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Abstract—To trust findings in computational science, scientists need workflows that trace the data provenance and support results
explainability. As workflows become more complex, tracing data provenance and explaining results become harder to achieve. In this
paper, we propose a computational environment that automatically creates a workflow execution’s record trail and invisibly attaches it
to the workflow’s output, enabling data traceability and results explainability. Our solution transforms existing container technology,
includes tools for automatically annotating provenance metadata, and allows effective movement of data and metadata across the
workflow execution. We demonstrate the capabilities of our environment with the study of SOMOSPIE, an earth science workflow.
Through a suite of machine learning modeling techniques, this workflow predicts soil moisture values from the 27 km resolution
satellite data down to higher resolutions necessary for policy making and precision agriculture. By running the workflow in our
environment, we can identify the causes of different accuracy measurements for predicted soil moisture values in different resolutions
of the input data and link different results to different machine learning methods used during the soil moisture downscaling, all without
requiring scientists to know aspects of workflow design and implementation.
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1 INTRODUCTION

COMPUTATIONAL WORKFLOWS play a key role in sci-
entific discovery. These workflows are growing more

complex: they consist of different modeling, analysis, and
visualization modules; they run on increasingly heteroge-
neous systems; and they use machine learning (ML) meth-
ods with limited transparency. For scientists using these
workflows to study scientific phenomena, trusting data,
methods, software, and hardware becomes more necessary
than ever. Scientists can trust their findings only through
in-depth data lineage and the complete record trail of the
methods generating the results. The data lineage and record
trail combined enables scientists to trace data back to its
sources and explain computational methods and their out-
put.

Provenance collection techniques [1], [2], [3] and con-
tainer technologies [4], [5], [6], [7] are promising approaches
to achieve data traceability through data lineage and result
explainability through record trails. Provenance provides
data lineage with a thorough description of the history of
the data evolution, allowing the scientist to trace the data
back to its origin and observe interactions between data and
applications. However, there are two main limitations of
current provenance solutions. First, the provenance meta-
data is separate from the dataflow, so any effort to match
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metadata to workflow components (i.e., data and applica-
tions) requires manual work. For example, solutions such
as PASS [8], Pachyderm [9], and REANA [10] use separate
metadata databases. Because the metadata is in a different
location than the workflow components, it is harder for
the scientists to query metadata and match with the com-
ponents to do any provenance analysis. Second, scientists
track provenance with custom systems that do not offer
portability across heterogeneous platforms. For example,
work in [8], [11], [12] builds on custom file systems, and
work in [13], [14], [15], [16], [17] builds on custom software
packaging. Containers offer a lightweight solution to track
provenance across platforms by encapsulating applications
and dependencies into an isolated environment [18], [19],
[20], [21]. However, there are three main limitations of
current container solutions. First, containers are used for
services that do not save long-term states; state storage is
relegated to existing, shared storage infrastructure. Second,
container solutions do not automatically create data lineage
and record trails. Third, current container technologies lack
an effective way to move data through a containerized
workflow.

To overcome these limitations, we propose a compu-
tational environment that is seamlessly integrated with
container technology, automatically creates a workflow ex-
ecution’s record trail, and invisibly attaches the trail to
the workflow’s intermediate and output data. To this end,
we decouple data and applications of traditionally tightly
coupled workflows and encapsulate data and applications
into individual fine-grained containers. We augment both
data and application containers to expose provenance meta-
data and to move data across the containerized workflow
effectively. Additionally, we create an interface for visual-
izing and studying the metadata that scientists can use to
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understand data lineage and computational methods. We
demonstrate how our environment enables data traceability
and results explainability for the SOMOSPIE (Soil Moisture
Spatial Inference Engine) workflow [22]. SOMOSPIE uses
a suite of ML modeling techniques to downscale the 27
km resolution satellite data from the ESA-CCI soil moisture
database [23] to higher resolutions necessary for practical
use in earth sciences including precision forestry and agri-
culture, hydrology for landscape ecology, and regeneration
dynamics [24], [25].

Our environment enables scientists to link differences
in scientific results back to different input data sources
(data lineage for traceability); and link different results to
specific methods used, without necessarily mastering all the
aspects of implementation and execution of the workflow
(record trail for explainability). For example, with SOMO-
SPIE, our environment enables scientists to identify different
predicted soil moisture values caused by different input
data sources and their resolutions; or to connect different
results to specific ML methods used during the soil moisture
downscaling. We measure the performance of our environ-
ment in terms of execution time, storage space, and IO band-
width. We demonstrate how our environment has limited
overhead and is effective for establishing trustworthiness
in the SOMOSPIE workflow. While we demonstrate the
benefits of our environment with soil moisture prediction,
our solution is application-agnostic: our environment can
be easily adapted to general workflows consisting of self-
contained applications.

This work makes the following contributions:
• An environment based on fine-grained containerization

of both data and applications which automatically cre-
ates data lineage and record trail of workflow execu-
tions, enabling traceability of data and explainability of
results.

• A Singularity/Apptainer based implementation of our
fine-grained containerized environment which auto-
matically annotates each container with its data lineage
and record trail and effectively supports zero-copy
movement of data across containers.

• A demonstration of the environment capabilities to
trace data sources and explain ML results for an ex-
emplary earth science workflow, SOMOSPIE [22].

The paper is organized as follows. Section 2 describes
the methodology to model a workflow into a fine-grained
containerized environment. The implementation of the en-
vironment using Singularity/Apptainer as the selected con-
tainer technology is explained in Section 3. Section 4 demon-
strates the use of our containerized environment for an
earth science workflow for traceability and explainability.
We quantify the impact on overhead and performance in
Section 5. We discuss the interoperability and adaptation
of our environment in distributed systems in Section 6.
Section 7 discusses the related work. Finally, Section 8
concludes with a summary of the findings and directions
for future work.

