that the number of edges
in an extremal graph cannot be more than in Ty (n). Interestingly, the authors of [6] proved
that if G is a graph with at least k—;l (Z) edges, then the Turan graph provides a lower bound
on the number of five-cycles contained in G.

The proof of Theorem[1.4](i) uses flag algebras to calculate the upper bound for OPT}(C5).
The second part is done by stability and exact structure arguments. Unlike typical appli-
cations of the flag algebra method, our result does not need computer assistance for the
calculations involving flag algebras. However, it is still convenient to use a computer for the
purpose of multiplying and expanding rational functions.

In the next section, we will give a brief overview of the flag algebra method. Section 2
contains the proof of Theorem [L.4|i). Then we prove a stability lemma in Section 3, and
use it to prove Theorem [1.4](ii) in Section 4. We will end with some concluding remarks and
conjectures concerning the general behavior of the function ex(n, H, F').

1.1 The Flag Algebra Method

Introduced by Razborov [32], the flag algebra method provides a framework for computa-
tionally solving problems in extremal combinatorics. Flag algebras have been used to solve
problems on hypergraphs [4], 14} 20, 31], permutations [5], graph decomposition problems [7],
and oriented graphs [9] among many other applications. Here we will give a brief introduc-
tion and description of the notation and theory we will need for our result. We will not prove
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any claims since they have already been proven by Razborov [32]. Another overview of flag
algebras can be found in [33].

Let H and G be graphs on n; and ns vertices, respectively, such that n; < no. If
X C V(G), we will denote the induced subgraph of G on the vertices of X by G[X]. Let a
subset X be selected uniformly at random from V(G) such that | X| = ny. Then P(H,G) is
the probability that G[X] is isomorphic to H.

A sequence of graphs (G,),>1 of increasing order is said to be convergent if for every
finite graph H, the following limit converges:

lim P(H,G,).

n—oo
Let F denote the set of all graphs up to isomorphism, and let F, denote the set of all
graphs on ¢ vertices up to isomorphism. Let RF denote the set of all formal finite linear
combinations of graphs in F. A type of size k is a graph ¢ on k labelled vertices labeled
by [k] = {1,...,k}. If o is a type of size k and F' is a graph on at least k vertices, then
an embedding of o into F' is an injective function € : [k] — V/(F'), such that 0 gives an
isomorphism between o and F[im(6)]. A o-flag is a pair (F,0) where F is a graph and 6
is an injective function from [k] to V(F') that defines a graph isomorphism of F[im(#)] and
o. In this way, o can be thought of as a labelled subgraph of F'. Two o-flags F' and G are
isomorphic if there exists a graph isomorphism between F' and G that preserves the labelled
subgraph o.

Let F7 denote the set of all o-flags and F7 denote the set of all o-flags on ¢ ver-
tices. Observe that if o is the empty graph, then 77 = F. For two o-flags F' and G
with |V(F)| < |[V(G)|, let P(F,G) denote the probability that an injective map from V(F')
to V(G) that fixes the labeled graph ¢ induces a copy of F' in G. Razborov showed that
there exists an algebra A“ after some factorization of RF?. In doing so, he defined addition
and multiplication on the elements of RF?. Addition can be defined in the natural way,
by simply adding coefficients of the elements in RF?. We will now describe how to define
multiplication of elements in A°.

Let (G,0) € F? be a o-flag on n vertices. Let (Fy,6,),(Fy,05) € F7 be two o-flags for
which |[V(F))|+ |[V(Fy)| <n+|V(0o)|. Let X; and X, be two disjoint sets of sizes |V (F})| —
|V (0)| and |V (Fy)| — |V (0)| respectively, selected uniformly at random from V(G) \ im(6).
We will define the density of Fy and Fy in G, denoted P(F}y, F»; G) as the probability that
(G[X1 Uim(0)], 0) is isomorphic to (Fy,6;) and (G[Xe Uim(6)], ) is isomorphic to (Fy, ).

It can be shown that as n grows, then the density of F} and F5, is approximately equal
to the product of their individual densities:

|P(Fy, Fa; G) = P(Fy, G)P(F2, G)| < O(n™"). (2)

Given this fact, if |V (F)| + |V(Fy)| = ¢ — |V (0)| we could ideally define multiplication in
A’ by

Fy-Fy = Z P(Fy; Fy; F)F. (3)

FeFy

The issue with this, however, is that the product Fj - F5 could be also written as a linear
combination of elements in Fj, for any ¢ > ¢. Hence, before defining A” we factor out all
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expressions of the form
F— Y P(FF)F (4)
F'eFg
from RF?. Note that corresponds to the law of total probability and hence it should
behave as 0 when added to another linear combination. Let K7 be the linear subspace of
RF? containing all expressions of the form . We define A? to be RF7 factorized by K7,
and we define multiplication in A% by naturally extending .

Returning to the idea of convergent sequences of graphs, let Hom™ (A%, R) be the set of all
homomorphisms from A° to R such that for each ¢ € Hom™ (A%, R) and H € F°, ¢(H) > 0.
If o has order 0, we omit it in the notation. Razborov showed that each homomorphism in
Hom™ (A, R) corresponds to some convergent graph sequence and vice versa [32].

In any fixed graph G, we can express d(Cs, G) as the sum of induced densities in the
following way:

d(Cs,G) = > & P(F;,G), (5)

F,eFs

where cg = v(Cs, F};). Hence, for any sequence of unlabelled graphs (G},),>1 and its corre-
sponding homomorphism ¢ € Hom™ (A, R),

lim d(C5,G,) = ) ¢70(F). (6)
FieFs
Quite often in our computations to simplify notation, we will drop the function notation and
simply write F; or draw the graph F; in place of ¢(F;). Under this notation equation @
would be
lim d(Cs5, G Z C%F

n—o00
F;,eFs

Finally, while we will often work with o-flags where ¢ is not empty, flag algebras are often
applied to questions concerning unlabelled graphs. In order to translate information from
Hom™ (A%, R) to Hom™ (A, R) Razborov defined the unlabelling operator which is a linear
operator

[']o : RF? — RF,

such that for any o-flag F' = (H,0), [F], = ¢-(F)H, where q,(F) is equal to the probability
(H,0") is isomorphic to F' where #" is a randomly chosen injective mapping €' from [k] to
V(H). Tt can be shown that for any a € A% and any ¢ € Hom™" (A, R),

¢([a-a],) = 0. (7)

We will frequently make use of this fact in our computations.
If a flag algebra calculation has a constant number of terms and operations, then it can
be interpreted as a calculation in a graph of order n with an error term O(n~!) coming

from .



2 Proof of Theorem (1.4{(i)

In this section we will prove Theorem [1.4{i). First we will provide a lower bound by counting
the number of five cycles in the Turdn graph. Next, using the flag algebra method, we will
provide a matching upper bound. The proof of the upper bound when k = 3 is slightly
different than the proof when k > 4.

Proof of Theorem [1.4{(i). First we will count the number of five-cycles in Tj(n), which

will give an asymptotic lower bound. Observe that the only induced subgraphs of T;(n) on
five vertices containing a five-cycle are ¢, &%, and 7. There are (1;) (%)5 copies of & in

Tr(n), with every such graph containing 12 distinct C5 subgraphs. There are 4(’2) (”ék) (%)3

copies of & in Ty (n), with every such graph containing 6 distinct C5 subgraphs. Finally,

there are 3(?) ("ék)Q% copies of % in Ty (n), with every such graph containing 4 distinct Cj

subgraphs. Thus,

o) 3 +2() (1) G () (1) £

where the error term o(n°) accounts for the cases where n is not divisible by k. This implies
that for all n,

-1
1
d(Cs, Ti(n)) > v(Cs, Ti(n)) (Z) k4(12k:4 60k® 4 120k* — 120k + 48) 4 o(1).

