
Integrating Group Signatures in Complex
Decentralized Marketplace Transactions for

Improved Buyer Privacy
Sen Qiao

Dept. of Computer Science
North Carolina State University

Raleigh, U.S.A
sqiao@ncsu.edu

Varun Madathil
Dept. of Computer Science

North Carolina State University
Raleigh, U.S.A

vrmadath@ncsu.edu

Kemafor Anyanwu
Dept. of Computer Science

North Carolina State University
Raleigh, U.S.A
kogan@ncsu.edu

Abstract—Marketplace applications are a popular application
category for blockchains because they allow the possibility for
parties to transact without the need of a trusted middleman
entity. Supply chain marketplaces involve buyers and sellers of
goods and services that interact using complex transactional
workflows rather than single, one-off transactions. Further, in
some contexts, there is a need to maintain some degree of privacy
about which parties are transacting and/or the nature of their
transactions. Keeping such information private is often crucial for
maintaining competitive advantage. However, traditional public
key signature schemes do provide strong enough privacy guaran-
tees for such applications. On the other hand, signature schemes
like Group Signatures offer more robust privacy guarantees but
have not yet been adopted broadly in existing platforms. However,
supporting privacy across multiple transactions in a workflow
requires some extension to existing group signatures as opposed
to just for a single transaction.

In this paper, we present our effort on implementing some
existing theoretical proposals for Group Signatures. We focus
on application contexts in which it is sufficient to ”hide” the
originator of a transaction workflow i.e., the buyer (but is easily
generalizable). Because, transaction workflows involve ”multi-
ple” related transactions which will be obfsucated by keeping
introducing privacy, we extend a group signature scheme with
”linkability” of related transactions in a workflow. We integrate
our extended signature scheme into SmartChainDB - our ex-
tension of an open source blockchain platform, BigChainDB, that
introduces several features for enabling complex marketplaces on
blockchains.

Index Terms—decentralized applications, blockchains, privacy,
group signatures

I. INTRODUCTION

Marketplaces are popular application category on
blockchains are now known as decentralized marketplaces.
Decentralized marketplaces address the major limitations of
traditional marketplaces that rely on a trusted central entity
to broker engagements between parties in a transaction.
This centralization leads to problems of inefficiencies due
to bottlenecks at the central entity and lack of transparency
because central entity has full ownership and control of

* Work was done while author was a student at North Carolina State
University

transactional data. Further, the central entity is at liberty
to introduce arbitrary barriers to new market entry or to
introduce other kinds of bias to their advantage. As an
example, Amazon was accused of optimizing its proprietary
search results ranking algorithm for prioritizing its profitability
rather than showing the best results to customers [1].

In decentralized marketplaces, an application running on
a blockchain undertakes the typical functions that a trusted
centralized entity in a traditional marketplace does. In this
context, execution of marketplace functions such as matching
buyers with sellers and facilitating and recording transactions
[2], are replaced by a network of nodes, each independently
and concurrently accomplishing the same tasks, and have to
come to a consensus about the outcome of transactions. There
are many examples of emerging decentralized marketplaces.
Some of them are simple involving one type of product and
only one or two transaction types. For example, Lazooz [3]
is a rideshare platform and similar to other ”single-function”
marketplaces, only has a few transaction types: a ”request”
(and payment) from a buyer and an ”accept” from a provider.
However, marketplaces required to support supply chains can
be quite complex involving different types of transactions for
different phases. Those phases start from the procurement
process for creating orders, include creating product to meet
the orders and end with shipment and delivery. For example,
IKEA which is the world’s largest furniture retailer sells its
products in over 400 stores across 49 markets. Its supply
chain and logistics ecosystem is a very complex network
comprising about 1000 home furnishing suppliers across 51
countries, each of which has their own suppliers of e.g. product
parts or materials [4]. In addition to the inefficiencies and
high costs associated with traditional marketplaces, there are
challenges with managing product traceability. Traceability
is critical in identifying the appropriate scope for a product
recall in the event that a product class has been identified
as faulty. Further, transparency and traceability have also
become a critical requirement for meeting the demands of
customers to be given access to journeys of the products
they consume - from origin to delivery. Consequently, the

concept of decentralized supply chain marketplaces is gaining
momentum. For example, IKEA [5] undertook a feasibility
study for the use of permissioned blockchains to improve
transparency and robustness of transaction processing in the
context of a major international retail company.

One consequence of the complexity of supply chain market-
places is that most transactions do not have isolated contexts
but rather are often part of a transactional chain or workflow.
For example, during the procurement phase, an entity e.g. a
manufacturer, may want to find suppliers or subcontractors to
produce a component. They will usually begin with issuing a
”request for quotes” (rfq) from suppliers who can then respond
with quote bids. In many cases, there may be concern about
sharing too many sensitive details such as product design as
part of the rfq that is accessible to a large audience. Therefore,
a preliminary ”pre-request” is usually used in the first step
and then suppliers can respond with a ”letter of interest”. The
requestor can perhaps then filter the list and narrow down to
a smaller group of selected suppliers to whom the detailed
request is then sent. Figure 1 illustrates this sequence of
transactions in a two-sided marketplace.

