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Abstract: Soil moisture is an important parameter that regulates multiple ecosystem processes and 

provides important information for environmental management and policy decision-making. 

Spaceborne sensors provide soil moisture information over large areas, but information is com-

monly available at coarse resolution with spatial and temporal gaps. Here, we present a modular 

spatial inference framework to downscale satellite-derived soil moisture using terrain parameters 

and test the performance of two modeling methods (Kernel-Weighted K-Nearest Neighbor 

<KKNN> and Random Forest <RF>). We generate monthly and weekly gap-free spatial predictions 

on soil moisture at 1 km using data from the European Space Agency Climate Change Initiative 

(ESA-CCI; version 6.1) over two regions in the conterminous United States. RF was the method that 

performed better in cross-validation when comparing with the reference ESA-CCI data, but KKNN 

showed a slightly higher agreement with ground-truth information as part of independent valida-

tion. We postulate that more heterogeneous landscapes (i.e., high topographic variation) may be 

more challenging for downscaling and predicting soil moisture; therefore, moisture networks 

should increase monitoring efforts across these complex landscapes. Future opportunities for de-

velopment of modular cyberinfrastructure tools for downscaling satellite-derived soil moisture are 

discussed. 

Keywords: soil moisture; downscaling; ESA-CCI; SOMOSPIE; spatial inference; KKNN; random 

forest 

 

1. Introduction 

The top layer of soil is critical for the root system of plants and the available water 

that sustains most of the vegetation and controls many soil processes. Due to its im-

portance, soil moisture has been recognized as an Essential Climate Variable [1], and in 

conjunction with variables, such as land cover, is critical in shaping Earth system dynam-

ics. Soil moisture importance relies not only on its role within the water cycle, but also on 

its relationship with other ecological processes, such as runoff generation, sediment 

transport and energy balance [2–4], drought occurrence [5,6], plant and soil respiration 

[7–9], regulation of greenhouse gas fluxes from soils to the atmosphere [10–12], and plant 

growth, which influences the terrestrial carbon budget [4,7,13]. Water content in the top 

centimeters of the soil also serves as a retardant for wildfires, regulates runoff during ex-

treme rain events, and provides information for flash floods and drought early warning 

systems [14–17]. Additionally, soil moisture information is a key input for agricultural 

planning [6,18], regional stewardship [19], and multiple models used in weather forecast-

ing or climate variability and change [20–22]. 

Traditionally, soil moisture information was acquired from point measurements us-

ing instruments, such as Time–Domain Reflectometers (TDR), which offer instantaneous 

values of soil water content based on information of electric and dielectric properties 
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within a small volume of soil [23]. However, the availability of soil moisture data from 

these ground sensors across large areas is often limited [24,25]. At the global scale, the 

International Soil Moisture Network [26,27] provides ground-truth information, and 

within the United States, the Soil Climate Analysis Network (SCAN) [28] and the North 

American Soil Moisture Database (NASMD) [29] provide soil moisture information de-

rived from ground sensors. However, due to large spatial and temporal variability in soil 

moisture, this information, although invaluable, is not enough to address multiple appli-

cations where detailed spatial and temporal variability in soil moisture is required. 

To address the limited spatial coverage of ground-based soil moisture networks, al-

ternative approaches can be applied to estimate soil moisture. Satellite-based sensors offer 

a feasible way to estimate soil moisture over large areas on a regular basis, ranging from 

3 to ~36 km [30–33]. Satellite sensors estimate soil moisture using radar instruments or 

radiometers, which are based on the dielectric constant and temperature emissivity of the 

soil, respectively [33,34]. Various satellite sensors are used to estimate soil moisture, some 

specifically conceived for this purpose, such as SMAP (Soil Moisture Active Passive) [30] 

or SMOS (Soil Moisture and Ocean Salinity mission) [35], while others, such as the Euro-

pean Space Agency Climate Change Initiative (ESA-CCI) soil moisture [15], Sentinel [36] 

and GPS-aided values [37], can be used to indirectly derive soil moisture information. 

These satellite-based efforts aim to provide global soil moisture values at high temporal 

resolution (1~3 days). The ESA-CCI offers the longest available global records at the daily 

scale, beginning in November 1978, with improved accuracy since 1991 due to a combi-

nation of information from active and passive sensors [38]. These efforts have provided 

unprecedented information, but they have two important limitations: they have coarse 

spatial resolution, and they have spatial and temporal gaps. 

Various approaches have been used to downscale satellite-derived soil moisture val-

ues. These approaches can be categorized as (1) satellite-based, (2) geoinformation-based, 

and (3) model-based [39]. Satellite-based approaches include various techniques, such as 

Active and Passive Microwave Data Fusion and Optical/Thermal and Microwave Fusion [39]. 

Geoinformation-based methods have explored the known correlation of soil moisture 

with topography, soil attributes, and vegetation characteristics [39]. Model-based methods in-

clude other approaches, such as statistical models, integration of a Land Surface Model, statis-

tical downscaling, and data assimilation [39]. 