Now we will calculate an asymptotic upper bound. Unless it is stated otherwise, assume
that k > 3. Let F5 = {Fu, ..., F33 = K5} be the set of unlabeled graphs (up to isomorphism)
on five vertices. Each of these graphs is pictured in Table [I|in the Appendix. After removing
each cF5 for which cc5 = 0 from (b)) we get

Tim (G5, G) = y+ T+ 22+ Py o2y ¢

Since J5 contains all graphs on five vertices (up to isomorphism) and Z?io F,=1,

lim d(Cs,G,,) < max{cy’ : F; € Fs}.

n—oo

Therefore,
OPT(Cs) < max{cgf  Fy e F5).

Given this fact, our goal is to find appropriate constants cp, so that

lim d C5, Z CF i)

n—o00
F,eFs

and max{cp, : F; € F5} is as small as possible. To do so, we can take advantage of properties
that we know must be true of all ¢ € Hom™ (A, R) which correspond to Ky, -free convergent



sequences of graphs. Additionally, using labeled flags, we can derive nonnegative expressions

of unlabeled graphs in F5. We define

or=""," ="\ o= "7
1

1

so that FJ', F;?, and F;* denote three sets of labeled flags on four vertices. By , the
following expressions are nonnegative for all £ > 3.

1. Pi(k)=10- K((kmgm - 3E/l\”> u -

1 1

(10K =20k +10)" ' (R =2k 1)';'+<—k+ 11)'N+(_4k+4)ﬁ+w+@

2. Py(k) =30 K((l{m?’@? - 3<D”>2u =
1 1
(3k2 — 12k + 12)% (k2 — 6k + 8)@ +(—dk+ 10)@ + 3@

3. Py(k)=30- K((kmgﬁ/? - 35@]2>2u —
1 1

02

(6kz2—24k+24)ﬁ+(k2—4k+4)ﬁ+(—k+2)ﬁ+(—6k+ 12)@%@%@

4. Py(k) =30 K(i’”ﬂ?? - 3&?”)“
oy V- oy

5. Ps(k) = 30- K((ki&)g[ﬂfz +(/<—3)SE§E” 23E$32)2N
1 1

g3

1

03

(6k2 — 36k + 54)w+ (2k2 — 20k +42)@+ (42— 24k +36)@+ (—24k+ 84)@+

120



Additionally, we can apply Corollary [I.3, which states that for any Kji-free convergent
sequence of graphs,

@ < k* — 10k + 35k2 — 50k + 24
< e .

At this point we will split the proof into the two cases where k > 4 and k£ = 3. To gain
some intuition as to why this is necessary, we can consider the previous inequality. When
k = 3 or k = 4, the previous bound implies that &% = 0. The issue is that it does not give
any information about the density of K, which is also equal to zero when k£ = 3. Thus, two
slightly different proofs are required for £ = 3 and k > 4.

Case 1: Suppose that k£ > 4. Since Z?io F, =1,

k* — 10k® + 35k% — 50k + 24
T < Z a b ) o)

After rearranging the terms from @[} we obtain the following constraint on the elements of
f5i

32
kE* — 10k® + 35k% — 50k + 24 —10k® + 35k2 — 50k + 24
0<> F- = +@- = . (10)
=0
Let
32
kE* — 10k3 + 35k — 50k + 24 —10k3 + 35k — 50k + 24
Z(k) =3 F,- - +@- = .
1=0

It is straightforward to verify that the following rational functions are nonnegative for

all kK > 4.

(k) _ 3(KP—8k*4-22k3 —24Kk24-8k) (k) __ 10k®—60k*+109k3 —76k>1-18k
DP1\R) = — 537 —35K6 1 75k5 —48k1 DP2\R) = ~ 537 _35k0 1 75k5 —48KkA

(k) __ 5k®>—28k*4+45k3 28k +6k (k) __ 5k7—30k0453k° —52k1494k3 —96k2 424k
P3\R) = =537 _35%5 1 75k5 _48k1 Pall) = A(5k7—35k0+75k5 —48k4)

(k) __ 15k5—60k*4-78K3 —40k>+8k Z(k) _ 6(5k3—20k24+30k—16)
DP5\R) = ~4(5k7—35k0 1 75k> _48k1) 5k3—35k2+75k—48

Thus, for any convergent sequence (Gy,)n>1 of Kiii-free graphs with k > 4,

5 33
lim d(C5,G Zc “Fi+ 2(k)Z(k) + > _pi(k)Pi(k) =) erF, (11)
j=1 i=0

where cp, is the coefficient of F; after all expansions. Then
OPTy(Cs) < max{cp, : F; € F5}.
The values of cp, for each F; € F;5 are listed below.
o Cy(k) = Co L= O = O T G
60k7 —720k5+3600k5 —9876k* +16320k> —16440k?+9360k—2304 '

=CAN TSy Ty T Bk7—35k0+75k> —A8k1
9




C (k;) —c- __ 33k"—450k54-2547k5 —7824k*4+14214k3 —15360k>+9144k— 2304
2 — & 5k’ —35k0+75k> —48k%

0Cg(k)Zc/\ZCA:c;:c\-J:cé:c/\:cﬁ:cﬁ:cw:cﬁzc\&:
C@ _ C@ .. .. . . .
_ _ _ _ _ 30k7—420k54+2430k° —7596k* +13980k3 —15240k2+9120k— 2304
TOEAFCATOTOY T AT 57 —35K0+ 75k —A8k1

_ 30k7 —423k54-2457k% —7686k* +14118k3 —15336k>4+-9144k— 2304
Ca(k) = CA = 57 —35k01 75k —48k1

_ 35k7—468k54+2607k® —7916k*+14278k% —15367k2+9144k— 2304
o Cs5(k) = Cn = 5h7—3bK0+ 75k —A8k1
o ( (k) —c - = 30k7 —425k54-2468k% —7697k*+14098k3 —15302k2+9132k— 2304
6 - - 5k7—35k0+ 75k —48k%

35k7 —455k%4+2505k° —7644k* +13980k3 —15240k2+9120k— 2304
o C7(k) = =6 = 57 —35K0+ 75k —48k1
o C (k) — e — (135/4) k7 —(895/2) kS +(9967/4) k5 —7631k*+(27913/2) k3 —15216k24+-9114k— 2304
8 - - 5k7—35k6+75k5 —48k*

_ 507 —610k54-3129k% —8902k* +15326k3 —15956k2 +9264k— 2304
o Cy(k) = & = 5kT—35K0+ 75k —48k1

_ _ 50k7—610k543103k5 —8758k* +15050k3 —15748k%+9216k— 2304
o Ci(k) = ¢ = 5K7—3bk0+ T5kd —A8k?

Claim 2.1 Foralli=1,...,10 and k > 4, Ci(k) > C;i(k).

Proof. Observe that for all i =1, ..., 10, each polynomial C;(k) has the same denominator
of 5k — 35k5 + 75k* — 48K3. It is straightforward to verify that 5k7 — 35k® + 75k* — 483
is positive for all £ > 4. By examining the leading coefficients in the numerator of each
polynomial, it is straightforward to check that Cj(k) is the largest for £ > 1000. For
4 < k <1000, we have provided Sage code used to verify the claim in Appendix [ ]

By factoring C (k) it follows that

1

OPTy(C5) < Cu(k) = 7

12k* — 60K 4- 120k — 120k + 48),

completing the proof of Theorem [1.4{i) when k > 4.