Fig. 1: Linking
One concern for transacting using shared ledger platforms

like blockchains is privacy [6]. For example, for companies
that are subject to GDPR and other privacy regulations, they
must ensure that their applications meet necessary privacy re-
quirements [7]. For market applications e.g. trading exchanges
like private equity markets, brokers are required to maintain
financial privacy of asset ownership and trades. This is a key
requirement for equity trading markets [8], but is relevant to
decentralized exchanges as well. The trend in supply chain
processes is directed towards more and more collaboration and
cooperation between manufacturers, distributors, and retailers.
Because it is often necessary to exchange proprietary or sensi-
tive information as a part of transactions in supply chain mar-
ketplaces, participants have become increasingly concerned
about how this might negatively impact their competitive
advantage [9]. Therefore, it may not be sufficient to just
rely on traditional public key cryptography protocols because
they are only able to provide ”pseudonymity” rather than
absolute anonymity. Being able to exploit data on blockchains
has led to negative consequences like front running attacks
on trading exchanges [10] [11]. Further, [12] reports on the
efforts to ”out” identities of individuals transacting on the

BitCoin blockchain as part of criminal investigations. Such
deanonymization is usually achieved through blockchain data
mining and linking of external data such as IP addresses, wallet
accounts to credit cards and so on.

Efforts are being directed at mitigating the privacy vul-
nerabilities in blockchains, particularly for applications where
absolute privacy is critical. [13] addressed the issue of enhanc-
ing privacy in decentralized trading exchange marketplaces.
For cryptocurrency platforms, approaches such as ”mixers”
or ”coin-join” [14] techniques which mix, shuffle or lump
together transactions so that it is not possible to specifically
identify the endpoints of each transaction. However, such
approaches are only useful for transactions involving fungible
assets such as cryptocurrencies. Alternative strategies have
been proposed to enable privacy-preserving cryptocurrencies
like ZCash [15] which supports ”shielded transactions” that
use privacy at the protocol level through zk-SNARKs as well
as others [16] [17] [18]. Other efforts have proposed more
advanced cryptographic signature schemes such as Ring Signa-
tures and Group Signatures. These signature schemes provide
individuals with signatures that are associated with a group of
individuals rather than with the specific individual signing the
signature. They do not use the asset in transactions as part of
the scheme unlike the mixer approaches, therefore they can be
applied more broadly to transactions with non-fungible assets.
However, between the ring and group signatures, ring signature
schemes do not offer non-repudiation which can be critical
for supply chain applications. Therefore, group signatures
might be the most appropriate for the supply chain contexts.
Unfortunately, there is limited work in the area of group
signatures for blockchain transactions. Further, there is still
a need to address some of the unique challenges that arise in
complex transaction scenarios like supply chain marketplaces.
Specifically, given that supply chain marketplace transactions
are often not independent but part of a chain or workflow: how
do we track related transactions by the same entity if users
are anonymized?

Example Scenario - Privacy and Linking Transactions:
Recall our earlier example based on a two-sided supply chain
marketplace in Figure 1. Now assume that the requestors,
the originator of the workflows (on the right side of figure)
want to be anonymous. If a group signature scheme is being
used, requestors will be placed in groups and given group
keys with which to create a group signature when signing a
transaction. The signature allows the transaction to be linked
to ”a member of the group” but not to a specific individual.
Suppose Alice was the originator of the transaction chain i.e.
she initiated the PreRequest transaction for suppliers that
may be interested in engaging in a supply contract. Subse-
quently, a Request transaction will follow and then an Accept

transaction (after suppliers have submitted Bid transactions.
However, the PreRequest, Request and Accept were all
signed with group signatures merely identifying the group but
not the individual. Without being able to resolve the actual
identities of signers, it is possible for adversaries to ”attack”
the Request and Accept transaction steps, submitting false

transactions, without the transaction recipient (Charlie) re-
alizing. For example, the adversarial actor could initiate the
Accept transaction, selecting the worst of all the bids.

The example scenario demonstrates the need to be able to
”link” related transactions i.e. all transactions in the workflow
from the same entity, even though entities are not explicitly
identified like with group signatures. In our example, we
have two classes of related transactions: the green transaction
chain for the requestors and the blue transaction chain for the
responders or suppliers. While our example discussion focused
on only the requestor side being anonymous, it is not hard
to anticipate scenarios where the blue class (suppliers) also
want to be anonymous and will need to use group signatures
as well. Therefore, some consideration for how to achieve
”linkability” of different transactions in a chain while using
group signatures for anonymity is necessary.

In this paper, we will build on existing work on group
signatures [19] [20], adding linkability and integrating in
the transaction architecture of a blockchain platform which
we here call SmartChainDB. SmartChainDB is an
extension of the open source blockchain database BigChainDB
that aims to provide many of the common marketplace transac-
tional functions as first-class transactions, eliminating the need
to implement such functions as smart contracts. BigChainDB
has as its foundation a scalable, distributed NoSQL database,
on top of which blockchain functionality is added. Specifically,
we

1) motivate the need for privacy in complex marketplace
workflows

2) propose implementation framework that builds on ex-
isting work on group signatures to enable linkability of
multiple related transactions under anonymity

3) demonstrate how it can be integrated into a blockchain
platform and report experimental results

In the rest of the paper, we discuss background and related
work, approach and evaluation in sections II, III and IV
respectively.