Here, we present a geoinformation-based approach, considering the relationship be-

tween soil moisture and topography to downscale and gap-fill satellite-based soil mois-

ture information at the regional scale [39,40]. Topography has been explored previously 

as a meaningful environmental variable for downscaling soil moisture at the catchment 

scale [41–43] and across the United States [44]. We used a modular spatial inference frame-

work, which is the foundation of a cyberinfrastructure tool named SOil Moisture SPatial 

Inference Engine (SOMOSPIE) [45–47]. We tested the performance of two modeling meth-

ods coupled with geoinformation from terrain parameters to downscale satellite-derived 

soil moisture. Specifically, SOMOSPIE framework combines publicly available satellite-

derived soil moisture information to generate fine-grained and gap-free predictions (from 

0.25 degrees (which is about 27 km) to 1 km) using different modeling methods: a kernel-

based approach (Kernel-Weighted k-Nearest Neighbors (KKNN), and a tree-based ap-

proach (Random Forests or RF). 

We tested our framework across two contrasting regions of interest (ROIs) within the 

conterminous United States at monthly and weekly time scales in 2010 and 1 km spatial 

resolution. We found that RF was consistently the method that performed better at the 

monthly and weekly scales when compared with the reference ESA-CCI data. In contrast, 

KKNN showed a slightly higher agreement with ground-truth information as part of in-

dependent validation. We postulate that differences in model performance are influenced 

by the multivariate space of topographic features, where more heterogeneous landscapes 

(i.e., high topographic variation) may be more challenging to downscale and predict soil 



Remote Sens. 2022, 14, 3137 3 of 20 
 

 

moisture. Finally, we demonstrate that our framework is a flexible, transparent, and rep-

licable approach to downscale satellite-derived soil moisture at different temporal scales. 

2. Materials and Methods 

2.1. Regions of Interest 

Our study was conducted over two regions of interest (ROI) within the conterminous 

United States (CONUS; Figure 1a). Each region encompasses a polygon of 7.5° × 3.75° (450 

pixels with 30 columns and 15 rows in the native resolution of the ESA-CCI soil moisture 

product), and each ROI was aligned to the original edges of the ESA-CCI grid. Both areas 

were selected as they offer a contrast in climatic and topographic conditions, and anthro-

pogenic activities such as different agricultural and forestry practices.  

The West region (Figure 1b) comprises an area of 275,516 km2 with heterogeneous 

topographic features and a wide diversity of climate conditions ranging from the central 

valley of California in the West, passing through the densely forested areas in the Rocky 

Mountains, and water-limited ecosystems across California, Nevada, Utah, and Arizona.  

The Midwest region (Figure 1c) comprises an area of 283,499 km2. This region lacks 

extensive mountainous areas (except for the Ouachita Mountains) and has a large influ-

ence of agricultural activity that strongly influences the dynamics of soil moisture. This 

region was also selected because of the extensive availability of ground-truth data [48] 

from the monitoring network MESONET [49], mainly over Oklahoma. 

 

Figure 1. (a) Regions of interest (ROIs) for soil moisture downscaling; (b) West ROI; (c) Midwest 

ROI. 

2.2. Input Data 

2.2.1. Satellite-Derived Soil Moisture Data 

We use information from the ESA-CCI soil moisture product Version 6.1 (revised in 

September 2021) which is the latest release by ESA-CCI [50]. ESA-CCI product merges 

daily data derived from C-band scatterometers (e.g., ERS-½ , METOP) and data from 

multi-frequency radiometers (e.g., SMMR, SSM/I, TMI, AMSR-E, Windsat, AMSR-2, 

SMOS, SMAP, GPM, and FengYun-3B) at 0.25 degrees spatial resolution [51]. Based on 

daily soil moisture values, we calculated mean values for each pixel at the monthly and 

weekly scales for each ROI. Thus, obtaining 12 monthly layers and 52 weekly layers of 

mean soil moisture for the year 2010. 

2.2.2. Terrain Parameters 

Topographic information was derived from a digital elevation model (DEM) [52] and 

we extracted hydrologically meaningful terrain parameters for each ROI following a 

standardized approach [53]. Briefly, an initial set of 15 terrain parameters was calculated 



Remote Sens. 2022, 14, 3137 4 of 20 
 

 

using the terrain analysis module in RSAGA [54], which implements SAGA GIS [55] in R 

statistical platform [56]. The original terrain parameters were: Aspect, Analytical Hillshad-

ing, Channel Network Base Level, Convergence Index, Cross Sectional Curvature, Catchment 

Area, Elevation, Flow Accumulation, Longitudinal Curvature, Length-Slope Factor, Relative 

Slope Position, Slope, Topographic Wetness Index, Valley Depth, and Vertical Distance to Channel 

Network. To reduce model complexity, identify the best prediction parameters, and avoid 

redundancy of information, we predicted soil moisture at 1 km over CONUS using differ-

ent combinations of terrain parameters and geographic coordinates (i.e., latitude and lon-

gitude). This test was performed using a KKNN algorithm, combinations of the aforemen-

tioned predictors, and the ESA-CCI soil moisture annual mean of 2010 as the training da-

taset. Based on correlation and error values from cross-validation automatically per-

formed during model training and evaluation, we identified the combination of predictors 

that best represented soil moisture reference values. Our results identified geographic co-

ordinates (latitude and longitude) and 4 terrain parameters (elevation, aspect, slope, and topo-

graphic wetness index) as the best predictors for our study. Results of cross-validation from 

all the predictor combinations tested are included in Supplementary Material S1. 