2 MODELING CONTAINERIZED WORKFLOWS

We describe how a scientific workflow can be modeled us-
ing our fine-grained containerized environment. We present

our solution in terms of the decoupling of workflows into
application and data components, the communication be-
tween these components, the automatic annotation of each
component, and the visualization of the associated meta-
data.

2.1 From Native to Fine-grained Workflow Modeling
A workflow is composed of one or multiple interopera-
ble, self-contained applications, each with its own software
stack and input and output data. These applications can
range from data generation, data collection and merging,
data pre-processing and feature extraction to data analy-
sis, modeling, and visualization. Such a workflow can be
executed on native HPC and cloud platforms (Figure 1a).
When container technologies are used in HPC or cloud
platforms, the whole workflow is usually deployed in a
single coarse-grained container (Figure 1b). This coarse-
grained containerization enables easy deployment and man-
agement. However, the coarse-grained approach makes it
difficult to exactly track executions or identify all the work-
flow components and their interactions for building an in-
depth data lineage and record trail. In addition, such an
approach does not enable reusability and composability of
individual workflow components. Instead, we decouple the
workflow into its components (i.e., applications and data)
and use a fine-grained containerized workflow approach
that encapsulates each workflow component into its own
container (Figure 1c). Each container serves as an immutable
object with a unique hash code for permanent identification,
enabling easy data lineage and record trails creation. Our
approach is applicable to workflows that can be modeled as
directed acyclic graphs (DAGs) whose nodes (applications)
and vertices (data in movement from one application to
another) can be both containerized. In theory any workflow
with such features can be abstracted into a fine-grained set
of interconnected containers.

2.2 Designing Application and Data Containers
Given an application, we containerize it by encapsulating
the executable or script with the respective software stack
(i.e., OS, libraries, and software packages). By doing so,
scientists can reuse the application container across differ-
ent workflows and reduce the overall storage requirement.
Furthermore, in our environment all application containers
are annotated with provenance information including their
unique identifier and creation time. The containerization
of data is unique to our approach. Because containers are
isolated systems, they do not support persistence of data;
consequently, only applications are normally containerized,
while the data is hosted in local databases, storage vol-
umes, or images [26], [27], [28]. We move away from this
implementation by leveraging the work of Lofstead and
co-authors called Data Pallets [29] that defines data as a
separate and immutable object once created. To create this
object, we define a data container that follows a file-system-
in-a-file model. Given an individual dataset (i.e., input,
intermediary, or output data), we containerize it into a single
and independent data container. Similar to the application
container, data containers are augmented to expose prove-
nance information such as the unique hash code, creation
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(a) Native

(b) Coarse-grained

(c) Fine-grained

Fig. 1: Composition of scientific workflows on (a) native
environment (i.e., original workflow execution on backbone
HPC or cloud platforms), (b) using a coarse-grained con-
tainerized environment with a single monolithic container
and (c) using our proposed fine-grained containerized envi-
ronment (i.e., decoupled workflow components in data and
application independent containers).

time, execution task and record trail. By doing so, data
containers provide trustworthiness, portability, and share-
ability of their content to users and across workflows. Two
important principles inform our fine-grained containerized
workflow approach. First, we separate applications and data
into their own containers allowing specificity and unique
identification of the components in a workflow for trace-
ability and explainability purposes. Second, our approach
values intermediate data; rather than discharging interme-
diate data, it encapsulates this data in order to provide a
complete preservation of the data lineage for traceability
and reusability.

2.3 Designing Communication Between Containers

The fine-grained containerization of the workflow compo-
nents introduces a new challenge in the execution: data
has to be moved from one container to the next in an
efficient way. When the movement is done through standard
container technology, it requires the usage of the host node’s
storage to serve as a buffer in a two-copy data transfer
as shown in Figure 2a. We propose a new communication
approach that enables a zero-copy data transfer: we bind
mount direct paths inside the data and application contain-
ers through their namespaces, thus avoiding data sharing
via the host. This allows containers to directly exchange
data without creating extra copies or using external storage.
Ultimately, our approach reduces the time and space needed
to transfer data between containers. Figure 2b shows the
same example of data transfer for the two-copy approach in
Figure 2a but with our zero-copy data transfer implementa-
tion. In essence, an application container can read and write
directly from one or multiple data containers.

(a) Two-copy data transfer

(b) Zero-copy data transfer

Fig. 2: Communication between the workflow components
in two-copy (a) and zero-copy (b) data transfer for our fine-
grained containerized environment.

2.4 Designing Annotated Containers

The fine-grained containerization of a workflow allows us to
annotate its executions, capturing metadata at a fine-grained
level. To deploy the annotation for different workflow exe-
cutions, the metadata collection has to be automatic. There
are three open questions when automatically annotating
workflow executions:

1) Where should the metadata be allocated? We augment each
container with an extra partition, within which we
allocate the metadata. Our approach enables the tight
integration of each workflow component and its meta-
data, facilitating the traceability of both the individual
components and the workflow as a whole. While tightly
coupling the metadata partition with the workflow
components, our environment effectively stashes the
metadata information from regular workflow execu-
tions. This means that the data or application itself in
the container can never be contaminated by managing
the metadata partition. The metadata information can
still be accessed at any time through standard container
partition access commands.

2) What metadata should be captured? We capture the con-
tainer’s identification, creation time, execution task, and
record trail. The container identification is a tuple (i.e.,
[UUID, name]) composed of a universally unique
identifier (i.e., UUID) and a name assigned when the
container is created. While the UUID is unique, the
name can be modified. The creation time captures the
point in time when the container is written to disk.
The execution task is the set of instructions to run the
application. This information includes parameters such
as initial conditions, random seeds, and other setting
values. The container’s record trail is a set of ordered
tuples (i.e., [UUID, name]) that defines the pipeline
of containers preceding the current one (i.e., data and
application containers used before the current container
and triggering its use).

