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Bernard Lidický∗ Kyle Murphy†

May 11, 2021

Abstract

The Pentagon Problem of Erdős problem asks to find an n-vertex triangle-free
graph that is maximizing the number of 5-cycles. The problem was solved using flag
algebras by Grzesik and independently by Hatami, Hladký, Král’, Norin, and Razborov.
Recently, Palmer suggested a more general problem of maximizing the number of 5-
cycles in Kk+1-free graphs. Using flag algebras, we show that every Kk+1-free graph
of order n contains at most

1

10k4
(k4 − 5k3 + 10k2 − 10k + 4)n5 + o(n5)

copies of C5 for any k ≥ 3, with the Turán graph being the extremal graph for large
enough n.

1 Introduction

All graphs in this paper are simple. Let G, H, and F be graphs. We define ν(H,G) as the
number of (possibly non-induced) subgraphs of G isomorphic to H. If G does not contain
any subgraph isomorphic to F , then we say that G is F -free. Let ex(n,H, F ) denote the
maximum value of ν(H,G) among all F -free graphsG on n vertices. The function ex(n,H, F )
is well-studied when H is an edge. As such, it is convention when H = K2 to let ex(n, F )
denote ex(n,K2, F ). The value of ex(n, F ) for any graph F is called the Turán number of
F .

One of the first results in extremal graph theory was Mantel’s Theorem [27] which states
that for all n ≥ 3, ex(n,K3) ≤ ⌊n2

4
⌋. When k ≥ 3, the value of ex(n,Kk+1) was determined

by Turán.

Theorem 1.1 (Turán’s Theorem [34]) For all k ≥ 3, and all n,

ex(n,Kk+1) ≤

(

1−
1

k

)

n2

2
.
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Moreover, the Turán graph Tk(n), which is the complete balanced (k − 1)-partite graph on n
vertices, is the unique Kk+1-free graph on n vertices which contains the maximum possible
number of edges.

The Erdős-Stone-Simonovits Theorem [11] determined the asymptotic value of ex(n, F )
when F is not a complete graph. Let χ(F ) denote the chromatic number of F . Then for all
F for which χ(F ) ≥ 2,

ex(n, F ) =
χ(F )− 2

2 (χ(F )− 1)
n2 + o(n2).

The systematic study of the function ex(n,H, F ) was initiated by Alon and Shikhel-
man [2], although there were some prior results. When t < k + 1, Zykov [35] showed that
the Turán graph Tk(n) is also the unique graph with the maximum number of Kt subgraphs
among all Kk+1-free graphs.

Theorem 1.2 (Zykov [35]) Let k and t be integers such that t < k + 1. Then for all n,
the Turán graph Tk(n) is the unique Kk+1-free graph on n vertices containing the maximum
number of Kt subgraphs.

We will need the following corollary in our calculations.

Corollary 1.3 Let G be a Kk+1-free graph on n vertices. Then

ν(K5, G) ≤
k4 − 10k3 + 35k2 − 50k + 24

k4
n5 + o(n5).

Alon and Shikhelman [2] proved the following analogue of the Kővári-Sós-Turán Theorem:

ex(n,K3, Ks,t) = O(n3−3/s).

They also proved that for fixed integers t < k, if F is a k-chromatic graph:

ex(n,Kt, F ) =

(

k − 1

t

)(

n

k − 1

)t

+ o(nt).

In [23], Győri, Pach, and Simonovits studied a handful of cases where F = Kr. The
order of magnitude of ex(n,Ck, Cℓ) is known for all ℓ ≥ 3 and k ≥ 3, see Gishboliner and
Shapira [19]. The asymptotic value of ex(n,Ck, C4) was determined by Gerbner, Győri,
Methuku, and Vizer [16]. They proved a variety of results on ex(n, F,H) when F and H
were both cycles. This includes showing that ex(n,C2ℓ, C2k) = Θ(nℓ) for k, ℓ ≥ 2 and

ex(n,C4, C2k) = (1 + o(1))
(k − 1)(k − 2)

4
n2

for k ≥ 2. In [17], Gerbner and Palmer provided more general bounds on ex(n,H, F ). In
particular, they showed that if H and F are graphs and χ(F ) = k, then

ex(n,H, F ) ≤ ex(n,H,Kk) + o
(

n|H|
)

.
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Additionally, they extended the result of Gishboliner and Shapira to show that for all k and
t,

ex(n,Ck, K2,t) =

(

1

2k
+ o(1)

)

(t− 1)k/2nk/2,

and

ex(n, Pk, K2,t) =

(

1

2
+ o(1)

)

(t− 1)(k−1)/2n(k+1)/2,

where Pk is a path on k vertices.
In [10], Cutler, Nir, and Radcliffe determined the asymptotic value of ex(n, St, Kk+1),

where St is the star with t leaves. In particular, they showed that while the extremal graph
must be complete multi-partite, it is not always isomorphic to the Turán graph Tk(n). The
study of the function ex(n,K3, H) has seen recent attention as well. In particular, the
function ex(n,K3, C5) was studied in [2, 8, 13]. In [29], Mubayi and Mukherjee studied the
function ex(n,K3, H) for a handful of other 3-chromatic graphs H.

In [18], Gerbner and Palmer found a handful of cases where the value of ex(n,H, F ) is
achieved by the Turán graph and in [15], Gerbner studied the function ex(n,H, F ) when H
and F each have at most 4 vertices. Recently, the authors of [25] studied the problem of
maximizing the number of copies of a graph H in some graph G embedded in a particular
surface.

In 1984, Erdős conjectured that the balanced blow-up of C5 on n vertices maximizes
the number of five-cycles among all triangle-free graphs of order n. If G is a graph on m
vertices, then the balanced blow-up of G on n vertices is the graph G(n) obtained from G
by replacing each vertex of G with an independent set of size

⌊

n
m

⌋

or
⌈

n
m

⌉

, and replacing
each edge in G with a complete bipartite graph on the corresponding sets. The problem
of determining ex(n,C5, K3) was known as the Pentagon Problem of Erdős. In a sense, a
graph with ex(n,C5, K3) five-cycles is the “least bipartite” triangle-free graph on n vertices
when measured by the number of 5-cycles. In posing this question, Erdős also proposed the
following two measures of “non-bipartiteness” [12].

1. The minimal possible number of edges in a subgraph spanned by half the vertices.

2. The minimal possible number of edges that have to be removed to make the graph
bipartite, which is equivalent to the problem of max cut.

In 1989, Győri [22] showed that a triangle-free graph on n vertices contains at most 1.03
(

n
5

)5

five-cycles. In 2012, Grzesik [21] and independently in 2013, Hatami Hladký, Král’, Norin,

and Razborov [24] showed that a triangle-free graph on n vertices contains at most
(

n
5

)5
+

o(n5) five cycles. Moreover, a matching lower bound is given by the balanced blow-up of
C5 when n is divisible by 5. The authors of [24] also proved that for large enough n, the
balanced blow-up of a C5 on n vertices is the unique extremal graph. In 2018, Lidický and
Pfender [26] proved that a balanced C5 blow-up is the unique extremal construction for all
n, with the exception of n = 8. This observation was made by Michael [28], who showed
that the Möbius ladder on 8 vertices contains the same number of five cycles as the balanced
C5 blow-up.

Palmer [30] suggested a generalization to the Pentagon Problem of Erdős: maximizing
the number of five-cycles in Kk+1-free graphs for k ≥ 3. Observe that in the more general
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case, the problem of maximizing the number of non-induced C5 subgraphs is different from
maximizing the number of induced C5 subgraphs.

In this paper, we will discuss the non-induced case. Let H and G be graphs on n1 and
n2 vertices, respectively. The density d(H,G) of H in G is given by

d(H,G) = ν(H,G)

(

n2

n1

)−1

.

Normally, n−n1

2 would be used as the scaling factor for defining the density of H in G. We

will use
(

n2

n1

)−1
, since this is more natural in proofs involving the flag algebra method. Let

OPTk(C5) = lim
n→∞

max
Gn∈Fk

n

d(C5, Gn), (1)

where Fk
n is the set of all Kk+1-free graphs on n vertices. Note that since d(C5, G) measures

the density of non-induced C5 subgraphs in a graph G, this parameter will often have a value
greater than one. For example, d(C5, Kℓ) = 12 for all ℓ ≥ 5. Our main goal is to prove the
following theorem.

Theorem 1.4 Let k ≥ 3 be an integer. Then

(i) OPTk(C5) =
1
k4
(12k4 − 60k3 + 120k2 − 120k + 48).

(ii) If n is sufficiently large, then Tk(n) is the unique Kk+1-free graph on n vertices for
which ν(C5, Tk(n)) = ex(n,C5, Kk+1).

Since our result forbids (k+1)-cliques, Turán’s Theorem implies that the number of edges
in an extremal graph cannot be more than in Tk(n). Interestingly, the authors of [6] proved
that if G is a graph with at least k−1

k

(

n
2

)

edges, then the Turán graph provides a lower bound
on the number of five-cycles contained in G.

The proof of Theorem 1.4(i) uses flag algebras to calculate the upper bound for OPTk(C5).
The second part is done by stability and exact structure arguments. Unlike typical appli-
cations of the flag algebra method, our result does not need computer assistance for the
calculations involving flag algebras. However, it is still convenient to use a computer for the
purpose of multiplying and expanding rational functions.

In the next section, we will give a brief overview of the flag algebra method. Section 2
contains the proof of Theorem 1.4(i). Then we prove a stability lemma in Section 3, and
use it to prove Theorem 1.4(ii) in Section 4. We will end with some concluding remarks and
conjectures concerning the general behavior of the function ex(n,H, F ).

1.1 The Flag Algebra Method

Introduced by Razborov [32], the flag algebra method provides a framework for computa-
tionally solving problems in extremal combinatorics. Flag algebras have been used to solve
problems on hypergraphs [4, 14, 20, 31], permutations [5], graph decomposition problems [7],
and oriented graphs [9] among many other applications. Here we will give a brief introduc-
tion and description of the notation and theory we will need for our result. We will not prove
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any claims since they have already been proven by Razborov [32]. Another overview of flag
algebras can be found in [33].