2.2.3. Data Used for Independent Validation 

We validated downscaled soil moisture predictions using independent data from 

ground-truth soil moisture records from the North American Soil Moisture Database 

(NASMD). The NASMD integrates data from 33 observation networks, as well as 2 short-

term monitoring campaigns that put together over 1800 observation sites across the 

United States, Canada, and Mexico [29]. We reiterate that data from the NASMD was not 

used for downscaling satellite-derived soil moisture, and only used for independent vali-

dation purposes. 

We selected all the available stations for the year 2010 with daily records of soil mois-

ture in the top 5 cm of the soil layer for the two ROIs. The maximum number of available 

stations within CONUS was 743 (Figure 2a), while a maximum of 39 stations were avail-

able for the West region (Figure 2b) and a maximum of 116 were available for the Midwest 

region (Figure 2c). The number of stations available at the monthly and weekly scales 

ranged from ~26 to 39 in the West region, and from ~110 to 116 in the Midwest region 

(Supplementary Material S2). Monthly and weekly means of top 5 cm soil moisture rec-

ords were calculated for each field station, to generate the reference data to validate 

monthly and weekly downscaled soil moisture predictions.  

 

Figure 2. (a) North American Soil Moisture Database (NASMD) stations over the two ROIs available 

in 2010; (b) West ROI; and (c) Midwest ROI. 
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2.3. Data Preparation 

2.3.1. Training Matrices 

We generated a set of training matrices to obtain model parameters required by 

KKNN and RF. We selected the coordinates of the centroid of each original pixel (0.25 

degrees) from the ESA-CCI product and assigned the soil moisture values to those coor-

dinates. Then, we extracted the values of the 4 predefined terrain parameters at the finer 

resolution (1 km) that overlapped the ESA-CCI pixels centroids, and we added them to 

the training matrix. In each matrix, 70% of the available sampling points were randomly 

selected to conform the training dataset to build the models, and the 30% of remaining 

sampling points were set aside for further validation of models’ outputs. 

Our final training matrices represent 12 monthly and 52 weekly files for each ROI, 

containing up to 315 records (70% of the maximum number of pixels available for each 

ROI that included soil moisture values and 6 predictors (4 terrain parameters, and latitude 

and longitude values)). 

2.3.2. Prediction Matrices 

We generated one matrix for each ROI to predict soil moisture at 1 km spatial reso-

lution. We extracted all available records of the 4 predefined terrain parameters (predic-

tors) at 1 km and added their corresponding coordinates to the prediction matrices. We 

integrated a total of 273,840 point locations into each of the two final prediction matrices; 

this number corresponds to the extension of the two ROIs in square kilometers, encom-

passing areas of 652 km (X-axis) by 420 km (Y-axis; Figure 1). 

2.4. Downscaling Soil Moisture 

We used the modular framework of SOMOSPIE to predict soil moisture on a user-

defined temporal (e.g., daily, monthly, annual) and spatial resolution (i.e., spatial granu-

larity) to provide gap-free information within an ROI. The SOMOSPIE framework is com-

posed of three main modules that include (1) preprocessing data from: satellite-derived 

soil moisture, predictive terrain parameters in the target resolution for downscaling (e.g., 

1 km spatial resolution), and ground-truth reference data for independent validation pur-

poses; (2) model construction: definition of optimal parameters for each modeling method 

(i.e., KKNN, RF); and (3) soil moisture prediction: application of model parameters de-

fined in the previous module to predict soil moisture at the target resolution, as well as 

cross-validation and independent ground-truth validation (Figure 3). 

We implemented our framework with two modeling methods (i.e., Kernel-Weighted 

K-Nearest Neighbors (KKNN) and Random Forest (RF)) to downscale soil moisture at 1 

km over the two ROIs at monthly and weekly scales. We used the cloud-based cluster 

“Caviness” at the University of Delaware High Performance Computing (HPC) [57]. Cavi-

ness is a distributed-memory Linux cluster with 126 compute nodes representing 4536 

cores with 24.6 TiB of RAM and 200 TB of storage. 



Remote Sens. 2022, 14, 3137 6 of 20 
 

 

 

Figure 3. Framework for soil moisture prediction at 1 km spatial resolution derived from coarse 

resolution ESA-CCI values; (a) data preprocessing; (b) model construction; (c) soil moisture predic-

tion and validation. 

