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ABSTRACT: Recent developments in the computational automated
design of electromagnetic devices, otherwise known as inverse design,
have significantly enhanced the design process for nanophotonic
systems. Inverse design can both reduce design time considerably and
lead to high-performance, nonintuitive structures that would otherwise
have been impossible to develop manually. Despite the successes
enjoyed by structure optimization techniques, most approaches
leverage electromagnetic solvers that require significant computational
resources and suffer from slow convergence and numerical dispersion.
Recently, a fast simulation and boundary-based inverse design
approach based on boundary integral equations was demonstrated
for two-dimensional nanophotonic problems. In this work, we
introduce a new full-wave three-dimensional simulation and boundary-based optimization framework for nanophotonic devices
also based on boundary integral methods, which achieves high accuracy even at coarse mesh discretizations while only requiring
modest computational resources. The approach has been further accelerated by leveraging GPU computing, a sparse block-diagonal
preconditioning strategy, and a matrix-free implementation of the discrete adjoint method. As a demonstration, we optimize three
different devices: a 1:2 1550 nm power splitter and two nonadiabatic mode-preserving waveguide tapers. To the best of our
knowledge, the tapers, which span 40 wavelengths in the silicon material, are the largest silicon photonic waveguiding devices to have
been optimized using full-wave 3D solution of Maxwell’s equations.
KEYWORDS: inverse design, nanophotonic devices, fast maxwell simulation/optimization, integral equations,
computational electromagnetics, GPU acceleration

1. INTRODUCTION
Silicon photonics involves the precise harnessing and
manipulation of light at the nanoscale and enables rich
interaction with electronics via photonic integrated circuits. It
is rapidly becoming a billion-dollar industry due to the large
and diverse number of important applications it can enable,
including high-speed optical interconnects,1 biomedical and
environmental sensing devices,2,3 quantum computing,4 and
machine learning,5 among many more. Despite offering
tremendous potential, compact and high-performance silicon
photonic devices unfortunately remain challenging to design
and model today due to lack of analytical solutions and
difficulties with numerical simulation. Recently, inverse design
has emerged as a powerful paradigm for alleviating the design
challenges by offering an automated computational design
framework for nanophotonic devices which optimizes
structures based on desired performance specifications and
design constraints as inputs.6−8 Inverse design can both
appreciably reduce the design time required for developing
new nanophotonic structures as well as produce nonintuitive,
high-performance designs, which would otherwise have been
impossible for a human to arrive at manually. Inverse design

has been successfully applied toward the design of a plethora of
nanophotonic devices, including power splitters,8 mode and
wavelength (de)multiplexers,9 grating couplers,10 and meta-
materials,11 among many more.
Although electromagnetic inverse design has enjoyed

significant success,6,12−14 most present-day implementations
remain limited by the challenges associated with accurate
simulation of the forward electromagnetic problem. Although
some fast approximate or highly specialized simulation
techniques have been leveraged in particular situations, such
as 2D effective-index approximation,15 rigorous coupled wave
analysis (RCWA),16 and beam-propagation method (BPM),17

the majority of nanophotonics devices require full-wave 3D
solution of Maxwell’s solutions to be modeled accurately given
that device geometrical features are of the order of the
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operating wavelength. Finite-difference (FD) methods are the
most commonly used 3D simulation algorithms for inverse
design of nanophotonics, especially the finite-difference
frequency-domain (FDFD) method. While FD methods are
versatile and straightforward to implement, they suffer from a
number of drawbacks which ultimately limit the size and
complexity of devices that can be optimized via inverse design
and often require significant computational power. In
particular, due to their centered-difference approximation of
the difference operators in Maxwell’s equations, FD methods
achieve only second-order convergence in the solution
accuracy with respect to the meshing resolution in the best
case, have difficulty representing structures with complex
geometrical features and curvature accurately due to using
orthogonal Cartesian grids, and suffer significant errors due to
numerical dispersion due to accumulated local truncation
errors. Furthermore, despite resulting in a highly sparse linear
system, the FDFD method becomes very poorly conditioned
as the problem size increases and mesh cell size decreases,
requiring tens of thousands of iterations to achieve
convergence using iterative linear solvers.18 These limitations
have hindered inverse design approaches that use the FDFD
method from being used to optimize structures larger than a
few wavelengths per side.
Recently, boundary integral equation (BIE) methods have