II. BACKGROUND AND RELATED WORK

A. Overview of SmartChainDB

SmartChainDB introduces a set of new transaction types
such as Request, PreRequest, Bid, Interest and a few
others, into its foundational component - BigChainDB - an
open source blockchain database that provides a good hybrid
of blockchain and scale-out database properties. The aim of
SmartChainDB is to provide native support for such mar-
ketplace transaction types including system-based validation,
so that users can use them out-of-the-box and not be burdened
with always implementing such behavior as smart contracts. In
effect, SmartChainDB users can initiate such transactions
much like they would a typical Transfer transaction without
having to worry about implementing code to check semantic
errors such as doublespend.

BigChainDB provides blockchain properties such as decen-
tralization, Byzantine fault tolerance, owner-controlled assets,

and immutability ensure various asset transactions are in a
decentralized system can be saved forever. Simultaneously, it
offers the benefits of scale-out databases such as high transac-
tion rate, low latency, and indexing and querying of structured
data, ensure transaction speed and overall usability. Its layered
architecture comprises a storage layer which uses MongoDB; a
consensus layer which uses Tendermint [21], [22] to provide
asynchronous byzantine fault tolerance; a server layer which
implements the semantic validation of transactions; and a
client layer which has a driver used to interact with the system.
BigChainDB uses a declarative transaction model in which
transactions have schemas so that introducing new transaction
types amounts to defining corresponding transaction schemas
as well as extending the server validation code to support
validation of the new transaction types.

With respect to identity management for transactions,
BigChainDB uses the Ed25519 public-key signature system
for: generating public/private (verifying/signing) key pairs,
calculating and verifying Ed25519 signatures. Digital signa-
tures can be considered as the digital counterparts of stamped
seals or handwritten signatures. They allow a recipient of
a message to verify that a message has from the indicated
sender. In general, a digital signature involves three steps:
(i.) computing the hash value of message to be sent; (ii.)
signing the hashing value with a private key and attaching the
signature to the message before sending; (iii.) the recipient can
verify by hashing the original message and using the sender’s
public to sign which should produce the same output if valid.
Ed25519 is an instance of the Edwards-curve Digital Signature
Algorithm (EdDSA).

Similar to the BitCoin transaction model, keys and sig-
natures are attached to transaction inputs and outputs in
BigChainDB. A BigChainDB transaction has a semi-structured
object payload with some standard fields. Figure 2 shows
a diagrammatic representation of a transaction. The asset
and metadata fields store key data (immutable) or metadata
(mutable) about the asset being used in a transaction e.g. for a
property its address may be part of the asset field whereas the
color of the property will be in its metadata since that can be
changed in a future transaction. In this model, any kind of asset
can be used in a transaction once the definition of the correct
transaction structure is captured by a transaction schema. The
operation identifies the kind of transaction it is, the id field
is a transaction id that is generated as a hash of the rest of
the transaction payload except the id field. For the purposes
of our discussion we will focus primarily on the inputs and
outputs.

An output condition (following the crypto-conditions spec-
ification) locks a transaction, such that only a valid input
fulfillment can unlock it. ”In the case of signature-based
schemes, the lock is basically a public key, such that in order to
unlock the transaction one needs to have the private key”. For
example, assume that transaction T1 is a CREATE transaction
which creates an asset on the blockchain. The conditions in the
output of such a transaction would have the public keys of the
entities authorized to spend or consume the associated asset.

This would imply that any subsequent transaction e.g. T2 that
has an input trying to consume or spend T1’s output must have
a signature that was generated based on the the private key
associated with the public key given in the output conditions.
Using a public-key based signature system, it is easy to link
multiple transactions belonging to the same owner because
their keys are known. However, as mentioned earlier, public
key cryptography does not offer adequate levels of privacy.
Figure 2 illustrates the linking between two transactions. The
relevant details transaction model and blockchain platform are
summarized in later sections. However, a completely detailed
discussion of the transaction model and transaction processing
is outside of the scope of the discussion in this paper and are
omitted.

Fig. 2: Transactions

B. Privacy-Preserving Transaction Schemes

Some existing tools aim to achieve user anonymity via a
mixer approach. Decentralized mixers such as CoinShuffle (or
Coinparty, XIM, CoinShuffle++) [23] will combine multiple
transactions into a huge CoinShuffle transaction that can trace
back anyone that has participated in it. Thus, transactions from
the sender cannot be linked to the transactions to the receiver,
assuming there are multiple unique senders and receivers.
However, this approach is only appropriate where there is only
one transaction type so that all instances of such a transaction
can be lumped together so that they become indistinguishable.
Consequently, it is not adequate to address our problem
with transaction chains containing different transactions types.
Alternative proposals have used a ”crowd approach” which
uses an anonymity set to mask users so that they become
indistinguishable making it difficult to link data back to the
users. Increasing the size of the anonymity set provides better
anonymity guarantees. Ring Signatures and Group Signatures
use this crowd approach. In cryptography, a Ring Signature is
a type of digital signature where each member of the ring
has keys and any such member can sign a message (with
contributions with other members of the ring) to form a ring
signature. This signature only indicates that some member of
the ring has endorsed the message, but doesn’t specify which
one has. Anyone with the public keys can verify the incoming

signature from that particular ring. Ring signature can provide
linkability [24] [25] using the same list of public keys of
all ring members. However, given that a property of ring
signatures is computationally infeasible to determine which of
the group members’ keys were used to produce the signature,
it is impossible to revoke the anonymity of a ring signature.
This has practical limitations for applications like supply chain
marketplaces because it is important to be able to ”out” rogue
participants and to take legal actions where necessary. The set
of members to form the ring must be decided a priori because
adding additional members changes the set of public keys that
comprise the ring and renders any earlier signatures based on
the old ring set unverifiable. Furthermore, scalability of ring
signature functions degrades as the ring size increases.