Let H and G be graphs on n1 and n2 vertices, respectively, such that n1 ≤ n2. If
X ⊆ V (G), we will denote the induced subgraph of G on the vertices of X by G[X]. Let a
subset X be selected uniformly at random from V (G) such that |X| = n1. Then P (H,G) is
the probability that G[X] is isomorphic to H.

A sequence of graphs (Gn)n≥1 of increasing order is said to be convergent if for every
finite graph H, the following limit converges:

lim
n→∞

P (H,Gn).

Let F denote the set of all graphs up to isomorphism, and let Fℓ denote the set of all
graphs on ℓ vertices up to isomorphism. Let RF denote the set of all formal finite linear
combinations of graphs in F . A type of size k is a graph σ on k labelled vertices labeled
by [k] = {1, . . . , k}. If σ is a type of size k and F is a graph on at least k vertices, then
an embedding of σ into F is an injective function θ : [k] → V (F ), such that θ gives an
isomorphism between σ and F [im(θ)]. A σ-flag is a pair (F, θ) where F is a graph and θ
is an injective function from [k] to V (F ) that defines a graph isomorphism of F [im(θ)] and
σ. In this way, σ can be thought of as a labelled subgraph of F . Two σ-flags F and G are
isomorphic if there exists a graph isomorphism between F and G that preserves the labelled
subgraph σ.

Let Fσ denote the set of all σ-flags and Fσ
ℓ denote the set of all σ-flags on ℓ ver-

tices. Observe that if σ is the empty graph, then Fσ = F . For two σ-flags F and G
with |V (F )| ≤ |V (G)|, let P (F,G) denote the probability that an injective map from V (F )
to V (G) that fixes the labeled graph σ induces a copy of F in G. Razborov showed that
there exists an algebra Aσ after some factorization of RFσ. In doing so, he defined addition
and multiplication on the elements of RFσ. Addition can be defined in the natural way,
by simply adding coefficients of the elements in RFσ. We will now describe how to define
multiplication of elements in Aσ.

Let (G, θ) ∈ Fσ be a σ-flag on n vertices. Let (F1, θ1), (F2, θ2) ∈ Fσ be two σ-flags for
which |V (F1)|+ |V (F2)| ≤ n+ |V (σ)|. Let X1 and X2 be two disjoint sets of sizes |V (F1)| −
|V (σ)| and |V (F2)| − |V (σ)| respectively, selected uniformly at random from V (G) \ im(θ).
We will define the density of F1 and F2 in G, denoted P (F1, F2;G) as the probability that
(G[X1 ∪ im(θ)], θ) is isomorphic to (F1, θ1) and (G[X2 ∪ im(θ)], θ) is isomorphic to (F2, θ2).

It can be shown that as n grows, then the density of F1 and F2 is approximately equal
to the product of their individual densities:

|P (F1, F2;G)− P (F1, G)P (F2, G)| ≤ O(n−1). (2)

Given this fact, if |V (F1)| + |V (F2)| = ℓ − |V (σ)| we could ideally define multiplication in
Aσ by

F1 · F2 =
∑

F∈Fσ
ℓ

P (F1;F2;F )F. (3)

The issue with this, however, is that the product F1 · F2 could be also written as a linear
combination of elements in Fσ

ℓ′ for any ℓ′ > ℓ. Hence, before defining Aσ we factor out all
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expressions of the form

F −
∑

F ′∈Fσ
ℓ

P (F, F ′)F ′ (4)

from RFσ. Note that (4) corresponds to the law of total probability and hence it should
behave as 0 when added to another linear combination. Let Kσ be the linear subspace of
RFσ containing all expressions of the form (4). We define Aσ to be RFσ factorized by Kσ,
and we define multiplication in Aσ by naturally extending (3).

Returning to the idea of convergent sequences of graphs, let Hom+(Aσ,R) be the set of all
homomorphisms from Aσ to R such that for each φ ∈ Hom+(Aσ,R) and H ∈ Fσ, φ(H) ≥ 0.
If σ has order 0, we omit it in the notation. Razborov showed that each homomorphism in
Hom+(A,R) corresponds to some convergent graph sequence and vice versa [32].

In any fixed graph G, we can express d(C5, G) as the sum of induced densities in the
following way:

d(C5, G) =
∑

Fi∈F5

cC5

Fi
P (Fi, G), (5)

where cC5

Fi
= ν(C5, Fi). Hence, for any sequence of unlabelled graphs (Gn)n≥1 and its corre-

sponding homomorphism φ ∈ Hom+(A,R),

lim
n→∞

d(C5, Gn) =
∑

Fi∈F5

cC5

Fi
φ(Fi). (6)

Quite often in our computations to simplify notation, we will drop the function notation and
simply write Fi or draw the graph Fi in place of φ(Fi). Under this notation equation (6)
would be

lim
n→∞

d(C5, Gn) =
∑

Fi∈F5

cC5

Fi
Fi.

Finally, while we will often work with σ-flags where σ is not empty, flag algebras are often
applied to questions concerning unlabelled graphs. In order to translate information from
Hom+(Aσ,R) to Hom+(A,R) Razborov defined the unlabelling operator which is a linear
operator

J·Kσ : RFσ → RF ,

such that for any σ-flag F = (H, θ), JF Kσ = qσ(F )H, where qσ(F ) is equal to the probability
(H, θ′) is isomorphic to F where θ′ is a randomly chosen injective mapping θ′ from [k] to
V (H). It can be shown that for any a ∈ Aσ and any φ ∈ Hom+(A,R),

φ (Ja · aKσ) ≥ 0. (7)

We will frequently make use of this fact in our computations.
If a flag algebra calculation has a constant number of terms and operations, then it can

be interpreted as a calculation in a graph of order n with an error term O(n−1) coming
from (2).
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2 Proof of Theorem 1.4(i)

In this section we will prove Theorem 1.4(i). First we will provide a lower bound by counting
the number of five cycles in the Turán graph. Next, using the flag algebra method, we will
provide a matching upper bound. The proof of the upper bound when k = 3 is slightly
different than the proof when k ≥ 4.

Proof of Theorem 1.4(i). First we will count the number of five-cycles in Tk(n), which
will give an asymptotic lower bound. Observe that the only induced subgraphs of Tk(n) on

five vertices containing a five-cycle are , , and . There are
(

k
5

) (

n
k

)5
copies of in

Tk(n), with every such graph containing 12 distinct C5 subgraphs. There are 4
(

k
4

)(

n/k
2

) (

n
k

)3

copies of in Tk(n), with every such graph containing 6 distinct C5 subgraphs. Finally,

there are 3
(

k
3

)(

n/k
2

)2 n
k
copies of in Tk(n), with every such graph containing 4 distinct C5

subgraphs. Thus,

ν(C5, Tk(n)) = 12

(

k

5

)

(n

k

)5

+ 24

(

k

4

)(

n/k

2

)

(n

k

)3

+ 12

(

k

3

)(

n/k

2

)2
n

k
+ o(n5),

where the error term o(n5) accounts for the cases where n is not divisible by k. This implies
that for all n,

d(C5, Tk(n)) ≥ ν(C5, Tk(n))

(

n

5

)−1

=
1

k4
(12k4 − 60k3 + 120k2 − 120k + 48) + o(1).

Now we will calculate an asymptotic upper bound. Unless it is stated otherwise, assume
that k ≥ 3. Let F5 = {F0, . . . , F33 = K5} be the set of unlabeled graphs (up to isomorphism)
on five vertices. Each of these graphs is pictured in Table 1 in the Appendix. After removing
each cC5

Fi
for which cC5

Fi
= 0 from (5) we get

lim
n→∞

d(C5, Gn) = + + · +2 · +2 · +4 · +6 · +12 · . (8)

Since F5 contains all graphs on five vertices (up to isomorphism) and
∑33

i=0 Fi = 1,

lim
n→∞

d(C5, Gn) ≤ max{cC5

Fi
: Fi ∈ F5}.

Therefore,
OPTk(C5) ≤ max{cC5

Fi
: Fi ∈ F5}.

Given this fact, our goal is to find appropriate constants cFi
so that

lim
n→∞

d(C5, Gn) ≤
∑

Fi∈F5

cFi
Fi,

and max{cFi
: Fi ∈ F5} is as small as possible. To do so, we can take advantage of properties

that we know must be true of all φ ∈ Hom+(A,R) which correspond to Kk+1-free convergent
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sequences of graphs. Additionally, using labeled flags, we can derive nonnegative expressions
of unlabeled graphs in F5. We define

σ1 =
1

23 σ2 =
1

23 σ3 =
1

23

so that Fσ1

4 , Fσ2

4 , and Fσ3

4 denote three sets of labeled flags on four vertices. By (7), the
following expressions are nonnegative for all k ≥ 3.

1. P1(k) = 10 ·

u
v
(

(k − 1)
1

23 −
1

23

)2
}
~

σ1

=

(10k2−20k+10) +(k2−2k+1) +(−k+1) +(−4k+4) + +

2. P2(k) = 30 ·

u
v
(

(k − 2)
1

23 −
1

23

)2
}
~

σ2

=

(3k2 − 12k + 12) + (k2 − 6k + 8) + (−4k + 10) + 3

3. P3(k) = 30 ·

u
v
(

(k − 2)
1

23 −
1

23

)2
}
~

σ2

=

(6k2−24k+24) +(k2−4k+4) +(−k+2) +(−6k+12) +2 +3

4. P4(k) = 30 ·

u
v
(

1

23 −
1

23

)2
}
~

σ3

=

6 − + 2 − 4

5. P5(k) = 30 ·

u
v
(

(k − 3)
1

23 + (k − 3)
1

23 − 2
1

23

)2
}
~

σ3

=

(6k2−36k+54) +(2k2−20k+42) +(4k2−24k+36) +(−24k+84) +

120
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Additionally, we can apply Corollary 1.3, which states that for any Kk+1-free convergent
sequence of graphs,

≤
k4 − 10k3 + 35k2 − 50k + 24

k4
.