been evaluated as an alternative solution approach for
modeling nanophotonic devices.8 In contrast to FD and
FEM methods, BIE methods only require meshing and solving
for unknowns on the surfaces between dielectric interfaces,
rather than volumes. This often leads to a dramatic reduction
in problem size. Furthermore, BIE formulations are known to
result in dense linear systems which enjoy very favorable
spectral and conditioning properties, often only requiring tens
to hundreds of iterations to achieve convergence using Krylov
subspace solvers. Due to their analytical propagation of sources
to targets using Green’s functions, integral methods are also
virtually free of the numerical dispersion issues which plague
FD methods. Although traditionally known as being open-
domain methods and predominantly used for radar scattering
and antenna simulation problems, the recent introduction of
the Windowed Green’s Function (WGF) method19−23 has
enabled the finite of truncation waveguides incoming from and
outgoing to infinity, acting as an absorbing boundary
condition. In ref 8, the application of BIE methods toward
the simulation and inverse design of nanophotonic devices in
two dimensions was demonstrated, and furthermore compared
solution accuracy, computational time, and memory resources
among various state-of-the-art solvers using different algo-
rithms. The results achieved in ref 8 showed the potential of
BIE methods for simulating and optimizing nanophotonic
devices; however, the solver and examples presented were
limited to two-dimensional problems.
In this work, we report on a new boundary integral and

inverse design framework capable of efficient modeling of
nanophotonic devices using full-wave 3D solution of Maxwell’s
equations. Due to the additional challenges involved in scaling
from two to three dimensions, we have developed and utilized
a number of techniques to accelerate our methods, including
leveraging GPU computation, constructing and using sparse
block-diagonal preconditioners, and deriving a matrix-free
approach for applying the transpose of the electromagnetic
system operator, which is necessary for device optimization
using the discrete adjoint method. We first introduce the

Chebyshev-based Boundary Integral Equation (CBIE) for-
mulation, followed by detailing the aforementioned accel-
eration strategies. Finally, we demonstrate the potential of the
new framework by designing three different silicon photonic
devices: a 1:2 1550 nm power splitter and two nonadiabatic
mode-preserving waveguide tapers. To the best of our
knowledge, the tapers, which span 40 wavelengths in the
silicon material, are among the largest silicon photonic
waveguiding devices to have been optimized using full-wave
3D solution of Maxwell’s equations, showcasing the capability
of the approach for fast simulation and optimization of large,
many wavelength devices.

2. FULL-WAVE ANALYSIS OF NANOPHOTONIC
STRUCTURES USING BOUNDARY INTEGRAL
METHODS

We consider the problem of simulating and optimizing
nanophotonic structures composed of dielectric materials. In
particular, the devices in question can support multiple open
waveguides (incoming from or outgoing to infinity) and
nonuniform geometrical features inside a bounded region. For
simplicity, our description of the physical system involves only
two dielectric domains, but the framework can be directly
applied to any number of materials in a straightforward
manner.
Let the device of interest consist of a single dielectric interior

region Ωi with permittivity εi, magnetic permeability μi, and an
exterior region Ωe with permittivity εe, magnetic permeability
μe. Denote by Γ the interface between Ωi and Ωe with normal
vector n pointing toward the exterior domain. In Figure 1, we
illustrate a typical photonic device and the notation used. In
general, Γ is an unbounded surface due to the presence of
infinite input and output waveguides. In the frequency domain,
the electric and magnetic fields, denoted by E and H
respectively, satisfy Maxwell’s equations:

Figure 1. (a) Perspective view of a power splitter photonic device. (b)
Illustration of the cross section view and notation used for the WGF
method.
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where ω is the angular frequency and the subscript is used for
either = i or = e to denote the interior and exterior domains,
respectively. Additionally, the fields must satisfy the dielectric
boundary conditions, which state that the tangential
components of both the E and H must be continuous at Γ.
To solve the system of Maxwell’s equations in eq 1, we use a

three-dimensional boundary integral representation24−26 for
the electromagnetic fields. This approach has several
advantages over volumetric methods (e.g., finite-differences),
including the fact that only material interfaces need to be
discretized (as opposed to the entire simulation volumes) and
that the geometrical features of the devices are parametrically
represented, avoiding material staircasing errors. The afore-
mentioned integral representation is based on the free-space
Green’s function for the Helmholtz equationG (r, r′) = exp(ik
|r − r′|)/(4π|r − r′|) where kl is the wavenumber in Ωl, which
is used to define the vector potentials acting on a surface
tangential density a:

[ ] × Ga r r r a r r( ) ( , ) ( ) d ( )
(2a)

[ ] × ×

=

+

G

k G

G

a r r r a r r

r r a r r

r r a r r

( ) ( , ) ( ) d ( ),

( , ) ( ) d ( )

( , ) div ( ) d ( )

2

(2b)

Using the potentials in eq 2, the scattered components of the
electromagnetic fields can be represented with either a
direct24−26 or indirect formulation.27 In this work, we have
used the indirect formulation for the electromagnetic fields
given by

= [ ] [ ]

= [ ] + [ ]

r

r

i

i

E m r j r

H j r m r
r

( ) ( ) ( )

