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Historically inconsistent productivity and
respiration fluxes in the global terrestrial
carbon cycle
Jinshi Jian 1,2,3,4✉, Vanessa Bailey 5, Kalyn Dorheim 2, Alexandra G. Konings 6, Dalei Hao 7,

Alexey N. Shiklomanov8, Abigail Snyder 2, Meredith Steele9, Munemasa Teramoto10,12, Rodrigo Vargas 11 &

Ben Bond-Lamberty 2

The terrestrial carbon cycle is a major source of uncertainty in climate projections. Its

dominant fluxes, gross primary productivity (GPP), and respiration (in particular soil

respiration, RS), are typically estimated from independent satellite-driven models and

upscaled in situ measurements, respectively. We combine carbon-cycle flux estimates and

partitioning coefficients to show that historical estimates of global GPP and RS are irre-

concilable. When we estimate GPP based on RS measurements and some assumptions about

RS:GPP ratios, we found the resulted global GPP values (bootstrap mean 149þ29
�23 Pg C yr−1)

are significantly higher than most GPP estimates reported in the literature (113þ18
�18 Pg C yr−1).

Similarly, historical GPP estimates imply a soil respiration flux (RsGPP, bootstrap mean of

68þ10
�8 Pg C yr−1) statistically inconsistent with most published RS values (87þ9

�8 Pg C yr−1),

although recent, higher, GPP estimates are narrowing this gap. Furthermore, global RS:GPP

ratios are inconsistent with spatial averages of this ratio calculated from individual sites as

well as CMIP6 model results. This discrepancy has implications for our understanding of

carbon turnover times and the terrestrial sensitivity to climate change. Future efforts should

reconcile the discrepancies associated with calculations for GPP and Rs to improve estimates

of the global carbon budget.
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The terrestrial carbon sink removes about a quarter of
anthropogenic CO2 emissions1 but is highly variable in
time and space depending on climate. The magnitude of

gross primary productivity (GPP) is therefore one of the largest
sources of uncertainty in predicting future trajectories of global
temperature2. For example, GPP is a first-order control on plant
turnover times, a dominant uncertainty term in the terrestrial
carbon sink3. There has been substantial progress in quantifying
and constraining GPP and other major global carbon fluxes,
typically using models driven by satellite remote sensing4–7 and
upscaled in situ ecosystem-scale flux measurements8,9. Recent
syntheses7,10 suggest that global GPP is 120–125 Pg C yr−1, and
such estimates from the literature (GPPlit) have been incorpo-
rated into synthesis efforts such as the Global Carbon Project1 as
well as model benchmarking frameworks11. The magnitude of
terrestrial GPP thus has implications for the dynamics and resi-
lience of the terrestrial C sink in the face of global environmental
change12,13.

Global GPP is roughly balanced by ecosystem-to-atmosphere
respiratory fluxes. The difference between these two major fluxes,
minus smaller fluxes such as fire and lateral (e.g., dissolved, parti-
culate) organic carbon losses, comprises the terrestrial C balance1.
Terrestrial ecosystem respiration is dominated by the soil-to-
atmosphere CO2 flux (soil respiration or RS), the combined flux
generated by microbial and plant root respiration. Respiration is
rarely estimated, even indirectly, from satellite observations, and thus
global RS is generally derived by upscaling in situ measurements14–16.
Published RS estimates from the literature (Rslit) range from 68 to
109 Pg C yr−1 (Supplementary Table 1), with a central range of
85–90 Pg C yr−1 17. Because GPP and RS are physiologically linked,
the biophysical balance between GPP and RS could be used as a
constraint on the global carbon budget. To date, however, no attempt
has been made to quantify how consistent these independent GPP
and RS estimates are at the global scale. This study compares these
two large carbon fluxes and the results emphasize the importance of
cross-comparing datasets and models to understand terrestrial car-
bon cycling as well as future climate change.

Results and discussion
Inconsistency between photosynthesis and soil respiration. We
partitioned global Rslit estimates into microbial and root
respiration based on all available (published) partitioning values,
and calculated distributions of the resulting implied GPP (GPPRs)
using literature estimates of net primary production (NPP) and
root-to-shoot respiration ratios (Supplementary Figs. 1–7). Using
a nonparametric bootstrap, we generated 10,000 such GPPRs
estimates based on random draws from Rslit, NPP, the parti-
tioning parameters (see Methods and Supplementary Figs. 5,
8–10 and Supplementary Tables 1, 2), and the corresponding
uncertainties. The resulting GPPRs distribution was 149þ29

�23 Pg C
yr−1 (mean ± 95% confidence interval; Fig. 1), which contrasts
with the GPPlit average of 113

þ18
�18 Pg C yr−1. The intersection of

these two distributions is 127.6 Pg C yr−1 (Fig. 1), a point at the
95.2% quantile of GPPlit and the 9.8% quantile of GPPRs. The null
hypothesis (that these distributions are from the same underlying
population) is highly unlikely: t49=−12.68; P < 0.001. What
characterizes the small number of estimates consistent with both
GPPlit and GPPRs? Bootstrap draws in the overlap region were
characterized by low root contribution to RS (averaging 34%
below the intersection point, versus 42% above it) and high root
contribution to autotrophic respiration (45 vs. 38%, respectively;
Supplementary Fig. 11), resulting in low GPPRs values.