Case 2: Suppose that k = 3. Assume that (G),),>1 is a Ky-free convergent sequence of
graphs. Fach graph in the set H given below has a limit density equal to zero, and therefore
can be removed from our calculations.

w w W W @

In this case, we will use the same polynomials P;(k) for i = 1,2, 3,4 that were provided
earlier in the proof. We will define one new polynomial Fs, which is nonnegative by .
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4]
ﬁ+2.ﬁ_@_2-@+ﬁ+6-w—4-@20

Now suppose that
p1=1/27 pe = 13/27 ps = 8/27
ps=2/9 pe = 17/54.
Then A
d(C5) = lim d(C5,G,) < > v(Cs, F)F +>_ p;P;(3) + psPs.
j=1

n—00
FeFs\H

Let cr denote the coefficient of each graph F' after combining each of the two sums. We
provide the values of c¢p for each graph in F5 \ ‘H for which cp # 0.

TeLTOR TN T T T

*C .=
OC.R:—%
.Cﬁ:%

* T

.« =1
ocQ:c®—1
. cp =1

. =3

SageMath code to verify this calculation can be found in Appendix [6.1] It is straightforward

to verify that
40
d(cg,) S max{cF F e f5\7‘[} = 2—7

— 40
27

nef M e e ) e

This completes the proof of Theorem (i). m

Furthermore, the set T3 of graphs for which cp, is given below.
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2.1 Finding the Optimal Bound

We will now give a short description on how we found the functions z(k)Z (k) and p; (k) P;(k)
that were used in the proof of Theorem (1) If F; € F5 is a graph for which cp, =
OPT}(Cs5), then we call F} a tight subgraph. In our proof of Theorem [I.4]i), the set T' given
below contains the tight subgraphs when k& > 4.

=t T e My B R W

The set T3, defined in , contains the tight subgraphs when k£ = 3. Note that T3 are
the Ky-free graphs from T'. The following lemma, which appears as Lemma 2.4.3 in [3],
states that any graph appearing with positive probability in the limit of (Gy),>1 must be
tight if GG,, are extremal graphs.

Lemma 2.2 ([3]) Given (Gp)n>1 a convergent sequence of Ky1-free graphs of increasing
order, such that d(Cs, G,) — OPTy(Cs). Let d(H,Gy) be the value of im d(H,Gy,). Then
n—oo

for any exact solution, d(H,G) > 0 implies that H must be a tight subgraph.

Using semidefinite programming, we verified that the conjectured upper bound of OPT(C5)
was correct for small values of k. In doing so, we were able to guess the correct types and
labelled flags to use. It was a greedy process and there may be simpler solutions. This cor-
responds to the polynomials P; for ¢ = 1,...,6. Note that each labelled flag is a four-vertex
graph appearing in the Turdan graph. Next, Lemma [2.2] implies that each F; € F5 that is a
subgraph of the Turdn graph must have the property that ¢z, = OPT(Cs). Given this fact,
we used SageMath to solve for the correct polynomials p;(k) and z(k). These agreed with
the values calculated by the semidefinite program for small k.

3  Stability

In this section we will prove a stability lemma which states that for any Kji-free graph G
on a sufficient number of vertices, if G’ contains “close” to the extremal number of five-cycles,
then G can be made isomorphic to T;(n) by adding or deleting a small number of edges.

Proposition 3.1 For two positive integers x1 and o, if x1 > xo + 2, then
1. vy < (x1 — 1) (29 + 1)
2. 1, (I;) < (xg + 1)(“2_1).
Proof. The first inequality is clear from the equation below:
(x1 =) (xo+ 1) = 2929 + (11 —22) — 1 > 2129 + 1.

Since r9 — 1 < x1 — 2, the second inequality follows immediately from the first inequality. m

The next proposition follows immediately from Lemma [3.3] which we will prove next.
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Proposition 3.2 For any complete k-partite graph H on n vertices, v(Cs, H) is mazimized
when the sizes of the partite sets are as equal as possible.

The following lemma will show that if H is a complete k-partite graph with unbalanced
partite sets, then we can always increase the number of five-cycles in H by moving the vertices
as to make H more balanced. Throughout the proof, we will assume for each ¢ = 1,...,k
that |X;| = x;. For a graph G and a vertex v € V(G), let vg(v,C5) denote the number of
five-cycles in GG that contain v.

Lemma 3.3 Let H be a complete k-partite graph with partite sets X1, ..., Xg. Suppose that
for two integers i and j,
T > 5+ 2.
Let H' be the graph obtained from H by deleting a vertex in X; and duplicating a vertex in
X;. Then
v(Cs, H') > v(Cs, H).

Proof. By symmetry we may assume that ¢ = 1 and j = 2. Let H' be obtained from H
by removing some vertex v € X; and adding a new vertex v’ to X5, where v’ is a duplicate
of some vertex in X,. Letting X7,..., X} denote the new partite sets in H', |X|| = z; — 1,
| Xs| =22+ 1, and | X]| = z, for each ¢ € {3,...,k}.

Since the only five-cycles that have been deleted from H are those containing v, we only
need to show that vy (v', C5) > vy (v, Cs). Additionally, there is a one-to-one correspondence
between the five cycles in H containing v and no other vertices in X; U X5 and the five cycles
in H' containing v" and no other vertices in X] U X}. Because of this, we can focus only on
those five-cycles which contained v and at least one other vertex in X; U Xo.

Let ¢(v,nq,n9) denote the number of five cycles in H containing v along with n; and
ny vertices in X; and Xs, respectively. We define ¢ (v',ny,ns) in an identical manner, but
pertaining to v" and H'. In order to show that v(Cs, H') > v(Cjs, H), it suffices to show the
following,

1. (v, 1,0) + d(v,2,0) + (v,0,1) > ¢(v,0,1) + ¢(v,0,2) 4+ ¢(v,1,0), and
2. J(W,1,1)+ (v, 2,1) > c(v,1,1) + ¢(v, 1, 2).

We will prove each of these inequalities as two separate claims. Throughout the proof we
will assume that [ = {3,...,k}.

Claim 3.4 ¢(v,1,0) + d(¢v/,2,0) + ¢ (v',0,1) > ¢(v,0,1) + ¢(v,0,2) + ¢(v, 1,0).
Proof. Since H is a complete k-partite graph,

c(v,0,1) = 6o - Z {(ZZ) xj + (1;)%} + 1224 - Z LTy,

{i}e(s) {iihye(s)
T2 Z; T2
c(v,0,2):4(2)-2(2>+6(2)- z;x;, and
el {i,j}e(g)
ZT; Z;
c(v,1,0) =4(x; — 1) - Z [(2)xj+ (;)M} + 62 - Z LT,
{ig}e(3) {ih}e(3)

13



By counting in similar way in H’,

(1,00 =6z —1)- Y. KZ) z; + (“ZJ) :c] +12@ 1) Y wgmy,

{ide(z) {iihye(s)
1 Z» 1
c’(v’,2,0):4(x12 )~Z(x2>+6(x12 ) Z z;r;, and
el {i,j}e(é)
d(v',0,1) = 4xy - Z [(Z’) xj + (g;]> x;| + 6xg - Z LT T,

