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ABSTRACT

This paper aims to address the significant power challenges in live

virtual reality (VR) streaming (a.k.a., 360-degree video streaming),

where the VR view rendering and the advanced deep learning op-

erations (e.g., super-resolution) consume a considerable amount of

power draining the battery-constrained VR headset. We develop

EdgeVR, a power optimization technique for live VR streaming,

which offloads the on-device VR rendering and deep learning op-

erations to an edge server for power savings. To address the sig-

nificantly increased motion-to-photon (MtoP) latency due to the

edge offloading, we develop a live VR viewport prediction method

to pre-render the VR views on the edge server and compensate

for the round-trip delays. We evaluate the effectiveness of EdgeVR

using an end-to-end live VR streaming system with an empirical VR

head movement dataset involving 48 users watching 9 VR videos.

The results reveal that EdgeVR achieves power-efficient live VR

streaming with low MtoP latency.

CCS CONCEPTS

· Information systems → Multimedia streaming.

KEYWORDS

Live streaming, virtual reality, power efficiency

ACM Reference Format:

Zichen Zhu, Xianglong Feng, Zhongze Tang, Nan Jiang, Tian Guo, Lisong

Xu, and Sheng Wei. 2022. Power-Efficient Live Virtual Reality Streaming

Using Edge Offloading. In 32nd edition of the Workshop on Network and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NOSSDAV ’22, June 17, 2022, Athlone, Ireland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9383-6/22/06. . . $15.00
https://doi.org/10.1145/3534088.3534351

Operating System Support for Digital Audio and Video (NOSSDAV ’22), June

17, 2022, Athlone, Ireland. ACM, New York, NY, USA, 7 pages. https://doi.

org/10.1145/3534088.3534351

1 INTRODUCTION

The recent rapid growth in consumer virtual reality (VR) head-

sets [7, 11, 14, 17] has enabled a new interface for presenting multi-

media content such as videos and games [30, 34]. VR video stream-

ing (a.k.a., 360-degree video streaming), which provides users with a

fully immersive video viewing experience, has emerged as a widely

deployed VR application [1, 2]. In particular, live VR streaming,

where the VR video content is generated on the fly during stream-

ing, has become the most attractive VR video use case (e.g., live

sports broadcast [4, 6]) and garnered increased interests from the

community given its inherent performance challenges [20, 27, 41].

However, the quality of experience (QoE) of VR video streaming,

including live streaming, is fundamentally constrained by the high

power consumption and limited battery capacity on the VR headset.

For example, preliminary power measurement studies such as [23]

reveal that VR video streaming consumes significantly more power

than traditional 2D video, due to the increased data volume and

computation required by VR-specific features. Moreover, the re-

cent adoption of deep learning techniques (e.g., super-resolution)

in state-of-the-art VR streaming systems [18, 19], although signifi-

cantly improving QoE and bandwidth efficiency, poses additional

workload on the VR headset to worsen the power efficiency. Since

the VR headsets are driven by power-constrained batteries, the

video viewing session may have to be terminated for a battery

recharge, which severely degrades the user’s QoE. Also, since the

headset is a wearable device, the on-device heat accumulation and

dissipation due to the intensive power consumption can signifi-

cantly impact the viewing experience as well.

Prior power optimization techniques for traditional 2D videos [21,

28, 36, 37] cannot be directly applied to VR streaming due to the

unique user-centric viewport control through head movements in

the VR experience, as well as the newly introduced on-device deep
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predictor filter takes the frame right before the FFmpeg360 filter

and makes the prediction. By using the value designed for private

user data in the FFmpeg frame data structure, the viewport predictor

can write the predicted viewports into the frame for the renderer. In

our implementation, the viewport predictor and the renderer work

in the same thread to avoid synchronization issues.

4.1.3 Viewport Scaling. As discussed in Section 3, we enlarge the

predicted viewport to raise the tolerance of the prediction error.