We performed a comparative analysis of published data to
derive RS from GPP, partitioning GPPlit into NPP and

belowground autotrophic respiration components, while account-
ing for other carbon loss pathways (see Methods). The resulting
implied RsGPP (i.e., the global RS as implied by GPPlit, 68

þ10
�8 Pg C

yr−1; Fig. 1) is highly unlikely to be consistent with Rslit values
(87þ9

�8 Pg C yr−1; see Methods). Only 1.8% of the Rslit distribution
in Fig. 1 is below the intersection point of 78.2 Pg C yr−1, and
only 2.5% of the RsGPP distribution is above it. This is strong
evidence against the null hypothesis that these curves are
mutually consistent (i.e., that they represent the same underlying
population, t23=−11.59; P < 0.001). The overlap between these
distributions is characterized by high GPPlit (averaging 125.6 Pg
C yr−1, versus 112.5 Pg C yr−1 below the intersection point), high
NPP, and a high contribution of roots to overall autotrophic
respiration (46 and 39% for above and below the intersection
point, respectively; supplementary Fig. 12). The cumulative result
of these values produced the small percentage of RsGPP draws
consistent with Rslit.

We identified sources of variability in Fig. 1 using a variance
decomposition procedure to explore which parameters were both
uncertain and influential in the distribution of GPPRs and RsGPP
(Table 1). Variability in GPPRs was dominated (63% of total
variance) by uncertainties in the ratio of root respiration to total
autotrophic respiration, for which field measurements are limited.
Other influential variables were variance in global Rslit (12%) and
the root contribution to total RS of a desert, wetland, and savanna
(other, 7%). For bootstrapped RsGPP, uncertainty in GPPlit was
the largest (35%) contributor to variability, with root contribution
to total RA of cropland, savanna, grassland, and wetland (other,
32%) and global NPP (28%) also large. No other factor
contributed more than 2% for variability in GPPRs.

We also employed a second, complementary approach, one
independent of any assumptions about carbon partitioning. In
this step, we compared site-level measurements of RS and GPP
from a global soil respiration database (SRDB18) and
FLUXNET19. These were compared against the same global
GPPlit and Rslit estimates shown in Fig. 1. The site-level RS:GPP
ratios (i.e., the values directly reported by investigators and
compiled in SRDB) averaged 0.56 ± 0.26 (Fig. 2), very similar to
the RS:GPP ratios from combining SRDB and FLUXNET data
(0.54 ± 0.85). These were both significantly (P < 0.001 based on a
nonparametric Wilcoxon test) lower than the Rslit:GPPlit ratios of
0.72 ± 0.11.

We found no evidence that this difference was driven by a lack of
spatial representativeness in the global distribution of SRDB data.
For example, the arithmetic mean of the RS:GPP ratio in the SRDB is
0.56, and 0.57 when weighted by vegetation areas globally. We
highlight that this does not mean that the difference cannot be
influenced by sampling errors related to the sparsity of the
underlying measurements. Figure 2 also shows RS:GPP and RH:GPP
values from models in the Coupled Model Intercomparison Project
phase 6 (CMIP6)20 at both local (grid cell site-level) and global
scales. These models are global in extent, similar to satellite data
products, but their explicit physiological processes mean that their
RS outputs are constrained by GPP. In the CMIP6 models examined,
RS:GPP values were 0.609 ± 0.11 at both the global scale (i.e., the
ratio of the models’ global fluxes) and the scale of individual grid cell
site-level, which were significantly lower (W= 375,206, P < 0.001)
than global Rslit:GPPlit values shown in Fig. 2.

The RH:GPP ratios from CMIP6 models do not significantly
differ from the global RH:GPP ratio from the literature (P= 0.93,
Fig. 2d), indicating that the low RS:GPP ratio of the CMIP6
models (Fig. 2b) is likely due to too-low Rroot values, eitther
because the fluxes are incorrectly parameterized, or because the
allocation of carbon across different pools is incorrectly
represented. Carbon allocation is a notable weak link in current
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ESMs due to both a lack of empirical observations and
uncertainty over the underlying physiological mechanisms, and
the RS:GPP ratio could be a valuable model benchmark to
constrain root allocation. An even stronger approach, in our view,
is to use data assimilation in model benchmarking efforts11 to
estimate multiple C and biogeochemical fluxes simultaneously, so
that they are constrained by each other.