{i.jrel
Since x1 > x5 + 2, it follows that ¢/(v/,2,0) > ¢/(¢/,0,2). Thus, it suffices to show that
c(v,0,1) + ¢(v,1,0) < (v,0,1) + (v, 1,0).
It is straightforward to verify that
6- Z i T+ i ;| +12- E T;xixpy > 4 Z i T+ i ;| +6- Z T;XiTh,.
2 )" 2 )" = 2 )" 2 )" Y
{ig}e(z) {igh}e(;) {ig}e() {ig:h}e(;)
This immediately implies that
c(v,0,1) — c(v,0,1) < (v, 1,0) — ¢ (v/,1,0),

{i.g,h}el

which proves the claim. =
Claim 3.5 d(v',1,1) +d(v',2,1) > ¢(v,1,1) + ¢(v, 1, 2).
Proof. For convenience, we will count ¢(v, 1,1) 4 ¢(v, 1,2) in the following way:

c(v,1,1) + c(v,1,2) = z122 f11 + (x;)ﬂhfm, (13)

where f,, is a function independent of the values z; and x5 used to count the number of five
cycles containing v, p vertices from X;, and ¢ vertices from X5. Using the same method to
count ¢ (v',1,1) 4+ (v, 2,1), we get

C,(’Ul, 1, 1) + C/(U/, 2, 1) = (1‘1 — 1)(1’2 + 1)f11 -+ <$12— 1> ({L‘Q + 1)f12. (14)

By Proposition [3.1]
(1 — 1) (22 + 1) f11 > z122f11.

Moreover, since the sizes of each set X; for all j € I have not changed, fi2 = f21. Therefore,

(9612_ 1) (w2 + 1) f12 > <:;2> x1fo1

by Proposition [3.1], completing the proof of the claim. m
As each of Claims and are true, it follows that v(Cs, H') > v(C5, H), completing
the proof of Lemma 3.3, m

For two graphs G and H of the same order, let Dist(G, H) equal the minimum number
of adjacencies that one needs to change in GG in order to obtain a graph isomorphic to H.
The parameter Dist(G, H) is commonly known as the edit distance between G and H. Our
main goal of this section is to prove the following lemma.
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Lemma 3.6 (Stability Lemma) For every € > 0, there exists an ng and ep > 0 such
that for every Kyii-free graph G of order n > ng with d(Cs,G) > OPTy(Cs) — ep, the edit
distance between G and Ty,(n) is at most en®.

The proof of Lemma [3.6] requires the following two lemmas along with Lemma [2.2] For
a family of graphs F, we say that a graph G is F-free if G does not contain any member of
F as an induced subgraph.

Lemma 3.7 (Induced Removal Lemma [1]) Let F be a set of graphs. For each e > 0,
there exist ng > 0 and 6 > 0 such that for every graph G of order ng > n, if G contains at
most dnlVUD! induced copies of H for every H € F, then G can be made F-free by removing
or adding at most en® edges from G.

Let (G,)n>1 be a convergent sequence of Ky 1-free graphs. In the proof of Theorem (i),
we found constants cp, for each F; € F5 such that

33
d(Cs,Gp) < ZCFiFi < max{cp, : F; € F5}

=0

and
1
max{cg, : F; € F5} = OPT4(Cs) = y(m“ — 60k® 4+ 120k — 120k + 48).

Let P; be the three vertex graph with exactly one edge; see Figure . The goal of Lemma
is to prove that if lim,,_(Cs, G,) = OPTy(C5), then lim,_,_ (Ps,G,) = 0.

o0

Figure 1: P3

Lemma 3.8 For each 0p > 0, there exists ep > 0 and ng = no(dr) such that any Ky, -free
graph G on n > ng vertices with d(Cs, G) > OPT,(C5) — er contains at most dpn® induced
copies of Ps.

Proof. Let (G,),>1 be a convergent sequence of Kj-free graphs maximizing the number
of five-cycles. Let T be the set of tight subgraphs in F5 given by the proof of Theorem [1.4]1).
This is the same set T" provided at the end of Section 2.

el M e e B B @)

Observe that for each graph F € T,

P(Ps, F) = 0.
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Since T' contains the set of tight graphs, the following is a consequence of for the sequence
(Gn)nZM

33
P=3 P(P, F)F=0.
=0
It follows that for the sequence (Gy,)n>1,

lim d(Ps, G,) =0,

n—oo

which completes the proof of Lemma u

Proof of Lemma (3.6, Let ¢; > 0 and e > 0, which we will determine later. By
Lemma there exists a 0 > 0 and an ng such that any Kj i-free graph on n > ng
vertices containing at most dpn® copies of P; can be made Ps-free after changing at most
en? adjacencies. Assume that G is a graph on n > ng vertices such that

d(C5,G) > OPTk(Cg)) —€F,

where ng is large enough to satisfy the conditions of Lemmas and so that G contains
at most dzn> copies of P;3. Moreover, for sufficiently small €7,

d(C5, G) > OPTk_l(C5) +2-5!. Er.

Using Lemma , let G’ be a Ps-free graph obtained from G by changing at most ;n?
edges. Since each edge that was removed in this way was contained in at most n?® copies of

Cs, v(Cs5,G") > v(C5,G) — ern®. Therefore,
1. d(C5,G/) > OPTk(O5) — 5l £ —EFR,
2. d<05, GI) > OPTk_1<C5) + 5! Er.

Using the previous two inequalities, along with the fact that G’ is Ps-free, we will now show
that G’ must be a complete k-partite graph.

Claim 3.9 G’ is a complete k-partite graph.

Proof. Since G’ does not contain any induced copies of P; as a subgraph, each pair of non-
adjacent vertices must have an identical neighborhood. Therefore, we can partition V(G’)
into independent sets Xi,..., X, such that for all distinct 7,5 € [{], each vertex in X; is
adjacent to each vertex in X;. Hence, G’ is a complete (-partite graph. Since

OPTk,1(05) = nh—glo d(C5,Tk,1(n))

and d(Cs,G") > OPTy_1(C5) + 5! - €7, Proposition implies that G’ must be k-partite if n
is sufficiently large. m

At this point, we know that G’ only differs from T} (n) in the sizes of the partite sets
X1,Xs,..., X The next claim will show that we can impose that the partite sets in G’
must be reasonably close to being balanced.
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Claim 3.10 Let G’ be a complete k-partite graph with partite sets X1, Xs, ..., Xy. Then for
any er > 0, there exists > 0 such that if

d(C5, G') > OPT(C5) — 6,

then for eachi=1,...,k
n(l—er) n(l+er)
Me=er) < x| < M2 Ter)
k sl = k
Proof. For each i = 1,...,k let z; = |X;|. Let ¢/(k — 1) > er and assume by symmetry

that z; = Wﬂ If we picked x1 = H,f/n, we would get less pleasant expressions in what

follows. We want to calculate an upper bound on d(C5,G’"). By Lemma , d(Cs,G") is
maximized if all remaining parts are balanced. That is, x; = 17;/71 for i = 2,..., k. With

knowing the sizes of all X;, the following is a straightforward calculation,

6 15 18 8 8§ 25 34 16
d ") < OPT, —60e? (1 — -+ —= — — + — B2y 2=, 7
(C5,G") < OPTL(C5) — 60 < >+ k3+k4>+608 < 0 2 k3+k4>

1 5) 8 4 15 30 16
4 5
+1806/ (E_E+F_ﬁ>_l2a/ (1_E+E_ﬁ)+0(1>7

see Appendix [6.2] for a code in SageMath.
For all £ > 3, the term 1 — % + % — % + k% is positive with minimum 8—81 at k = 3. For
sufficiently small ¢’ and large n, we get

d(05, G/) < OPTk(C5) — 58’2.