3) How and when should the metadata be collected? For each
container, we expose information embedded in the
container environment, which is otherwise hidden to
the workflow execution, to collect our metadata. For
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both data and application containers, the structure
of the metadata partition (i.e., [container’s
identification, creation time, execution
execution task, and record trail]) is
identical. The content of the partitions depends
on the type of container and is collected both statically
and dynamically. The static metadata is collected
when a container is created and includes the container
identification and creation time. The pool of dynamic
metadata includes the execution task and record trail.
For all containers, (a) the execution task is initialized
with noop meaning that there is no operation; and
(b) the record trail is initialized with NULL meaning
that there are not predecessor containers because
an execution has not happened yet. The dynamic
metadata is populated only at the time a workflow is
executed. For purposes of reusability across workflows,
the static metadata of application containers remains as
initialized. On the other hand, the execution task and
record trail of the data containers are updated at the
execution time to capture the data generation.

Figure 3 shows an example of automatic metadata col-
lection for a workflow with three data containers serving
as input (Input), intermediate (Inter), and output (Out)
respectively, and two application containers (App1 and
App2). The static metadata is initialized with the container
identification tuple and container creation time. During the
execution of the workflow, the execution task and record
trail are updated for the data containers. The figure presents
a snapshot of when the whole workflow has finished its
execution, meaning that App1 and App2 have written the
results into the intermediate and output containers respec-
tively. The record trail of the output container includes the
output, App2, and intermediate containers’ identifications.
With the identification of the intermediate, we can retrieve
its record trail which includes the intermediate, applica-
tion1, and input containers’ identifications. We merge the
two containers’ record trails and define all the containers
used in the workflow pipeline. The combination of the static
and dynamic metadata enables building the in-depth data
lineage and the complete record trail of the applications
generating the results.

2.5 User Interface

We provide a user interface to facilitate the study of col-
lected metadata. This interface reads the metadata of one
or multiple containers. From this metadata, the interface
constructs a workflow visual representation as a directed
graph. Scientists can interact and adapt the graph to their
needs for further analysis. The nodes of the graph repre-
sent each container in the workflow which are labeled by
the universally unique identifiers (i.e., UUID) and include
their respective metadata as their description. Additionally,
nodes are distinguished between data and application con-
tainers. For each container, the interface backtraces its record
trail and connects the nodes in the order of the lineage
of that execution. Subsequently, the interface constructs
individual subgraphs of each execution. These subgraphs
are merged to find common patterns and containers shared
across multiple executions, providing a graph with unique

nodes (data and application containers) connected based on
the data lineage constructed from the descriptions of the
metadata.

3 SINGULARITY/APPTAINER IMPLEMENTATION

We build our computational environment by augmenting
Singularity/Apptainer [5] container technology. We develop
a Jupyter Notebook [30] interface for the metadata visualiza-
tion and analysis.

3.1 Selecting the Container Technology

While there are many different container technologies (e.g.,
Docker [4], Singularity/Apptainer [5], Charliecloud [6],
Podman [7]), in our work, we use Singularity/Apptainer for
three main reasons. First, it does not require administrative
privileges that are challenging to obtain in tightly controlled
environments such as the US National Laboratories. Second,
the use of the SIF (Singularity Image File) format container
allows us to customize the content of each container with
different types of partitions (i.e., metadata partition, applica-
tion partition, data partition), where each container can have
one or more partitions. Last, Singularity/Apptainer sup-
ports user-defined add-on functionalities through plugins.
These plugins are packages that can be dynamically loaded
by the Singularity/Apptainer at runtime, augmenting Sin-
gularity/Apptainer with experimental, non-standard, and
vendor-specific functionalities. Some of these functionalities
allow users to add commands and flags for the container’s
creation and execution; the functionalities can serve as an
interface with more complex subsystems (i.e, compute and
storage devices) at runtime. We extend Singularity/App-
tainer to feature three functionalities needed to implement
the designed fine-grained containerized environment in
Sections 2.2-2.4. First, we use the SIF format container to
automatically create the individual application and data
containers. We initialize each container with a metadata
partition, providing users with access to information oth-
erwise hidden to them. Second, we design a zero-copy data
transfer mechanism for the Singularity/Apptainer’s tech-
nology which facilitates data movement across containers.
This zero-copy functionality is now part of the Singular-
ity/Apptainer code [31]. Last, we automatically annotate
the workflow with provenance information. Both automatic
creation and annotation functionalities are integrated in a
plugin that is part of our software release [32], [33]. Further-
more, we implement a Jupyter notebook that serves as the
user interface designed in Section 2.5.

3.2 Creating Application and Data Containers

We augment the Singularity/Apptainer runtime with a
plugin that supports the automatic creation and execution
of fine-grained containerized workflows. The plugin can
work with any workflow that can be modeled as a DAG.
Given a workflow, our plugin has the ability to automati-
cally create a fine-grained sequence of data and application
containers using apptainer workflow --create. We
use a web service on the local machine at port 5000 to
facilitate the user with the generation of the fine-grained
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Fig. 3: Example of the metadata partitions for a workflow in our fine-grained containerized environment, composed of
once executed three data containers serving as input (Input), intermediate (Inter), and output (Out) respectively, and two
application containers (App1 and App2). The partitions are populated with both static and dynamic information.

workflow. Through the web service, the user provides in-
formation about the workflow, such as the definition file
of an application (i.e., application executable and software
stack); the number, location, and size of each input data;
and the expected size of the output data. The plugin uses
this information to create the workflow with its individual
application and data containers. Specifically, the plugin en-
capsulates individual datasets and application executables
or scripts into independent file system partitions. For ap-
plication containers, the plugin encapsulates the application
executable or script together with the software system stack
in a squashFS partition. For data containers, the plugin
compresses the data in an Ext3 file system partition. Both
types of containers include metadata in a JSON generic file
system partition.