2.4.1. Kernel-Weighted K-Nearest Neighbors (KKNN) 

K-nearest neighbors (KKNN) in its traditional form is a regression technique that 

builds many simple models from local data [58], and is based upon decision rules that 

classify an unsampled point, based on the values of the nearest set of previously classified 

points or reference values in the sampling space [59]. This method assumes a different 

level of influence in the prediction space, where the nearest k-points to the target location 

are the ones with the most relevant influence, while the influence in the construction of 

the prediction model decreases with distance [45]. To assign distance-related relevance to 

predict soil moisture, a weighted mean of the k-nearest soil moisture ratios is calculated. 

This variant is based on the definition of kernel functions (i.e., Triangular, Epanechnikov, 

Gaussian, Optimal) that serve to find the number of neighbors (k) to be used in the pre-

diction. The number of neighbors and the optimal kernel function are automatically se-

lected through 10-fold cross validation [44,45]. 

The KKNN code used in the SOMOSPIE framework has been described previously 

[45] and has been successfully used to downscale satellite-derived soil moisture at differ-

ent spatial scales [44]. The code is based on the ‘kknn’ package [60] developed for the R-

statistical platform [56]. The definitions of optimal parameters found for each monthly 

and weekly layer in 2010, over the two ROIs, are shown in Supplementary Material S2. 

2.4.2. Random Forest (RF) 

Random Forest (RF) in the SOMOSPIE framework has been described previously [45] 

and is based on the ‘quantregForest’ package [61] developed for the R-statistical platform 

[56]. It is based on an ensemble of decision trees through a “bootstrap aggregation” pro-

cess (bagging), which is a method to generate multiple versions of a predictor and then 

uses these versions to generate an aggregated predictor that depends on the values of a 

random vector independently sampled and weighed [62,63]. To predict values at an un-

sampled location, all decision trees in the ensemble are queried and their prediction out-

puts are combined through a weighted arithmetic mean. Techniques such as RF do not 
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assume any particular geometric or functional form of the model and are suitable for sam-

pling spaces with sparse data [45]. 

The definition of optimal parameters for soil moisture prediction with RF in SO-

MOSPIE considers two main values: (1) the number of trees to grow in the ensemble of 

regression trees and (2) the number of covariates randomly selected at each level of tree 

growth. The maximum number of trees allowed was 500, while the number of covariates 

changes in relation to the number of predictors defined as input (6 predictors for this 

study: latitude, longitude, elevation, aspect, slope, and topographic wetness index). The auto-

matic variable selection is performed by ‘quantregForest’ through a cross-validation pro-

cess. The optimal parameters selected for each monthly and weekly layer of 2010 over the 

two ROIs are reported in Supplementary Material S2. 

2.5. Validation 

To test the two modeling methods (i.e., KKNN and RF), we first used cross-validation 

with reference satellite-derived soil moisture data not used in the construction of the mod-

els, and then we used independent ground-truth soil moisture from the NASMD. We re-

iterate that the NASMD data was not used to parameterize any model and was only used 

for independent validation. Predicted soil moisture values were extracted from the 12 

monthly and 52 weekly layers over the two ROIs, taking overlapping locations with the 

centroids of the ESA-CCI soil moisture reference data, and the point-locations of the 

NASMD available stations for each month and week, respectively. 

2.5.1. Cross-Validation with Reference Satellite-Derived Soil Moisture Data 

We calculated the correlation and root mean square error (RMSE) values based on 

matrices containing the predicted and reference values (from ESA-CCI data). The input 

data for this validation approach corresponds with the 30% of the sampling points set 

aside during the generation of the training matrices and were not used in the definition of 

the models’ parameters. The cross-validation data matrices contained up to 135 records, 

depending on the number of available reference points from the ESA-CCI mean values 

for each month and week. 

The values of each predicted soil moisture pixel at a finer spatial resolution (i.e., 1 

km) were compared with the reference values of satellite-derived soil moisture values at 

their original spatial resolution. The results from these analyses for each month and week 

over the two ROIs are reported in Supplementary Material S3. 

2.5.2. Independent Validation with Ground-Truth Data 

For these independent analyses, we calculated the overall correlation and RMSE be-

tween the predicted downscaled values from each method with the point-based ground-

truth data from the NASMD. The results of correlation and RMSE between fine spatial 

resolution predicted soil moisture values and the point-based ground-truth data for each 

month and week over the two ROIs are reported in Supplementary Material S3. 

2.5.3. Spatial Distribution of Prediction Outputs and Errors 

To evaluate the performance of the two methods, we compared the mean values of 

all monthly and weekly predictions (12 monthly and 52 weekly outputs) in the two ROIs. 

We generated maps showing the mean values of ESA-CCI values at 0.25 degrees of spatial 

resolution and the mean values of our 1 km predictions over the set of 30% sampling 

points set aside for testing in each monthly and weekly scale. Thus, none of the points 

used in this approach to describe the spatial distribution of error were used to define the 

models’ parameters. We calculated the absolute difference between the mean of predicted 

soil moisture and the mean of ESA-CCI values at all our monthly and weekly scales over 

all the centroid coordinates of the ESA-CCI pixels. In a similar approach for all monthly 

and weekly scales, we calculated the absolute difference between the mean predicted soil 
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moisture at 1 km and the mean values of the point-scale ground-truth records at the coor-

dinates of all available NASMD stations during our time frame. Thus, we aim to observe 

the similarities in the spatial distribution between ESA-CCI data and the outputs of the 

two methods tested, as well as the distribution of the prediction errors. 