These independent lines of the analysis demonstrate that GPPlit
and Rslit, the historical global flux estimates reported in the
published scientific literature, are almost certainly inconsistent
with each other. One possible interpretation of this problem is
that many published global GPP estimates are biased low. If the
mean of the GPPRs distribution (149 Pg C yr−1) in Fig. 1 is the
actual global flux, for example, that would be close to that implied
by atmospheric 18O:16O ratios of CO2, which suggest that a global
GPP of 150–175 Pg C yr−1 is needed to explain rapid CO2 cycling
times21. A similar conclusion was reached in recent studies using
novel methods such as O2:CO2 ratios associated with the land
carbon exchange22 as well as GPP derived using solar-induced
fluorescence (SIF) data assimilation5.

In an effort to derive new and independent estimates of RS and
GPP, we used RS data from a recently updated global daily RS

database (DGRsD) to parameterize Random Forest (RF) models
for each month, and estimated global monthly RS at a spatial
resolution of 0.1° (Supplementary Figs. 13, 14). Such daily data
can provide more robust estimates than do annual numbers used
until now to estimate global-scale RS

23. The resulting global
annual RS was 93 Pg C yr−1, with a corresponding GPPRs of
157 Pg C yr−1 (Fig. 1), close to the mean Rslit (87

þ9
�8 Pg C yr−1)

and GPPRs (149
þ29
�23 Pg C yr−1). This also suggests that higher

GPP is a possible explanation for any discrepancy between GPPlit
and Rslit, but it should be noted that DGRsD is not independent
of SRDB, and therefore more evidence is needed to ensure there
are no systematic biases in Rslit.

Possibilities to close the gap. A number of factors might produce
too-low global GPPlit estimates (Table 2). We found that purely
remote-sensing derived GPP values, in particular from MODIS,
tended to be smaller than estimates from site-level upscaling or a
mixture of remote sensing and site-based measurements (Sup-
plementary Fig. 5), consistent with recent work on the uncer-
tainties in GPP estimation7,12. Note however that if GPPlit groups
are weighted equally (i.e., aggregated into six different groups
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Fig. 1 Distribution and comparison of annual global soil respiration (RS) and gross primary productivity (GPP). a Distributions of global gross primary
productivity (GPPlit and GPPRs); b Joint distribution of annual global soil respiration (RS) and gross primary productivity (GPP); c Distribution of global soil
respiration (Rslit and RsGPP) estimates. Two distributions are shown: literature-reported GPP (GPPlit) versus GPP implied by those RS estimates (GPPRs); or
literature-reported RS (Rslit) versus RS implied by those GPP estimates (RsGPP); Distributions are based on 10,000 random draws of the underlying
estimates from published literature (summarized in supplementary Fig. 8). The red arrow represents from GPPlit to calculate RsGPP, the light-blue arrow
represents from Rslit to calculate GPPRs, and the blue dots and line represent RS from the random forest model developed in this study and based on that to
calculate the GPPRs. The arrows and direction corresponding to the arrows in supplementary Fig. 1.
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before bootstrap resampling), the bootstrapped results (GPPlit-
group) are higher and closer to the GPPRs (Supplementary Fig. 5).
This suggests that older remote sensing approaches may under-
estimate sub-pixel spatial heterogeneity, and do not fully account
for understory production24 or belowground C allocation25.
Second, products such as FLUXCOM are produced from eddy
covariance measurements that are themselves spatially biased26.
Furthermore, these measurements do not account for all carbon
loss pathways or long-term CO2 fertilization effects9, and prob-
ably underestimate GPP in the highly-uncertain tropics9,27, as
well as in managed and fertilized croplands28 where there are
limited measurements to parameterize FLUXCOM. Finally, there
are substantial uncertainties and mismatches in the algorithms
that partition towers’ net ecosystem exchange into GPP and
respiration (Supplementary Table 3)29, and also mismatches
between these respiration estimates with direct measurements of
RS (Table 2 and Supplementary Table 3).

Conversely, it is possible that Rslit estimates are biased
consistently high (Table 2). One important factor may be that
RS data are less diverse than those of GPP, with almost all Rslit
ultimately deriving from a large but single global database of
thousands of small-scale studies using generally similar
methods18. This database is based on published data of annual
fluxes, most of which are extrapolated (to an annual flux) from
sporadic daytime measurements made at widely varying intervals,
which might introduce bias30. Nevertheless, when additional
newly published daily time scale in situ measurements were
included to parameterize the RF models, global RS was predicted
to be 93 Pg C yr−1, very close to Rslit (Fig. 1). Finally, the local-
and/or large-scale models used to upscale measured RS

temporally and spatially may not accurately represent soil
moisture responses (e.g., due to hysteresis effects) because of its
confounding effect with temperature31.