3.3 Zero-copy Communication Between Containers

We extend the Singularity/Apptainer technology to support
direct transferring data between containers without going
through host or external storage (i.e., zero-copy data trans-
fer). We use the bind mount functionality to define a bind
path that directly links a directory from the source container
to a directory in the destination container. During an exe-
cution, the bind path is parsed, capturing which containers
and directories to use. The source and destination containers
are loaded in the environment. The source directory is
replicated in the destination container; any change on the
directory inside the destination container is also reflected in
the source container and vice versa.

3.4 Implementing Annotated Containers

We define a second functionality in our plugin apptainer
workflow --run [workflow_description].json
that grants the user the ability to execute a fine-grained
containerized workflow while also annotating containers
with metadata. A user executes the fine-grained container-
ized workflows by running the command apptainer
workflow --run [workflow_description].json.
This command triggers the Singularity/Apptainer API
callback clicallback that activates our plugin. Once
the plugin is active, it starts the automatic collection of
metadata in the workflow. To this end, for each application

container’s execution, the plugin collects two pieces of
information. First, it collects the application’s execution task
settings (e.g., initial conditions, random seeds, and other
setting values). Second, it collects the bind path that lists
all input and output data containers for that application
container. Following the data containers listed in a bind
path, the plugin uses the SIF API to extract each container’s
identification and creation time. The plugin appends that
information to the record trail of output data containers
for that bind path. Given an output container, its execution
task and record trail are transformed into JSON format and
added as a new file descriptor in its metadata partition.

3.5 Jupyter Notebook User Interface
We develop a Jupyter notebook [30] that serves as a user
interface for inspecting and gaining insights from the col-
lected metadata. It allows the user to select the metadata
of one or more containers and to backtrace the execution
dataflow, which is represented through a directed graph.
We use the package NetworkX expanding the open-source
function NetworkX Viewer [34] with a customized node token
class to tailor the interactive visualization of the workflow
graph. Specifically, our interface enables users to (i) create
the nodes based on the list of containers in the record trail
where the attributes of each node follow the structure of the
metadata; (ii) assign different colors to distinguish between
data and application containers; (iii) build independent
subgraphs based on the dataflow stated in the metadata
of each container; (iv) merge the subgraphs to build larger
graphs by using common patterns and unique components;
(v) visualize the graphs in an interactive session where the
user can reorganize it; and (vi) obtain detailed provenance
information about any container.

4 TRACEABILITY AND EXPLAINABILITY IN A
REAL USE CASE IN EARTH SCIENCE

We demonstrate how our fine-grained containerized ap-
proach is used to study two cases on an earth science
workflow, SOMOSPIE [22]. In the first case, the workflow
has to be traced back to the input data to explain different
levels of predictions’ resolutions (a case of missing data
traceability). In the second case, the annotations are used
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Fig. 4: SOMOPIE’s modular workflow for predicting soil moisture composed of four modules (i.e., data collation,
preprocessing, modeling, and analysis).

to discover which different ML methods are the reason for
different soil moisture predictions when using the same data
(a case of missing result explainability).

4.1 A Data-driven Workflow for Soil Moisture Prediction

Soil moisture, the percentage of water by weight or volume
in soil, is critical for linking climate dynamics to ecosystem
functioning, playing a key role in the Earth’s water and car-
bon cycles. The current availability of spatial soil moisture
information across large areas (e.g., continents) comes from
satellite-based remote sensing sources (e.g., ESA CCI [23],
NASA SMAP [35]). There are however two major limitations
of satellite-based soil moisture information: (i) large areas
have spatial information gaps (e.g. where there is high
canopy density, frozen soil, or extremely dry conditions);
and (ii) they have coarse granularity (around 27×27 km
grids). There is a pressing need to improve the spatial repre-
sentation of soil moisture for applications in earth sciences
(e.g., ecological niche modeling, carbon monitoring systems,
and other Earth system models). Predictions can be used
in policy making and precision agriculture (e.g., optimizing
irrigation practices and other land management decisions).
We use the open-source workflow for fine-grained soil mois-
ture predictions called SOMOPIE [22]. The workflow fills
missing spatial information and increases spatial resolution
of the satellite information. The workflow consists of three
steps: (i) satellite data and terrain parameters are input to a
sequence of execution steps; (ii) ML methods transform the
satellite data into higher resolution and gap-free predictions
using K-Nearest Neighbors (KNN), Random Forest (RF),
and Surrogate Based Modeling (SBM); and (iii) visualization
methods rebuild predictions into formats suitable for further
study. Figure 4 shows an abstraction of the workflow. For
scientists, the entire workflow execution can be opaque,
preventing easy data traceability and results explainability.
For example, different resolutions of the terrain parameters
data (different input data) used for generating fine-grained
predictions are not easy to trace from the output. Results
obtained using different ML methods (different executables)
are not easy to link to the specific method used. We show
how our fine-grained containerized approach can be ap-
plied to the SOMOSPIE workflow to enable traceability and

explainability in two cases. In the first case, the different
input data fed into the workflow has to be traced back
in order to explain the different levels of details in the
predictions (a case of missing traceability). In the second
case, different ML methods are the reason for different soil
moisture predictions when using the same data (a case of
missing explainability).