3. Results 

In this section, we present our 1 km soil moisture prediction results and evaluate the 

performance of the two methods used. We compared the predicted soil moisture values 

with the reference ESA-CCI values, and with independent values from the NASMD. The 

final soil moisture predictions at monthly and weekly scales over the two ROIs are avail-

able at the Consortium of Universities for the Advancement of Hydrologic Science data 

repository (HydroShare; doi:10.4211/hs.96eeb0d796a64b578f24e8154c166988) [64]. 

3.1. Optimal Model Parameters for Each Method 

In the case of KKNN, we found that the automatic generation of model parameters 

defined a number of K-neighbors between 6 and 29 in the Midwest ROI for all models at 

monthly and weekly scales. Correlation ranged from 0.489 to 0.894, and RMSE from 0.03 

to 0.046. In the West ROI, the number of K-neighbors ranged from 3 to 49, with correlation 

from 0.244 to 0.785, and RMSE from 0.025 to 0.055. 

In the generation of RF models, we found that the number of covariates used as pre-

dictors in every model in the Midwest ROI ranged from two to six (out of six possible 

predefined predictors for this study). Correlation ranged from 0.537 to 0919, and RMSE 

from 0.028 to 0.043. In the West ROI, the number of covariates ranged from two to six. 

Correlation ranged from 0.413 to 0.833, and RMSE from 0.023 to 0.047.  

All individual KKNN and RF models’ parameters are included in Supplementary 

Material S2. 

3.2. Evaluation of Models’ Outputs 

To evaluate the performance of each method tested, we present a series of Taylor 

Diagrams [65] that show the similarity of our predictions with both data from the ESA-

CCI soil moisture values and independent ground-truth records from the NASMD. Taylor 

diagrams quantify the correspondence between reference observed data and predicted 

values by means of Pearson correlation coefficient, RMSE and the standard deviation. 

3.2.1. Evaluation with Reference Satellite-Derived Soil Moisture Values 

We found that RF was consistently the best method in predicting monthly soil mois-

ture when compared against the reference values from the ESA-CCI values (Figure 4). RF 

correlation and RMSE values ranged from 0.566 to 0.856, and from 0.027 to 0.037, respec-

tively, in the Midwest ROI. In the West ROI, RF correlation and RMSE values ranged from 

0.443 to 0.78, and from 0.023 to 0.056, respectively. Regardless of the ROI, values predicted 

with RF showed the highest correlation and the lowest RMSE in every month, except in 

January in the West ROI. 

Predictions with KKNN showed a consistent lower prediction performance than RF, 

with monthly correlation and RMSE values ranging from 0.508 to 0.844 and, 0.028 to 0.037, 

respectively, in the Midwest ROI. KKNN correlation and RMSE values in the West ROI 

ranged from 0.405 to 0.712 and from 0.023 to 0.054, respectively. 

Similar to monthly predictions, we report the weekly performance of the two meth-

ods tested, grouping 52 weeks into four 3-month periods (Figure 5). Like monthly predic-

tions, RF consistently showed better performance in all 3-month periods and in both ROIs. 

Correlation and RMSE values with RF ranged from 0.764 to 0.846, and 0.031 to 0.033, re-

spectively, in the Midwest ROI, and from 0.634 to 0.785, and 0.026 to 0.041 in the West 

ROI. In contrast, correlation and RMSE values with KKNN in the Midwest region ranged 
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from 0.726 to 0.823, and 0.033 to 0.036, while in the West ROI, these values ranged from 

0.555 to 0.746, and 0.028 to 0.043, respectively. 

All correlation and RMSE values shown in Figures 4 and 5 are included in Supple-

mentary Material S3. 

 

Figure 4. Taylor diagrams showing cross-validation between monthly 1 km predicted soil moisture 

and ESA-CCI reference data; (a) monthly cross-validation of the Midwest ROI; (b) monthly cross-

validation of the West ROI. 
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Figure 5. Taylor diagrams showing cross-validation between weekly 1 km predicted soil moisture 

and ESA-CCI reference data, the 52 weekly predictions are grouped in four 3-month periods; (a) 

weekly cross-validation of the Midwest ROI; (b) weekly cross-validation of the West ROI. 

3.2.2. Evaluation with Independent Ground-Truth Information 

In Figure 6, we show the results of independent validation of monthly soil moisture 

predictions with ground-truth information from the NASMD. In the Midwest ROI, a sim-

ilar correspondence between our predicted values and the reference data in all months 

was clear, except in August, where the ESA-CCI reference better corresponded with 

ground-truth records. Although the correlation and RMSE values for our two methods 

are consistently clustered in Figure 6a, RF showed a better correspondence with ground-

truth data, and it was closer to the correlation and RMSE values of the reference satellite-

derived values. A similar prediction performance was obtained for the West ROI (Figure 

6b), where RF had consistently better agreement with the ground-truth reference data. 