This implies the statement of the claim. m

Returning to the proof of Lemma , suppose that € > 0, and let e = £/2. Next, choose
an €; < €/2 small enough so that ep and 0 are sufficiently small. In particular, we must
select €7, ep, and dF so that any k-partite graph G’ satisfying d(Cs, G') > OPTy(C5) —5le; —
er, must have partite sets Xy, ..., X that satisfy

n(l—¢e/2) <X < n(l+¢/2)
k k
for all = 1,..., k. Then by changing at most (¢; + e7)n? pairs we can obtain T;(n) from
the original graph G, which completes the proof of Lemma [3.6, =

4 Exact Result

In this section we will prove Theorem [1.4[(ii). First we will give a brief outline. As we have
shown, if G is a K} i-free graph on n vertices for large enough n that contains close to the
extremal number of five-cycles, then the edit distance between G and Tj(n) is very small.
Given such a graph G, the process of deleting and adding the necessary edges to transform
G into the Turan graph actually increases the number of five-cycles. This will prove that
Ti(n) is the unique extremal graph for large enough n.
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Proof of Theorem [1.4](ii). Suppose that k& > 3. By Lemma [3.6] there exists an € > 0
and an integer ng = n(k, ) so that for any Ky, -free graph G on n > ny vertices satisfying

d<C5, G) > OPTk(C5) — &,

we have that Dist(G, Ty(n)) < gon’.
Let G be a graph on n vertices, where n is sufficiently large. In particular, n >
max{n(k,¢),2k> + 1} and G satisfies

d(C5, G) > OPTk(C5) — 8/,

where ¢/ < min{e, k—%o} Lemma gives a partition of V(G) into k sets Xy, Xo, ..., X,
where | %] < |X;| < [2] for all i =1,...,k, so that by changing at most 575n® pairs uv for
u,v € V(G), we can construct a new graph G’ from G so that G’ is isomorphic to Ty(n) and
the partite sets of G’ are X1, Xy, ..., X}.

Call each edge that is removed in this process a surplus edge and call each edge that is
added in this process a missing edge. For each vertex v € V(G), let f, denote the sum of the
total number of surplus edges and missing edges incident to v. Define the set X to contain

each vertex v with f, > kisn We will refer to each vertex in X as a bad vertex.
Claim 4.1 |X,| < .

Proof. Since f, > %n for each vertex v € X and the combined total of surplus edges
and missing edges in G is at most Qk%rﬂ, it follows that

1 1
ﬁﬂ‘X@‘ S m'ﬁ?,

which proves Claim [£.1 m

For a graph G and a vertex v € V(G) let Ng(v) denote the neighborhood of v in G. For
all v € V(G), let d;(v) denote the size of the set Ng(v) N (X; \ Xo). Let

By Claim [4.1]
] - qan < Xl < [f]
7|~ an i S 7
Kl kS =1k
for all i = 1,..., k. Thus, for each vertex v not contained in Xg,

. k—1 1 1

For two vertices u and v in a graph G, let Ng(u,v) denote the common neighborhood of u
and v, which is the set of all vertices in GG adjacent to both u and v.

Claim 4.2 There are no surplus edges in G — Xj.
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Proof. Assume by way of contradiction that G — X, contains a surplus edge uv. Our goal
is to show that it would be in Kj,,. Since uv is removed in the the process of transforming
G into the Turan graph, we may assume by symmetry that u and v are contained in the
same set X;. Since neither vertex is contained in Xj,

win{d; (1), (0} = (= 5~ ) v

for each 7 = 2,..., k. Therefore,
1 1 2
INg(u,v) N (Xo\ Xo)| > | = — -5 — = | n>0.
Pick one vertex wq contained in Ng(u,v) N (Xs \ Xp). Since wsq is not contained in Xo,

1 1 3
|Ne(we) N N (u,v) N (X3 \ Xo)| > (E i ﬁ) n > 0.

This implies that we can find some common neighbor, say ws, of u,v, and wy, where
ws € X3\ Xo. We continue the process of a selecting a vertex w; € X; \ Xy in the common
neighborhood of the set {u,v,wy,...,w;j_1} for all j = 4,... k. This is possible because
after selecting w;_1, the common neighborhood of the set {u,v,ws,...,w;_1} contains at

least - .
j
<E‘@—za">0

vertices in X; \ X for all j =4,..., k. This implies, however, that the set {u, v, w,, ..., wy}
obtained by selecting a vertex in this way from each partite set X5, ..., X} induces a copy
of Ki4+1 in G, which is a contradiction. m

An immediate consequence of Claim is that every surplus edge in G is incident to
at least one vertex in Xy, implying that G — X is a k-partite graph, albeit not necessarily
complete k-partite. We will split the vertices of X into two classes. For each vertex v € Xj,
one of the following holds.

1. There exists some index i € {1,2,...,k} such that d;(v) = 0. In this case we will call
v a type 1 vertex, or

2. di(v) >0 forall i =1,...,n. In this case we will call v a type 2 vertex.

As we are trying to show that every extremal graph is a complete balanced k-partite
graph, we will now prove that G cannot contain any type 2 vertices. First in Claim [£.3] we
will prove that if v is a type 2 vertex, then d*(v) must be relatively small. In Claim [4.4]
we will prove a lower bound on the number of five-cycles containing a vertex v. Finally, in
Claim [£.5, we will show that a type 2 vertex cannot be contained in enough five-cycles to
justify the claim that G is an extremal graph.

Claim 4.3 Let v € X, be a type 2 vertex. Then there exist distinct integers v and j where
1 <14,5 <k such that

1 <d;(v) <d;(v) < P

19



Proof. By symmetry, assume that 1 < d;(v) and d;(v) < dy(v) for all ¢ =2,... k. For
contradiction, assume d,(v) > k—lg)n forall g =2,... k. Let w; € X7\ Xy be adjacent to v in
G. Since wy ¢ X,

1 1
|Ng(v,wy) N (Xa \ Xo)| > BT

implying that there exists a vertex ws € X5 \ Xy for which the set {v,w;,ws} induces a
triangle in G. If we continue selecting vertices in this way, then for all ¢ = 3,..., k, there
are at least

1 q—1

En T n >0
vertices in X, \ Xy that are adjacent to all of the previously selected vertices v, wy, ..., wy_;.
This implies that we can select k vertices wy, ..., wy so that the set {v,wy, ..., wx} induces a
copy of Kj41 in G, which is a contradiction. Therefore, there exists an index j € {2,...,k}

for which 1 < dy(v) < d;(v) < 75n, completing the proof of Claim . n
Claim 4.4 For allk >3, and v € V(G), va(v,Cs) > (OPT(C5) — 1) () — 0.

klO 4 k5

Proof. Suppose by way of contradiction that there exists some vertex v for which

1 n 1
va(v, Cs) < (OPTk(C5) — ﬁ) (4) _ Eng

Since d(Cs, G) > OPTy(C5) — 5, it follows by averaging that there exists some vertex
u € V(G) for which

ve(u, Cs) > (OPTk(O5) - %) (Z)

Let vg({u,v}, C5) denote the number of five-cycles containing both v and v. Then
va({u,v},Cs) < 2n°.