1) Group Signatures: Group signatures use a similar idea
of anonymity of an individual within a group but add the
possibility of non-repudiation of an individual. A key dif-
ference in the structure is the existence of a group manager
who is trusted to administer and maintain information about
groups and their members. This manager has the capability
to reveal a group member’s identity if the appropriate group
signature method is implemented. Earliest proposals in this
category were RSA-based Short Group Signature schemes
[26] [27] and the more efficient bilinear maps based group
signature schemes [28] [29]. Recently, Bichsel & Camenisch
[19] proposed a fast bilinear mapping and re-randomization-
based group signature scheme. Pointcheval & Sanders [20]
propose an efficient group signature scheme implementation
scheme based on [19]. Some recent efforts have considered
the issue of ”linkability” of group signatures in asynchronous
blockchain networks. [30] presents linkable group signature
scheme for payers of cryptocurrencies using linear encryption
group managers and enables the prevention of double-spending
and uses the TRANSFER amount as a parameter. However, it
is only applicable to linking transactions of the same type not
to the workflows of different transaction types as it is being
considered in this paper.

Discussion: For our application context that requires both
transaction owner privacy and non-repudiation, using group
signatures is the most suitable. We further require the con-
nections between different transactions within a transaction
workflow, but the same anonymous owner, are not lost under
the anonymity provided by such privacy. In the rest of the
paper, we will present SmartChainDB’s approach for trans-
action user privacy based on an implementation of the scheme
proposed in [20] that is also extended to support ”linkability”.

III. IMPLEMENTATION FRAMEWORK FOR GROUP
SIGNATURES IN SmartChainDB

A. Approach Overview

The overall implementation objective is threefold: (i.) re-
alize a concrete implementation of the earlier mentioned
group signature scheme proposed in [20]; (ii.) extend that
scheme to supporting linkability under ownership privacy
(iii.) integrate this signature scheme implementation into the

SmartChainDB blockchain transaction processing archi-
tecture in order to enable support for users who need to sign
transactions anonymously due to application requirements.

There are 4 key entities in [20]’s group signature scheme:
the groupmanager - is a trusted entity responsible for creat-
ing and managing all groups and their signatures; the user - a
user member of some group; the certification authority (CA) -
providing users with support for traditional public/private key
cryptography which is used as a building block for their group
signatures; and the verifier - anyone who receives a message
signed with a group signature and wishes to verify the signa-
ture. The scheme is comprised of a set of the key functions:
GSetup(), PKIJoin(), GJoin(), GSign(), GVerify().

Figure 3 shows the functions and parties involved in the
user and group initialization steps, as well as, the joining of
a group by a user that provides them with a group signature
for the joined group. To give a more complete illustration, the
figure also shows the subsequent steps in the group signature
workflow which include signing the first message/transaction
(e.g. the PreRequest transaction) with the group signature,
and then the recipient (here the blockchain validator) verifying
the signature.

Fig. 3: Workflow process with different preimages
We elucidate the steps in the group signature scheme in

more detail and use the transactions in our proposed mar-
ketplace workflow such as PreRequest as examples where
appropriate.

1) Step 0 (GSetup and PKIJoin): initializes any new
groups being created or any new user joining the system.
For each new group, the groupmanager runs GSetup

to generate its group public key (GPK) and a group
master secret key (GMSK) and assigns it a GroupID.
GPK is made publicly available to be used by any-
one who wants to verify group signatures signed by
members of that group while GMSK is kept only by
the groupmanager. The generation of (GMSK) is
parameterized by a security input parameter 1η which
corresponds to key length (the longer the key the more
secure). A user i who wants to join some group must
first use the method PKIJoin that runs a DSKeyGen

(digital signature generator) to generate a public-private
key pair which afterward, is stored and managed by the
CA (certification authority). The public key is denoted
UPK[i] while the private or secret key is denoted as
USK[i].

2) Steps 1 & 2 (GJoin): in 1, a User i makes a request to
the groupmanager to join a group j using its GJoin

function. GJoin uses the outputs of the PKIJoin &
GSetup functions: (USK[i], UPK[i], GMSK,GPKj)
to generate GSK[i, j] (user i group secret key for
group j) maintained by user i and Reg[i − j] (regis-
tration information) maintained by the groupmanager.
GSK[i − j] will allow users to sign their messages,
while Reg[i, j] will allow Group Managers to identify
a message’s true signer and not just the group that the
signer belongs to. The figure shows the table structures
used by both parties to maintain this information. In step
2 of the flow, GSK[i, j] is returned to user i.

3) Step 3 (GSign()): In this step, user i creates and uses
the GSign() method and their assigned group signature
secret key GSK[i, j] to sign a transaction (in this
example a PreRequest transaction). GSign() takes two
parameters: the message to be signed and the secret key
used for the signing (GSK[i, j]) and then outputs the
signed message. The message to be signed is a created
as a concatenation of the transaction payload (denoted
as m in figure) and a value d (m||d). d is the hash of
some randomly generated value (denoted as preimage1).
The result is the signed message smsg1.

4) Step 4 (GVerify()): In this step, a recipient of the
signed message can verify that the signature is from a
valid group member by running GVerify() with three
parameters: the signed message smsg1, the raw message
unsigned (m||d) and the public key for the group from
which the group member is GPKj .