A common potential problem affecting large-scale estimates of
both GPP and RS concerns spatial coverage and representative-
ness of the terrestrial land surface and climate space26. GPP and

RS measurements have differing tradeoffs in this regard. The
former is characterized by a spatially complete and large
measurement domain (hundreds of m2 to km2, depending on
the eddy covariance tower or pixel), but also nontrivial
measurement uncertainties (e.g., the algorithms used to calculate
GPP from the measured net flux). By contrast, RS is upscaled
from spatially small (~1 m2) but locally accurate chamber
measurements dispersed in time that are, however, with better
global coverage. Sites in both FLUXNET and SRDB are biased
(Supplementary Fig. 6) towards the mid-latitudes of the northern
hemisphere32,33. Both global GPP and RS are thought to be
dominated by fluxes from highly-productive tropical forests,
where eddy covariance towers are scarce and measurements,
particularly uncertain26,34. Many of these factors could in theory
produce systematic biases in the measurement and scaling of both
GPP and RS

9,35.
In addition, estimates of GPPlit and Rslit have varied among

studies (see Supplementary Fig. 8 and refs. 15,36), reflecting
methodological and technological differences, but uncertainty in
these estimates have remained high (Supplementary Tables 1, 3);
see also ref. 37. We highlight that more recent GPP estimates have
tended towards higher estimates but still with high uncertainty.
There is also a temporal disparity when comparing literature
estimates: while GPPlit and Rslit cover a similar period overall
(1980–2020), most GPPlit values are centered between 2000 and
2010, but a majority of Rslit occurs between 1985 and 1995. If
GPPlit and Rslit are weighted equally by time (i.e., aggregated by
the same breakpoints before bootstrap resampling, Supplemen-
tary Fig. 8), bootstrapped GPPlit-agg and Rslit-agg are closer to
GPPRs and RsGPP (by ~10 Pg C yr−1, Supplementary Fig. 8),
although significant disparities remain. Furthermore, when
considering the temporal coverage and changing methods for
GPP, we found that the gaps between carbon-cycle flux collected
from the literature (GPPlit and Rslit) and the results implied by the
other fluxes (GPPRs and RsGPP) decreases, but still significantly
differed from each other (P < 0.01, Supplementary Fig. 9).

Perspective view. How could we address these discrepancies and
close the terrestrial C budget once and for all? The distribution of
our GPPRs and RsGPP results is driven by a few key variables
(Tables 1, 2), some of which are relatively rarely measured. These
include the ratio of root respiration to total autotrophic
respiration38; the ratio of root respiration to total soil respiration,
and the ratio of autotrophic respiration to GPP; those data came
from sites covering a similar range compared with global GPP,
but lack measurements for regions with low photosynthesis
(Supplementary Fig. 7). Acquiring (via field measurements or
other approaches) additional constraints on these ratios may be a
particularly fruitful way to resolve the inconsistencies identified in
this study. For example, increasing numbers of studies have
separated RS into its autotrophic and heterotrophic components
in the last decade, enabling large-scale heterotrophic respiration
synthesis efforts upscaling global estimates16. Recent studies have
shown that RS are relatively less measured in low-productivity
regions, arctic regions, and Tibetan Plateau, and that this uneven
spatial distribution of data may create large uncertainties when
scaling up and estimating global RS

33,39, inferring GPP from Rslit
and inferring RS from GPPlit (Table 1) also show that Rroot:RS and
Rroot:RA measurements from the desert, wetland, cropland, and
savanna are key variables to close the gap between productivity
and respiration fluxes in the global terrestrial carbon cycle. In
addition, arctic regions and the Tibetan Plateau store a large
amount of organic matter and are experiencing fast climate
change. In the future, increasing field measurements of Rroot:RS,

Table 1 Variance decomposition for the calculation of gross
primary productivity (GPP) from soil respiration (RS)
reported in the literature (Rslit), and calculation of RS from
literature GPP (GPPlit).

Inferring GPP from RS reported in
the literature (Rslit, Fig. 1 and
Supplementary Fig. 1)

Inferring RS from GPP reported in
the literature (GPPlit, Fig. 1 and
Supplementary Fig. 1)

Parameter Variance (%) Parameter Variance (%)

Rroot:RA (other) 63.0 GPPlit 34.8
Rslit 12.2 Rroot:RA (other) 31.6
Rroot:RS (other) 7.0 NPP 27.9
Rroot:RS (GRA) 6.0 RA:GPP (other) 1.8
NPP 4.0 Cfire 1.5
Rroot:RA (GRA) 2.6 Rroot:RA (EF) 1.0
Rroot:RS (EF) 2.0 RA:GPP (GRA) 0.7
Rroot:RS (SHR) 1.7 Csink 0.5
Rroot:RA (EF) 1.3 Cherbivore 0.3
Rroot:RS (MF) 0.3 DOC 0.2

Columns include parameter names (parameters were fixed, one by one, to the overall mean)
and percentage of total variance explained; e.g., NPP was responsible for 27.9% of the total
variance when inferring RS from GPP. See Methods and Supplementary Fig. 1 for details on each
computational chain. Parameters include the ratio of root respiration to total autotrophic
respiration (Rroot:RA), net primary production (NPP), the ratio of root respiration to total soil
surface respiration (Rroot:RS), the ratio of autotrophic respiration to GPP (RA:GPP), carbon lost to
fire (Cfire), carbon consumed by herbivore (Cherbivore), and carbon lost via dissolved organic
transport (DOC). Many of these parameters are specific to global vegetation types: grasslands
(GRA), evergreen forests (EF), shrublands (SHR), mixed forests (MF), and others (e.g.,
cropland, desert, wetland, and savanna).
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Rroot:RA, and RA:GPP, especially in low-productivity regions,
arctic regions, and Tibetan Plateau is important to close the
terrestrial carbon budget.