4.2 Integrating Traceability

Figure 5 shows an example of missing data traceability.
SOMOSPIE is used with different input data resulting in
different levels of details for the prediction of a region
centered around Oklahoma (a rich agricultural area). The
longitude is on the x-axis, the latitude is on the y-axis, and
each of the pixels/coordinates represents a soil moisture
(SM) value. Each one of the three figures represents the
same area of Oklahoma where the longitude runs from -
101.5 to -94.0 and the latitude runs from 33.5 to 37.0. The
soil moisture ranges from 0.175 to 0.35 and is mapped into a
color gradient where the lowest and driest SM value is red
and the highest and most moisturized SM value is blue.

The terrain parameters are selected from different
datasets with different resolutions: 1 km, 250 m, and 90 m.
The ML method is fed with the input datasets and generates
predictions from the satellite resolution (27 km) down to
the terrain parameters resolution. However, the figures do
not reveal the different resolutions of the input data to the
scientists using the same workflow. Our approach anno-
tates the workflow to capture the data provenance in the
metadata, providing scientists with full transparency in the
data transformations from input to output in the workflow.
Figure 6 shows the output of our interface for the predicted
soil moisture values in Figure 5. The interface is fed with
the metadata of the containers. Based on the metadata, the
interface builds and represents the workflow as a graph. The
graph shows four data containers (nodes in blue), symboliz-
ing the input data containers connected to an application
container (first orange node). This application container
corresponds to the ML method that generates the three data
containers with the soil moisture predictions at a higher
resolution. These predictions are then visualized in the sec-
ond application container (second orange node), which are
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(a) 1 km (b) 250 m (c) 90 m

Fig. 5: Example of soil moisture output visualization for Oklahoma predicted on three different resolutions (i.e., 1 km, 250
m, and 90 m) generated with SOMOPIE.

Fig. 6: Graph representation of the SOMOSPIE workflow executions for Oklahoma on three resolutions (i.e., 1 km, 250
m, and 90 m) generated by the Jupyter notebook interface. It includes the metadata visualization for each containerized
component.

encapsulated in three independent output data containers
(shown in Figures 5). Based on the graph representation,
the scientist can interact with any container and obtain its
lineage. Figure 6 presents the metadata partition of each
of the containers executed in the workflow. This metadata
partition includes the UUID (simplified in the figure), con-
tainer name, creation time, execution task, and the record
trail. The record trail shows the lineage of containers that
were used to generate the current component. Starting from
the three output data containers (09,10,11) the record trail
shows in bold that the same visualization application (08)
was executed on three independent predictions’ datasets
(05, 06, 07). Based on the metadata of the intermediate data
containers (05, 06, 07), the record trail reveals (in bold)
that each of these predictions were the result of executing

the KNN application (04) with the same training data (00)
and three independent evaluation datasets with different
resolutions (01,02,03). Finally, scientists can trace the three
different outputs back to the data sources and explain how
the observed differences come from the three input datasets,
each with a different resolution. Furthermore, because our
interface directly maps any difference to specific containers
used during the execution, it makes it easier for the scientists
to retrieve those containers and use them to reproduce the
results or generate new studies.

4.3 Integrating Explainability

Figure 7 shows an example of lack of result explainability
for the same region. The figure shows three visualizations of
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(a) K-Nearest Neighbors (KNN) (b) Random Forest (RF) (c) Surrogate-based Modeling (SBM)

Fig. 7: Example of soil moisture output visualization for Oklahoma predicted with three different ML methods (i.e., KNN,
RF, and SBM) generated with SOMOSPIE.

Fig. 8: Graph representation of the SOMOSPIE workflow executions for Oklahoma with three ML methods (KNN, RF, and
SBM) generated by the Jupyter notebook interface. It includes the metadata visualization for each containerized component.

the fine-grained soil moisture predictions with the same res-
olution of 250 m. The three predictions are generated using
the same input data but different prediction methods (i.e.,
KNN, RF, SBM). The figures and associated fine-grained
predictions do not reveal any information about the rea-
soning beyond the sharpness and high mixture of dry and
moist values in Figure 7a, the tile-like values in Figure 7b, or
the smoother transition between dry to moisturized values
in Figure 7c. Once again, our automatic annotation of the
workflow generates metadata revealing the differences in
the output data, providing the scientists with an explanation
of the results in terms of the methodology used. Figure 8
shows the output of our interface for the predicted soil
moisture in Figure 7. As in the previous case, the interface
is fed with the metadata of the containers, and based on
the metadata it builds the workflow as a graph. The output
graph of the interface shows that there are three possible

paths that start from two input data containers (both blue
nodes). A fork in the execution occurs at the first stage of
the workflow where there are three different application
containers corresponding to the three different ML methods
(first three orange nodes). Each of the ML methods gener-
ates an intermediate data container with the soil moisture
predictions. Finally, the three predictions are visualized,
generating three independent output data containers in-
cluding the three visualizations (last three blue nodes). We
also present the metadata partition for each of the con-
tainerized components. By backtracking the record trail, it is
possible to reveal that the output containers (10,16,17) were
generated by using the soil moisture predictions (06,14,15)
from three different ML methods (04,12,13). By providing
scientists with the workflow annotations automatically gen-
erated by our environment, we enable scientists to explain
the different results by linking them to the ML methods used
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during downscaling. Furthermore, the application contain-
ers can be reused to generate new workflows without re-
writing the application or re-installing the software stack.

5 MEASURING OVERHEADS AND PERFORMANCE

We collect the performance measurements of our fine-
grained containerized environment and compare them with
both a native environment (without containerization) and
a coarse-grained containerized environment (for which we
containerize all the applications inside a single container
and store the data on the native memory). The three en-
vironments are part of a broader set of environment config-
urations with our and the native settings at the two ends
of the testing spectrum and the coarse-grained environment
as a trade-off in between the other two. In other words, the
coarse-grained environment (single container) serves as the
link between the native (no containers) and the fine-grained
(multiple independent containers) environments.