For each new transaction that the user wants to sign and
submit to the blockchain, Steps 3 and 4 need to be repeated
but Steps 1 and 2 are only done once. In the above example,
we will assume that user i is a Requestor who is initiating
a supply chain flow by submitting a first request using the
PreRequest transaction. This means that the transaction pay-
load that formed the message m in Step 3 is a PreRequest

transaction payload. Now suppose that subsequently, user

i wants to move the process along after receiving some
Interest transactions from different suppliers. Now, user i
or Requestor continues the process by submitting a Request

transaction. In this case only Steps 3 and 4 are needed.

B. Group Signature Implementation

As of the time of this work, we could not identify a
publicly available implementation of the [20] group signature
scheme. We, therefore, implemented the signature scheme,
adding necessary extensions and modifications to suit our
context. Although our target implementation context (i.e.
the SmartChainDB platform) is a python implementation,
we opted to implement the [20] group signature framework

in Rust in order to leverage some publicly available im-
plementation building blocks and, therefore, to avoid re-
implementing all building blocks from scratch in python. The
most suitable foundational implementation framework found
was Hyperledger Ursa’s cryptographic library. Hyperledger is
an open-source, high credibility, and high-quality repository
for blockchain and related technologies. Hyperledger Ursa is
a Rust-based library that provides some key building blocks
such as Simple Digital Signatures, Sigma Protocols, and the
bilinear mapping and re-randomization schemes proposed by
Pointcheval-Sanders [20]. The Ursa library also contains some
of the functions from [19] upon which [20] builds such as:
Setup, KeyGen, DSSign, and DSVerify. More specifically,
Hyperledger Ursa has a Short Randomizable signatures folder
which is based on the Pointcheval & Sanders paper [20]. This
folder contains both simple digital signature signing and proof
of knowledge functions, which form the necessary backbones
of GSign and GVerify based on the Bichsel and Camenisch
scheme [19]. Further, since the Rust library borrows the C
Apache Milagro Cryptographic Library, we anticipated that
it would likely be more efficient option than a Python im-
plementation. We implemented Python wrappers to call the
Rust cryptographic functions as services. We implemented
a Cherry.py server to take the role of groupmanager as a
service. The pseudocode for the key methods in the scheme
is given in the appendix. A few are omitted due to space
constraints.

The [20] group signature scheme specifies additional func-
tions GOpen() - that can be used by the GroupManager
to identify the signer’s actual identity using the registration
information Reg[i] in the event that there is need to reveal
it and GJudge() can be used in the case that an adversary
comprises the GroupManager to check if the user in question
is the correct user. However, our current implementation
omits these two functions to minimize the risk of privacy
leaks. Integrating group signatures into SmartChainDB
required (i.) modification o f t ransaction m odel s hown in
Figure 2 and (ii.) introducing new system components such
as the GroupManagerService as well as modification
of some of the existing system components such as the
BlockchainServer and the Driver to support processing.

1) System Architecture: Figure 4 shows the key compo-
nents of SmartChainDB and a high level depiction of the
interaction flow u sed f or t ransaction p rocessing. I t highlights
the three main subsystems: the GroupManagerService,
the UserClient and a single BlockchainNode. The
GroupManagerService includes GroupManager code that
implements management methods like GJoin and its local
database. The Client includes the Driver code used to
interact with the blockchain and the programming interface
for interacting with the GroupManagerService that offers
functions like GSign or GVerify which the users can use
signing transactions or verifying signatures respectively. Each
BlockchainNode comprises the BlockchainServer which
supports the validation of transactions based on appropri-
ate transaction semantics e.g. rejecting doublespending for

Fig. 4: System Components & Transaction Processing Flow

TRANSFER transactions. Each BlockchainNode also con-
tains Tendermint for consensus and MongoDB for storage
of the blockchain. The BlockchainServer validates transac-
tions in multiple stages, but first the signatures are validated.
The Server includes a wrapper for the function GVerify so
that if a transaction specifies the use of the group signature
scheme, the GVerify function is called to verify the signature
rather than the default ED2259 signature verifier. (Subsequent
validation stages validate other transaction semantics and then
send to the consensus phase which also does some additional
transaction validation before finally posting in database. We
ignore the details of transaction processing here).

Fig. 5: Modified Transaction Structure
SmartChainDB’s transaction model also had to be mod-

ified from what is shown in Figure 2 to Figure 5. The
modified model introduces the use of reserved keywords in
the transaction schema for indicating the selection of ”group
signature” as the signature type for a transaction. Then, it
permits the use of group public keys and group signatures
in transaction input and output fields for signing transactions
if the ”group signature” type is indicated (the older model
permitted Ed22519).

Fig. 6: Workflow for a Subsequent Transaction after
PreRequest

2) Linking Related Transactions Signed Using Group Sig-
natures: We integrate the use of form of hashes and preimages
for linkability to ensure that we can link the transactions made
by the same group member in spite of their identities are pri-
vate. Figure 6 illustrates this process for the second transaction
in the marketplace transaction chain being submitted by user

i i.e. the Request transaction. Submitting this transaction
requires the generation of another preimage (random number)
preimage2, that will be used to create the message to be signed.
However, in this case, not only does the message include m2

- the Request transaction payload and the hash of preimage2
which is d2, it also includes preimage1 (m2 || d2 || preimage1).
This is signed to produce smsg2. Since only user i is privy
to the preimage included in the previous step, only user i can
generate the correct message in the second step which includes
preimage1. This can be verified by the Verifier. In this way,
we allow one transaction to be linked to another only if the
user can provide a valid preceding preimage. The extended
transaction model in Figure 5 also shows the additional data
used for linkability i.e. the preimages, denoted as ”nonce” in
the figure.