At this point we will split the proof into the two cases where k ≥ 4 and k = 3. To gain
some intuition as to why this is necessary, we can consider the previous inequality. When
k = 3 or k = 4, the previous bound implies that = 0. The issue is that it does not give
any information about the density of K4, which is also equal to zero when k = 3. Thus, two
slightly different proofs are required for k = 3 and k ≥ 4.

Case 1: Suppose that k ≥ 4. Since
∑33

i=0 Fi = 1,

≤

33
∑

i=0

Fi

(

k4 − 10k3 + 35k2 − 50k + 24

k4

)

. (9)

After rearranging the terms from (9) we obtain the following constraint on the elements of
F5:

0 ≤

32
∑

i=0

Fi ·
k4 − 10k3 + 35k2 − 50k + 24

k4
+ ·

−10k3 + 35k2 − 50k + 24

k4
. (10)

Let

Z(k) =
32
∑

i=0

Fi ·
k4 − 10k3 + 35k2 − 50k + 24

k4
+ ·

−10k3 + 35k2 − 50k + 24

k4
.

It is straightforward to verify that the following rational functions are nonnegative for
all k ≥ 4.

p1(k) =
3(k5−8k4+22k3−24k2+8k)

5k7−35k6+75k5−48k4
p2(k) =

10k5−60k4+109k3−76k2+18k
5k7−35k6+75k5−48k4

p3(k) =
5k5−28k4+45k3−28k2+6k
5k7−35k6+75k5−48k4

p4(k) =
5k7−30k6+53k5−52k4+94k3−96k2+24k

4(5k7−35k6+75k5−48k4)

p5(k) =
15k5−60k4+78k3−40k2+8k
4(5k7−35k6+75k5−48k4)

z(k) = 6(5k3−20k2+30k−16)
5k3−35k2+75k−48

Thus, for any convergent sequence (Gn)n≥1 of Kk+1-free graphs with k ≥ 4,

lim
n→∞

d(C5, Gn) ≤
33
∑

i=0

cC5

Fi
Fi + z(k)Z(k) +

5
∑

j=1

pj(k)Pj(k) =
33
∑

i=0

cFi
Fi, (11)

where cFi
is the coefficient of Fi after all expansions. Then

OPTk(C5) ≤ max{cFi
: Fi ∈ F5}.

The values of cFi
for each Fi ∈ F5 are listed below.

• C1(k) = c = c = c = c

= c = c = c = 60k7−720k6+3600k5−9876k4+16320k3−16440k2+9360k−2304
5k7−35k6+75k5−48k4

.
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• C2(k) = c = 33k7−450k6+2547k5−7824k4+14214k3−15360k2+9144k−2304
5k7−35k6+75k5−48k4

.

• C3(k) = c = c = c = c = c = c = c = c = c = c = c =
c = c

= c = c = c = c = c = 30k7−420k6+2430k5−7596k4+13980k3−15240k2+9120k−2304
5k7−35k6+75k5−48k4

.

• C4(k) = c = 30k7−423k6+2457k5−7686k4+14118k3−15336k2+9144k−2304
5k7−35k6+75k5−48k4

.

• C5(k) = c = 35k7−468k6+2607k5−7916k4+14278k3−15367k2+9144k−2304
5k7−35k6+75k5−48k4

.

• C6(k) = c = 30k7−425k6+2468k5−7697k4+14098k3−15302k2+9132k−2304
5k7−35k6+75k5−48k4

.

• C7(k) = c = c = 35k7−455k6+2505k5−7644k4+13980k3−15240k2+9120k−2304
5k7−35k6+75k5−48k4

.

• C8(k) = c = (135/4)k7−(895/2)k6+(9967/4)k5−7631k4+(27913/2)k3−15216k2+9114k−2304
5k7−35k6+75k5−48k4

.

• C9(k) = c = 50k7−610k6+3129k5−8902k4+15326k3−15956k2+9264k−2304
5k7−35k6+75k5−48k4

.

• C10(k) = c = 50k7−610k6+3103k5−8758k4+15050k3−15748k2+9216k−2304
5k7−35k6+75k5−48k4

.

Claim 2.1 For all i = 1, . . . , 10 and k ≥ 4, C1(k) ≥ Ci(k).

Proof. Observe that for all i = 1, . . . , 10, each polynomial Ci(k) has the same denominator
of 5k7 − 35k5 + 75k4 − 48k3. It is straightforward to verify that 5k7 − 35k5 + 75k4 − 48k3

is positive for all k ≥ 4. By examining the leading coefficients in the numerator of each
polynomial, it is straightforward to check that C1(k) is the largest for k > 1000. For
4 ≤ k ≤ 1000, we have provided Sage code used to verify the claim in Appendix 6.1.

By factoring C1(k) it follows that

OPTk(C5) ≤ C1(k) =
1

k4
(12k4 − 60k3 + 120k2 − 120k + 48),

completing the proof of Theorem 1.4(i) when k ≥ 4.

Case 2: Suppose that k = 3. Assume that (Gn)n≥1 is a K4-free convergent sequence of
graphs. Each graph in the set H given below has a limit density equal to zero, and therefore
can be removed from our calculations.

H =
{

, , , ,
}

.

In this case, we will use the same polynomials Pi(k) for i = 1, 2, 3, 4 that were provided
earlier in the proof. We will define one new polynomial P6, which is nonnegative by (7).

10



P6 =

u
v
(

1

23 +
1

23 −
1

23

)2
}
~

σ3

=

+ 2 · − − 2 · + + 6 · − 4 · ≥ 0

Now suppose that

p1 = 1/27 p2 = 13/27 p3 = 8/27

p4 = 2/9 p6 = 17/54.

Then

d(C5) = lim
n→∞

d(C5, Gn) ≤
∑

F∈F5\H

ν(C5, F )F +
4
∑

j=1

pjPj(3) + p6P6.

Let cF denote the coefficient of each graph F after combining each of the two sums. We
provide the values of cF for each graph in F5 \ H for which cF 6= 0.

• c = c = c = c = c = 40
27

• c = 4
27

• c = − 2
27

• c = 11
18

• c = 1
54

• c = −17
54

• c = c = 1

• c = 7
9

• c = 8
9

SageMath code to verify this calculation can be found in Appendix 6.1. It is straightforward
to verify that

d(C5) ≤ max{cF : F ∈ F5 \ H} =
40

27
.

Furthermore, the set T3 of graphs for which cFi
= 40

27
is given below.

T3 =
{

, , , ,
}

(12)

This completes the proof of Theorem 1.4 (i).

11



2.1 Finding the Optimal Bound

We will now give a short description on how we found the functions z(k)Z(k) and pi(k)Pi(k)
that were used in the proof of Theorem 1.4(i). If Fj ∈ F5 is a graph for which cFj

=
OPTk(C5), then we call Fj a tight subgraph. In our proof of Theorem 1.4(i), the set T given
below contains the tight subgraphs when k ≥ 4.

T =
{

, , , , , ,
}

The set T3, defined in (12), contains the tight subgraphs when k = 3. Note that T3 are
the K4-free graphs from T . The following lemma, which appears as Lemma 2.4.3 in [3],
states that any graph appearing with positive probability in the limit of (Gn)n≥1 must be
tight if Gn are extremal graphs.

Lemma 2.2 ([3]) Given (Gn)n≥1 a convergent sequence of Kk+1-free graphs of increasing
order, such that d(C5, Gn) → OPTk(C5). Let d(H,G∞) be the value of lim

n→∞
d(H,Gn). Then

for any exact solution, d(H,G∞) > 0 implies that H must be a tight subgraph.

Using semidefinite programming, we verified that the conjectured upper bound of OPTk(C5)
was correct for small values of k. In doing so, we were able to guess the correct types and
labelled flags to use. It was a greedy process and there may be simpler solutions. This cor-
responds to the polynomials Pi for i = 1, . . . , 6. Note that each labelled flag is a four-vertex
graph appearing in the Turán graph. Next, Lemma 2.2 implies that each Fi ∈ F5 that is a
subgraph of the Turán graph must have the property that cFi

= OPTk(C5). Given this fact,
we used SageMath to solve for the correct polynomials pi(k) and z(k). These agreed with
the values calculated by the semidefinite program for small k.

3 Stability

In this section we will prove a stability lemma which states that for any Kk+1-free graph G
on a sufficient number of vertices, if G contains “close” to the extremal number of five-cycles,
then G can be made isomorphic to Tk(n) by adding or deleting a small number of edges.

Proposition 3.1 For two positive integers x1 and x2, if x1 ≥ x2 + 2, then

1. x1x2 < (x1 − 1)(x2 + 1)

2. x1

(

x2

2

)

< (x2 + 1)
(

x1−1
2

)

.

Proof. The first inequality is clear from the equation below:

(x1 − 1)(x2 + 1) = x1x2 + (x1 − x2)− 1 ≥ x1x2 + 1.

Since x2 − 1 < x1 − 2, the second inequality follows immediately from the first inequality.

The next proposition follows immediately from Lemma 3.3, which we will prove next.

12



Proposition 3.2 For any complete k-partite graph H on n vertices, ν(C5, H) is maximized
when the sizes of the partite sets are as equal as possible.

The following lemma will show that if H is a complete k-partite graph with unbalanced
partite sets, then we can always increase the number of five-cycles inH by moving the vertices
as to make H more balanced. Throughout the proof, we will assume for each i = 1, . . . , k
that |Xi| = xi. For a graph G and a vertex v ∈ V (G), let νG(v, C5) denote the number of
five-cycles in G that contain v.

Lemma 3.3 Let H be a complete k-partite graph with partite sets X1, . . . , Xk. Suppose that
for two integers i and j,

xi ≥ xj + 2.