5.1 Experimentation Platform Settings

We run a diverse set of tests for SOMOSPIE and collect
execution time in seconds and storage space in MBs for
the different environments. Furthermore, we measure the
bandwidth in MB/s for different data read and write work-
loads. We run the tests on XSEDE Jetstream2 [36] configured
as a virtual machine with 16 cores with AMD Milan 7713
CPU type, 60 GB of RAM (DIMM), and 60 GB local disk
(HDD) space with an attached volume of 100 GB. In terms
of software, the virtual machine has Ubuntu 20.04 as the
OS, Apptainer 1.1, Go 1.19, and Python 3.8.10 using the
next packages: numpy-1.23.2, pandas-1.4.3, scipy-1.9.0, and
scikit-learn-1.1.2.

5.2 Execution Times

We measure the execution times of all three environments
(i.e., the native, the coarse-grained, and the fine-grained).
Specifically, we measure the execution times of SOMOSPIE
on Oklahoma with three resolutions: (a) 1 km, (b) 250
m, and (c) 90 m. We run each resolution 5 times using
the three ML methods (i.e., KNN, RF, and SBM) for the
different environments on top of Jetstream2. Figure 9 shows
the results. In the figure, we observe that the smaller the
data and the more inexpensive the application is, the more
time overhead is seen when deploying our fine-grained
containerized environment compared to the native (77%)
and the coarse-grained (53%) environments. As the data
increases and the application becomes more complex and
time consuming, the overhead drops to 10% compared to
native and 1.5% compared to coarse-grained. Overhead is
always expected given the extra layers of virtualization and
the metadata management. Still, as applications are more
complex and are deploying larger data, the observed over-
head is an acceptable trade-off for the gained traceability of
data and explainability of results.

5.3 Storage Space

We measure the storage space usage for the two environ-
ments at each end of our testing spectrum (i.e., native and

(a) Oklahoma, 1 km

(b) Oklahoma, 250 m

(c) Oklahoma, 90 m

Fig. 9: Execution time of SOMOSPIE, running on Oklahoma
with three resolutions: (a) 1 km, (b) 250 m, and (c) 90m, with
three ML methods comparing the native (no containers),
coarse (single container), and fine-grained containerized
(multiple containers) environments.

our fine-grained). We do not present results for the coarse-
grained containerized environment because we expect its
storage space to match the storage of the native for data,
and to match the fine-grained for applications. As we en-
capsulate the workflow components (data and applications)
in containers, the containerization adds extra space for the
encapsulation format. Depending on the type of containers,
this extra space is allocated for different purposes. We
distinguish between data and application containers and
compare the storage space used in the native environment
versus our fine-grained containerized environment.

Data containers: In the native environment we have data,
and in our fine-grained containerized environment we have
data containers. A data container includes the data encap-
sulated in an Ext3 file system, metadata partition, and the
container dependencies. We measure the size of all data
containers in SOMOSPIE when executing the three ML
methods for the different input data resolutions (1 km, 250
m, 90 m). Figure 10 presents the size comparison between
the native environment and our environment for Oklahoma
with two resolutions: (a) 1 km and (b) 250 m. On the x-axis
we have the different data (data) and its containerization
(c data): input, c input, intermediate (inter), c inter, output,
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and c output. Each is represented by a bar indicating their
size in MBs, as stated on the y-axis. First, we observe that
the container dependencies’ space (red bar) is constant.
As the data increases in size, the container dependencies’
space becomes imperceptible. Second, for all containers, we
observe that the space of the metadata partition (green bar)
is negligible and always in the order of KBs. Last, we see
that the extra space in the data container is mostly part
of the Ext3 file system space (orange bar) and is used to
encapsulate the data (blue bar) that has the same size in both
native and containerized environments. The main cause of
the large space used by the Ext3 file system is that it reserves
space for the journaling information and 5% space for root
processes. Ways of reducing the reserved space have been
explored, and Ext4 [37] incorporates scalability and per-
formance enhancements. However, Singularity/Apptainer
chose Ext3 for their data containers as it is the most efficient
and modifiable file system currently available on a wide
variety of systems.

(a) Oklahoma, 1 km

(b) Oklahoma, 250 m

Fig. 10: Comparison between the native and the fine-grained
containerized environment for the data storage including
the input, intermediate (inter), and output data of the earth
science workflow running in Oklahoma with two resolu-
tions: (a) 1 km, and (b) 250 m.

Application containers: In the native environment there are
applications in the form of scripts or executables which re-
quire libraries and dependencies to run. In our fine-grained
containerized environment we have application containers
that include a script or executable, libraries, a metadata
partition, and the container space which corresponds to
the OS and software dependencies. Figure 11 presents the

comparison between native and fine-grained containerized
applications in SOMOSPIE. On the x-axis, we have the
three ML methods (application) and their containerization
(c application): KNN, c KNN, RF, c RF, SBM, c SBM, and
the visualization (visual) with its containerization (c visual),
all written in Python. On the y-axis we have the size in
MBs. We observe these key properties: first, the scripts and
libraries occupy the same space for the native and our
containerized environment; second, as in the data contain-
ers, the metadata partition is negligible; and last, the extra
space in the application container comes from the container
space which includes the OS and software dependencies.
The identification of libraries, software dependencies, and
OS by the application container ensures replicability and
transparency of the software system by guaranteeing that
the user will always have the same versions of OS, libraries,
and software dependencies, regardless of the platform on
which the workflow is executed.

Fig. 11: Comparison between the native and the fine-grained
containerized environment for the applications storage in
SOMOSPIE.