However, the general agreement between ground-truth data, the reference satellite de-

rived data and the models’ outputs was evidently lower in the West ROI. 

The reference satellite-derived data monthly correlation and RMSE values with the 

ground-truth data ranged from 0.331 to 0.637 and 0.054 to 0.07 in the Midwest ROI, and 

from −0.953 to 0.272, and 0.078 to 0.167 in the West ROI, respectively. Monthly RF corre-

lation and RMSE values in the Midwest ROI ranged from 0.216 to 0.55, and 0.052 to 0.073, 

while in the West ROI, these values ranged from −0.194 to 0.279, and 0.079 to 0.137, re-

spectively. KKNN consistently showed the lowest correspondence with ground-truth 

data, except in October in the West ROI. KKNN correlation and RMSE values ranged from 

0.3 to 0.603, and 0.051 to 0.069 in the Midwest ROI, and from −0.173 to 0.259, and 0.077 to 

0.147 in the West ROI.  
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Figure 6. Taylor diagrams showing validation between monthly 1 km predicted soil moisture and 

ESA-CCI values, and ground-truth data from the NASMD; (a) monthly ground-truth validation of 

the Midwest ROI; (b) monthly ground-truth validation of the West ROI. 

In the ground-truth validation of the weekly predictions (Figure 7), we found that 

the two methods showed similar correlation and RMSE values with ground truth data as 

the reference ESA-CCI in the Midwest ROI. Although there was not a clear pattern of 

better performance for either of the two methods tested, RF showed slightly better perfor-

mance for the four 3-month periods in the Midwest ROI. In the West ROI, there was a 

consistent decrease in the correspondence between ground-truth data, our predictions, 

and the ESA-CCI values, although RF still showed a better performance in three of the 

four 3-month periods. 

For weekly validation, ESA-CCI reference values exhibited the best correspondence 

with ground-truth data, with correlation and RMSE values ranging from 0.46 to 0.53, and 

0.064 to 0.07 in the Midwest ROI, and from −0.195 to 0.166, and 0.097 to 0.132 in the West 

ROI. RF correlation and RMSE values ranged from 0.445, to 0.46, and 0.062 to 0.071 in the 

Midwest ROI, and from −0.041 to 0.158, and 0.091 to 0.126 in the West ROI. KKNN corre-

lation and RMSE values, ranged from 0.464 to 0.494, and 0.06 to 0.069 in the Midwest ROI, 

and −0.077 to 0.154, and 0.09 to 0.126 in the West ROI. 

All correlation and RMSE values shown in Figures 6 and 7 are included in Supple-

mentary Material S3. 
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Figure 7. Taylor diagrams showing validation between weekly 1 km predicted soil moisture and 

ESA-CCI values, and ground-truth data from the NASMD, the 52 weekly layers are grouped in four 

3-month periods; (a) weekly ground-truth validation of the Midwest ROI; (b) weekly ground-truth 

validation of the West ROI (correlation and RMSE values in the week 1 to 13 period were consist-

ently negative and values are described in Section 3.2.2). 

3.3. Spatial Distribution of Prediction Errors 

As we display in Figure 8c,d for the Midwest ROI, the spatial patterns of soil moisture 

values exhibited a similar behavior as the reference ESA-CCI values (Figure 8b). Similar 

to the ESA-CCI, the lowest soil moisture values were distributed over the west part of the 

ROI, and highest values over the east section. Low values were also consistent in the 

south-central portion, and high values in the central-north. The absolute differences be-

tween the 30% of sampling points set aside for testing in all layers derived from ESA-CCI 

values at 0.25 degrees and their spatially correspondent predicted soil moisture values in 

all layers at 1 km using the two methods tested are shown in Figure 8e,f. Difference values 

were distributed between 0 and 0.03 for both methods, with highest values in the western 

portion of the ROI. KKNN was the method with the lowest difference values over most of 

the ROI. In Figure 8g,h, we present the absolute differences between predicted soil mois-

ture and ground-truth data. Difference values were constantly higher for the two methods 

in the Midwest ROI. Unlike the comparison between predicted soil moisture and reference 

ESA-CCI data, the performance of the two methods was similar when compared to 

ground-truth information. The lowest differences ranged between 0 and 0.04 m3 m−3, and 

the highest values were up to 0.14 m3 m−3. Although there was not a clear spatial distribu-

tion of the absolute differences, the distribution of low and high values was similar across 

the two methods. 

