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Abstract—This work introduces a fast direct computational
framework based on the high-order Chebyshev Nystrém
Boundary Integral Equation (CBIE) method accelerated by
hierarchical matrices (H-matrix). The recently introduced CBIE
offers substantially faster matrix fill than the popular Locally
Corrected Nystrom (LCN) approach. Combination of the methods
results in a first-in-class fast direct computational framework
which is error-controllable, fast, and insensitive to poor
conditioning of the pertinent matrix equations. Matrix fill,
factorization, and solution times are reported for a metallic
sphere, and more complicated examples such as scattering from a
curvilinear NURBS-based airplane CAD model and a spiral
antenna are presented to demonstrate the solver’s versatility.
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I. INTRODUCTION

Boundary integral equation (BIE) methods are a popular
class of numerical methods for solving scattering problems
since they only require discretization of the surfaces and
explicitly satisfy the radiation conditions. This often makes
them considerably more efficient than their volumetric
counterparts, such as the Finite Difference and Finite Element
methods, for problems with large volume to surface area ratios.
Low order Method of Moments (MoM) methods using Rao-
Wilton-Glisson (RWG) basis functions and flat triangular
meshes are the most common discretization and solution
approaches of BIEs today due to their ease of implementation.
However, such implementations have trouble achieving high
solution accuracy due to difficulties in dealing with the singular
nature of the kernels involved and accurately representing the
surface current densities and curved geometries. Another major
drawback of BIE methods is that they result in dense matrices
which require O(N®*) and O(N?) compute time and storage,
respectively, when their pertinent matrix equations are solved
directly without acceleration techniques.

The Locally Corrected Nystrom (LCN) was first proposed
in 1998 by [1] as an alternative to MoM. It was extended in [2]
to construct high-order convergent solutions of electromagnetic
problems. The original Nystrém Method (NM) can only be used
for the solution of integral equations with smooth kernels.
When the kernel is singular or nearly singular, the LCN
approach can be used to compute custom integration weights
for the singular and nearly singular kernels. This computation
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of weights is very expensive and requires substantial
computational time when the size of the scatterer increases
compared to the wavelength. Recently, [3], [4] and [5] proposed
a new Chebyshev-based Nystrom Boundary Integral Equation
(CBIE) method for acoustic and electromagnetic scattering
problems respectively, which uses Chebyshev polynomials to
approximate the current on the surface and uses a change of
variables method to cancel the singularities in the kernels up to
a certain order. This method is significantly faster than LCN
since it does not require the evaluation of custom quadrature
rules for the singular and nearly singular kernels. Although the
CBIE accelerates matrix fill times, computing the full matrix
still requires O(N?) operations and memory and direct
factorization of the matrix requires O(N?) operations. This
becomes prohibitive for moderate to large problem sizes. The
H-matrix method has previously been used successfully to
accelerate MoM approaches for many scattering problems [6]
and has also recently been used to accelerate the LCN method
[7] . In this work, we present the first direct solver based on the
CBIE method accelerated using H-matrices to speed up the
direct solution of scattering problems. For the sake of simplicity,
we only consider scattering from perfect electrical eonductor
(PEC) objects using the magnetic field integral equation (MFIE)
formulation, although the same approach can be applied to any
integral formulation for modelling metallic and/or dielectric
objects, including the EFIE, CFIE, PCMHWT, and Miiller
formulations. We consider plane wave scattering from a sphere
and a curvilinear NURBS-based B2 aircraft and excitation of a
spiral antenna to show the versatility of the approach for
simulating many different problems.

II. NM DISCRETIZATION OF THE MFIE BASED ON CHEBYSHEV
POLYNOMIALS

The classical MFIE for a PEC object is given by
J/2 4+ K] = n x HInC (1)
where ] is the vector surface current, n is the normal vector on
the surface, H™® is the incident magnetic field and the integral
operator K has the following representation

K[J](r) =n(r) x L](r’) X VG(r—r')ds'. 2)

To apply the NM proposed in [4], the surface is first discretised
into a certain number of curvilinear patches (e.g., Figs. 2a and
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3) followed by mapping them to a unit square in a local uv-
coordinate system. The surface current on the p™ patch is
represented in terms of tangential covariant basis vectors as
JP(u v)ay (u,v) + P (w, v)a, (u, v)
JP(w,v) = (3)
1GP (u, v)|
where al (a = u,v) are the unitary vectors and 1/ |G? (u, v)| is
the Jacobian of the surface element. By representing surface
S in (2) as a sum over the patches, substituting (3) into (1), and
testing the resultant vector equation by the 1/|G?|aP®, where
aP? are the contravariant basis vectors, the following system
of linear algebraic equations is obtained:
[ ]u] _ap . Hp,inc]
v
= . 4
K Km; ab - HP/inc ( )
In order to get hlgh order accuracy from the solution of (4), each

matrix entry must be considered as
K;};} — Kg;)(far) + K;{é)(self) + Klgg(near)

; ba=u,v %)
where “far” implies the distance between the observation and
source patches is far enough such that the integrand in (2) is a
smooth function, “self” means that the source and observation
patches are the same leading to a singular integrand, and “near”
implies the source and observation points are different but still
nearby, leading to a nearly singular integrand. The “far”
interactions can be handled accurately using standard Fejer
quadrature. However, in order to accurately compute the “self”
and “near” interactions, the integrals are made regular by using
a change-of-variables whose Jacobian cancels the kernel
singularity up to a controllable order [4]. This technique enables
rapid computation of these interactions with high accuracy,
unlike the LCN, which suffers from very slow matrix fill times.
When iterative solvers are used to solve the system, the method
can efficiently be used to solve large-scale scattering problems,
especially if accelerated using FFT or fast multipole method
(FMM)-based approaches. However, iterative solvers may have
unpredictable convergence or stagnate for many realistic
scenarios featuring dense materials, electrically large sizes,
resonant structures, multiscale discretization, or low-frequency
instabilities. In such situations, direct matrix solutions become
a must as they remain largely insensitive to deteriorated
conditioning of the matrix. However, their high build and
factorization costs necessitate the use of acceleration methods.
In order to accelerate the CBIE method, we use H-matrices and
the Adaptive Cross Approximation (ACA) method for
compression of their rank-deficient blocks. Here, an individual
H-matrix is constructed for each of the four K,;, (a, b = {u, v})
blocks in (4). Detail of the H-matrix construction and block
factorization are presented in the following section.