( ) ( ) ( )
for

(3)

with tangential density currents m and j, and where the
coefficients in eq 3 multiplying the vector potentials are such
that enforcing the continuity of the tangential components of
the fields across Γ results in a Müller system of integral
equations with only weakly singular integral operators.28−30

The tangential components of eq 3 evaluated at the boundary
Γ can be expressed in terms of the boundary integral operators
that result from taking the cross product with the normal
vector n(r) and the limit as r → r′, namely

[ ] ×S Ga r n r r r a r r( ) ( ) ( , ) ( ) d ( )
(4a)

[ ] × ×nR Ga r r r r a r r( ) ( ) ( , ) ( ) d ( )
(4b)

[ ] ×T Ga r n r r r a r r( ) ( ) ( , ) div ( ) d ( )
(4c)

with r ∈ Γ. By defining the following weakly singular integral
operators in terms of eq 4

+
R R R2

( )
e i

e e i i
(5a)

+
[ + ]K i T T k S k S2

( )
( ) ( )

e i
e i e e i i

2 2

(5b)

where the subindex α = ε or α = μ is used to denote the
electric permittivity or magnetic permeability, respectively,
then, the indirect Müller system of integral equations is

+

+

=
+ ×

+ ×

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

I R K

K I R

m
j

n E E

n H H

2 ( ) ( )

2 ( ) ( )

e i e i

e i e i

1 1 inc inc

1 1 inc inc
(6)

To solve the scattering problem for given incident
electromagnetic fields (Einc, Hinc), we solve for the density
currents m and j defined only along the boundary surface Γ.
Subsequently, the scattered fields can be obtained anywhere in
space using the potential representation eq 3. The numerical
solution of eq 6 for waveguide problems requires the accurate
truncation of integral operators over infinite boundaries, as
well as discretizing the continuous operators to obtain a linear
system of equations. These two components are explained in
Sections 2.1 and 2.2, respectively.

2.1. Smooth Truncation of Integral Operators. Integral
equation methods have traditionally been limited to bounded
material interfaces Γ inside open domains, due to the low-
order approximation and large error that results from
truncating the slowly decaying integrals in eq 4 when an
infinite boundary is present. This scenario happens to be the
case for many photonic devices which consist of input/output
waveguides that extend to infinity. However, there have been
recent efforts in addressing this challenge, such as using a
surface conductive absorber to avoid unwanted reflections
from truncating waveguide boundaries,31 or utilizing the
Windowed Green Function (WGF) method to accurately
evaluate integral operators along waveguide boundaries.22,23,32

In this work, we use the WGF approach to handle waveguide
simulations due to its ease of implementation as well as
requiring relatively small window sizes (i.e., the length of the
truncated waveguide) to achieve high accuracy.
The WGF method operates on the basis of smoothly

windowing the integrals onto a truncated surface�the
approach is highly effective, with superalgebraic convergence
as the size of the window is increased.22,23 We denote by q

SIW

the domain that contains the q-th semi-infinite waveguide
(SIW), oq the corresponding origin of the SIW, and cq the
respective optical axis pointing toward the infinite section of
the SIW, see Figure 1 (b). Subsequently, we can define a
suitable window function for the waveguide structure in the
following way:

·l
m
ooo
n
ooorW

w c r o r
( )

( ( )),

1, otherwise
A

A q q q
SIW

(7)

where A is the window size, wA(x) is an infinitely smooth
function with compact support from x ∈ (− A, A) and which
equals 1 on the interval x ∈ (− αA, αA) for some α ∈ (0, 1).
The function wA can be, for example, the function defined in eq
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14 from ref 23, or alternatively other smooth functions that
may not have strict compact support can be used, such as
window functions constructed on the basis of the hyperbolic
tangent or the error function. In Figure 1 (b), the windowing
strategy is illustrated for a nanophotonic device and the
relevant domains are shown for a top view of the device.
For problems with illuminating fields such as Gaussian

beams or dipole sources, applying the WGF involves
“windowing” the integral operators in eq 6 by taking the
windowed versions of eq 4:

[ ] ×S G Wa r n r r r r a r r( ) ( ) ( , ) ( ) ( ) d ( )W
A (8a)

[ ] × ×R G Wa r n r r r r a r r( ) ( ) ( , ) ( ) ( ) d ( )W
A

(8b)