IV. EVALUATION

Experiment Setup: Ubuntu version 18.04 virtual machine,
Docker version 20.10.5, Python version 3.6.9, Cargo version
1.53.0, and MongoDB Compass version 1.26.1. We set Group
Manager web service to port 8080, BigchainDB Server access
port to default (9984), and MongoDB port to default (27017). To
assess the practicability of using the ”linkable” group signature
for blockchain transactions, we ran some evaluation experi-
ments to see how much of an additional overhead such as
scheme adds to transaction processing. (Given the complexity
of the signature scheme some overhead is to be expected). We

conducted three experiments: (i.) comparison of time costs
for signing and verifying group signatures vs. the existing
ED25519 public-key signature; (ii.) scalability of the group
signature with increasing group sizes; (iii.) comparison of
transaction processing latencies when using group signatures
vs. using ED25519 public-key signatures.

Comments: In interpreting results, we must note that the
two schemes do not offer the same features: the ed25519
signature scheme does not offer the anonymity (linkability is
a non-issue here). Further, unlike the homogeneous runtime
environment of ed25519 signature scheme, the programming
environment of the group signature is more complex involving
Rust, C, Python and Java runtimes which adds some runtime
overhead independent of the group signature scheme.

i. Signing Costs Comparison: For this experiment, we ran
200 times for each of the following functions: the ed25519
sign, ed25519 verify, group signature sign, and group signature
verify, all signing and verifying the same message.

TABLE I: Time Cost of Group Signature
Average Time Cost

Type of function Std Mean
Signing Digital Signature
- Python (Ed25519)

0.8402744531 0.748246195ms

Verifying Digital Signa-
ture - Python (Ed25519)

0.6407945735 1.006927615ms

Signing Group Signature -
RUST

0.9230209381 9.772752225ms

Verifying Group Signature
- RUST

0.298527082 11.12937439ms

Table I reports average time cost (from 200 runs) for each
case. We see that although there is an additional overhead of
the signing process for group signatures when compared to the
traditional ed25519 signature (as expected), in practical terms,
this translates to less than 10ms which is not very significant.
Further, some of the increase can also be attributed to the
more complex runtime architectures of this specific group
signature implementation that built on existing building blocks
developed in different programming runtimes.

ii. Scalability With Increasing Group Size: This experi-
ments evaluates how group signature performance is impacted
as the number of group members (i.e. the anonymity set size)
increases. Here we compared the average time (from 200 runs)
it takes for group signing and group verifying for 2, 4, 8, 16
group members.

TABLE II: Scalability of Group Signature
Group Growth

Num of members Types of function Group Signature Time Cost

2 Signing
Verifying

4.081926ms
4.667232ms

4 Signing
Verifying

4.062314ms
4.366295ms

8 Signing
Verifying

4.264439ms
4.578303ms

16 Signing
Verifying

4.501189ms
4.341704ms

We see from Table II that the group signature performance

stays relatively stable with increasing group sizes. This is an
advantage of group signatures which signing process is very
dependent on the members in the ring and therefore negatively
impacted by ring sizes (well known property, not evaluated
here).

iii. Comparison of Transaction Processing Performance:
Lastly, we are interested in the effects our implementation
has on the overall marketplace transaction workflow. In this
experiment (Table III), we ran 5 transactions PreRequest,
Interest, Request, Bid, and Accept, where we’ve added
both linkable nonces and group signature to replace the
elliptical curve group signature.

From Table III, we see our group signature overhead on
transactions on average adds 23347 ms (377%) increase.

TABLE III: Comparing Transaction Times
Transaction Times

Trial (ms) Ed25519 Group Signature
Transaction 1 12096.54662ms 31111.50953ms
Transaction 2 5829.050265ms 21922.53284ms
Transaction 3 6111.45259ms 21595.47869ms
Transaction 4 5989.259657ms 19268.20824ms
Transaction 5 5883.072631ms 34866.42132ms
Transaction 6 5949.524186ms 38999.45385ms
Transaction 7 5711.611076ms 39740.79425ms
Transaction 8 6097.671397ms 32362.10934ms
Transaction 9 5807.926217ms 39448.26101ms
Transaction 10 6017.69875ms 36020.34113ms
Transaction 11 5978.015848ms 37758.13883ms
Transaction 12 5759.222706ms 35866.61027ms
Transaction 13 5630.697453ms 33903.15254ms
Transaction 14 5671.375385ms 15219.04399ms
Transaction 15 5745.127919ms 29837.69522ms
Transaction 16 5699.859339ms 39040.97876ms
Transaction 17 6015.530188ms 21387.40648ms
Transaction 18 5977.222206ms 16074.89105ms
Transaction 19 6062.802051ms 15646.88341ms
Transaction 20 5680.885235ms 30587.86738ms

To summarize the reasons for these increased costs, we
acknowledge that it is expected that the addition of hash
verification, group signing, group verifying, and groups and
language switching does add some overhead to transaction
processing. Some of the overhead is justified by the fact that
this scheme adds two group signature calls at driver and two
group signature verification steps at the server within each
transaction signed with the new group signature transactions.
In addition, we introduced two hash function steps at the
Driver layer and two hash verification steps by the Server.