II1. H-MATRIX IMPLEMENTATION

The block-wise H-matrices must first be created from the
CBIE impedance matrix. A hierarchical cluster tree which
consists of multiple levels with leaf nodes of decreasing size is
generated through recursive partitioning of the geometry based
on the Euclidean distances between pairs of source (quadrature)
points. After cluster tree creation, each of the four required H-
matrices is built by decomposing the impedance matrix into
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subblocks based on the interaction between observer clusters
and source clusters determined by a prescribed admissibility
criteria. The inadmissible (nearby) blocks are stored in a dense
full-matrix format, and the admissible blocks are approximated
by the ACA algorithm and stored in a compressed low-rank
matrix format [7]. After creating the four H-matrices, the
system can be solved using fast direct H-matrix block H-LU
decomposition followed by a block H-substitution applied to
the H-matrix structure. The block H-LU decomposition can be
computed as

KH — K Kiz| _[Ly ]_[Un Uu]
Ki, K&|[ [Ly Lz U2z (6)
=L-U

where Kj; represents the H-matrix corresponding to the system
matrix in (4). In order to solve for the surface current densities
of (4) using the constructed H-matrix system, the solution of the
lower triangle system is first obtained as

I

Ly; Ly B bz )
with right-hand side [b; b,]" = |—dl - HP'"¢ al - Hp'inc]T
Next, the solution of the system (4) is obtained as

Ui U] [J¥] _ [X1

T ulle]= [ ®

for the surface current. Once the surface current is calculated,
the near and far fields can be calculated at any point.

It should be noted that increases in the condition number in
the H-matrix fast direct solution scheme proposed in this work
may affect the compressibility of the matrix and/or accuracy of
the computed currents. The scheme, however, remains robust
even in scenarios with poorly conditioned matrices.

IV.NUMERICAL RESULTS

The first example we present is scattering from a PEC
sphere centered at the origin with radius 34 illuminated by a
plane wave propagating in +Z direction and polarized in +%
direction with wavelength A = 1m and unit amplitude. The
number of patches is varied from 24 to 4056 with 10x10
discretization points per patch, which results in the number of
unknowns ranging from 4800 to 811,200. The Compression
Ratio (CR) is defined as one minus the ratio of the storage
requirement (memory size required) of the compressed H-
matrix to that of the full dense matrix and is a useful metric for
assessing the efficacy of the method for accelerating a problem.
A maximum CR of 98.8% was achieved for the case with
811,200 unknowns. The performance of our proposed
accelerated solver in terms of time and memory consumption is
compared against the unaccelerated dense matrix case and
shown in Fig. 1. Simulations were performed on a server with
dual Xeon Gold 6154 CPUs (36 cores). The CPU time required
to fill the H-Matrix and the corresponding full dense matrix
scales as O(NlogN) and O(N?) respectively. The time to
factor the H-Matrix and the corresponding dense matrix
approximately scales as O(Nlog?N) and O(N?) respectively.
Although the factorization time for the H-Matrix deviates from
0(Nlog?N) scaling, significant reduction of CPU time can still
be observed in comparison with the O(N?) factorization time
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of the dense matrix system. The time taken for backsubstitution
after the LU factorization has completed scales as O(NlogN).
Finally, Fig. 1b shows that the memory consumption for the H-
Matrix case scales approximately as O(Nlog N) and that of the
corresponding dense matrix case scales as O(N?).
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Fig. 1. Performance comparison of H-matrix direct solver vs. dense matrix
direct solver. (a) CPU time complexity. (b) Memory consumption.
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Fig. 3. The magnitude of the current density |J| on the surface of the antenna.

In order to show the capability of our proposed solver for
handling objects with more complex geometrical features, we
consider scattering of a plane wave from a B2 aircraft model
with 164 wingspan. Fig. 2(a) shows the propagation direction
k of the incident field and the real part of the x-component of
the induced current density J on the surface. Fig. 2(b) plots the
radar cross-section (RCS) versus 6 for the ¢ = 0° plane,
computed both by using the proposed solver as well as an
unaccelerated iterative solver for comparison using 51,600
unknowns. The H-matrix achieved a 88.2% CR. The two
solutions match closely. Finally, we consider excitation of a 24
diameter metallic spiral antenna by a unit amplitude x-polarized
dipole source located at the origin. The spiral was discretized
with 11,520 unknowns and achieved a 72% CR. Fig. 3 depicts
the magnitude of the solved current density |J| on the antenna’s
surface.

V. CONCLUSION

An accelerated direct solver for the recently introduced
CBIE method was presented using H-matrices. Results were
reported on the performance of the approach in terms of matrix
fill, factorization, and solve time, as well as memory required
and compared favorably against the unaccelerated dense matrix
method. The matrix fill time is very fast owing to the use of the
CBIE method, requiring only seconds to minutes to complete
even for problems approaching 1 million unknowns. Finally,
scattering from a NURBS-based airplane CAD model and a
metallic spiral antenna is shown to demonstrate the ease of
handling complex geometries. Future work involves improving
the H-matrix factorization time via parallelization and GPU
acceleration.
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