Let H ′ be the graph obtained from H by deleting a vertex in Xi and duplicating a vertex in
Xj. Then

ν(C5, H
′) > ν(C5, H).

Proof. By symmetry we may assume that i = 1 and j = 2. Let H ′ be obtained from H
by removing some vertex v ∈ X1 and adding a new vertex v′ to X2, where v′ is a duplicate
of some vertex in X2. Letting X ′

1, . . . , X
′
k denote the new partite sets in H ′, |X ′

1| = x1 − 1,
|X ′

2| = x2 + 1, and |X ′
q| = xq for each q ∈ {3, . . . , k}.

Since the only five-cycles that have been deleted from H are those containing v, we only
need to show that νH′(v′, C5) > νH(v, C5). Additionally, there is a one-to-one correspondence
between the five cycles in H containing v and no other vertices in X1∪X2 and the five cycles
in H ′ containing v′ and no other vertices in X ′

1 ∪X ′
2. Because of this, we can focus only on

those five-cycles which contained v and at least one other vertex in X1 ∪X2.
Let c(v, n1, n2) denote the number of five cycles in H containing v along with n1 and

n2 vertices in X1 and X2, respectively. We define c′(v′, n1, n2) in an identical manner, but
pertaining to v′ and H ′. In order to show that ν(C5, H

′) > ν(C5, H), it suffices to show the
following,

1. c′(v′, 1, 0) + c′(v′, 2, 0) + c′(v′, 0, 1) > c(v, 0, 1) + c(v, 0, 2) + c(v, 1, 0), and

2. c′(v′, 1, 1) + c′(v′, 2, 1) > c(v, 1, 1) + c(v, 1, 2).

We will prove each of these inequalities as two separate claims. Throughout the proof we
will assume that I = {3, . . . , k}.

Claim 3.4 c′(v′, 1, 0) + c′(v′, 2, 0) + c′(v′, 0, 1) > c(v, 0, 1) + c(v, 0, 2) + c(v, 1, 0).

Proof. Since H is a complete k-partite graph,

c(v, 0, 1) = 6x2 ·
∑

{i,j}∈(I
2
)

[(

xi

2

)

xj +

(

xj

2

)

xi

]

+ 12x2 ·
∑

{i,j,h}∈(I
3
)

xixjxh,

c(v, 0, 2) = 4

(

x2

2

)

·
∑

i∈I

(

xi

2

)

+ 6

(

x2

2

)

·
∑

{i,j}∈(I
2
)

xixj, and

c(v, 1, 0) = 4(x1 − 1) ·
∑

{i,j}∈(I
2
)

[(

xi

2

)

xj +

(

xj

2

)

xi

]

+ 6x1 ·
∑

{i,j,h}∈(I
3
)

xixjxh.

13



By counting in similar way in H ′,

c′(v′, 1, 0) = 6(x1 − 1) ·
∑

{i,j}∈(I
2
)

[(

xi

2

)

xj +

(

xj

2

)

xi

]

+ 12(x1 − 1) ·
∑

{i,j,h}∈(I
3
)

xixjxh,

c′(v′, 2, 0) = 4

(

x1 − 1

2

)

·
∑

i∈I

(

xi

2

)

+ 6

(

x1 − 1

2

)

·
∑

{i,j}∈(I
2
)

xixj, and

c′(v′, 0, 1) = 4x2 ·
∑

{i,j}∈I

[(

xi

2

)

xj +

(

xj

2

)

xi

]

+ 6x2 ·
∑

{i,j,h}∈I

xixjxh.

Since x1 ≥ x2 + 2, it follows that c′(v′, 2, 0) > c′(v′, 0, 2). Thus, it suffices to show that

c(v, 0, 1) + c(v, 1, 0) ≤ c′(v′, 0, 1) + c′(v′, 1, 0).

It is straightforward to verify that

6·
∑

{i,j}∈(I
2
)

[(

xi

2

)

xj +

(

xj

2

)

xi

]

+12·
∑

{i,j,h}∈(I
3
)

xixjxh ≥ 4·
∑

{i,j}∈(I
2
)

[(

xi

2

)

xj +

(

xj

2

)

xi

]

+6·
∑

{i,j,h}∈(I
3
)

xixjxh.

This immediately implies that

c(v, 0, 1)− c(v, 0, 1) ≤ c′(v′, 1, 0)− c′(v′, 1, 0),

which proves the claim.

Claim 3.5 c′(v′, 1, 1) + c′(v′, 2, 1) > c(v, 1, 1) + c(v, 1, 2).

Proof. For convenience, we will count c(v, 1, 1) + c(v, 1, 2) in the following way:

c(v, 1, 1) + c(v, 1, 2) = x1x2f11 +

(

x2

2

)

x1f21, (13)

where fpq is a function independent of the values x1 and x2 used to count the number of five
cycles containing v, p vertices from X1, and q vertices from X2. Using the same method to
count c′(v′, 1, 1) + c′(v′, 2, 1), we get

c′(v′, 1, 1) + c′(v′, 2, 1) = (x1 − 1)(x2 + 1)f11 +

(

x1 − 1

2

)

(x2 + 1)f12. (14)

By Proposition 3.1,
(x1 − 1)(x2 + 1)f11 > x1x2f11.

Moreover, since the sizes of each set Xj for all j ∈ I have not changed, f12 = f21. Therefore,
(

x1 − 1

2

)

(x2 + 1)f12 >

(

x2

2

)

x1f21

by Proposition 3.1, completing the proof of the claim.

As each of Claims 3.4 and 3.5 are true, it follows that ν(C5, H
′) > ν(C5, H), completing

the proof of Lemma 3.3.

For two graphs G and H of the same order, let Dist(G,H) equal the minimum number
of adjacencies that one needs to change in G in order to obtain a graph isomorphic to H.
The parameter Dist(G,H) is commonly known as the edit distance between G and H. Our
main goal of this section is to prove the following lemma.
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Lemma 3.6 (Stability Lemma) For every ε > 0, there exists an n0 and εF > 0 such
that for every Kk+1-free graph G of order n ≥ n0 with d(C5, G) ≥ OPTk(C5) − εF , the edit
distance between G and Tk(n) is at most εn2.

The proof of Lemma 3.6 requires the following two lemmas along with Lemma 2.2. For
a family of graphs F , we say that a graph G is F-free if G does not contain any member of
F as an induced subgraph.

Lemma 3.7 (Induced Removal Lemma [1]) Let F be a set of graphs. For each ε > 0,
there exist n0 ≥ 0 and δ > 0 such that for every graph G of order n0 ≥ n, if G contains at
most δn|V (H)| induced copies of H for every H ∈ F , then G can be made F-free by removing
or adding at most εn2 edges from G.

Let (Gn)n≥1 be a convergent sequence ofKk+1-free graphs. In the proof of Theorem 1.4(i),
we found constants cFi

for each Fi ∈ F5 such that

d(C5, Gn) ≤
33
∑

i=0

cFi
Fi ≤ max{cFi

: Fi ∈ F5}

and

max{cFi
: Fi ∈ F5} = OPTk(C5) =

1

k4
(12k4 − 60k3 + 120k2 − 120k + 48).

Let P3 be the three vertex graph with exactly one edge; see Figure 1. The goal of Lemma 3.8
is to prove that if limn→∞

(C5, Gn) = OPTk(C5), then limn→∞
(P3, Gn) = 0.

Figure 1: P3

Lemma 3.8 For each δF > 0, there exists εF > 0 and n0 = n0(δF ) such that any Kk+1-free
graph G on n ≥ n0 vertices with d(C5, G) > OPTk(C5)− εF contains at most δFn

3 induced
copies of P3.

Proof. Let (Gn)n≥1 be a convergent sequence of Kk+1-free graphs maximizing the number
of five-cycles. Let T be the set of tight subgraphs in F5 given by the proof of Theorem 1.4(i).
This is the same set T provided at the end of Section 2.

T =
{

, , , , , ,
}

.

Observe that for each graph F ∈ T ,

P (P3, F ) = 0.
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Since T contains the set of tight graphs, the following is a consequence of (4) for the sequence
(Gn)n≥1,

P3 =
33
∑

i=0

P (P3, Fi)Fi = 0.

It follows that for the sequence (Gn)n≥1,

lim
n→∞

d(P3, Gn) = 0,

which completes the proof of Lemma 3.8.

Proof of Lemma 3.6. Let εI > 0 and εF > 0, which we will determine later. By
Lemma 3.7, there exists a δF > 0 and an n0 such that any Kk+1-free graph on n ≥ n0

vertices containing at most δFn
3 copies of P3 can be made P3-free after changing at most

εIn
2 adjacencies. Assume that G is a graph on n ≥ n0 vertices such that

d(C5, G) > OPTk(C5)− εF ,

where n0 is large enough to satisfy the conditions of Lemmas 3.7 and 3.8 so that G contains
at most δFn

3 copies of P3. Moreover, for sufficiently small εI ,

d(C5, G) > OPTk−1(C5) + 2 · 5! · εI .

Using Lemma 3.7, let G′ be a P3-free graph obtained from G by changing at most εIn
2

edges. Since each edge that was removed in this way was contained in at most n3 copies of
C5, ν(C5, G

′) ≥ ν(C5, G)− εIn
5. Therefore,

1. d(C5, G
′) > OPTk(C5)− 5! · εI − εF ,

2. d(C5, G
′) > OPTk−1(C5) + 5! · εI .

Using the previous two inequalities, along with the fact that G′ is P3-free, we will now show
that G′ must be a complete k-partite graph.

Claim 3.9 G′ is a complete k-partite graph.