Let G’ be the graph obtained from G by deleting v and replacing it with a copy u' of w.
Since there is no edge between u and u, G’ is also Ky, i-free. As there were previously
v({u,v}, Cs) five-cycles containing u and v,

1
v(Cs, G —v(Cs5,G) > vg(u,Cs) — va(v, Cs) — vg({u, v}, Cs) > Eﬁl —2m3 >0
since n > 2k°. This, however, contradicts the assumption that G is an extremal graph as
v(Cs,G") > v(Cs, G). Therefore, if n is sufficiently large it follows that for each v € V(G),

1 1
ve(v, Cs) > <OPTk(C5) - ﬁ) (Z) ot

which completes the proof of Claim .4, =

In Claims 4.5 and we count the number of 5-cycles containing a particular vertex
v € Xy. We use the following argument repeatedly. We want to count the number of 5-
cycles vujugususv, where v is in Xo, w1 € X, uqg € X; and us,ug € V(G) \ Xo. Assume
we already picked u; and uy and want to count the number of choices for us and uz. We
distinguish two cases.
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1. i = j: First us can be in any of the remaining k£ — 1 parts. Then uz has k — 2 choices
for a part to complete the 5-cycle as it needs to avoid the parts containing us and wuy
and these are distinct. After multiplying by n?/k?, the number of choices for uy and
uz in each of the selected parts, we get

(k-1)(-2)
2 "

choices for uy and uz together.

2. i # j: We further distinguish two cases. If us ¢ X, then there are k — 2 parts which
could contain uy and k — 2 parts which could contain us. If us € Xj, then there are
k —1 parts which could contain uz. After including the number of choices in each part,

we get
(k=22 k—1\ ,
< 12 + )"

Claim 4.5 G does not contain any type 2 vertices.

choices for uy and ug together.

Proof. Assume for contradiction that v € X is a type 2 vertex. Then by Claim
there are two sets, say X; and X5, such that

1 <di(v) <dy(v) < —=n.

We will now provide an upper bound on the value of vg(v, C5). We will count the maximum
number of such five-cycles of the form vujusuzusv based on the locations of u; and uy as
follows:

1. If U, Uy € Xl\X() or Uy, Uy € XQ\XQZ
£\ (k—1)(k—2

2 k2
2. uléXl\Xoandu4€X2\X0:
n\2 (k=22 k—-1Y\ ,
(%) ( S )n (16)
3. ui € (XI\XQ) U (XQ\X()) and uy ¢ X U Xo:

2n n ((k—2)2 k—1Y\ ,
n , 1
5 k( [ER )” (17)

4. U1, Uy ¢ X1 U XQZ

(H>.(g)xk—l;ggk—zmu(kf).g.(@;fﬁkgl)nz. 18)
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Finally, there are at most 2,%44 five-cycles containing v and at least one other vertex in Xj.

Combining this, along with the upper bounds obtained in equations f,

n? 84 228 300 216 48 144 144 48 144 120
VG('U, 05) S 2—4 12 — — .

= R R ST ST )

The SageMath code for verifying this fact can be found in Appendix [6.3] This implies that
for large enough n,

1 n 1
<OPTk(C'5) — ﬁ) (4> —vg(v,C5) > En‘l.

Using SageMath, we verified that this was true for 3 < k < 1000. After that, it is straight-
forward to check the coefficients in order to verify this fact. This contradicts Claim since
G was assumed to be an extremal graph. Therefore, G does not contain any type 2 vertices.
[ ]

Since G does not contain any type 2 vertices, we can place each vertex v € X into the
set X; for which d;(v) = 0. In order to show that GG is a complete k-partite graph, we must
show that any pair of vertices u and v that were in X, and go to the same X; cannot be
adjacent. The next claim will provide an upper bound on the “good degree” of at least one
of these adjacent vertices.

Claim 4.6 Suppose that u and v are two adjacent type 1 vertices such that d;(u) = d;(v) =0
for some index j € {1,...,k}. Then there exists some index i € {1,...,k} such that i # j

¢ d k2 1 kQ 1
_|_ +
dz(u) 2]{/‘3 n or dz(/U) 2k3 n

Proof. By symmetry we may assume that j = 1. Assume for contradiction that
1
|Ne(u,v) N (X \ Xo)| > P

for all i = 2,...,k. Using an identical argument to the one made in the proof of Claim [4.3]
there exists a set {ws, ..., w} such that w; € (X;\ Xy) and the set {u, v, ws, ..., w;} induces
a K41 in G, which is a contradiction. This implies that for at least one index 1,

1
[No(u,0) 01 (X Xo)| < 5.

Without loss of generality assume that d;(u) < d;(v). Then

n(1 1 n  k*+1
dw< (Y, 2 _2T2
(1) < 5 (k k:3> BT s

which completes the proof of Claim 1.6, =

We will now show that the vertex u of low degree described in the previous claim cannot
be contained in enough five-cycles to justify the assumption that G is an extremal graph.
Unlike Claim we will only show that the two vertices u and v from Claim [£.6] cannot be
adjacent.
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Claim 4.7 Suppose that u and v are type 1 vertices such that d;(u) = d;(v) = 0 for some
j=1,....k. Then u and v are not adjacent.

Proof. By symmetry we may assume that di(u) = dy(v) = 0. Assume for contradiction
that v and v are adjacent. By symmetry and Claim , we may assume that di(u) = 0 and

k?+1
da(u) < o3

In a similar manner as in Claim [£.5] we will count the number of five-cycles of the form
uvvav3vau incident to u by considering the possibilities for the locations of v; and v, as
follows:

1. V1,04 € XQ\Xoi

n.

(n) (k-D(E-2) , (19)

2 R
2. v1 € XQ\XO and vy ¢ Xo:

kz+1.k_z<(k—2>2+k—1)n4. (20)

2k3 k k? k2
3. V1, Uy ¢ XQI

7 k-1)(k-2) , k—2\ n* ((k—2)?2 k-1Y\ ,
(k—2)- (2) : 12 n® + 5 2 2 + e (21)
There are at most %n‘l five-cycles containing u and at least one other vertex in X,. Com-
bining this along with equations f,
72 171 189 96 90 57 9 6) n’

VG(quS)S (12_?+ﬁ—?+ﬁ+ﬁ+ﬁ—ﬁ+ﬁ ﬂ

For k£ > 1000 it is clear that
72 171 189 96 90 57T 9 6 1
12_Z+?_ﬁ+ﬁ+ﬁ+%_ﬁ+ﬁSOPTk(CS)—W-
The SageMath code for verifying that this is also true for 3 < k£ < 1000 found in Ap-
pendix Given this fact, it is straightforward to verify that

1 n 1
(OPTk(C5) - W) (4> - Vg(u, 05) > E”Zl

for large enough n. This, however contradicts Claim 4.4 which implies that u and v are not
adjacent. m

Claim [4.7| implies that if v and v are type 1 vertices for which d;(v) = d;(u) = 0, then u
and v cannot be adjacent. This means that we can place each type 1 vertex v into the set
X, for which d; = 0. Since G does not contain any type 2 vertices, this implies that G is
a k-partite graph. Since G maximizes the number of (possibly non-induced) Cs subgraphs,
it follows that G must be a compelte k-partite graph. Finally, Proposition implies that
G is isomorphic to Ti(n), implying that for large enough n, the Turdn graph Ty(n) is the
unique extremal graph maximizing the number of C5 subgraphs. =
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5 Conclusion

In [I7], Palmer and Gerbner showed that if H is a graph and F' is a graph with chromatic
number k£ + 1, then
ex(n, H, F) < ex(n, H, Kpy1) + o(nfll).