5.4 IO Bandwidth
We benchmark the IO bandwidth for the two environments
at each end of our testing spectrum (i.e., native and fine-
grained) using FIO, a Flexible IO tester. We do not present
results for the coarse-grained because its bandwidth is
similar to the native, as shown in [38]. In the native envi-
ronment, we measure the bandwidth of the benchmark to
read from and write to the virtual volume on Jetstream2. In
the fine-grained containerized environment, we measure the
bandwidth of the benchmark encapsulated in an application
container to read from and write to a data container stored
in the virtual volume. The raw size of the virtual volume is
100 GB. Because of the virtual volume file system overhead
(Ext4), the virtual volume is 90 GB. The storage for the
container adds additional overhead, thus the data container
has 80 GB of usable capacity.

FIO has the flexibility to select different IO settings
including number of files, IO size, and sequential or ran-
dom reads and writes. FIO spawns a number of files on a
particular location doing a type of IO action. The location
and the type of IO are specified by the user. We select four
numbers of files (i.e., 1, 10, 100, and 1000) and three IO sizes
(i.e., 1 GB, 10 GB, and 80 GB) for each IO size. Depending
on the IO size and number of files, each test has a different
configuration. They are as follows:
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(a) IO size of 1 GB (b) IO size of 10 GB (c) IO size of 80 GB

Fig. 12: Bandwidth comparison for the native (no containers) and the fine-grained containerized (multiple containers)
environments for different file counts and sizes.

• 1 file of size 1 GB, 10 GB, and 80 GB
• 10 files of size 0.1 GB (100 MB), 1 GB, and 8 GB each
• 100 files of size 0.01 GB (10 MB), 0.1 GB (100 MB), and

1 GB each
• 1000 files of size 0.001 GB (1 MB), 0.01 GB (10 MB), and

0.08 GB (80 MB) each

For all the listed tests, we set the block size equal to 4KB
(the default block size for the Ext3 and Ext4 file systems).
We select a sequential mix of read and write IO patterns,
mimicking the IO pattern of SOMOSPIE.

Figure 12 shows the results of the bandwidth for the
three IO sizes: (a) 1 GB, (b) 10 GB, and (c) 80 GB. The x-
axis shows the number of files [1, 10, 100, 1000] and the
y-axis shows the measured bandwidth in MB/s. For each
number of files we measure the read and write IO 5 times
for both environments. The measurements are represented
in boxplots where the native measurements are in pink
and the fine-grained containerized ones are in blue. We
can extract two main observations from this figure. First,
we observe that, as the number of files increases from 1
file to 100 files, the bandwidth of the native environment
also increases, ranging from 45 MB/s to 140 MB/s. This
trend is observed for all IO sizes. For the larger number
of files (i.e., 1000 files), the bandwidth drops for the native
environment. The bandwidth is measured from the start
of the metadata operation to the end of the data transfer.
Thus, while the metadata operation time per file is fixed, the
IO time grows proportionally with the data size. In other
words, when the files are many and small, the metadata
operation time significantly impacts the IO time. Second, we
compare IO bandwidth when the data fits in the DRAM (in
Figures 12a and 12b) versus when it does not (in Figure 12c).
In the figures, we observe that for 1 GB and 10 GB IO sizes
our fine-grained containerized environment has higher IO
performance than native. As we reach 80 GB in IO size,
the performance for both environments are comparable. The
higher performance is due to the fact that the data container
fits in the DRAM, allowing faster data access. This is not
the case for the larger IO size for which the container must
interact with the virtual volume regularly, thus degrading
performance back to the native implementation. When run-
ning this test we deal with two main constraints. First, the
size of the DRAM (60 GB) is fixed and defined by the
Jetstream2 virtual machine. Second, users cannot control
how the DRAM is managed. It is the kernel that manages
the loading of the containers’ content to the DRAM based

on the availability of the resources. A modification of the
kernel goes beyond the scope of our work.

6 INTEROPERABILITY, HETEROGENEITY, AND
MULTIPLE INSTANCES

We discuss our environment’s interoperability with other
workflows and with resource managers, as well as the
adaptation of our environment in distributed heterogeneous
systems and with multiple container instances.

6.1 Environment Interoperability
Technology transfer, in which we envision the use of our
environment for other applications, has been a key driv-
ing factor of our design. Our containerization approach
requires that workflows are composed of one or multiple
self-contained applications. Furthermore, users should be
able to model the workflows as DAGs whose nodes (ap-
plications/tasks) and vertices (data in movement from one
task to another) can be containerized. Any workflow with
such features can be abstracted into a fine-grained set of in-
terconnected containers, making our approach application-
agnostic. We extend the Singularity/Apptainer runtime to
support the concept of automatic creation and execution
of fine-grained workflows that can be described as DAGs.
We implement the Singularity/Apptainer plugin described
in Section 3 which, given a workflow, has the ability to
automatically create a fine-grained sequence of data and
application containers, as well as the ability to execute these
workflows while also annotating containers with execution
metadata.

The integration of our environment into resource man-
agers and orchestrators is possible as long as they manage
containerized executions. Such containerized executions are
supported by HPC and cloud solutions such as Pegasus [39],
REANA [10], Pachyderm [9], and Kubernetes [40]. Because
data is containerized, the workflow manager does not have
to deal with data transfer from-to local storage, adding
additional portability for our containerized workflow across
platforms.

6.2 Distributed Heterogeneous Resources
Decomposing the workflow into fine-grained containers
enables deploying different components on different nodes
in a distributed system as long as the system shares stor-
age (e.g., GPFS, object or block storage solutions). The
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bind mount across nodes can work through the shared
storage connecting the nodes. For example, when using a
cloud platform with object storage solution, an application
container on a node can write to a data container on a
different node; the content of the data container can be
read by a second application container on the same node
or a different node, using Kubernetes as the orchestrator of
the containers’ execution. With the increase of GPU usage
for ML-based scientific workflows, container technologies
such as Docker, Singularity/Apptainer, and Podman sup-
port the execution of applications in the scientific workflows
on GPUs. Specifically, for our containerized environment,
Singularity/Apptainer supports running application con-
tainers that use NVIDIA’s CUDA GPU compute framework
or AMD’s ROCm solution. Regardless of the operative sys-
tem on the host machine, users can run GPU-enabled ML
frameworks (e.g., Tensorflow, MXNet, PyTorch). Regarding
the data generated by the GPU, we assume that this data
is copied back to the CPU, given that GPU-direct is not
a widely available technology in most HPC and cloud
platforms. When data is copied back to the CPU, our fine-
grained containerized environment encapsulates it in a data
container and automatically collects the data lineage.