Proof. Since G′ does not contain any induced copies of P3 as a subgraph, each pair of non-
adjacent vertices must have an identical neighborhood. Therefore, we can partition V (G′)
into independent sets X1, . . . , Xℓ such that for all distinct i, j ∈ [ℓ], each vertex in Xi is
adjacent to each vertex in Xj. Hence, G

′ is a complete ℓ-partite graph. Since

OPTk−1(C5) = lim
n→∞

d(C5, Tk−1(n))

and d(C5, G
′) > OPTk−1(C5) + 5! · εI , Proposition 3.2 implies that G′ must be k-partite if n

is sufficiently large.

At this point, we know that G′ only differs from Tk(n) in the sizes of the partite sets
X1, X2, . . . , Xk. The next claim will show that we can impose that the partite sets in G′

must be reasonably close to being balanced.
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Claim 3.10 Let G′ be a complete k-partite graph with partite sets X1, X2, . . . , Xk. Then for
any εT > 0, there exists δ > 0 such that if

d(C5, G
′) > OPTk(C5)− δ,

then for each i = 1, . . . , k
n(1− εT )

k
≤ |Xi| ≤

n(1 + εT )

k
.

Proof. For each i = 1, . . . , k let xi = |Xi|. Let ε′(k − 1) > εT and assume by symmetry

that x1 =
1+ε′(k−1)

k
n. If we picked x1 =

1+ε′

k
n, we would get less pleasant expressions in what

follows. We want to calculate an upper bound on d(C5, G
′). By Lemma 3.3, d(C5, G

′) is
maximized if all remaining parts are balanced. That is, xi =

1−ε′

k
n for i = 2, . . . , k. With

knowing the sizes of all Xi, the following is a straightforward calculation,

d(C5, G
′) ≤ OPTk(C5)− 60ε′2

(

1−
6

k
+

15

k2
−

18

k3
+

8

k4

)

+ 60ε′3
(

1−
8

k
+

25

k2
−

34

k3
+

16

k4

)

+ 180ε′4
(

1

k
−

5

k2
+

8

k3
−

4

k4

)

− 12ε′5
(

1−
15

k2
+

30

k3
−

16

k4

)

+ o(1),

see Appendix 6.2 for a code in SageMath.
For all k ≥ 3, the term 1− 6

k
+ 15

k2
− 18

k3
+ 8

k4
is positive with minimum 8

81
at k = 3. For

sufficiently small ε′ and large n, we get

d(C5, G
′) ≤ OPTk(C5)− 5ε′2.

This implies the statement of the claim.
Returning to the proof of Lemma 3.6, suppose that ε > 0, and let εT = ε/2. Next, choose

an εI ≤ ε/2 small enough so that εF and δF are sufficiently small. In particular, we must
select εI , εF , and δF so that any k-partite graph G′ satisfying d(C5, G

′) > OPTk(C5)−5!εI−
εF , must have partite sets X1, . . . , Xk that satisfy

n(1− ε/2)

k
≤ |Xi| ≤

n(1 + ε/2)

k

for all i = 1, . . . , k. Then by changing at most (εI + εT )n
2 pairs we can obtain Tk(n) from

the original graph G, which completes the proof of Lemma 3.6.

4 Exact Result

In this section we will prove Theorem 1.4(ii). First we will give a brief outline. As we have
shown, if G is a Kk+1-free graph on n vertices for large enough n that contains close to the
extremal number of five-cycles, then the edit distance between G and Tk(n) is very small.
Given such a graph G, the process of deleting and adding the necessary edges to transform
G into the Turán graph actually increases the number of five-cycles. This will prove that
Tk(n) is the unique extremal graph for large enough n.
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Proof of Theorem 1.4(ii). Suppose that k ≥ 3. By Lemma 3.6, there exists an ε > 0
and an integer n0 = n(k, ε) so that for any Kk+1-free graph G on n ≥ n0 vertices satisfying

d(C5, G) > OPTk(C5)− ε,

we have that Dist(G, Tk(n)) ≤
1

2k10
n2.

Let G be a graph on n vertices, where n is sufficiently large. In particular, n ≥
max{n(k, ε), 2k5 + 1} and G satisfies

d(C5, G) > OPTk(C5)− ε′,

where ε′ ≤ min{ε, 1
k10

}. Lemma 3.6 gives a partition of V (G) into k sets X1, X2, . . . , Xk,
where ⌊n

k
⌋ ≤ |Xi| ≤ ⌈n

k
⌉ for all i = 1, . . . , k, so that by changing at most 1

2k10
n2 pairs uv for

u, v ∈ V (G), we can construct a new graph G′ from G so that G′ is isomorphic to Tk(n) and
the partite sets of G′ are X1, X2, . . . , Xk.

Call each edge that is removed in this process a surplus edge and call each edge that is
added in this process a missing edge. For each vertex v ∈ V (G), let fv denote the sum of the
total number of surplus edges and missing edges incident to v. Define the set X0 to contain
each vertex v with fv >

1
k6
n. We will refer to each vertex in X0 as a bad vertex.

Claim 4.1 |X0| ≤
1
k4
n.

Proof. Since fv >
1
k6
n for each vertex v ∈ X0 and the combined total of surplus edges

and missing edges in G is at most 1
2k10

n2, it follows that

1

k6
n|X0| ≤

1

k10
n2,

which proves Claim 4.1.

For a graph G and a vertex v ∈ V (G) let NG(v) denote the neighborhood of v in G. For
all v ∈ V (G), let di(v) denote the size of the set NG(v) ∩ (Xi \X0). Let

d∗(v) =
k
∑

i=1

di(v).

By Claim 4.1,
⌊n

k

⌋

−
1

k4
n ≤ |Xi \X0| ≤

⌈n

k

⌉

,

for all i = 1, . . . , k. Thus, for each vertex v not contained in X0,

d∗(v) ≥

(

k − 1

k
−

1

k4
−

1

k6

)

n.

For two vertices u and v in a graph G, let NG(u, v) denote the common neighborhood of u
and v, which is the set of all vertices in G adjacent to both u and v.

Claim 4.2 There are no surplus edges in G−X0.
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Proof. Assume by way of contradiction that G−X0 contains a surplus edge uv. Our goal
is to show that it would be in Kk+1. Since uv is removed in the the process of transforming
G into the Turán graph, we may assume by symmetry that u and v are contained in the
same set X1. Since neither vertex is contained in X0,

min{dj(v), dj(u)} ≥

(

1

k
−

1

k4
−

1

k6

)

n

for each j = 2, . . . , k. Therefore,

|NG(u, v) ∩ (X2 \X0)| ≥

(

1

k
−

1

k4
−

2

k6

)

n > 0.

Pick one vertex w2 contained in NG(u, v) ∩ (X2 \X0). Since w2 is not contained in X0,

|NG(w2) ∩NG(u, v) ∩ (X3 \X0)| ≥

(

1

k
−

1

k4
−

3

k6

)

n > 0.

This implies that we can find some common neighbor, say w3, of u, v, and w2, where
w3 ∈ X3 \X0. We continue the process of a selecting a vertex wj ∈ Xj \X0 in the common
neighborhood of the set {u, v, w1, . . . , wj−1} for all j = 4, . . . , k. This is possible because
after selecting wj−1, the common neighborhood of the set {u, v, w2, . . . , wj−1} contains at
least

(

1

k
−

1

k4
−

j

k6

)

n > 0

vertices in Xj \X0 for all j = 4, . . . , k. This implies, however, that the set {u, v, w2, . . . , wk}
obtained by selecting a vertex in this way from each partite set X2, . . . , Xk induces a copy
of Kk+1 in G, which is a contradiction.

An immediate consequence of Claim 4.2 is that every surplus edge in G is incident to
at least one vertex in X0, implying that G −X0 is a k-partite graph, albeit not necessarily
complete k-partite. We will split the vertices of X0 into two classes. For each vertex v ∈ X0,
one of the following holds.

1. There exists some index i ∈ {1, 2, . . . , k} such that di(v) = 0. In this case we will call
v a type 1 vertex, or

2. di(v) > 0 for all i = 1, . . . , n. In this case we will call v a type 2 vertex.

As we are trying to show that every extremal graph is a complete balanced k-partite
graph, we will now prove that G cannot contain any type 2 vertices. First in Claim 4.3, we
will prove that if v is a type 2 vertex, then d∗(v) must be relatively small. In Claim 4.4,
we will prove a lower bound on the number of five-cycles containing a vertex v. Finally, in
Claim 4.5, we will show that a type 2 vertex cannot be contained in enough five-cycles to
justify the claim that G is an extremal graph.

Claim 4.3 Let v ∈ X0 be a type 2 vertex. Then there exist distinct integers i and j where
1 ≤ i, j ≤ k such that

1 ≤ di(v) ≤ dj(v) ≤
1

k5
n.
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Proof. By symmetry, assume that 1 ≤ d1(v) and d1(v) ≤ dq(v) for all q = 2, . . . , k. For
contradiction, assume dq(v) >

1
k5
n for all q = 2, . . . , k. Let w1 ∈ X1 \X0 be adjacent to v in

G. Since w1 /∈ X0,

|NG(v, w1) ∩ (X2 \X0)| ≥
1

k5
n−

1

k6
n,

implying that there exists a vertex w2 ∈ X2 \ X0 for which the set {v, w1, w2} induces a
triangle in G. If we continue selecting vertices in this way, then for all q = 3, . . . , k, there
are at least

1

k5
n−

q − 1

k6
n > 0

vertices in Xq \X0 that are adjacent to all of the previously selected vertices v, w1, . . . , wq−1.
This implies that we can select k vertices w1, . . . , wk so that the set {v, w1, . . . , wk} induces a
copy of Kk+1 in G, which is a contradiction. Therefore, there exists an index j ∈ {2, . . . , k}
for which 1 ≤ d1(v) ≤ dj(v) ≤

1
k5
n, completing the proof of Claim 4.3.

Claim 4.4 For all k ≥ 3, and v ∈ V (G), νG(v, C5) ≥ (OPTk(C5)−
1

k10
)
(

n
4

)

− 1
k5
n4.

Proof. Suppose by way of contradiction that there exists some vertex v for which

νG(v, C5) <

(

OPTk(C5)−
1

k10

)(

n

4

)

−
1

k5
n4.