Since the Turan graph T;(n) does not contain any (k + 1)-chromatic graph as a subgraph,
this immediately implies that for any (k + 1)-chromatic graph F,

n—oo

= F(12/51 — 60K + 120k — 120k + 48),
which closely resembles the Erdds-Stone-Simonovits theorem.

Let G be a graph with chromatic number k. Then for any r > k, the Turan graph
T.(n) contains G as a subgraph. When trying to maximize the copies of G among K, -free
graphs, evidence seems to suggest that 7,.(n) is extremal, as we have shown to be the case
with five-cycles. While a complete r-partite graph seems to frequently be the best option, it
is not always optimal to balance the partite sets. Let S; be a star with ¢ leaves, also known
as K. Is it easy to see ex(n, Sy, K3) is achieved by an unbalanced bipartite graph. For
more detailed treatment of stars, see Cutler, Nir, and Radcliffe [I0]. It seems very likely
that while the Turdn graph is not always extremal, that some complete r-partite graph will
be best possible.

Conjecture 5.1 Let G be a graph and let k > x(G) be an integer. Then for all r > k,
ex(n, G, K,.) is realized by a complete (r — 1)-partite graph.

While an unbalanced r-partite graph might best possible in some cases, we believe that
for large enough r > x(G), the value of ex(n, G, K1) is realized by the Turan graph. As r
increases, any G-subgraph in 7,.(n) can be taken from an increasing number of partite sets.
Thus, as r grows larger, the effect of G being unbalanced becomes minimized. The following
conjecture also appears in [1§].

Conjecture 5.2 Let G be a graph and let r > |V(G)| be an integer. Then ex(n,G, K,) is
realized by the Turdn graph T,_1(n).
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6 Appendix

SageMath code on next pages can be also obtained at https://arxiv.org/abs/2007.03064.

Table 1: Graphs on 5 vertices up to isomorphism.

3o o2
H =
4.1
oo 3
H4,3 -

o3 __ 3
H4,6 -

1h = 3E¢]2
H4,2—

1

oy _ 3L | P2
H4,4_

1

o3 __ 3%32
H4,7_

1

27

oy __ 3 2
H4,5 - E\I/]

1

o3 __ 3‘1@32
H4,8_

1

Table 2: Labeled graphs on four vertices.


https://arxiv.org/abs/2007.03064

6.1 Proof of Claim [2.1]
# SageMath code for Claim 2.1
var(’k’”)

# Vector containing coefficients for each graph in F_5
cFi = [0]x34

# Z(K)
Zk = [(kxksksxk—10skxkxk+35xkxk—50xk+24)/k"4]%34
Zk[33] = (—10xkxkxk+35xkxk—50xk+24)/k"4

# P_i(K) first init with 0
Plk = [0]*34

]
P2k = [0]%34
P3k = [0]%34
P4k = [0]%34
P5k = [0]%34
# P-1(K)

P1k[0] = 10xk 2 — 20xk + 10
Plk[1] = k"2 —2sk +1

[
Plk[3] = —k + 1
Plk([4] = —4xk + 4
P1k[18] = 1
P1k[19] = 1
# P-2(K)

P2k [18] = 3xk"2 — 12xk + 12

P2k[29] = k"2 — 6xk + 8
P2k [31] = —4xk+10

P2k [32] = 3

# P_3(K)

P3k[4] = 6%k 2 — 24xk + 24

P3k[11] = k"2 — 4xk + 4
P3k[17] = —k+2

P3k[19] = —6xk+12
P3k[31] = 2

P3k[32] = 3

# P_4(K)

P4k[19] = 6

P4k[28] = -1
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P4k[31] = —4

# P-5(K)

P5k[19] = 6%k 2—36xk+54
P5k([30] = 2xk 2—20xk+42
P5k[31] = 4xk’2 — 24xk + 36
P5k[32] = —24sk + 84
P5k([33] = 120

## Scaling functions z(k) and p_i(k)

zk = 6%(5xk"3 — 20xk"2 + 30xk — 16)/(bxk"3 — 35xk"2 + 7hxk — 48)
plk = 3%(k°5 — 8xk"4 + 22xk"3 — 24xk"2 + 8xk)/ \

(5xk"7 — 35%xk"6 + 7hxk"5 — 48xk"4)

10%k"5 — 60%k 4 + 109%k"3 — 76xk 2 + 18xk)/ \

5xk"7 — 3bxk"6 + 75xk"5 — 48xk"4)

bxk™5 — 28xk"4 + 45%k"3 — 28xk"2 4 6xk)/ \

bxk"7 — 3bxk"6 + 75xk"5 — 48xk"4)

p2k = (
(
(
(
pdk = (1/4)%(5xk"7 — 30xk"6 + 53xk"5 — 52xk 4 + 94xk"3 — 96xk°2 + 24xk)/ \
(
(
(

p3k =
5xk"7 — 35xk"6 + THxk"5 — 48xk"4)

1/4)%(15%k"5 — 60xk"4 + 78xk"3 — 40xk"2 + 8xk)/ \
bxk"7 — 3bxk"6 + 75xk"5 — 48xk"4)

pbk =

# Number of C_5s in each of the 34/ graphs.
five_cycles = [0]*26+[1,1,1,2,2,4,6,12]

def test_positive_for_small_k (x):
for r in [4..1000]:
if x.substitute (k=r) <= 0:
print ("ERROR:” ;x,”is.not_positive._for_k="r)
return

# Denominator for all cFi in the result
den = 5xk"7 — 35%xk"6 + Toxk™5 — 48xk"4

# Test if denominator is positive for small k
test_positive_for_small_k (den)

for i in [0..33]:
cFi[i] = expand(factor( (zk*(Zk[i]) + plk*Plk[i] + p2kxP2k[i] +\
p3k«P3k|[i] + pdkxP4k[i] + pbk*P5k[i] + five_cycles[i] )*den ))

# This is the polynomial for each of the tight graphs (when multiplied
# by den)
# It is the coefficient at c_{F.0} = cFi[0]
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opt_pol = cFi[0]
H#opt_pol = 60xk"7 — 7205k "6 + 3600xk"5 — 9876xk § + 16320%k"3 \
4 — 164405k "2 + 9360%k — 2304

# Printing of all coefficients c_{F_i}
print (" Printing _the_resulting._.coefficients”)
for i in [0..33]:
print ("cF{}=_{}./-{}” .format(i,cFi[i],den))

# Test that cFi[0] == optimum wvalue
optimum = —60/k + 120/k"2 — 120/k"3 + 48/k"4 + 12

Start of Claim 2.1
# Calculating the differences C.1 — C_i for i1=2,..,10.
# We do it by checking ¢ {F.0} — c_{F_i} for all i
#
cF0_cFi=[0]%34
for i in [0..33]:
cFO_cFi[i] = expand(cFi[i]— opt_pol)

# Showing that c_F0 is largest by displaying the difference.
# The leading coefficient at k7 1s negative
# and tests for small values of k by evaluation

def test_not_positive_for_small_k (x):
for r in [4..1000]:
if x.substitute(k=r) > 0:
print ("ERROR:” ;x,”is_positive_for_ k=" r)
return
print ()
print (" Showing_that_c_FO_is_largest”)
print (" —_see_difference_is._.0_or_leading._coefficient _negative”)
for i in [0..33]:
print ("numerator(c_.FO.—.c_F{})=".format(i),cF0_cFi[i])
test_not_positive_for_small_k (cFO_cFi[i])

print (7 all .done”)
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# SageMath code for Claim 2.1 when k=3

# This code calculates the coefficients cFi
#for the case of k = 3 in Claim 2.1.
# In \mathcal{F}_5: F20, F24, F30, F32, and F33 all contain a Kj.