[ ] ×T G Wa r n r r r r a r r( ) ( ) ( , ) ( ) div ( ) d ( )W
A

(8c)

and the corresponding weakly singular operators R W , and
TW , are obtained by using eq 8 for evaluating eq 5. Then, the
windowed Müller system of integral equations is
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which is only enforced in the f inite windowed boundary ΓW =
Γ ∩ {WA > 0}. The near-fields can be obtained using a similar
windowed version of the vector potential representation in eq
2.
2.2. Numerical Discretization. The WGF formulation is

agnostic to the numerical discretization utilized, and one can
use any Galerkin, collocation, or Nyström method to solve for
the unknown density currents in eq 9. In this work, we utilized
the high-order Chebyshev-based Nyström method introduced
in ref 33 for acoustic integral operators, and which has recently
also been successfully implemented for the electromagnetic
case,30,32,34 including in the WGF waveguide context.23 This
Chebyshev-based boundary integral equation (CBIE) method
relies on representing the surface boundary Γ by a set of
nonoverlapping, curvilinear quadrilateral patches with para-
metrization rp(u, v) for the p-th patch and with (u, v) ∈
[−1,1]2. The tangential current densities m and j are expanded
and approximated in terms of Chebyshev polynomials. To
evaluate the integral operators when the target point r is far
from the source point r′, Fejeŕ’s first quadrature rule is used.
On the other hand, for target and source points that are close
to each other, which cause numerical issues due to the
singularity of the Green’s function, the CBIE method uses
precomputed weights to accurately evaluate the weakly
singular integrals. For a detailed description of the CBIE
method, we refer the reader to refs 30, 33.
The discretized version of the integral operators in the left-

hand side of eq 9 form matrices that are in general full and of
size (4Np) × (4Np), where Np is the total number of
discretization points�the factor of 4 coming from having two
vector densities, each with two components in the tangential

basis. The number of points can range from tens of thousands
to multiple millions depending on the size of the problem
being considered, which makes explicitly constructing these
matrices and storing them in memory intractable except for
very small problems. In view of this, most BIE methods
leverage iterative linear solvers such as the Generalized
Minimum Residual (GMRES) algorithm,35 for which only
the action of the system matrix applied to vectors is required.
Thus, there is typically no need to explicitly assemble the
matrix system. However, in the optimization context, access to
the action of the adjoint matrices is also needed to compute
sensitivities in an efficient manner. Hence, in the Supporting
Information, we include the nontrivial derivation of the CBIE
matrices of the discretized integral operators, as well as the
adjoint matrices. Both the direct and adjoint linear systems are
solved using GMRES, therefore not requiring the formation of
any matrix explicitly and significantly reducing the memory
resources required. For shorthand notation, for the rest of this
work, we denote by

=A b (10)

the CBIE discretized version of eq 9.
2.3. GPU Acceleration. The direct implementation of the

action of the matrix in eq 10 involves a computational cost
N( )p

2 . In order to solve this system with an iterative method
(e.g., GMRES), the total solution cost for Ni iterations is

NN( )i p
2 . This computational complexity can severely cripple

the application of BIE methods to large sized devices. One
alternative is to incorporate algorithmic acceleration such as
the fast multiple method (FMM),36−39 equivalent source
technique,40 or the interpolated factored Green function
method.41 Although these acceleration techniques can greatly
speed-up the simulation of large problems, they also introduce
further difficulties that are particularly evident in the
optimization context: (1) they are approximations to the full
system and thus can introduce nonlinear errors that affect the
computation of the gradient, and (2) small perturbations in the
mesh can lead to changing the structure of the interactions
between particles, thus requiring recomputation of the relevant
multipole expansions or equivalent sources.
Alternatively, applying the action of eq 10 to a vector can be

significantly sped up by instead using hardware acceleration
with graphics processing units (GPUs). One of the great
advantages of this approach is that it does not involve any
approximation to the original matrix system and requires only
programming implementation changes rather than any
algorithmic changes. Although the computational complexity
of the solution remains NN( )i p

2 , the proportionality constant
decreases significantly with the incorporation of a GPU,
making it an appealing approach for solving moderate to large
sized problems up to several millions of unknowns.
In the GPU-accelerated implementation of the action of the

matrix in eq 10, all the operations related to the singular and
near-singular interactions are performed on the CPU due to
the fact that the precomputed weights may require significant
storage, potentially more than the available GPU memory. On
the other hand, the far interactions are all computed on the
GPU, which involve recomputing the pointwise distance
between points and the sines and cosines associated with the
Green’s function in the discretized integral operators for each
matrix-vector multiplication. This separation between oper-
ations in the CPU and GPU has the advantage that they can be
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both done concurrently, hence the GPU speedup is not limited
by the CPU computation of the singular and near-singular
contributions. Furthermore, there are only N( )p near-singular

and singular interactions, whereas there are N( )p
2 far

interactions, making the far interactions always the rate-
limiting step.
In Table 1, we present the computing times (in seconds) for

evaluating a single matrix-vector multiplication of the system in

eq 10 using two different computers. One of the computers is a
server with two Intel Xeon Gold 6154 (36 cores) and an