When rendering the enlarged viewport, we still require it to keep

the same projection as the target viewport of the client. In practice,

FFmpeg360 [29] uses perspective projection to generate the view-

port from the entire frame. Considering there is only one object in

the 360-degree scene, and the position of the user (i.e., the camera

that generates the viewport) is fixed to the central point of the

video sphere, we can further simplify the projection. Assuming the

final viewport length is lenvp on the client, the following equation

holds, where r is an intermediate parameter that reflects the depth

of the 2-D panel viewport.

r =
lenvp

2
cot

O

2
(4)

Then, the enlarged viewport length lenpred can be calculated as

lenpred

2
= r tan

p

2
+

lenvp

2
(5)

lenpred = lenvp cot
O

2
tan

p

2
+ lenvp (6)

In this way, when cropping the viewport O from the center of

the enlarged viewport, we will obtain the viewport with lenvp as

the length. With the enlarged size and the parameter r , we can

calculate the enlarged viewport O ′ used in the rendering:

O ′
= 2 tan−1

lenpred

2r
(7)

= 2 tan−1
(

tan
p

2
+ tan

O

2

)

(8)

According to Equation (8), the enlarged viewport O ′ should be

O ′
= 2 tan−1 (tan 30/2 + tan 90/2) ≈ 103.48◦. Since we cannot

set arbitrary viewport size in FFmpeg360, we set lenvp = 800,

lenpred = 1400,O = 90◦, andO ′
= 120◦. This leads to two r values

r = 400 and r ≈ 404, which should be the same value theoretically.

We use r = 400 to match the final viewport in our implementation.

4.1.4 Super-resolution. The super-resolution module on the edge

server plays the role of boosting the received low-resolution VR

video to high resolution. To balance the performance and the out-

put quality, we utilize both ESPCN [32] and bi-linear interpola-

tion [35] to accomplish the super-resolution operation. The input

low-resolution VR video from the upstream server with the size of

w × h is processed by ESPCN first via the PyTorch framework to

boost the resolution to 2w × 2h. Then, the bi-linear interpolation

further increases the resolution to 4w × 4h.

4.2 Client

4.2.1 Video Player. With edge offloading, the client component of

EdgeVR plays the role of a lightweight 2D video player to display

the viewport to the user. We adopt an open-source, FFmpeg-based

player, ijkplayer [9], in the implementation of video player. The

player receives the pre-rendered VR video frames from the edge

server using the RTMP protocol [16]. Then, it decodes and crops

the received frame based on the actual head orientation data for

display.

4.2.2 Viewport Cropping. As described previously, our viewport

prediction algorithm returns an enlarged viewport to mitigate the

potential prediction errors or other noises. Therefore, before playing

back the video, the video player must crop the target frame to the

original size based on the actual user head orientation. Due to the

projection during the rendering, the offsets of the cropped viewport

are based on the deviation between the predicted and actual user

head orientations, which can be represented as follows:

∆yaw = r tan∆β (9)

∆pitch = r tan∆θ (10)

where ∆β and ∆θ are the deviations of the head orientation in

the yaw and pitch directions, respectively. Considering the rotation

during the rendering, the deviation of the head orientation reflected

in the enlarged frame satisfies the following relationship:

∆β =
(

βr eal − β ′
)

cosα ′ −
(

θr eal − θ ′
)

sinα ′ (11)

∆θ =
(

βr eal − β ′
)

sinα ′
+

(

θr eal − θ ′
)

cosα ′ (12)

where βr eal and θr eal are the user head orientation in the yaw

and pitch directions, respectively. Using the central point of the

enlarged frame as an origin, the coordinate of the actual user head

orientation is (∆yaw, ∆pitch). With the quantified offset, we can

crop the rendered frame using FFmpeg for display.

Additionally, since we use O ′
= 120◦ as the enlarged viewport,

we have an extra angular error tolerance beyond the originally

designed tolerance p = 30◦. Based on Equation (8), we can calculate

the actual tolerance p′ as follows:

p′ = 2 tan−1
(

tan
O ′

2
− tan

O

2

)

(13)

= 2 tan−1
(

tan
120◦

2
− tan

90◦

2

)

≈ 72.41◦ (14)

Considering that the distortion becomes worse when the content

is closer to the edge of the viewport, we limit the maximum offset

to ±15◦ in the current implementation. Meanwhile, we maintain

the ability to transmit the enlarged viewport with extra tolerance.