TABLE IV: Statistical Analysis of TABLE III
Statistical Value

Ed25519 Group Signature
Average: 6185.727586ms 29532.88891ms
Std (σ): 1399.817622 8775.26162
Coefficient of variation
(CV):

0.2262979743 0.297135226

95% Confidence Interval: 6185.727586±
655.1348134ms

29532.88891±
4106.948858ms

However, we believe the main source of the increase in
time costs is merely a function of implementation. A key

bottleneck would be transferring the signatures and public keys
via shellcode, which heavily depends on the system and not the
effectiveness of the code. In contrast, in the original ed25519,
the (Python) BigchainDB driver signs using a native python
cryptoconditions library.

In the ed25519 verifying process, the (Java) BigchainDB
server verifies using a native java ed25519-java library. Both
do not need to call another language at all. Lastly, we added
four language switches (of which two calls are Python to Rust
to C++ and two calls are from Java to Rust to C++). Assuming
hash creation and hash verification are negligible (as the hash
function used is built-in). Given the results from experiment
(i.) that tested the signature schemes in standalone mode (not
integrated with transaction processing), we hypothesize that a
significant proportion of this latency here is due the multiple
switches in programming language runtimes. Consequently, a
reimplementation of the group signature code in the same run-
time as the blockchain platform should significantly improve
performance.

V. CONCLUSION

In this paper, we present an approach for supporting privacy
in the context of complex marketplace transactional workflows
using group signatures and an extension to support linkabil-
ity of different transactions types. We developed an imple-
mentation and integrated it into the transaction processing
workflow of a blockchain platform being developed on top
of BigChainDB. The results showed some expected additional
overhead due to the new, more complex signature scheme.
However, we also observed that a significant overhead was
introduced due to the runtime architecture chosen for the
implementation reported here which is not a requirement but
was a choice for ease of implementation and can be replaced
to improve performance.

VI. ACKNOWLEDGEMENTS

This work was partially funded by the National Science
Foundation CSR grant #1764025. We would also like to thank
Drs. Alessandra Scafuro and Binil Starly for their contributions
in terms of very useful discussions and feedback.

REFERENCES

[1] D. Mattioli, “Amazon changed search algorithm in ways that boost its
own products,” Wall Street Journal, 2019.

[2] H. Subramanian, “Decentralized blockchain-based electronic market-
places,” Communications of the ACM, vol. 61, no. 1, pp. 78–84, 2017.

[3] “La’zooz white paper,” 2015. [Online]. Available: https://tinyurl.com/
LazoozWhitePaper

[4] T. Sund, C. Lööf, S. Nadjm-Tehrani, and M. Asplund, “Blockchain-
based event processing in supply chains—a case study at ikea,” Robotics
and Computer-Integrated Manufacturing, vol. 65, p. 101971, 2020.

[5] T. Sund, C. Lööf, S. Nadjm-Tehrani, and M. Asplund, “Blockchain-
based event processing in supply chains—a case study at ikea,” Robotics
and Computer-Integrated Manufacturing, vol. 65, p. 101971, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0736584519301905

[6] “The privacy questions raised by blockchain,” Bradley LLP, January
14, 2019 [Online]. [Online]. Available: https://www.coincenter.org/
education/advanced-topics/what-are-mixers-and-privacy-coins/

[7] E. Natalie and T. Jansen, “Blockchain and data protection law: when
anonymous data becomes personal,” dotmagazine, 2017.

[8] , “Nasdaq Private Market,” 2022, [Online]. [Online]. Available:
https://www.nasdaq.com/solutions/private-company-solutions

[9] Y. Hong, J. Vaidya, and S. Wang, “A survey of privacy-aware supply
chain collaboration: From theory to applications,” Journal of Information
Systems, vol. 28, no. 1, pp. 243–268, 2014.

[10] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” in International Conference on
Financial Cryptography and Data Security. Springer, 2019, pp. 170–
189.

[11] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[12] L. Andrew and A. Douglas, “Bitcoin investigations: Evolving method-
ologies and case studies,” J Forensic Res, vol. 9, p. 420, 2018.

[13] K. Govindarajan, D. Vinayagamurthy, P. Jayachandran, and C. Re-
beiro, “Privacy-preserving decentralized exchange marketplaces,” arXiv
preprint arXiv:2111.15259, 2021.

[14] A. V. WIRDUM, “Coinjoin’s first steps: How dark wallet paved the
way for a more private bitcoin,” Bitcoin Magazine, February 25, 2020
[Online]. [Online]. Available: https://bitcoinmagazine.com/culture/
coinjoins-first-steps-how-dark-wallet-paved-the-way-for-a-more-private-bitcoin

[15] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[16] N. Narula, W. Vasquez, and M. Virza, “{zkLedger}:{Privacy-
Preserving} auditing for distributed ledgers,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), 2018, pp. 65–80.

[17] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi,
“Solidus: Confidential distributed ledger transactions via pvorm,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 701–717.

[18] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards
privacy in a smart contract world,” in International Conference on
Financial Cryptography and Data Security. Springer, 2020, pp. 423–
443.

[19] P. Bichsel, J. Camenisch, G. Neven, N. Smart, and B. Warin-
schi, “Get shorty via group signatures without encryption,” in
Security and Cryptography for Networks - SCN 2010, vol. 6280. Ger-
many: Springer Berlin Heidelberg, 2010, pp. 381–398, other page
information: 381-398 Conference Proceedings/Title of Journal: Security
and Cryptography for Networks - SCN 2010 Other identifier: 2001254.

