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Abstract—This work introduces a fast direct computational 

framework based on the high-order Chebyshev Nyström 
Boundary Integral Equation (CBIE) method accelerated by 
hierarchical matrices (H-matrix).  The recently introduced CBIE 
offers substantially faster matrix fill than the popular Locally 
Corrected Nystrom (LCN) approach. Combination of the methods 
results in a first-in-class fast direct computational framework 
which is error-controllable, fast, and insensitive to poor 
conditioning of the pertinent matrix equations. Matrix fill, 
factorization, and solution times are reported for a metallic 
sphere, and more complicated examples such as scattering from a 
curvilinear NURBS-based airplane CAD model and a spiral 
antenna are presented to demonstrate the solver’s versatility. 
Keywords—computational electromagnetics, Nyström Method, 

H-matrices, fast solver, high-order accuracy. 

I. INTRODUCTION 
Boundary integral equation (BIE) methods are a popular 

class of numerical methods for solving scattering problems 
since they only require discretization of the surfaces and 
explicitly satisfy the radiation conditions. This often makes 
them considerably more efficient than their volumetric 
counterparts, such as the Finite Difference and Finite Element 
methods, for problems with large volume to surface area ratios. 
Low order Method of Moments (MoM) methods using Rao-
Wilton-Glisson (RWG) basis functions and flat triangular 
meshes are the most common discretization and solution 
approaches of BIEs today due to their ease of implementation. 
However, such implementations have trouble achieving high 
solution accuracy due to difficulties in dealing with the singular 
nature of the kernels involved and accurately representing the 
surface current densities and curved geometries. Another major 
drawback of BIE methods is that they result in dense matrices 
which require O(N3) and O(N2) compute time and storage, 
respectively, when their pertinent matrix equations are solved 
directly without acceleration techniques. 
The Locally Corrected Nyström (LCN) was first proposed 

in 1998 by [1] as an alternative to MoM. It was extended in [2] 
to construct high-order convergent solutions of electromagnetic 
problems. The original Nyström Method (NM) can only be used 
for the solution of integral equations with smooth kernels. 
When the kernel is singular or nearly singular, the LCN 
approach can be used to compute custom integration weights 
for the singular and nearly singular kernels. This computation 

of weights is very expensive and requires substantial 
computational time when the size of the scatterer increases 
compared to the wavelength. Recently, [3], [4] and [5] proposed 
a new Chebyshev-based Nyström Boundary Integral Equation 
(CBIE) method for acoustic and electromagnetic scattering 
problems respectively, which uses Chebyshev polynomials to 
approximate the current on the surface and uses a change of 
variables method to cancel the singularities in the kernels up to 
a certain order. This method is significantly faster than LCN 
since it does not require the evaluation of custom quadrature 
rules for the singular and nearly singular kernels. Although the 
CBIE accelerates matrix fill times, computing the full matrix 
still requires O(N2) operations and memory and direct 
factorization of the matrix requires O(N3) operations. This 
becomes prohibitive for moderate to large problem sizes. The 
H-matrix method has previously been used successfully to 
accelerate MoM approaches for many scattering problems [6] 
and has also recently been used to accelerate the LCN method 
[7] . In this work, we present the first direct solver based on the 
CBIE method accelerated using H-matrices to speed up the 
direct solution of scattering problems. For the sake of simplicity, 
we only consider scattering from perfect electrical eonductor 
(PEC) objects using the magnetic field integral equation (MFIE) 
formulation, although the same approach can be applied to any 
integral formulation for modelling metallic and/or dielectric 
objects, including the EFIE, CFIE, PCMHWT, and Müller 
formulations. We consider plane wave scattering from a sphere 
and a curvilinear NURBS-based B2 aircraft and excitation of a 
spiral antenna to show the versatility of the approach for 
simulating many different problems. 

II. NM DISCRETIZATION OF THE MFIE BASED ON CHEBYSHEV 
POLYNOMIALS 

The classical MFIE for a PEC object is given by 
𝐉/2 +𝒦𝐉 = 𝐧 × 𝐇inc (1) 

where 𝐉 is the vector surface current, 𝐧 is the normal vector on 
the surface, 𝐇!"# is the incident magnetic field and the integral 
operator 𝒦 has the following representation 

𝒦[𝐉](𝐫) = 𝐧(𝐫) × /𝐉(𝐫$) × ∇𝐺(𝐫 − 𝐫$)𝑑𝑆$
%

. (2) 
To apply the NM proposed in [4], the surface is first discretised 
into a certain number of curvilinear patches (e.g., Figs. 2a and 
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3) followed by mapping them to a unit square in a local 𝑢𝑣-
coordinate system. The surface current on the pth patch is 
represented in terms of tangential covariant basis vectors as 