Since d(C5, G) > OPTk(C5) −
1

k10
, it follows by averaging that there exists some vertex

u ∈ V (G) for which

νG(u, C5) ≥

(

OPTk(C5)−
1

k10

)(

n

4

)

.

Let νG({u, v}, C5) denote the number of five-cycles containing both u and v. Then

νG({u, v}, C5) ≤ 2n3.

Let G′ be the graph obtained from G by deleting v and replacing it with a copy u′ of u.
Since there is no edge between u′ and u, G′ is also Kk+1-free. As there were previously
ν({u, v}, C5) five-cycles containing u and v,

ν(C5, G
′)− ν(C5, G) ≥ νG(u, C5)− νG(v, C5)− νG({u, v}, C5) ≥

1

k5
n4 − 2n3 > 0

since n > 2k5. This, however, contradicts the assumption that G is an extremal graph as
ν(C5, G

′) > ν(C5, G). Therefore, if n is sufficiently large it follows that for each v ∈ V (G),

νG(v, C5) ≥

(

OPTk(C5)−
1

k10

)(

n

4

)

−
1

k5
n4,

which completes the proof of Claim 4.4.
In Claims 4.5 and 4.7 we count the number of 5-cycles containing a particular vertex

v ∈ X0. We use the following argument repeatedly. We want to count the number of 5-
cycles vu1u2u3u4v, where v is in X0, u1 ∈ Xi, u4 ∈ Xj and u2, u3 ∈ V (G) \ X0. Assume
we already picked u1 and u4 and want to count the number of choices for u2 and u3. We
distinguish two cases.
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1. i = j: First u2 can be in any of the remaining k − 1 parts. Then u3 has k − 2 choices
for a part to complete the 5-cycle as it needs to avoid the parts containing u2 and u4

and these are distinct. After multiplying by n2/k2, the number of choices for u2 and
u3 in each of the selected parts, we get

(k − 1)(k − 2)

k2
n2

choices for u2 and u3 together.

2. i 6= j: We further distinguish two cases. If u2 /∈ Xj, then there are k − 2 parts which
could contain u2 and k − 2 parts which could contain u3. If u2 ∈ Xj, then there are
k−1 parts which could contain u3. After including the number of choices in each part,
we get

(

(k − 2)2

k2
+

k − 1

k2

)

n2

choices for u2 and u3 together.

Claim 4.5 G does not contain any type 2 vertices.

Proof. Assume for contradiction that v ∈ X0 is a type 2 vertex. Then by Claim 4.3
there are two sets, say X1 and X2, such that

1 ≤ d1(v) ≤ d2(v) ≤
1

k5
n.

We will now provide an upper bound on the value of νG(v, C5). We will count the maximum
number of such five-cycles of the form vu1u2u3u4v based on the locations of u1 and u4 as
follows:

1. If u1, u4 ∈ X1 \X0 or u1, u4 ∈ X2 \X0:

2

(

n
k5

2

)

(k − 1)(k − 2)

k2
n2. (15)

2. u1 ∈ X1 \X0 and u4 ∈ X2 \X0:

( n

k5

)2
(

(k − 2)2

k2
+

k − 1

k2

)

n2. (16)

3. u1 ∈ (X1 \X0) ∪ (X2 \X0) and u4 /∈ X1 ∪X2:

2n

k5
·
n

k

(

(k − 2)2

k2
+

k − 1

k2

)

n2. (17)

4. u1, u4 /∈ X1 ∪X2:

(k − 2) ·

(

n
k

2

)

·
(k − 1)(k − 2)

k2
n2 +

(

k − 2

2

)

·
n2

k2
·

(

(k − 2)2

k2
+

k − 1

k2

)

n2. (18)
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Finally, there are at most 2n4

k4
five-cycles containing v and at least one other vertex in X0.

Combining this, along with the upper bounds obtained in equations (15)–(18),

νG(v, C5) ≤
n4

24

(

12−
84

k
+

228

k2
−

300

k3
+

216

k4
+

48

k6
−

144

k7
+

144

k8
+

48

k10
−

144

k11
+

120

k12

)

.

The SageMath code for verifying this fact can be found in Appendix 6.3. This implies that
for large enough n,

(

OPTk(C5)−
1

k10

)(

n

4

)

− νG(v, C5) ≥
1

k5
n4.

Using SageMath, we verified that this was true for 3 ≤ k ≤ 1000. After that, it is straight-
forward to check the coefficients in order to verify this fact. This contradicts Claim 4.4 since
G was assumed to be an extremal graph. Therefore, G does not contain any type 2 vertices.

Since G does not contain any type 2 vertices, we can place each vertex v ∈ X0 into the
set Xi for which di(v) = 0. In order to show that G is a complete k-partite graph, we must
show that any pair of vertices u and v that were in X0 and go to the same Xi cannot be
adjacent. The next claim will provide an upper bound on the “good degree” of at least one
of these adjacent vertices.

Claim 4.6 Suppose that u and v are two adjacent type 1 vertices such that dj(u) = dj(v) = 0
for some index j ∈ {1, . . . , k}. Then there exists some index i ∈ {1, . . . , k} such that i 6= j
and

di(u) ≤
k2 + 1

2k3
n or di(v) ≤

k2 + 1

2k3
n.

Proof. By symmetry we may assume that j = 1. Assume for contradiction that

|NG(u, v) ∩ (Xi \X0)| >
1

k3
n

for all i = 2, . . . , k. Using an identical argument to the one made in the proof of Claim 4.3,
there exists a set {w2, . . . , wk} such that wi ∈ (Xi\X0) and the set {u, v, w2, . . . , wk} induces
a Kk+1 in G, which is a contradiction. This implies that for at least one index i,

|NG(u, v) ∩ (Xi \X0)| ≤
1

k3
n.

Without loss of generality assume that di(u) ≤ di(v). Then

di(u) ≤
n

2

(

1

k
−

1

k3

)

+
n

k3
=

k2 + 1

2k3
n,

which completes the proof of Claim 4.6.

We will now show that the vertex u of low degree described in the previous claim cannot
be contained in enough five-cycles to justify the assumption that G is an extremal graph.
Unlike Claim 4.5, we will only show that the two vertices u and v from Claim 4.6 cannot be
adjacent.
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Claim 4.7 Suppose that u and v are type 1 vertices such that dj(u) = dj(v) = 0 for some
j = 1, . . . , k. Then u and v are not adjacent.

Proof. By symmetry we may assume that d1(u) = d1(v) = 0. Assume for contradiction
that u and v are adjacent. By symmetry and Claim 4.6, we may assume that d1(u) = 0 and

d2(u) ≤
k2 + 1

2k3
n.

In a similar manner as in Claim 4.5, we will count the number of five-cycles of the form
uv1v2v3v4u incident to u by considering the possibilities for the locations of v1 and v4 as
follows:

1. v1, v4 ∈ X2 \X0:
(

k2+1
2k3

n

2

)

(k − 1)(k − 2)

k2
n2. (19)

2. v1 ∈ X2 \X0 and v4 /∈ X2:

k2 + 1

2k3
·
k − 2

k

(

(k − 2)2

k2
+

k − 1

k2

)

n4. (20)

3. v1, v4 /∈ X2:

(k − 2) ·

(

n
k

2

)

·
(k − 1)(k − 2)

k2
n2 +

(

k − 2

2

)

·
n2

k2
·

(

(k − 2)2

k2
+

k − 1

k2

)

n2. (21)

There are at most 2
k4
n4 five-cycles containing u and at least one other vertex in X0. Com-

bining this along with equations (19)–(21),

νG(u, C5) ≤

(

12−
72

k
+

171

k2
−

189

k3
+

96

k4
+

90

k5
+

57

k6
−

9

k7
+

6

k8

)

n4
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.

For k > 1000 it is clear that

12−
72

k
+

171

k2
−

189

k3
+

96

k4
+

90

k5
+

57

k6
−

9

k7
+

6

k8
≤ OPTk(C5)−

1

k10
.

The SageMath code for verifying that this is also true for 3 ≤ k ≤ 1000 found in Ap-
pendix 6.4. Given this fact, it is straightforward to verify that

(

OPTk(C5)−
1

k10

)(

n

4

)

− νG(u, C5) ≥
1

k5
n4

for large enough n. This, however contradicts Claim 4.4, which implies that u and v are not
adjacent.

Claim 4.7 implies that if u and v are type 1 vertices for which di(v) = di(u) = 0, then u
and v cannot be adjacent. This means that we can place each type 1 vertex v into the set
Xi for which di = 0. Since G does not contain any type 2 vertices, this implies that G is
a k-partite graph. Since G maximizes the number of (possibly non-induced) C5 subgraphs,
it follows that G must be a compelte k-partite graph. Finally, Proposition 3.2 implies that
G is isomorphic to Tk(n), implying that for large enough n, the Turán graph Tk(n) is the
unique extremal graph maximizing the number of C5 subgraphs.
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5 Conclusion

In [17], Palmer and Gerbner showed that if H is a graph and F is a graph with chromatic
number k + 1, then

ex(n,H, F ) ≤ ex(n,H,Kk+1) + o(n|H|).

Since the Turán graph Tk(n) does not contain any (k + 1)-chromatic graph as a subgraph,
this immediately implies that for any (k + 1)-chromatic graph F ,

lim
n→∞

d(C5, F ) =
1

k4
(12k4 − 60k3 + 120k2 − 120k + 48),

which closely resembles the Erdős-Stone-Simonovits theorem.
Let G be a graph with chromatic number k. Then for any r ≥ k, the Turán graph

Tr(n) contains G as a subgraph. When trying to maximize the copies of G among Kr+1-free
graphs, evidence seems to suggest that Tr(n) is extremal, as we have shown to be the case
with five-cycles. While a complete r-partite graph seems to frequently be the best option, it
is not always optimal to balance the partite sets. Let St be a star with t leaves, also known
as K1,t. Is it easy to see ex(n, S4, K3) is achieved by an unbalanced bipartite graph. For
more detailed treatment of stars, see Cutler, Nir, and Radcliffe [10]. It seems very likely
that while the Turán graph is not always extremal, that some complete r-partite graph will
be best possible.