NVIDIA Titan V GPU, and the other is a personal workstation
with an Intel i9-9900KF (8 cores) and a consumer grade GPU
(RTX 2080 SUPER). In both cases, the CPU only
implementation used all of the available CPU cores, while
the “CPU + GPU” case does the singular and near-singular
interactions using the CPU and the rest of the contributions
are performed on the GPU. We see that even on the system
with 36 cores, the speedup from using the GPU close to 50
times faster for problems with more than one million
unknowns. Furthermore, even on a modest workstation with
a consumer-grade GPU we achieved 6 times faster computing
times (still using double precision arithmetic). For the
problems considered in this paper, namely optimizing devices,
many simulations�direct and adjoint�as well as other
matrix-vector multiplications from the system in eq 10 are
needed; hence, the significant acceleration obtained with the
help of the GPU is greatly magnified.

2.4. Block Diagonal Preconditioning. For silicon
photonic applications, the waveguide structures typically have
a high refractive index contrast, which, in the context of
iterative BIE solvers, translates into potentially requiring a large
number of iterations for the linear algebra solver (e.g.,
GMRES) to converge. This is a well-known issue of surface
integral equations, and typically preconditioners are used to
alleviate the increased number of iterations needed.42−45 To
mitigate this problem we developed and used an algebraic
sparse block diagonal preconditioner, for which the nonzero

Table 1. Computing Times (in Seconds) for a Single Matrix-
Vector Multiply of the System in Eq 10 for a Spherical
Geometrya

Dual Intel Xeon Gold 6154
(36 cores @3.0 GHz) +

Titan V
Intel i9-9900KF (8 cores @4.7
GHz) + RTX 2080 SUPER

Nunk

CPU
only

CPU +
GPU speedup

CPU
only

CPU +
GPU speedup

153 600 9.1 0.7 13.0× 14.9 2.4 6.2×
777 600 190 4.8 39.6× 359.7 60.6 5.9×

1 572 864 762 16.0 47.7× 1500 244.0 6.2×
4 153 344 5328 109.8 48.5× − − −

aThe CPU only implementation uses all cores of the system.

Figure 2. Effect of using a preconditioner for GMRES to solve the system in eq 10. Panels (a) and (b) correspond to the power splitter device from
Section 4.1, while (c) and (d) correspond to the 9 μm waveguide taper from Section 4.2. In the left column, (a) and (c) present the residual as a
function of the number of iterations, while (b) and (d) plot the computing time needed to achieve a given GMRES residual.
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blocks correspond to the self-patch interactions in the matrix in
eq 10. To obtain a fully block diagonal matrix out of eq 10, the
matrix must be reordered such that all of the unknowns
corresponding to a particular discretization point are indexed
consecutively, and the unknowns corresponding to each patch
are grouped together and ordered sequentially. This leads to a
block-diagonal structure with each nonzero block correspond-
ing to the self-patch interactions for each patch. All of the
blocks can be LU factorized efficiently in parallel and used as a
left-sided preconditioner for GMRES.
Figure 2 shows the effect of preconditioning on the GMRES

convergence rate when solving the BIE system in eq 10 for the
unoptimized designs of the splitter and 9 μm taper geometries,
which are described in Sections 4.1 and 4.2, respectively. The
results of using the block preconditioner are also compared to
those using no preconditioner and using a different
preconditioner based on the sparse LU factorization of the
BIE system which includes both the singular and near-singular
contributions. The latter preconditioning approach (labeled as
“Near Patch Preconditioner”) utilizes MKL’s Pardiso solver for
matrix reordering and factorization, and despite the fact that, as
shown in Figure 2 (a) and (c), it has the best rate of
convergence in terms of the number of iterations, in general, it
is not the most time efficient approach. Indeed, given that the
sparsity pattern of the matrix that includes both the singular
and near-singular terms can be quite complex, both the
memory requirements and computational cost for the LU
factorization are significantly higher than the simpler block-
diagonal approach. As a practical example of this, the “Splitter”
case requires approximately 15 s to achieve a GMRES residual
of 10−4 when using the simpler block diagonal preconditioner,
whereas solving the system using near patch preconditioner
instead takes 50 s, a factor of 3.3 times slower. This may easily
translate into hours when doing an optimization run which
requires numerous solutions of the forward problem and
adjoint.

3. SHAPE OPTIMIZATION USING BIE
3.1. Parametrization of Design Parameters. Represent-

ing the device geometry in a manner that is both flexible and

robust and that is directly amenable to shape optimization
using the CBIE method can pose significant challenges. To
solve these difficulties, our approach to parametrizing the
device is as follows. The cross-section wireframe of the device
using a set of control points and splines that pass through
those control points is first defined. Following this, the surface
patches needed for the CBIE method are constructed via
transfinite interpolation46 from three or four bounding curves.
As design optimization parameters, denoted by p, a subset of
the control points are selected that can be freely moved to
change the shape of the device boundary. In Figure 3, we show
a CAD design for a photonic power splitter device produced
with the open-source meshing software, Gmsh,47 whose API
was used to form the transfinite patches and change the
geometry during the optimization procedure.