6.3 Metadata from Multiple Container Instances

Our design supports multiple container instances, in which
given an application container, we execute n instances of
its image as a service. The application container image has
a universally unique identifier (UUID). The n application
instances inherit the same UUID, and through the UUID they
link to the metadata of the image. When running multiple
instances of the same application image, the metadata of
the application image is not impacted but the metadata of
the output data containers is. Such an impact changes based
on where the multiple application instances write to. The
n instances can write to their own output data container(s)
or to a single, shared container(s). In the first case, the n
application instances are writing to their own output data
container(s) (i.e., each application instance generates one
output data container). For each output data container, the
container’s identification, creation time, and execution task
are unique to the output data container. The record trail
is the same across output data containers and links back
to the UUID of the application image. In the second case,
the n application instances are writing to a shared output
data container(s) (i.e., the application instances generate one
single output data container). For the shared output data
container, the container’s identification and creation time
are unique to the output data container. The execution task
is a list that contains n execution tasks including initial
conditions, random seeds, and other setting values of the
n instances. The single record trail links back to the UUID of
the application image.

7 RELATED WORK

Annotating a workflow execution with the provenance of
its components has been previously used for traceability,
reproducibility, and explaining results. Related work for col-
lecting and preserving the provenance of a workflow at the

system level include developing custom file systems track-
ing provenance such as the Lineage File System (LinFS) [11],
PASTA in PASS (Provenance-Aware Storage Systems) [8],
and Parrot [12]; encapsulating workflows through ad hoc
packages such as CDE [13], ReproZip [14], Umbrella [15],
and Occam [16] [17]; and encapsulating workflows through
existing container technologies such as Pachyderm [9], RE-
ANA [10], and Science Capsule [41]. The use of custom file
systems and custom ad hoc packages limits the portability
and usability of their solutions across systems. The use of
existing container technology to encapsulate the workflows
overcomes this challenge, offering portable solutions. Con-
trary to existing containerization solutions, our approach
decouples workflows into components (data and applica-
tions) at a finer level and maps the components to one-to-
one single and independent containers.

Containerizing data facilitates transportation, interpreta-
tion, and use. We adapt the premise of the data containeriza-
tion from Data Pallets [29]. It defines storage as a new con-
tainer type when running workflows, where the containers
include the data and links to the application and the input
deck. Even when data is containerized, intermediate data is
treated as disposable for solutions like Prune [42], CDE [13],
ReproZip [14], Umbrella [15], and Occam [16] [17] where
they focus on sharing final results of the workflow execu-
tions. Only Pachyderm provides a complete audit trail for all
data across pipeline stages, including intermediate results.
As with Pachyderm, our solution grants first class citizen
access to the intermediate data and its metadata. Moreover,
we are the first to permanently and portably attach the
provenance invisibly to the data and the applications. We
achieve this through the use of a second partition in the
container structure.

Finally, there has been a significant amount of work in
workflow management that targets provenance. Workflow
management systems like Pegasus [39], Kepler [43] and
DAGMan [44] provide a way to orchestrate workflows while
capturing the data provenance. Only Pegasus provides ap-
plication containers as a solution to package software with
complex dependencies. Pegasus currently supports Docker,
Singularity/Apptainer, and Shifter. However, the workflow
managers use the scientific workflow system to track and
store the computational steps and their data dependencies,
but information about the environment is rarely gathered.
Furthermore, integrating a workflow to the management
systems can be complex. It requires the translation of the
workflow into the right format: DAX (Directed Acyclic
Graph in XML) for Pegasus, XML or KAR files for Kepler,
and DAG input file for DAGMan, for example. Finally, not
all workflows are in the stage of managing their pipelines
with these workflow tools, which makes a case for al-
ternative solutions for hosting workflows and capturing
provenance to allow traceability of data and explainability
of results. Our work is intended to work together with these
systems, using their support for containerized workflows to
handle the workflow management tasks while we manage
the automatic provenance collection, enabling traceability
and explainability and annotation of data containers.
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8 CONCLUSIONS

In this paper, we present a fine-grained containerized
environment using Singularity/Apptainer technology that
enables scientists to achieve trust in findings from their
workflows by seamlessly providing data traceability and
results explainability. We demonstrate the benefits of our
environment for SOMOSPIE, an earth science workflow
that uses ML-methods to predict satellite soil moisture data
to a resolution necessary for policy making and precision
agriculture. Specifically, we use our environment for two
use cases in which we trace back differences in predictions
due to input data and ML-methods. When compared with
native and coarse-grained containerized environments, we
observe that our environment has limited overhead in terms
of time (10%), storage space (5% for data containers and
30% application container), and it has significantly higher
IO bandwidth, with a peak of 400 MB/s versus 50 MB/s for
native. Our solution is effective for establishing trustwor-
thiness in scientific findings. Future work includes the au-
tomatic orchestration of the workflow in our containerized
environment and the creation of a catalogue of containers
that scientists can extend, share, and use to build new
scientific workflows in multiple domains.

CODE AVAILABILITY

The code implementing the augmented
Singularity/Apptainer can be found at:
https://github.com/TauferLab/ContainerizedEnv.
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