Here, we show large discrepancies between published estimates
of global GPP and RS, producing uncertainties that hamper our
capacity to close the global C budget. Despite substantial efforts to
understand carbon-climate feedbacks2,35 in the last decades,
changes to carbon uptake rates in response to climate change
remain uncertain. Importantly, more recent GPP estimation
methods—in particular, moving from MODIS-derived informa-
tion to alternative measurements of plant photosynthetic activity
(i.e., SIF)—seem to be closing the gap between our estimates of
these two dominant terrestrial carbon fluxes. This is crucial, as,
without accurate estimates of the largest terrestrial C fluxes, it will
be impossible to correctly determine the land carbon sink and its

variability. Resolving the inconsistency between global GPP and
RS is a necessary precondition for understanding the future of the
global carbon cycle, and thus the possible future global climate
change.

Methods
Carbon cycle terms and consistency. This study explored the consistency of
global gross primary productivity (GPP) and soil respiration (RS) estimates in the
global carbon (C) cycle. Terrestrial GPP is the photosynthetic gain of C by plants;
soil respiration, the soil-to-atmosphere CO2 flux, the sum of root respiration and
heterotrophic respiration as measured at the soil surface, and represents carbon
fixed by plants at some point in the past. While GPP and RS may diverge sig-
nificantly at local scales and for short time periods, they should however be coupled
to a degree consistent with our understanding of the C cycle40. Plant autotrophic
respiration (including leaf and stem respiration, Rshoot, and root respiration, Rroot)
consumes part of GPP, and the remainder is termed net primary productivity
(NPP). Parts of NPP are consumed by heterotrophs (RH) and herbivores (Cherb),
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Fig. 2 Observations, estimates, and model results of the ratio of soil respiration (RS) or heterotrophic respiration (RH) to gross primary productivity
(GPP), at different spatial scales and from different sources. a Observations, estimates, and model results of the ratio of RS to GPP at grid cell site-level;
b Observations, estimates, and model results of the ratio of RS to GPP at a global scale; c Observations, estimates, and model results of the ratio of RH to
GPP at grid cell site-level; d Observations, estimates, and model results of the ratio of RH to GPP at a global scale. Observational site-level data are from the
global Soil Respiration Database (SRDB) and FLUXNET data (see Methods). The ratio of global RS and RH to global GPP is shown in red (and emphasized by
the horizontal dashed lines), while results from the Coupled Model Intercomparison Project Phase 6 (CMIP6) at both the local grid cell site-level (values
were extracted at coordinates corresponding to specific SRBD and FLUXNET sites) and global scale are shown in blue. Note that the odd distribution of the
former results from the diversity of model ensemble realization used. Each point grouping is arranged distributionally, with overlaid box-and-whisker plots
summarizing the mean, 25 and 75% quantiles, and extreme values. There are 16 models from CMIP6 with RH data; RS from CMIP6 models was calculated
based on RH and Rroot:RS ratio using a bootstrap approach.
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burned in fires (Cfire), exported as dissolved organic carbon (DOC), or returned to
the atmosphere by plants’ biogenic volatile organic compound emissions (BVOC).
The remainder comprises long-term carbon storage–the terrestrial carbon sink
(Csink). Theoretically, if we know how GPP is partitioned at each of these steps, we
can produce an estimate of the RS implied by a GPP value (here termed RsGPP) at
site or global scales; a similar process can be used to derive GPP from RS.

Data sources. Global RS and GPP were collected from published literature. We
collected 23 global RS estimates (Supplementary Table 1) from published articles,
the majority of which upscaled site RS measurements based on a global database41.
Approximately 100 scientific manuscripts estimated global GPP, and we used the
following criteria to determine whether the GPP estimate should be included: (1)
the GPP year (or middle year if GPP was averaged across a period, Supplementary
Table 2) was after 1980; (2) GPP was estimated from satellite remote sensing
products or upscaled from global flux data (as opposed to process-based modeling).
With those criteria, 49 GPP estimates from published articles were used in this
study (Supplementary Table 2).

Our primary source of global NPP estimates was a literature survey42 that
compiled 251 global NPP estimates. We noticed that there are several extreme NPP
values within the dataset, we thus detected outliers using R, whatever an NPP
estimate above 75% quantile+ 1.5 interquartile range or below 25% quantile—1.5
interquartile range were considered as outliers. After outliers were removed, total
237 global NPP estimates were used in this study (Supplementary Fig. 1), similar to
GPP. Cherb, Cfire, Csink, DOC, and BVOC emissions were also collected from
published literature (Supplementary Table 4). Ratios of root respiration to
autotrophic respiration (Rroot:RA), autotrophic respiration to GPP (RA:GPP), and
root respiration to total soil surface respiration (Rroot:RS) were gathered from values
in the global soil respiration database (SRDB18). Additional Rroot:RA ratio data were
collected from a literature search (Supplementary Table 5). We used the ISI Web of
Science for all literature searches.