Conjecture 5.1 Let G be a graph and let k > χ(G) be an integer. Then for all r ≥ k,
ex(n,G,Kr) is realized by a complete (r − 1)-partite graph.

While an unbalanced r-partite graph might best possible in some cases, we believe that
for large enough r ≥ χ(G), the value of ex(n,G,Kr+1) is realized by the Turán graph. As r
increases, any G-subgraph in Tr(n) can be taken from an increasing number of partite sets.
Thus, as r grows larger, the effect of G being unbalanced becomes minimized. The following
conjecture also appears in [18].

Conjecture 5.2 Let G be a graph and let r > |V (G)| be an integer. Then ex(n,G,Kr) is
realized by the Turán graph Tr−1(n).
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6 Appendix

SageMath code on next pages can be also obtained at https://arxiv.org/abs/2007.03064.

F0 = F1 = F2 = F3 =

F4 = F5 = F6 = F7 =

F8 = F9 = F10 = F11 =

F12 = F13 = F14 = F15 =

F16 = F17 = F18 = F19 =

F20 = F21 = F22 = F23 =

F24 = F25 = F26 = F27 =

F28 = F29 = F30 = F31 =

F32 = F33 =

Table 1: Graphs on 5 vertices up to isomorphism.

Hσ1

4,1 =
1

23 Hσ1

4,2 =
1

23

Hσ2

4,3 =
1

23 Hσ2

4,4 =
1

23 Hσ2

4,5 =
1

23

Hσ3

4,6 =
1

23 Hσ3

4,7 =
1

23 Hσ3

4,8 =
1

23

Table 2: Labeled graphs on four vertices.
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6.1 Proof of Claim 2.1

# SageMath code f o r Claim 2.1

var ( ’ k ’ )

# Vector con ta in ing c o e f f i c i e n t s f o r each graph in F 5
cFi = [ 0 ]∗34

# Z(K)
Zk = [ ( k∗k∗k∗k−10∗k∗k∗k+35∗k∗k−50∗k+24)/k ˆ4 ]∗34
Zk [ 3 3 ] = (−10∗k∗k∗k+35∗k∗k−50∗k+24)/kˆ4

# P i (K) f i r s t i n i t wi th 0
P1k = [ 0 ]∗34
P2k = [ 0 ]∗34
P3k = [ 0 ]∗34
P4k = [ 0 ]∗34
P5k = [ 0 ]∗34

# P 1 (K)
P1k [ 0 ] = 10∗kˆ2 − 20∗k + 10
P1k [ 1 ] = kˆ2 −2∗k +1
P1k [ 3 ] = −k + 1
P1k [ 4 ] = −4∗k + 4
P1k [ 1 8 ] = 1
P1k [ 1 9 ] = 1

# P 2 (K)
P2k [ 1 8 ] = 3∗kˆ2 − 12∗k + 12
P2k [ 2 9 ] = kˆ2 − 6∗k + 8
P2k [ 3 1 ] = −4∗k+10
P2k [ 3 2 ] = 3

# P 3 (K)
P3k [ 4 ] = 6∗kˆ2 − 24∗k + 24
P3k [ 1 1 ] = kˆ2 − 4∗k + 4
P3k [ 1 7 ] = −k+2
P3k [ 1 9 ] = −6∗k+12
P3k [ 3 1 ] = 2
P3k [ 3 2 ] = 3

# P 4 (K)
P4k [ 1 9 ] = 6
P4k [ 2 8 ] = −1
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P4k [ 3 0 ] = 2
P4k [ 3 1 ] = −4

# P 5 (K)
P5k [ 1 9 ] = 6∗kˆ2−36∗k+54
P5k [ 3 0 ] = 2∗kˆ2−20∗k+42
P5k [ 3 1 ] = 4∗kˆ2 − 24∗k + 36
P5k [ 3 2 ] = −24∗k + 84
P5k [ 3 3 ] = 120

## Sca l ing f unc t i on s z ( k ) and p i ( k )
zk = 6∗(5∗kˆ3 − 20∗kˆ2 + 30∗k − 16)/(5∗kˆ3 − 35∗kˆ2 + 75∗k − 48)
p1k = 3∗(kˆ5 − 8∗kˆ4 + 22∗kˆ3 − 24∗kˆ2 + 8∗k )/ \

(5∗kˆ7 − 35∗kˆ6 + 75∗kˆ5 − 48∗kˆ4)
p2k = (10∗kˆ5 − 60∗kˆ4 + 109∗kˆ3 − 76∗kˆ2 + 18∗k )/ \

(5∗kˆ7 − 35∗kˆ6 + 75∗kˆ5 − 48∗kˆ4)
p3k = (5∗kˆ5 − 28∗kˆ4 + 45∗kˆ3 − 28∗kˆ2 + 6∗k )/ \

(5∗kˆ7 − 35∗kˆ6 + 75∗kˆ5 − 48∗kˆ4)
p4k = (1/4)∗ (5∗kˆ7 − 30∗kˆ6 + 53∗kˆ5 − 52∗kˆ4 + 94∗kˆ3 − 96∗kˆ2 + 24∗k )/ \

(5∗kˆ7 − 35∗kˆ6 + 75∗kˆ5 − 48∗kˆ4)
p5k = (1/4)∗ (15∗kˆ5 − 60∗kˆ4 + 78∗kˆ3 − 40∗kˆ2 + 8∗k )/ \

(5∗kˆ7 − 35∗kˆ6 + 75∗kˆ5 − 48∗kˆ4)

# Number o f C 5s in each o f the 34 graphs .
f i v e c y c l e s = [ 0 ]∗26+ [1 , 1 , 1 , 2 , 2 , 4 , 6 , 1 2 ]

def t e s t p o s i t i v e f o r sm a l l k ( x ) :
for r in [ 4 . . 1 0 0 0 ] :

i f x . s ub s t i t u t e ( k=r ) <= 0 :
print ( ”ERROR: ” ,x , ” i s not p o s i t i v e f o r k=” , r )
return

# Denominator f o r a l l cFi in the r e s u l t
den = 5∗kˆ7 − 35∗kˆ6 + 75∗kˆ5 − 48∗kˆ4

# Test i f denominator i s p o s i t i v e f o r sma l l k
t e s t p o s i t i v e f o r sm a l l k ( den )

for i in [ 0 . . 3 3 ] :
cFi [ i ] = expand ( f a c t o r ( ( zk ∗(Zk [ i ] ) + p1k∗P1k [ i ] + p2k∗P2k [ i ] +\

p3k∗P3k [ i ] + p4k∗P4k [ i ] + p5k∗P5k [ i ] + f i v e c y c l e s [ i ] )∗den ) )

# This i s the po lynomia l f o r each o f the t i g h t graphs (when mu l t i p l i e d
# by den )
# I t i s the c o e f f i c i e n t a t c {F 0} = cFi [ 0 ]
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opt po l = cFi [ 0 ]
#op t p o l = 60∗kˆ7 − 720∗ kˆ6 + 3600∗ kˆ5 − 9876∗ kˆ4 + 16320∗ kˆ3 \
# − 16440∗ kˆ2 + 9360∗ k − 2304

# Pr in t ing o f a l l c o e f f i c i e n t s c {F i }
print ( ” Pr in t ing the r e s u l t i n g c o e f f i c i e n t s ” )
for i in [ 0 . . 3 3 ] :

print ( ”cF{}= {} / {}” . format ( i , cFi [ i ] , den ) )

# Test t ha t cFi [ 0 ] == optimum va lue
optimum = −60/k + 120/kˆ2 − 120/kˆ3 + 48/kˆ4 + 12

########### Sta r t o f Claim 2.1
# Ca l cu l a t i n g the d i f f e r e n c e s C 1 − C i f o r i =2 , . . , 10 .
# We do i t by check ing c {F 0} − c {F i } f o r a l l i
#
cF0 cFi =[0]∗34
for i in [ 0 . . 3 3 ] :

cF0 cFi [ i ] = expand ( cFi [ i ]− opt po l )

# Showing t ha t c F0 i s l a r g e s t by d i s p l a y i n g the d i f f e r e n c e .
# The l e ad in g c o e f f i c i e n t at kˆ7 i s nega t i v e
# and t e s t s f o r sma l l v a l u e s o f k by e va l ua t i on

def t e s t n o t p o s i t i v e f o r sm a l l k ( x ) :
for r in [ 4 . . 1 0 0 0 ] :

i f x . s ub s t i t u t e ( k=r ) > 0 :
print ( ”ERROR: ” ,x , ” i s p o s i t i v e f o r k=” , r )
return

print ( )
print ( ”Showing that c F0 i s l a r g e s t ” )
print ( ” − s e e d i f f e r e n c e i s 0 or l e ad ing c o e f f i c i e n t negat ive ” )
for i in [ 0 . . 3 3 ] :

print ( ”numerator ( c F0 − c F{})=” . format ( i ) , cF0 cFi [ i ] )
t e s t n o t p o s i t i v e f o r sm a l l k ( cF0 cFi [ i ] )

print ( ” a l l done” )
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# SageMath code f o r Claim 2.1 when k=3

# This code c a l c u l a t e s the c o e f f i c i e n t s cFi
#fo r the case o f k = 3 in Claim 2 . 1 .
# In \mathcal{F} 5 : F20 , F24 , F30 , F32 , and F33 a l l conta in a K4.
# Here we have removed those graphs and re−indexed the remaining graphs .

cFi = [ 0 ]∗29

#Counting the number o f C5s in each graph .

cons tant s = [ 0 ]∗29
cons tant s [ 2 4 ] = 1
cons tant s [ 2 5 ] = 1
cons tant s [ 2 6 ] = 1
cons tant s [ 2 7 ] = 2
cons tant s [ 2 8 ] = 4