3.2. Adjoint Computation of Sensitivities. Although a
direct computation of the sensitivities (i.e., the gradient of
objective function with respect to the optimization parameters)
is possible via a finite-difference approximation of the objective
function, the computational cost of such process grows
proportionally to the product of the problem size and the
number of design variables and quickly becomes prohibitive.
An alternative approach is to use the adjoint method,6,12,48,49

which can significantly reduce the computational cost of
sensitivity calculations to a single extra solution of the forward
problem using the adjoint of the system matrix operator and
some additional sparse matrix-vector operations.
For our BIE-based shape optimization problem, we define a

real-valued, scalar objective function J, such as, for example, the
field intensity at a given point, constrained to satisfy Maxwell’s
equations in their BIE discretized form eq 10:

=

l
m
oooo
n
oooo

J

A b

p

p p

max ( , )

s. t. ( ) ( ) 0

p

(11)

The objective function considered here is of the form

= + +
= + +† † † †

J O F M O F M

M F O O F M

( ), ( )

( ) ( )
1

inc
2

inc

inc,
1 2

inc (12)

Figure 3. CAD design of a splitter geometry using Gmsh.47 The green dots represent control points for the curves that form the wireframe of the
design. The coordinates of some of those points are selected as design parameters for the optimization algorithm. The blue curves depict the
wireframe of the device, which are interpolating splines that pass through the control points. The transfinite patches are then defined by selecting
three or four curves that correspond to the edges of the patch.
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where M = M(p) is a field matrix which maps the densities Φ
to the evaluated fields at the points of interest, and Finc are the
incident field values also at the points of interest. The matrices
O1 and O2 can be used to select individual polarizations or
modes of interest for the specific objective function. This form
is very general and can handle a number of very different cases,
such the intensity at a given point or power flux across a given
area. Another possible form for the objective function suitable
for mode-expansion coefficients is

= | + |J F F M, ( )mode inc 2 (13)

where J is the square of the modal coefficient for the mode
specified by the field values Fmode and is proportional to the
power in the mode.
Let the solution mapping that takes the design parameter

vector p and returns the solution current densities be defined
by

[ ]A bS p p p( ) ( ) ( )1 (14)

then the reduced form objective function can be written as50

f Jp p S p( ) ( , ( )) (15)

for which the gradient of the objective function w.r.t. the
design parameters is

[ ] =f
f
p

p( )i
i (16)

In terms of J, and including the explicit dependence on the
density solution Φ

= +f J
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with

=K
J

p p( , ) ( , )
(18)

On the other hand, the system of integral equations can be
written as

=T A bp p S p p( ) ( ) ( ) ( ) 0 (19)

Then, the derivative w.r.t. each of the design parameters has
to be equal to zero
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where we have dropped in the notation the explicit
dependence on the design parameters p. Since eq 20 is a
vector equation, an inner product with an arbitrary vector ψ
can be taken to obtain the scalar identity:
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Using some fundamental distributive properties of the inner
product, as well as the definition of the adjoint operator in an
inner product space, the following identity holds:
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Adding eq 22 to eq 17 results in
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Finding the adjoint density ψ* which satisfies

* =†A K (24)

allows us to avoid computing the change in the current
densities when changing each individual parameter pi, which is
computationally expensive since it requires solving an addi-
tional linear system per design parameter. Thus, the gradient
can be obtained in terms of only geometrical changes, which
are significantly cheaper (computationally speaking) to obtain.
By combining eq 23 and eq 24, the gradient can be computed
as
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The most computationally intensive term in eq 25 is the
partial derivative of the integral equation system with respect
to each optimization parameter. When each optimization
parameter only locally affects the device shape, this term is a
sparse matrix-vector product that can be efficiently computed,
as explained in the following Section 3.3.

3.3. Sparse Computation of Geometrical Contribu-
tions. Each optimization parameter pi affects a portion of the
discretized geometry. Although a single design parameter can,
in general, affect the whole parametrization globally, it can also
be localized to a specific feature of the design. Consider a
parametrization of the design which consists of M non-
overlapping rectangular curvilinear patches. Define the sets Pi
to consist of all the patches that are affected when pi is
changed. This set can be obtained automatically by means of a
simple preprocessing step: each parameter pi is perturbed in
sequence, and the patches which change coordinates for the
given discretization are detected and recorded.
Denote by
Ä
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the block of the matrix for the m-th target patch, and the n-th
source patch. Numerically, this matrix can be approximated by
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where, as before, the matrix entries are never explicitly
computed, but rather just the action of the matrix.
Combining eq 25 and eq 27, the sensitivities for the

objective function can be computed at the cost of two system

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.2c01072
ACS Photonics XXXX, XXX, XXX−XXX

G



solves (using GMRES), one direct and one adjoint, plus P
sparse operations eq 27, with P being the total number of
design parameters. This computational cost is greatly advanta-
geous when compared to the direct finite-difference approx-
imation of the gradient which requires P + 1 system solves.