𝐉&(𝑢, 𝑣) =
𝐽&,((𝑢, 𝑣)𝒂(

&(𝑢, 𝑣) + 𝐽&,)(𝑢, 𝑣)𝒂)
&(𝑢, 𝑣)

;|𝐺&(𝑢, 𝑣)|
 (3) 

where 𝒂*
& (𝑎 = 𝑢, 𝑣) are the unitary vectors and ;|𝐺&(𝑢, 𝑣)| is 

the Jacobian of the surface element. By representing surface	
𝑆	in (2) as a sum over the patches, substituting (3) into (1), and 
testing the resultant vector equation by the ;|𝐺+|𝒂𝑝,𝑎, where 
𝒂$,% are the contravariant basis vectors, the following system 
of linear algebraic equations is obtained:   

?𝐊(( 𝐊()
𝐊)( 𝐊))

A ?𝐉
(

𝐉)A = B
−𝒂)

& ∙ 𝐇&,!"#

𝒂(
& ∙ 𝐇&,!"# D. (4) 

In order to get high order accuracy from the solution of (4), each 
matrix entry must be considered as 
𝐾,*
+& = 𝐾,*

+&(./0) +𝐾,*
+&(234.) +𝐾,*

+&("3/0); 			𝑏, 𝑎 = 𝑢, 𝑣 (5) 
where “far” implies the distance between the observation and 
source patches is far enough such that the integrand in (2) is a 
smooth function, “self” means that the source and observation 
patches are the same leading to a singular integrand, and “near” 
implies the source and observation points are different but still 
nearby, leading to a nearly singular integrand. The “far” 
interactions can be handled accurately using standard Fejer 
quadrature. However, in order to accurately compute the “self” 
and “near” interactions, the integrals are made regular by using 
a change-of-variables whose Jacobian cancels the kernel 
singularity up to a controllable order [4]. This technique enables 
rapid computation of these interactions with high accuracy, 
unlike the LCN, which suffers from very slow matrix fill times. 
When iterative solvers are used to solve the system, the method 
can efficiently be used to solve large-scale scattering problems, 
especially if accelerated using FFT or fast multipole method 
(FMM)-based approaches. However, iterative solvers may have 
unpredictable convergence or stagnate for many realistic 
scenarios featuring dense materials, electrically large sizes, 
resonant structures, multiscale discretization, or low-frequency 
instabilities. In such situations, direct matrix solutions become 
a must as they remain largely insensitive to deteriorated 
conditioning of the matrix. However, their high build and 
factorization costs necessitate the use of acceleration methods. 
In order to accelerate the CBIE method, we use H-matrices and 
the Adaptive Cross Approximation (ACA) method for 
compression of their rank-deficient blocks. Here, an individual 
H-matrix is constructed for each of the four 𝐊*,	(𝑎, 𝑏 = {𝑢, 𝑣}) 
blocks in (4). Detail of the H-matrix construction and block 
factorization are presented in the following section. 

III. H-MATRIX IMPLEMENTATION 
The block-wise H-matrices must first be created from the 

CBIE impedance matrix. A hierarchical cluster tree which 
consists of multiple levels with leaf nodes of decreasing size is 
generated through recursive partitioning of the geometry based 
on the Euclidean distances between pairs of source (quadrature) 
points. After cluster tree creation, each of the four required H-
matrices is built by decomposing the impedance matrix into 

subblocks based on the interaction between observer clusters 
and source clusters determined by a prescribed admissibility 
criteria. The inadmissible (nearby) blocks are stored in a dense 
full-matrix format, and the admissible blocks are approximated 
by the ACA algorithm and stored in a compressed low-rank 
matrix format [7]. After creating the four H-matrices, the 
system can be solved using fast direct H-matrix block H-LU 
decomposition followed by a block H-substitution applied to 
the H-matrix structure. The block H-LU decomposition can be 
computed as  

𝐊𝑯 = B
𝐊𝟏𝟏𝑯 𝐊𝟏𝟐𝑯

𝐊𝟐𝟏𝑯 𝐊𝟐𝟐𝑯
D = ?𝑳𝟏𝟏𝑳𝟐𝟏 𝑳𝟐𝟐

A ∙ ?
𝑼𝟏𝟏 𝑼𝟏𝟐

𝑼𝟐𝟐
A

= 𝑳 ∙ 𝑼 
(6) 

where 𝐊𝑯 represents the H-matrix corresponding to the system 
matrix in (4). In order to solve for the surface current densities 
of (4) using the constructed H-matrix system, the solution of the 
lower triangle system is first obtained as 