Site-level data. A number of site-specific data were used (the results of which appear
in Fig. 1). The RS:GPP ratio was computed based on observational data reported in
the SRDB. To broaden the sources of available data for this analysis, we also used the
FLUXNET-SRDB data combination from ref. 43. Briefly, Tier 1 FLUXNET2015 data
were downloaded 30 January 2017 from http://fluxnet.fluxdata.org/data/fluxnet2015-
dataset/ and filtered for quality (NEE_VUT_REF_QC≥ 0.5). FLUXNET GPP was
linked to an SRDB RS measurement if both measurements occurred within 5 km, in
the same vegetation type, and in the same year. We realized that if a land conversion
occurred in the last decades, RS will not be in equilibrium with GPP making the
Rs:GPP ratio incorrect, however, we believe this do not introduce an important bias
because (1) usually RS and GPP are reported from the same study in SRDB, and thus
land use and measurement year are the same; and (2) RS:GPP ratio from SRDB are
similar as that from FLUXNET (Fig. 2). This part of the analysis used eddy covariance
data acquired and shared by the FLUXNET community, including these networks:
AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont,
ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN,
TCOS-Siberia, and USCCC.

CMIP6 data processing. Monthly historical GPP, heterotrophic respiration (RH),
and autotrophic respiration (RA) outputs were obtained for the 16 models (104
model × ensemble combinations) currently available under the Coupled Model
Intercomparison Project, version 6 (CMIP6)20, from the Earth System Grid Fed-
eration archive (https://esgf.llnl.gov/, accessed February 23, 2020). But there are
only two models have root respiration, therefore, we estimated root respiration of
all CMIP6 models based on RA and Rroot:RA ratio (Supplementary Fig. 3). To
calculate the annual RS and RH to GPP ratio, monthly outputs were processed using
CDO 1.9.844 and R to obtain a global annual time series of C flux, weighted by land

area and the number of days in each month. This mean flux rate was converted to a
total global flux by multiplying by the total land area and the number of seconds in
a year, calculating RS as the sum of heterotrophic respiration and root respiration.
To be consistent with the SRBD and FLUXNET observations, only data from those
1043 FLUXNET sites (Fig. 2) were extracted, the mean CMIP6 RH and RS to GPP
ratio was calculated using flux data from 2005 to 2014.

For the ecosystem-scale CMIP6 analysis, we used monthly GPP, heterotrophic
respiration, and root respiration outputs from 16 models. These were extracted at
latitude and longitude coordinates corresponding to specific SRBD and FLUXNET
sites. The total annual fluxes (weighted by days in a month) were used to calculate
the average RS to GPP ratio from 2005 to 2014 at each coordinate. The final results
consist of ratios at 362 latitude and longitude coordinates for 104
model × ensemble combinations. All CMIP6 processing code is available in the
main repository at https://github.com/PNNL-TES/GlobalC.

GPP implied by RS (GPPRs). In the past decades, global RS rates have generally
been estimated by upscaling site RS measurements (producing values here termed
Rslit, meaning “RS estimates from literature”). We collected and summarized these
estimates from published articles (Supplementary Table 1, n= 23); approximately
half also reported RS 95% confidence interval or standard deviation (N= 10) and a
rate of change during the study period (N= 8). The reported RS values ranged from
68 to 109 Pg C yr−1, with an average of 85.4 Pg C yr−1.

Some studies also separated RS into its heterotrophic (RH) and root respiration
(Rroot) source fluxes; the resulting Rroot:RS ratios have been compiled into the
SRDB-V518 (Supplementary Fig. 2c). We used all of these Rroot:RS ratios from
SRDB-V5, in total 911 separate records between 0 and 1.0. These covered nine
vegetation types, but the majority were from forest, grassland, cropland, and
shrubland; all other vegetation types (desert, wetland, and savanna) had only
49 samples combined (Supplementary Fig. 2c).

Autotrophic respiration is made up of aboveground (Rshoot) and belowground
(Rroot) components. Many studies have separated RA into Rroot and Rshoot

(Supplementary Fig. 3 and Supplementary Table 5), and thus Rroot:RA ratio and
Rroot:Rshoot ratio can be calculated. GPP can be calculated (GPPRs, Supplementary
Fig. 1 and Eqs. 1–3) from the Rslit estimates according to Rroot:RS ratio (RC),
Rroot:Rshoot ratio (data from both the SRDB and an additional literature search,
Supplementary Table 5) and NPP.