4. RESULTS
In order to demonstrate the proposed optimization scheme
described in the previous sections, we used the framework to
inverse design a 1:2 power splitter and two different
nonadiabatic silicon taper devices as design examples.
4.1. Power Splitter. The first device optimized was a 1:2

power splitter with a 250 nm silicon (nSi = 3.48) device layer,
background medium of =nSiO ( 1.44)2 SiO2

, and a free-space
wavelength of 1550 nm. The design parameters are 19 y-
coordinates of the spline control points of the waveguide
boundaries (see Figure 3), and a mirror symmetry constraint is
enforced on the bottom curves. Gradient ascent was used for
optimization, with a line search for the step size which enforces
improvement in the objective function at each iteration. Note
that any other gradient-based optimization can be readily used
with the framework presented in this work. The optimization
history, initial and optimized designs are shown in Figure 4.
The initial design consists of straight lines connecting the

input to the output waveguides, and a set of TE dipole sources
was used to excite the fundamental mode of the waveguide.
The objective function is the |Ey|2 value at a point inside the
top output waveguide. Due to the symmetry constraints, this
objective function results in a design that splits the fields evenly
between the top and bottom waveguides. In the optimization

history, Figure 4 (a), it can be seen that the optimizer improves
the design drastically after only 7 iterations, after which, all
changes from one iteration to the next one are under 1%
(relative to the objective at the current iteration). The overall
optimization of the structure, which was discretized using
224 224 unknowns, took 4 h and 12 min using a server with
two Intel Xeon Gold 6154 (36 cores total) and a single
NVIDIA Titan V GPU. A total of 102 linear system solutions
were required�including the forward and adjoint problems as
well as forward solutions needed for the line search of the
optimizer�for the 40 iterations it took to converge. In order
to reduce the number of GMRES iterations needed per solve,
we used the solution from the previous optimization iteration
as an initial guess for GMRES. Figure 4 (b,c) displays the
absolute value of the m density at the boundaries for the initial
and optimized designs, respectively. To verify the efficiency of
the final design, we used the commercial software Lumerical51

to simulate the device by launching the fundamental mode in
the input (left) waveguide and monitoring the output modal
and total power at the top and bottom output waveguides.
Figure 4 (d,e) plots the absolute value of the Poynting vector
of the initial and optimized designs. The initial mode
efficiency, calculated as the output power coupling to the
fundamental mode on both of the output waveguides, was only
34.09%, while the optimized design has a 96.52% modal
efficiency. Table 2 summarizes the efficiency of the initial and
optimized designs for the splitter, as well as for the rest of the
examples.

4.2. Nonadiabatic Waveguide Tapers. The second
example consists of a nonadiabatic waveguide taper, whose
purpose is to efficiently transition from a small width

Figure 4. A 1:2 power splitter optimized using the 3D CBIE framework. Panel (a) plots the normalized objective function as a function of the
optimization iteration number, as well as the percent change with at each iteration. Panels (b) and (c) plot the BIE m surface density at the device
boundaries for the initial and optimized designs, respectively. Panels (d) and (e) show the final verification using Lumerical, plotting the absolute
value of the Poynting vector for the initial and optimized designs.
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waveguide to a larger one while maintaining the energy in the
fundamental mode. Such waveguide tapers are typically
designed in an adiabatic way, such that the width of the
tapered region increases slowly to minimize modal conversion
and scattering power losses. This can result in very large
designs, and in order to reduce the size of these devices,
nonadiabatic designs can be employed. By using complex
geometrical taper boundaries, high efficiencies can be achieved
over taper lengths that are significantly shorter than the lengths
needed for the adiabatic approximation to be valid.52 We used
our CBIE optimization framework to design two nonadiabatic
tapers consisting of a 220 nm silicon device layer, also
embedded in a SiO2 background medium, and free-space
wavelength of 1550 nm. The design region consisted of a
length of 18 μm (40.4 wavelengths in the Silicon), with design
parameters being the y-coordinate of the control points for the
top bounding curve of the taper (resulting in 19 design
parameters). Similar to the power splitter example, mirror
symmetry constraints are enforced for the bottom bounding
curve.
The first taper consists of an input waveguide, corresponding