# Pi (K) f i r s t i n i t wi th 0

P1k = [ 0 ]∗34
P2k = [ 0 ]∗34
P3k = [ 0 ]∗34
P4k = [ 0 ]∗34
P6k = [ 0 ]∗34

P1k [ 0 ] = 40
P1k [ 1 ] = 4
P1k [ 3 ] = −2
P1k [ 4 ] = −8
P1k [ 1 8 ] = 1
P1k [ 1 9 ] = 1

P2k [ 1 8 ] = 3
P2k [ 2 7 ] = −1
P2k [ 2 8 ] = −2

P3k [ 4 ] = 6
P3k [ 1 1 ] = 1
P3k [ 1 7 ] = −1
P3k [ 1 9 ] = −6
P3k [ 2 8 ] = 2
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P4k [ 1 9 ] = 6
P4k [ 2 6 ] = −1
P4k [ 2 8 ] = −4

P6k [ 1 1 ] = 1
P6k [ 2 3 ] = 2
P6k [ 2 2 ] = −1
P6k [ 2 7 ] = −2
P6k [ 1 7 ] = 1
P6k [ 1 9 ] = 6
P6k [ 2 8 ] = −4

#The s c a l i n g c o e f f i c i e n t s f o r k = 3

p1k = 1/27
p2k = 13/27
p3k = 8/27
p4k = 2/9
p6k = 17/54

# This c a l c u l a t e s cFi
for i in [ 0 . . 2 8 ] :

cFi [ i ] = p1k∗P1k [ i ] + p2k∗P2k [ i ] + p3k∗P3k [ i ]
\+ p4k∗P4k [ i ] + p6k∗P6k [ i ] + cons tant s [ i ]

# This p r i n t s the va lue o f cFi a long wi th the ( p o s s i b l y ) re−indexed graph .
for i in [ 0 . . 2 8 ] :

print ( ’ c o e f f i c i e n t o f F ’ , i , ’= ’ , cFi [ i ] )
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6.2 SageMath code for Claim 3.10

# SageMath code Claim 3.10

var ( ’ k , e ’ )

# t h i s i s the s i z e o f the s e t s .
# We s t a r t by us ing e p s i l o n ∗( k−1) f o r e a s i e r count ing .

x = (1 + e ∗(k−1))/k
y = (1 − e )/k

# These count the number o f f i v e c y c l e s .
# The f i r s t i s the one we use .
# The second i s a s an i t y check .
def f i v e c y c l e c oun t (x , y ) :

# here we count by p i c k i n g one v e r t e x in x ,
# then count ing the number o f p o s s i b l e f i v e c y c l e s .

ne i ghbo r s i n s ame s e t s = \
x∗(k−1)∗(y ˆ2/2)∗( yˆ2∗(k−2)∗(k−3) + x∗(k−2)∗y∗2)

n e i g h b o r s i n d i f f s e t s = \
x∗( ( y∗(k−1))∗((k−2)∗y ) )/2∗ ( (k−3)∗(k−3)∗yˆ2
+ (k−2)∗yˆ2 + x∗(k−3)∗y )

# This i s count ing the number o f f i v e−c y c l e s not in X 1 .
# Note t ha t i t i s equa l to the s an i t y check but wi th k−1.

nobadset twosame = (yˆ3∗(k−1)∗(k−2)/2)∗(yˆ2∗(k−2)∗(k−3))
nobadset nosame = \
( yˆ3∗(k−1)∗(k−2)∗(k−3)/2)∗( (k−3)∗(k−3)∗yˆ2
+ (k−2)∗yˆ2)

return 120∗( n e i g h b o r s i n d i f f s e t s + \
ne i ghbo r s i n s ame s e t s ) + \
24∗( nobadset twosame + nobadset nosame )

def s an i ty ( y ) :
nobadset twosame = (yˆ3∗k∗(k−1)/2)∗(yˆ2∗(k−1)∗(k−2))
nobadset nosame = \
( yˆ3∗k∗(k−1)∗(k−2)/2)∗( (k−2)∗(k−2)∗yˆ2 + (k−1)∗yˆ2)
return 24∗( nobadset twosame + nobadset nosame )
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f = f i v e c y c l e c oun t (x , y )

# to check our count i s correc t ,
# no t i c e t ha t the non−e p s i l o n terms equa l OPT.
view ( f . c o l l e c t ( e ) )
view ( expand ( san i t y (1/k ) ) )
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6.3 SageMath code for Claim 4.5

# Sage code f o r c laim 4.5 − showing the r e are no type 2 v e r t i c e s

var ( ’ k ’ )

#This func t i on counts the number o f f i v e c y c l e s us ing equa t i ons (15) − (18)

def f i v e c y c l e c oun t (k ) :
onebadse t twobadver t i c e s = 2∗( 1/(2∗kˆ10) )∗ ( (k−1)∗(k−2)/kˆ2 )
twobadset twobadvert i ce s = \
(1/kˆ10 + 2/k ˆ6)∗ ( (k−2)ˆ2/kˆ2 + (k−1)/kˆ2 )
nobadset twosame = ( (k−2)/(2∗kˆ2) )∗ ( (k−1)∗(k−2)/kˆ2 )
nobadset nosame = \
( (k−2)∗(k−3)/(2∗kˆ2) )∗ ( (k−2)ˆ2/kˆ2 + (k−1)/kˆ2 )
with X0 = 2/kˆ4
return 24∗( onebadse t twobadver t i c e s \
+ twobadset twobadvert i ce s + nobadset twosame \
+ nobadset nosame + with X0 )

# This g i v e s the sum of equa t ions (15) − (18) f a c t o r e d in a nice way .

expanded f i r s t ch e ck = expand ( f i v e c y c l e c oun t ( k ) )
print ( ’ f i v e c y c l e s conta in ing a type 2 ver tex :\n ’ , e xpanded f i r s t ch e ck )

# ac tua l upper bound once we account f o r the v e r t i c e s in X 0
def bad ub (k ) :

return f i v e c y c l e c oun t (k )

# The average ” den s i t y ” o f f i v e c y c l e s con ta in ing a p a r t i c u l a r v e r t e x
def good ub (k ) :

return −60/k + 120/kˆ2 − 120/kˆ3 + 48/kˆ4 + 12 − 1/kˆ10

# The d i f f e r e n c e between the opt imal and the count f o r type 2 .
def ep s i l o n (k ) :

return good ub (k ) − bad ub (k )

print ( ’ d i f f e r e n c e : ’ , f a c t o r ( e p s i l o n (k ) ) )

# This v e r i f i e s t h a t f o r sma l l v a l u e s o f k , count ( r ) g r ea t e r than 1/kˆ5
def count check (a , b ) :

for i in [ a . . b ] :
i f ep s i l o n ( i ) < 1/( i ˆ 5 ) :
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return ” the d i f f e r e n c e i s l e s s than 1/kˆ5 f o r k =” , i
return ” ’ d i f f e r e n c e ’ i s g r e a t e r than 1/kˆ5 f o r a l l va lue s ”+\
” o f ”+str ( a)+” <= k up to ”+str (b)

print ( count check (3 , 1000 ) )
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6.4 SageMath code for Claim 4.7

# SageMath code f o r Claim 4.7

var ( ’ k ’ )

# This func t i on counts the number o f f i v e−c y c l e s in equa t i ons (19) − (21)
def f i v e c y c l e c oun t (k ) :

onebadse t twobadver t i c e s = \
( (1/2)∗ ( ( kˆ2+1)/(2∗kˆ3) )ˆ2 )∗ ( (k−1)∗(k−2)/kˆ2 )
onebadse t onebadver t i c e s = \
( ( kˆ2+1)/(2∗kˆ3) )∗ ( (k−2)ˆ3/kˆ3
+ (k−1)∗(k−2)/kˆ3 )
nobadset twosame = \
( (k−2)/(2∗kˆ2) )∗ ( (k−1)∗(k−2)/kˆ2 )
nobadset nosame = \
( (k−2)∗(k−3)/(2∗kˆ2) )∗ ( (k−2)ˆ2/kˆ2 + (k−1)/kˆ2 )
with X0 = 2/k ˆ(4)
return 24∗( onebadse t twobadver t i c e s \
+ onebadse t onebadver t i c e s + nobadset twosame \
+ nobadset nosame+with X0 )

# This g i v e s the sum of equa t ions (19) − (21) f a c t o r e d in a nice way

expanded f i r s t ch e ck = expand ( f i v e c y c l e c oun t ( k ) )
print ( ’ f i v e c y c l e s c o n t a i n i n g a t y p e 1 v e r t e x :\n ’ , e xpanded f i r s t ch e ck )

# The upper bound on f i v e c y c l e s con ta in ing a subopt ima l type 1 v e r t e x

def bad ub (k ) :
return f i v e c y c l e c oun t (k )

def good lb (k ) :
return −60/k + 120/kˆ2 − 120/kˆ3 + 48/kˆ4 + 12 − 1/kˆ10

#d i f f e r e n c e from opt imal va lue
def ep s i l o n (k ) :

return good lb (k ) − bad ub (k )

print ( ’ d i f f e r e n c e : ’ , f a c t o r ( e p s i l o n (k ) ) )

# This v e r i f i e s t h a t f o r sma l l v a l u e s o f k , e p s i l o n ( k ) i s g r ea t e r than 1/kˆ5
def count check (a , b ) :
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for i in [ a . . b ] :
i f ep s i l o n ( i ) < 1/( i ˆ ( 5 ) ) :

return ” the d i f f e r e n c e i s l e s s than 1/kˆ5 f o r k =” , i
return ” ’ d i f f e r e n c e ’ i s g r e a t e r than 1/kˆ5 f o r a l l va lue s ”+\

” o f ”+str ( a)+” <= k up to ”+str (b)

print ( count check (3 , 1000 ) )
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