# Here we have removed those graphs and re—indexed the remaining graphs.

cFi = [0]%29

#Counting the number of Cds in each graph.

constants = [0]%29

constants [24] =

constants [25

constants [26
[27
(28

constants
constants

[
]
] =
]
]
]

2
1
1
=1
2
4

# Pi(K) first init with 0

Plk = [0]%34
P2k = [0]%34
P3k = [0]%34
P4k = [0]%34
P6k = [0]%34
P1k[0] = 40
Plk[1] = 4
P1k[3] = -2
Plk[4] = —8
P1k([18] = 1
P1k([19] = 1
P2k([18] = 3
P2k ([27] = —1
P2k [28] = —2
P3k[4] = 6
P3k[11] = 1
P3k[17] = —1
P3k[19] = —6
P3k([28] = 2
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#The scaling coefficients for k = 8

plk = 1/27
p2k = 13/27
p3k = 8/27
pdk = 2/9

p6k = 17/54

# This calculates cFi

for i in [0..28]:
cFi[i] = plk+Plk[i] + p2kxP2k[i] + p3k*P3k[i]
\+ p4kxP4k[i]| + p6kxP6k[i] + constants|[i]

# This prints the wvalue of cFi along with the (possibly) re—indexed graph.

for i in [0..28]:
print (’coefficient.of F’,i,’'=" cFi[i])
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6.2 SageMath code for Claim [3.10]
# SageMath code Claim 8.10
var(’k,e’)

# this 1s the size of the sets.
# We start by using epsilonx(k—1) for easier counting.

x = (1 + ex(k=1))/k
y=(1-¢e)/k

# These count the number of five cycles.
# The first is the one we use.

# The second 1s a sanity check.

def fivecyclecount (x,y):

# here we count by picking one vertex in x,
# then counting the number of possible five cycles.

neighbors_in_same_sets = \
x (k=1)%(y"2/2)*(y " 2% (k—=2)%(k—3) + x*(k—2)xy*2)

neighbors_in_diff_sets = \
s ( (yr(k=1))((k=2)xy) )/25( (k=3)(k—3)xy 2
+ (k—=2)*xy"2 4+ x*x(k—3)xy)

# This 1s counting the number of five—cycles not in X_1.
# Note that it is equal to the sanity check but with k—1.

nobadset_twosame = (y 3*(k—1)%(k—2)/2)*(y " 2x(k—2)*x(k—3))
nobadset_nosame =\

(v 3*%(k—1)*(k—2)%(k—3)/2)%( (k—3)*x(k—3)xy 2

+ (k—=2)*xy"2)

return 120x(neighbors_in_diff_sets + \
neighbors_in_same_sets) + \
24x(nobadset_twosame + nobadset_nosame)

def sanity (y):
nobadset_twosame = (y 3xkx(k—1)/2)%(y 2%(k—1)x(k—2))
nobadset_nosame = \
(v 3xkx(k—=1)x(k—2)/2)*( (k—=2)*%(k—2)xy 2 + (k—1)*y"2)

return 24x(nobadset_twosame + nobadset_nosame)
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f = fivecyclecount (x,y)

# to check our count is correct,
# motice that the non—epsilon terms equal OPT.

view (f.collect (e))
view (expand (sanity (1/k)))
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6.3 SageMath code for Claim 4.5

# Sage code for claim 4.5 — showing there are no type 2 vertices

var(’k’”)

#This function counts the number of five cycles wusing equations (15) — (18)

def fivecyclecount (k):
onebadset_twobadvertices = 2x( 1/(2xk"10) )*( (k—1)x(k—2)/k"2 )
twobadset_twobadvertices = \
(1/k"10 + 2/k"6)*( (k—=2)"2/k"2 + (k—1)/k"2 )
nobadset_twosame = ( (k—2)/(2xk"2) )*( (k—1)x(k—2)/k"2 )
nobadset_nosame = \
( (k=2)x(k=3)/(2xk"2) )*x( (k=2)"2/k"2 + (k—1)/k"2 )
with-X0 = 2/k 4
return 24x(onebadset_twobadvertices \
+ twobadset_twobadvertices + nobadset_twosame \
+ nobadset_nosame + with_XO0)

# This gives the sum of equations (15) — (18) factored in a nice way.

expanded_first_check = expand(fivecyclecount (k))
print(’'five_cycles_containing.a_.type.2_vertex:\n’,expanded_first_check)

# actual upper bound once we account for the wvertices in X_0
def bad_ub(k):
return fivecyclecount (k)

# The average “density” of five cycles containing a particular vertex
def good_ub(k):
return —60/k + 120/k"2 — 120/k"3 + 48/k"4 + 12 — 1/k"10

# The difference between the optimal and the count for type 2.
def epsilon (k):
return good_ub (k) — bad_ub (k)

print ("difference:’ factor (epsilon(k)))
# This verifies that for small values of k, count(r) greater than 1/k"5
def count_check(a,b):

for i in [a..b]:

if epsilon(i) < 1/(i°5):
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return "the_difference_is_less_than_.1/k"5_for_k._=" i
return 7 'difference ’'_is_greater_than_1/k"5_for_all_values”+\
7oofl+str(a)+” <=_k.up.to."+str(b)

print (count_check (3,1000))
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6.4 SageMath code for Claim 4.7
# SageMath code for Claim 4.7
var(’k’”)

# This function counts the number of five—cycles in equations (19) — (21)
def fivecyclecount (k):

onebadset _twobadvertices = \
( (1/2)x( (k"24+1)/(2%k"3) ) 2 )*( (k—=1)x(k—2)/k"2 )
onebadset_onebadvertices = \

( (k"2+1)/(2%k"3) )*( (k—2)"3/k"3
+o(k=1)*(k—2)/k"3 )

nobadset_twosame = \
( (k=2)/(2%xk"2) )*x( (k—=1)*(k—2)/k"2 )
nobadset_nosame = \

( (k=2)x(k—=3)/(2xk"2) )*x( (k=2)"2/k"2 + (k—1)/k"2 )
with X0 = 2/k"(4)

return 24x(onebadset_twobadvertices \

+ onebadset_onebadvertices + nobadset_twosame \

+ nobadset_nosame+with_X0)

# This gives the sum of equations (19) — (21) factored in a nice way

expanded_first_check = expand(fivecyclecount (k))
print ( 'five_cycles_containing_a_typelvertex:\n’ ,expanded_first_check)

# The upper bound on five cycles containing a suboptimal type 1 vertex

def bad_ub(k):
return fivecyclecount (k)

def good_lb (k):
return —60/k + 120/k"2 — 120/k"3 + 48/k"4 + 12 — 1/k"10

#difference from optimal value
def epsilon (k):
return good_lb(k) — bad_ub (k)

print ("difference:’ factor (epsilon(k)))

# This verifies that for small values of k, epsilon(k) is greater than 1/k"°5

def count_check(a,b):
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for i in [a..b]:
if epsilon(i) < 1/(i7°(5)):
return "the_difference.is._less.than.1/k"5_for_k.=",i
return "7’ difference’_is._greater_than.1/k"5_.for_all_values”+\
7_of "+str(a)+” <=_k_up_to._"+str (b)

print (count_check (3,1000))
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