?𝑳𝟏𝟏𝑳𝟐𝟏 𝑳𝟐𝟐
A ?𝑿𝟏𝑿𝟐

A = ?𝒃𝟏𝒃𝟐
A (7) 

with right-hand side [𝒃𝟏	𝒃𝟐]8 = N−𝒂)
& ∙ 𝐇&,!"#	𝒂(

& ∙ 𝐇&,!"#O8 . 
Next, the solution of the system (4) is obtained as  

?
𝑼𝟏𝟏 𝑼𝟏𝟐

𝑼𝟐𝟐
A ?𝐉

(

𝐉)A = ?𝑿𝟏𝑿𝟐
A (8) 

for the surface current. Once the surface current is calculated, 
the near and far fields can be calculated at any point. 
It should be noted that increases in the condition number in 

the H-matrix fast direct solution scheme proposed in this work 
may affect the compressibility of the matrix and/or accuracy of 
the computed currents. The scheme, however, remains robust 
even in scenarios with poorly conditioned matrices. 

IV. NUMERICAL RESULTS 
The first example we present is scattering from a PEC 

sphere centered at the origin with radius 3𝜆 illuminated by a 
plane wave propagating in +𝑧̂ direction and polarized in +𝑥T  
direction with wavelength 𝜆 = 1m and unit amplitude. The 
number of patches is varied from 24 to 4056 with 10x10 
discretization points per patch, which results in the number of 
unknowns ranging from 4800 to 811,200. The Compression 
Ratio (CR) is defined as one minus the ratio of the storage 
requirement (memory size required) of the compressed H-
matrix to that of the full dense matrix and is a useful metric for 
assessing the efficacy of the method for accelerating a problem. 
A maximum CR of 98.8% was achieved for the case with 
811,200 unknowns. The performance of our proposed 
accelerated solver in terms of time and memory consumption is 
compared against the unaccelerated dense matrix case and 
shown in Fig. 1. Simulations were performed on a server with 
dual Xeon Gold 6154 CPUs (36 cores). The CPU time required 
to fill the H-Matrix and the corresponding full dense matrix 
scales as 𝑂(NlogN)  and 𝑂(N9)  respectively. The time to 
factor the H-Matrix and the corresponding dense matrix 
approximately scales as 𝑂(Nlog9N)  and 𝑂(N:)  respectively. 
Although the factorization time for the H-Matrix deviates from 
𝑂(Nlog9N) scaling, significant reduction of CPU time can still 
be observed in comparison with the 𝑂(N:) factorization time 
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of the dense matrix system. The time taken for backsubstitution 
after the LU factorization has completed scales as 𝑂(NlogN). 
Finally, Fig. 1b shows that the memory consumption for the H-
Matrix case scales approximately as 𝑂(NlogN) and that of the 
corresponding dense matrix case scales as 𝑂(N9). 

 
(a) 

 
(b) 

Fig. 1. Performance comparison of H-matrix direct solver vs. dense matrix 
direct solver. (a) CPU time complexity. (b) Memory consumption. 
 

 
(a) 

 
(b) 

Fig. 2. (a) Re(J!) on the surface of the B2 aircraft. (b) RCS for φ=0° comparing 
H-Matrix direct solver vs. unaccelerted iterative solver. 

 

 
Fig. 3. The magnitude of the current density |𝐉| on the surface of the antenna. 

 
In order to show the capability of our proposed solver for 
handling objects with more complex geometrical features, we 
consider scattering of a plane wave from a B2 aircraft model 
with 16𝜆 wingspan. Fig. 2(a) shows the propagation direction 
k\	of the incident field and the real part of the x-component of 
the induced current density 𝐉 on the surface. Fig. 2(b) plots the 
radar cross-section (RCS) versus 𝜃  for the 𝜑 = 0°  plane, 
computed both by using the proposed solver as well as an 
unaccelerated iterative solver for comparison using 51,600 
unknowns. The H-matrix achieved a 88.2% CR. The two 
solutions match closely. Finally, we consider excitation of a 2𝜆 
diameter metallic spiral antenna by a unit amplitude x-polarized 
dipole source located at the origin. The spiral was discretized 
with 11,520 unknowns and achieved a 72% CR. Fig. 3 depicts 
the magnitude of the solved current density |𝐉| on the antenna’s 
surface. 

V. CONCLUSION 
An accelerated direct solver for the recently introduced 

CBIE method was presented using H-matrices. Results were 
reported on the performance of the approach in terms of matrix 
fill, factorization, and solve time, as well as memory required 
and compared favorably against the unaccelerated dense matrix 
method. The matrix fill time is very fast owing to the use of the 
CBIE method, requiring only seconds to minutes to complete 
even for problems approaching 1 million unknowns. Finally, 
scattering from a NURBS-based airplane CAD model and a 
metallic spiral antenna is shown to demonstrate the ease of 
handling complex geometries. Future work involves improving 
the H-matrix factorization time via parallelization and GPU 
acceleration. 
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