Figure 9 shows the spatial distribution of soil moisture predicted values and absolute 

differences with ESA-CCI values, and ground-truth data in the West ROI. Similar to ESA-

CCI soil moisture, the lowest predicted values were distributed from the south-center to 

the north-west of the ROI (Figure 9c,d). However, low soil moisture values described a 

pattern not as dry as in the ESA-CCI data (between 0.05 and 0.1 m3 m−3). The highest pre-

dicted values with both methods were consistently located in two south-east to north-

west lines, along the highest elevations of the Rocky Mountains and the central valley of 
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California, ranging from 0.18 to 0.28 m3 m−3. Absolute differences between the 30% of test 

sampling points from ESA-CCI values at 0.25 degrees and their spatially correspondent 

prediction output values in all layers at 1 km in the West ROI can be observed in Figure 

9e,f. Overall, the differences were consistently higher in the West ROI than in the Midwest 

ROI. The lowest difference values in the West ROI ranged between 0 and 0.045 m3 m−3, 

and highest values reached an absolute difference of 0.13 m3 m−3. Unlike the absolute dif-

ferences shown in the Midwest ROI, in the West ROI, there was not a clear pattern in the 

spatial distribution of errors between ESCA-CCI and predicted values with our two meth-

ods. Absolute differences between predicted soil moisture and ground-truth data were 

consistently higher, regardless of the method used (Figure 9g,h). The distribution of the 

absolute differences across the locations with ground-truth data was similar for the two 

methods, although RF generally showed lower differences than KKNN. In contrast to the 

Midwest ROI, the absolute differences between predicted soil moisture and ground-truth 

information were significantly higher, ranging from 0.015 up to 0.21 m3 m−3. 

 

Figure 8. (a) Midwest ROI and distribution of NASMD stations throughout 2010; (b) mean soil mois-

ture values of 12 monthly and 52 weekly layers based on the reference ESA-CCI values at 0.25 de-

grees of spatial resolution; (c,d) mean values of 1 km soil moisture predictions with KKNN and RF; 

(e,f) spatial distribution of mean absolute differences between ESA-CCI sampling points at 0.25 de-

grees and their spatially correspondent predicted soil moisture values in all layers at 1 km with 

KKNN and RF; (g,h) spatial distribution of mean absolute differences between all monthly and 

weekly soil moisture values from NASMD and predicted values at 1 km using the two methods 

tested. 
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Figure 9. (a) West ROI and distribution of NASMD stations throughout 2010; (b) mean soil moisture 

values of 12 monthly and 52 weekly layers based on the reference ESA-CCI values at 0.25 degrees 

of spatial resolution; (c,d) mean values of 1 km soil moisture predictions with KKNN and RF; (e,f) 

spatial distribution of mean absolute differences between ESA-CCI sampling points at 0.25 degrees 

and their spatially correspondent predicted soil moisture values in all layers at 1 km with KKNN 

and RF; (g,h) spatial distribution of mean absolute differences between all monthly and weekly soil 

moisture values from NASMD and predicted values at 1 km using the two methods tested. 

4. Discussion 

Our work shows the performance of two methods within the SOMOSPIE framework 

for downscaling satellite-derived soil moisture values. We used two ROIs with different 

topographic and climatic characteristics to compare the performance of the framework. 

Given the limitations in obtaining field-based measurements of soil moisture over large 

areas, flexible and adaptable frameworks are alternatives to obtain spatially and tempo-

rally detailed information. The SOMOSPIE framework offers an alternative approach to 

downscale satellite-derived soil moisture and to traditional predictions based on simple 

extrapolation and interpolation using information from monitoring networks [14,66,67]. 

Our framework demonstrates that it is possible to obtain soil moisture across differ-

ent spatial and temporal scales, in relation to the resolution of the predictors and the tem-

poral availability of the input satellite data. In our work, we used 1 km terrain parameters 
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as predictors, but this framework could be extended to use topographic information at 

different spatial resolutions as input for further predictions. It is known that topography 

has different levels of influence on the spatial distribution of soil moisture [39], as previous 

studies have explored the impact of terrain characteristics at watershed and regional 

scales [40,42,44,45,68], and here, we showed that terrain parameters are suitable predictors 

at the regional scale. Although other environmental covariates, such as soil texture, sur-

face temperature, and vegetation characteristics, are known to be correlated with the spa-

tial and temporal distribution of soil moisture [3,39,40,69–72], these covariates did not of-

fer significant advantages in our approach. First, soil texture is highly dependent on site-

specific conditions [69] rather than our regional approach, while surface temperature and 

vegetation features might introduce bias that would hinder the effect of using solely ter-

rain parameters as downscaling predictors [44]. 

We identified that latitude and longitude values, along with Aspect, Elevation, and 

Topographic Wetness Index, were the most suitable parameters to predict soil moisture 

at 1 km when using the two proposed methods. This aligns with previous studies that 

identified similar terrain parameters as relevant factors to derive soil moisture based on 

their relation with lateral distribution of water in the surface soil layer [40,43,73–76]. In 

general, we obtained better results with both algorithms in the Midwest ROI, where topo-

graphic characteristics are more homogenous than in the West ROI, with more complex 

terrain. Additionally, we saw similar patterns of soil moisture spatial distribution across 

coarse and fine scales, supporting previous work in downscaling satellite-derived soil 

moisture that found that spatial variability agrees with landscape heterogeneity [77]. We 

highlight that there is increasing evidence on how terrain parameters are useful for mod-

eling soil moisture [39,74], but other environmental factors, such as precipitation, temper-

ature, land cover, and soil properties [69,70,78], should be considered across different sce-

narios. 