We then compared the GPPRs with GPP from publications in past decades (i.e.,
GPPlit) to determine the consistency between the GPPlit and GPPRs. The following
equations were used to calculate GPPRs, i.e., the GPP implied by Rslit:

Rroot ¼ Rslit ´Rroot:RSratio ð1Þ

Rshoot ¼ Rroot ´Rshoot:Rrootratio ð2Þ

GPPRs ¼ NPPþ Rroot þ Rshoot ð3Þ

RS implied by GPP (RsGPP). GPP has been estimated based on both remote
sensing, FLUXNET data, and atmospheric inversions (Supplementary Table 2). We
collected 49 such estimates from published articles; only 11 of these estimates
reported the corresponding SD, and 14 reported corresponding temporal trends
(Supplementary Table 2). The reported GPP estimates were from 1980 to 2015 and
ranged from 100.2 to 167.0, with an average of 120.7 Pg C yr−1.

GPP can be separated into NPP, Cherb, Cfire, RA, DOC, BVOC, and Csink. Our
global NPP source was a previous meta-analysis42, with outlier (outside 1.5 times
the interquartile range above the upper quartile and below the lower quartile)
removed, resulted in 237 estimates averaged 56.2 ± 9.6 Pg C yr−1. After subtracting
carbon consumed by herbivores, fire, and the land sink from NPP, global RH can be

Table 2 Summary of uncertainties and possible biases: factors that might explain why gross primary production (GPP) would be
biased low, and/or soil respiration (RS) too high.

Possibilities for RS are biased too high Possibilities for GPP are biased too low

1) RS data are less diverse than those of GPP, with almost all Rslit ultimately
deriving from a large but single global database18.
2) Tropical and subtropical forests are greatly under-sampled52.
3) Jian et al.39 showed that uneven distribution of RS sites may cause
overestimation of global RS by ~6 Pg C yr−1.
4) In situ Rs measurements may not be representative of Rs at ecosystem-
scale53, 54.
5) Rs cannot be measured directly at the ecosystem scale or using remote
sensing, and we must upscale in situ measurements14, 15, 23, 55.
6) Models do not have a clear mechanistic representation of Rs (as
compared with GPP)14, 15, 23, 55.

1) Satellite data algorithms and thus products have significant
uncertainties (e.g., LAI and PAR conversion efficiency, ε)7, 56–62.
2) Remote sensing may not fully account for understory production24 or
belowground C allocation25.
3) GPP is probably underestimated in the tropics9, 27, as well as in
managed and fertilized croplands28.
4) There are totally more than 900 flux tower sites worldwide (https://
fluxnet.org/sites/site-summary/), but they are not evenly distributed,
with some ecosystem types (e.g., tropic forests) less represented63

(Supplementary Fig. 5).
5) Lack of Rroot: RA ratio data for low photosynthesis productivity region
(Supplementary Fig. 7d)
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estimated (RH=NPP − Cherb − Csink − Cfire − DOC − BVOC, Supplementary
Fig. 1 and Supplementary Table 4).

The precise chain of reasoning and computation was as follows. The difference
between GPP and NPP is RA, meaning that an RA:GPP ratio was required to
estimate RA based on GPP (Eq. 4). The RA:GPP ratios used in this study were from
two sources: (1) a literature search that produced 123 RA:GPP ratio estimates45–48;
and (2) an additional 123 RA:GPP ratio estimates from SRDB-V5. These RA:GPP
ratios covered nine vegetation types, mainly from forest and grassland; all the other
vegetation types (cropland, wetland, and tundra) only had 14 samples combined
(Supplementary Fig. 4). RA can also be calculated by subtracting NPP from GPP
(Eq. 5), and calculated RA was very similar when computed by the above two
methods. We used the average RA from these two methods.

In turn, RA consists of root respiration (Rroot) and shoot respiration (Rshoot),
and thus Rroot:RA and Rshoot:RA ratios are required to calculate Rroot and Rshoot

from RA. The Rroot:RA ratios used in this study were from two sources: (1) 35
Rroot:RA estimates from 28 literature studies (Supplementary Table 5); and (2) an
additional 94 estimates from SRDB-V5. The Rroot:RA values covered seven
vegetation types (Supplementary Fig. 3), mainly from forests; all other vegetation
types (cropland, savanna, grassland, and wetland) had only 18 samples.

Finally, starting with the GPPlit values, and using NPP, RA:GPP, Rroot:RA, and
Rshoot:RA, GPP can be separated into RH, Rshoot, and Rroot and thus the implied
global RS calculated (RsGPP; lower panel in Supplementary Fig. 1 and Eqs. 4–9
below). We then compared this RsGPP with Rslit to determine their consistency.