to the left waveguide in Figure 5, with a width of 0.5 μm and
an output waveguide with 6 μm width. In this case, the
optimization problem was prescribed by using a group of
incident TE dipoles distributed on a line on the right
(originally the output) waveguide and maximizing the |Ey|2
value at the center of the left (smaller) waveguide. (An
alternative approach for this problem would be to launch the
input field on the left waveguide, and use the fundamental
mode power of the output waveguide as the objective.) The
initial design consists of a linearly tapering waveguide to
connect the left and right waveguides. To verify the results
against a commercial solver, Lumerical51 was used to compute
the modal efficiencies of the initial and final structures, which
resulted in 82.97% for the initial design, and 93.57% for the
optimized design. Figure 5 plots (a) the optimization history,
and (b) the initial and (c) optimized values of the absolute
value of the Poynting vector at the midplane of the silicon
device, obtained by the Lumerical simulation. The optimiza-
tion of this taper, discretized with 401 600 unknowns, required
18 h and 47 min on the same computer as the splitter. For this
case, a total of 17 optimization iterations were needed for the
optimization, which accounted for 53 linear system solutions.
The increase in time per solve, when compared to the splitter,
is due to the larger propagation size of the device, which
translates into GMRES requiring a significantly larger amount
of iterations to converge to the prescribed residual tolerance of
1 × 10−3�about 600 iterations per solve. Additionally, the
total number of unknowns is almost twice what was used for
the splitter.
The second taper differs from the first one by having a larger

output width of 9 μm (50% larger than the first one), while the
length of tapered region is kept the same at 18 μm (40.4
wavelengths inside the silicon). This device was more

challenging to optimize due to the existence of multiple local
minima and required starting the optimization process with
different randomized initial conditions. In Figure 6, we show
the result of the best optimization result obtained, in which the
final design achieved a mode efficiency of 91.01%. In this case,
the initial condition, shown in Figure 6 (b), had a mode
efficiency of only 17.65%. For reference, a straight taper has a
48.71% mode efficiency. The optimized design therefore
achieved a 42.3% improvement with respect to the straight
taper, and a 73.36% improvement with respect to the initial
random condition. In Figure 6 (d), the CBIE patch and mesh
structure used for this simulation are displayed, where the total
number of system unknowns was 625 600. Note that all
patches represent curvilinear meshes that conform to the
design boundaries. The total optimization time for this
problem was 48 h and 5 min (as before, using the same
hardware as that for the splitter), with a total of 87 linear
system solves and 34 optimization iterations.

5. DISCUSSION AND CONCLUSION
This Article has introduced a new simulation and boundary-
based inverse design methodology for nanophotonic devices.
We have shown that the Chebyshev-based Boundary Integral
Equation (CBIE) method can be used to model photonic
devices by solving the fully vectorial 3D Maxwell equations
efficiently. Representing the device geometries via curvilinear
logically quadrilateral patches and the corresponding unknown
surface densities using a high-order polynomial basis leads to

Table 2. Efficiency of the Initial and Optimized Designs

initial design optimized design

model
mode efficiency

(%)
total power

(%)
mode efficiency

(%)
total power

(%)

splitter 34.09 51.68 96.52 97.20
6 μm taper 82.97 98.83 93.57 98.11
9 μm taper 17.65 73.12 91.01 96.22

Figure 5. CBIE optimization of a taper with an input waveguide width
of 0.5 μm and an output width of 6 μm over an 18 μm design region.
Panel (a) shows the optimization history, and (b) and (c) show the
absolute value of the Poynting vector for the initial and optimized
designs, respectively. The fundamental mode efficiency went from
82.97% for the initial device, to 93.57% for the optimized device.
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accurate frequency-domain field solutions while only requiring
coarse mesh discretizations. Due to the significant added
complexity and increased degrees of freedom required for full
3D simulation of nanophotonic devices, we have developed
and incorporated three crucial advancements to the original
CBIE approach: (1) the expensive source-to-target far
interactions are calculated using GPU computing, (2) we
have designed and implemented a sparse block-diagonal matrix
preconditioner, which can be rapidly constructed and applied,
leading to dramatic reductions in the number of iterations
required for solution convergence, and (3) we have derived
and implemented a matrix-free approach for computing a
matrix-vector product with the adjoint of the system matrix,
which is necessary for implementation of the discrete adjoint
method without requiring explicit formation of any matrices.

As design examples, we demonstrated the inverse design of a
1550 nm power splitter and two nonadiabatic mode-preserving
tapers. To the best of our knowledge, the taper designs
represent the largest silicon photonic tapers inverse designed
using full-wave solution of Maxwell’s equations in three
dimensions. Current work seeks to leverage algorithmic
acceleration techniques (such as the fast multipole method)
to speed-up solution of the forward problem further.
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