The SOMOSPIE framework takes advantage of daily values from the ESA-CCI soil 

moisture product, being able to predict soil moisture at different temporal scales (e.g., 

monthly, weekly). The comparison of predicted soil moisture across different periods 

helps to identify any temporal biases or patterns related to different environmental con-

ditions throughout the year and identify emerging relationships with environmental fac-

tors at different points during wet-up and dry-down cycles [79,80]. In autumn and spring, 

topography becomes a more relevant indicator, whereas its importance decreases during 

summer and winter due to the influence of evapotranspiration, as well as extensive satu-

ration and porosity control, respectively [74]. This might support the lower prediction 

performance observed during January and February in the West ROI, where topography 

plays a more important role in the spatial variability. Additionally, several studies have 

shown that more homogenous patterns of satellite-derived soil moisture occur under dry 

conditions, leading to an improved accuracy in satellite retrievals [81,82]. In this regard, 

the higher prediction accuracy we observed in the Midwest ROI might be linked to a lower 

retrieval error from ESA-CCI. This contrasts with the prediction accuracy in the West ROI, 

which might be impacted by a higher retrieval error of ESA-CCI, linked to more hetero-

geneous environmental conditions. 

In general, we found that RF performed better at the monthly and weekly scales 

across both ROIs. This could be explained because this technique does not assume any 

particular geometric or functional form of the model. Furthermore, it is suitable in sam-

pling spaces with sparse data [45], such as satellite-derived soil moisture in a coarse reso-

lution, where the distance between pixels’ centroids yields substantial separation between 

data points. In contrast, although KKNN showed a lower prediction performance than 

RF, this technique still offers advantages for soil moisture downscaling in other regions 

with high density of sample points based on its ability to build many simple models when 

more data are available [59]. 

We observed that the two methods tested showed a similar correspondence to 

ground-truth information as the original ESA-CCI values in most of the monthly and 
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weekly periods in our experiments. However, KKNN predictions showed a slightly better 

correspondence with ground-truth information in comparison with RF (values reporting 

the absolute correlation and RMSE differences between ground-truth information and 

ESA-CCI, as well as ground-truth and KKNN and RF outputs, are presented in Supple-

mentary Materials S3). Differences in correlation and RMSE values between the two ROIs 

might be related to the sparse and uneven spatial distribution of available ground-truth 

stations in the West region (Figure 2). Previous studies found that the optimal number of 

ground-truth points for validating satellite-derived soil moisture products ranges from 10 

to 20 per pixel [75], which is far from the desirable distribution of field stations available 

in the West ROI. 

Although our work aimed at identifying the effect of terrain parameters in downscal-

ing satellite-derived soil moisture information, other parameters, such as surface temper-

ature, vegetation indexes, surface albedo, land cover, and rainfall, have been widely con-

sidered in previous research [3,39,40,71,72,75,83,84] and represent an opportunity to eval-

uate the flexibility of the SOMOSPIE framework. 

5. Conclusions 

Based on our analysis, we conclude that there is no “best” method that can be defined 

for every place in the world, as different methods perform differently in each ROI. As has 

been acknowledged in previous research, different downscaling methods have their own 

applicability under certain purposes, closely linked to differences in surface and climate 

conditions, and every method must be calibrated before its implementation elsewhere 

[39]. Thus, we believe that SOMOSPIE is a flexible framework that should include the 

methods tested in our work but is able to expand to incorporate additional methods to be 

tested in other regions around the world. 

Despite the advantages of modeling techniques, such as KKNN and RF, in predicting 

soil moisture at a fine spatial resolution, it is also important to consider the computational 

resources needed when selecting these methods. When the ROI does not represent a large 

number of locations where soil moisture will be predicted, the two methods can be ap-

plied with no major challenges, but when the sampling space surpasses hundreds of thou-

sands of locations, the selection of the modeling method and the use of computational 

resources become more important. The understanding of suitable cyberinfrastructure to 

work with more extensive regions and soil moisture predictions at finer spatial scales (e.g., 

100 m, 30 m), along with the implementation of additional modeling methods in SO-

MOSPIE, is still being addressed through current efforts. 

Our research contributes an alternative approach for downscaling satellite-derived 

soil moisture using a modular spatial inference framework. Here, we tested two methods, 

but the framework is flexible so multiple algorithms can be included [58,85]. Additional 

efforts to improve the SOMOSPIE framework include developing a containerized envi-

ronment that will facilitate the deployment and management of the entire workflow in 

High-Performance Computing (HPC) or cloud environments [86]. 

Supplementary Materials: The following are available online at https://www.mdpi.com/arti-

cle/10.3390/rs14133137/s1, Supplementary Materials S1: Selection of most relevant terrain parame-

ters used as predictors to estimate soil moisture at 1 km spatial resolution over the conterminous 

United States. Refs. [44,45,52,54–60,87] are cited in the Supplementary Materials S1. Supplementary 

Materials S2: Number of North American Soil Moisture Database available stations in 2010 over the 

two regions of interest. Supplementary Materials S3: Cross-validation and ground-truth validation 

tables of monthly and weekly soil moisture predictions. 
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