RA ¼ GPPlit ´RA:GPP ð4Þ

RA ¼ GPP�NPP ð5Þ

RH ¼ NPP� Csink � Cfire � Cherb � DOC� BVOC ð6Þ

Rroot ¼ RA ´Rroot:RA ð7Þ

Rshoot ¼ RA ´Rshoot:RA ð8Þ

RsGPP ¼ Rroot þ RH ð9Þ

Bootstrap resampling. A critical factor is uncertainty that compounds at each step
in this process. We used a bootstrap resampling approach to estimate GPPRs and
RsGPP, as the sample size of each step is different, and many of the input data do
not follow a normal distribution (Supplementary Figs. 1–5). For each bootstrap
sample, we first generated a new estimate of GPP or RS by sampling from the
published data (Supplementary Tables 1, 2, and 4, 5). We evaluated four different
resampling methods, differing in how they treated the presence and absence of
errors associated with each flux estimate. Method 1 did not use error information
(i.e., any error estimate associated with each published RS or GPP value) when
resampling. Methods 2–4 used errors but handled missing values differently.
Method 2 replaced missing errors with values calculated from the median coeffi-
cient of variability (CV) of non-missing values; method 3 replaced missing errors
with values calculated from the maximum CV across the dataset; and method 4 set
missing errors to zero. We used method 3 in the main analysis, which is the most
conservative (produces the widest distribution for both RS and GPP; cf. Supple-
mentary Fig. 10).

In addition, a random value for each partitioning coefficient (e.g., above- to
belowground autotrophic respiration ratio or herbivory fraction) was used in each
bootstrap sample; note that errors are seldom reported for these data, and so were
not considered here. We separated the Rroot:RS, Rroot:RA, and RA:GPP ratios by
vegetation type, weighted by global vegetation area (from the IGBP vegetation land
classification, https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-
classification). Starting from the randomly-drawn RS or GPP value, and randomly-
drawn partitioning coefficients, the resulting RS or GPP was then calculated
following Eqs. 1–9 described above.

Variable importance analysis. As noted above, many variables related to C
partitioning were used to derive GPP from RS (Eqs. 1–3) or to derive RS from GPP
(Eqs. 4–9). To determine the relative contribution of each variable to the overall
distributional uncertainty, as well as the sensitivity of the estimate to that variable,
we fixed each variable (e.g., NPP) in turn to the median of all its observations. All
other variables were randomly drawn, as normal, in the bootstrap process, and the
output variable (GPPRs or RsGPP) mean and distribution were calculated. We then
compared the output variance with the result when no variables were fixed, i.e., that
shown in Fig. 1, to determine the importance of each variable: larger decreases in
output variance when a particular parameter was fixed to be constant, imply
greater importance for this parameter.

Representativeness analysis. We connect the Rroot:RS, Rroot:RA, and RA:GPP sites
with external global GPP data from FLUXCOM (https://www.fluxcom.org/, last
accessed on 2021/06/22) through latitude and longitude to obtain mean GPP
between 2001 and 2015. We then compared the GPP of sites used in this study with

the global GPP (spatial resolution of 0.5°) to test the representation of the sites
(Supplementary Fig. 7).

Overlap calculation. We calculated the overlap between the GPPlit distribution
and the distribution of GPPRs to quantify the agreement between GPPlit and GPPRs.
If a sample was not significantly different from a normal distribution (based on a
Shapiro–Wilk test in R), we used a normal distribution with sample mean and
variance to approximate the distribution; if a sample was significantly different
from a normal distribution, we used a numerical approximation based on linear
interpolation (approxfun in R) to approximate the distribution’s probability density
function. We then calculated the intersection point of these probability density
functions, as well as the proportion of each curve that overlapped with the other
using a trapezoidal rule numerical integration. Finally, we sampled each approxi-
mated distribution for the original number of GPP or RS values. With these
samples, a two-sample Welch’s t-test (t.test with var.equal= FALSE in R) was
performed to determine if the means of the two distributions differed significantly.

Global soil respiration modeling. Following a similar approach as Jian et al.
(2018)23, measurements from a global daily soil respiration database (DGRsD) and
nine environmental factors (i.e., nitrogen deposition, monthly precipitation,
monthly air temperature, soil bulk density, soil organic carbon, soil clay percentage,
aboveground biomass, belowground biomass, and Enhanced Vegetation Index,
details please see supplementary Table 6) were used to build Random Forest (RF)
models for each month. Only RS measurements with no field manipulation were
used, totally 27,214 samples were separated into two datasets, 80% of samples were
used to train the models, and the rest 20% were used to test the model perfor-
mance. The results showed that the RF models can explain ~66% RS variability, and
the performance is consistent with both training and validation datasets. RS for
each month with a spatial resolution of 0.1° were predicted by the RF models,
estimated monthly RS were then summarized to estimate global annual RS. Per-
manent ice sheets and bare soils were removed according to the MODIS landcover
map49.

Other statistical analyses. All analyses were conducted using R 3.6.150. Bootstrap
means were compared using a two-sided Student’s t-test. A one-sided, nonpara-
metric Wilcoxon rank-sum test with continuity correction was used to compare RS

to GPP ratios calculated from global estimates, the SRDB, and CMIP6 outputs.

Data availability
The data to support all the analysis in this study have been deposited in the GitHub
repository [https://github.com/PNNL-TES/GlobalC/] and zenodo [https://doi.org/
10.5281/zenodo.5900964]51.

Code availability
The code to reproduce all the results in this study have been deposited in the GitHub
repository [https://github.com/PNNL-TES/GlobalC/] and zenodo [https://doi.org/
10.5281/zenodo.5900964]51.
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