[20] D. Pointcheval and O. Sanders, “Short randomizable signatures,” 2015,
https://eprint.iacr.org/2015/525.

[21] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” 2016.

[22] J. Kwon, “Tendermint : Consensus without mining,” 2014.
[23] J. Bernal Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. Torres

Moreno, and A. Skarmeta, “Privacy-preserving solutions for blockchain:
Review and challenges,” IEEE Access, vol. 7, pp. 164 908–164 940,
2019.

[24] J. K. Liu1 and D. S. Wong, “Linkable ring signatures: Security models
and new schemes,” in Computational Science and Its Applications
– ICCSA 2005. Berlin, Heidelberg: Springer, 2005, pp. 614–
623. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP.2013.34

[25] B. Goodell, S. Noether, and RandomRun, “Concise linkable ring signa-
tures and forgery against adversarial keys,” 2019, https://eprint.iacr.org/
2019/654.

[26] D. Boneh and H. Shacham, “Group signatures with verifier-local revo-
cation,” in CCS ’04, 2004.

[27] A. Ishida, Y. Sakai, K. Emura, G. Hanaoka, and K. Tanaka, “Proper
usage of the group signature scheme in iso/iec 20008-2,” in Asia CCS
’19, 2019.

[28] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous
credentials from bilinear maps,” in CRYPTO, 2004.

[29] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” IACR Cryptology
ePrint Archive, vol. 2002, p. 175, 2002.

[30] L. Zhang, H. Li, Y. Li, Y. Zhao, and Y. Yu, “An efficient linkable group
signature for payer tracing in anonymous cryptocurrencies,” Future
Gener. Comput. Syst., vol. 101, pp. 29–38, 2019.

VII. APPENDIX

GSetup(1η):

Inputs: 1η

Output: GPK,GMSK

1) Group Manager: x← Zp, y ← Zp

2) Group Manager: X2 ← gx2 Y2 ← gy2
3) Group Manager: GPK ← (g2, X2, Y2),

GMSK ← (x, y)

PKIJoin(i):

Inputs: i
Output: USK[i], UPK[i]

1) User and CA: (UPK[i], USK[i]) ←
DSKeyGen()

GJoin(i, USK[i], UPK[i], GMSK,GPK):

Inputs: i, USK[i], UPK[i], GMSK,GPK
Output: GSK[i], Reg[i]

1) User: generates ski ← Zp, (τ, τ2) ←
(gski, Y ski

2), η ← sign(USK[i], τ)
2) User: sends (τ, τ2, η) to Group Manager
3) Group Manager: upon receiving (τ, τ2, η), veri-

fies that ê(τ, Y2) = ê(g, τ2) and verifies η with τ
and UPK[i](received from Cerification Author-
ity). Executes a Sigma Protocol with User show-
ing that User knows ski. Then Group Manager
generates u ← Zp and create σ ← (σ1, σ2) ←
(gu, (gx · (τ)y)u). Lastly stores [i, τ, η, τ2] as
secret register

4) Group Manager: sends (σ) to the User
5) User: upon receiving (σ), User saves

(ski, σ, ê(σ1, Y2)) as GSK[i]

GSign(GSK[i],m):

Inputs: (ski, σ, ê(σ1, Y2)),m
Output: µ,m

1) User: Re-randomization - generate t← Zp. Then
caluates (σ′

1, σ
′
2)← (σt

1, σ
t
2)

2) User: Computes Signature Proof of Knowl-
edge (Σ) for ski see Figure ??. User
first calculates k ← Zp, computes A =
ê(σ′

1, Y2)
k = ê(σ1, Y2)

k·t, then compute c =
H(σ′

1, σ
′
2, ê(σ1, Y2)

k·t,m), and then computes
s← k + c · ski

3) User: Lastly outputs µ and m, where µ ←
(σ′

1, σ
′
2, c, s) and where c is the challenge and

s is the response.

GVerify(GPK,µ,m):

Inputs: GPK,µ,m where µ ← (σ′
1, σ

′
2, c, s) and

GPK ← (g2, X2, Y2)
Output: 0/1

1) Verifier: Compute R ← (ê(σ′
1
−1, X2) ·

ê(σ′
2, g2))

−c · ê(σ′
1
s, Y2)

2) Verifier: check c = H(σ′
1, σ

′
2, R, s) to ver-

ify the signature of knowledge, this works
since (ê(σ′

1
−1, X2) · ê(σ′

2, g2))
−c · ê(σ′

1
s, Y2) =

ê(σ′
1, Y2)

k is correct
3) If the signature of knowledge is valid, then the

verifier returns 1, else 0

GOpen(GMSK,µ,m,Reg[i]):

Inputs: GMSK,µ,m, [i, τ, η, τ2] where
µ← (σ′

1, σ
′
2, c, s)

Output: i(userid), π
1) Group Manager: Given µ = (σ′

1, σ
′
2, c, s) and

m for each element in Reg, using Reg[i] =
[i, τ, η, τ2], check if ê(σ′

2, g2) · ê(σ′
1, X2)

−1 =
ê(σ′

1, τ2)
2) Group Manager: outputs corresponding (i, τ, η)

and SPK (Signature Proof of Knowledge) for τ2