4.3 Communication between Edge and Client

There are two communication channels between the client and the

edge server. First, the client sends the instant user head orienta-

tion data to the edge server via HTTP POST, which is required for

the velocity-based viewport prediction on the edge server. Second,

We use RTMP [16] to deliver the rendered video frames from the

edge server to the client to minimize the communication delay. In

addition to the rendered frame, the client requires the predicted

head orientation corresponding to the frame, which is viewed as

metadata associated with the predicted viewport. We adopt the Sup-

plemental Enhancement Information (SEI) [8] in H.264 to transmit

the metadata together with the rendered frame in order.
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5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

Hardware and system setup. We evaluate the power efficiency

of EdgeVR using two smartphones as the VR headsets: (i) LG V20

with 1.6 & 2.15 GHz CPU frequency, 4 GB RAM, and a 3300mAh

removable battery; and (ii) Google Pixel 3 with 1.6 & 2.5 GHz CPU

frequency, 4GB RAM, and a 2915 mAh non-removable battery. The

smartphone under test connects to a wireless router from an ap-

proximate distance of 12 feet using the IEEE 802.11ac protocol. The

edge server (dual E5-2623 CPU, 32GB RAM, and GTX TITAN X

GPU) connects to the wireless router through a wired Ethernet con-

nection. We conduct experiments to compare the proposed EdgeVR

systemwith the following two baseline systems: (1)Original refers

to the original VR video streaming system without power optimiza-

tion. We implemented this system using the WebVR library [13],

the DASH protocol [33], and the ESPCN [32] via the ONNX-js li-

brary [15]. It serves as baseline to evaluate the power benefit of

edge offloading adopted in EdgeVR. (2) EdgeVR-NP refers to our

proposed EdgeVR system but without the viewport prediction for

MtoP latency compensation. It serves as a baseline to evaluate our

viewport prediction-based latency compensation in EdgeVR.

Dataset.We use a VR head movement dataset [38] to emulate

the user head movements, excluding a small number of data entries

where the timestamps of the user traces are non-monotonic. We

adopt the 48 users and 9 videos in the first group of the dataset,

which represents the scenario where users freely watch the videos

without being asked to accomplish any specific task.

Power Measurement Method. We adopt the Monsoon power

monitor [12] for power measurements. To establish a relatively

stable measurement environment, we mute the smartphone, set the

brightness to the lowest level, and turn on the airplane mode with

onlyWiFi enabled. For the EdgeVR and EdgeVR-NP cases, we directly

measure the power consumption on our implemented end-to-end

system. In the Original case, due to the high complexity of super-

resolution computations, we were not able to achieve real-time

super-resolution on the two smartphones and, therefore, we mea-

sure the following two components separately: (i) the VR rendering

power is measured on a WebVR-based end-to-end video streaming

system, following the same setup adopted in the literature [23];

and (ii) the super-resolution power is measured by a non-realtime

implementation of super-resolution on the two smartphones using

the ESPCN [32] via the ONNX-js library [15].

5.2 Power Evaluations

Table 1 shows the average power consumption of the three systems

measured over 48 users and 9 videos on 2 different phones. We

observe that Original consumes the highest average power among

the three systems, and EdgeVR-NP consumes the lowest thanks

to the benefit of edge offloading but would incur huge MtoP (as

discussed in Section 5.3). The power consumption of EdgeVR is

slightly higher than EdgeVR-NP as the headset needs to conduct the

extra cropping operation before displaying the video. In summary,

compared to Original, EdgeVR achieves significant power savings,

i.e., 57% (LG V20) and 64% (Pixel 3). Figure 3 illustrates the power

distribution of the three systems over 9 videos and 48 users on

2 different phones. For each video, we measure VR rendering for

48 users (1 minute each), and we measure super-resolution for 10

minutes as it is independent of user traces. We then plot the sum

of (1) average VR rendering power over 48 users, and (2) a moving

window average of super-resolution power (length = 10 samples

and step = 10 samples), as the total power consumption of Original.

The distribution results indicate that the most common power value

of EdgeVR is significantly lower than Original, i.e., 1.93W vs. 4.81W

(LG V20), and 1.61W vs. 4.40W (Pixel3).

Table 1: Average power consumption (48 users, 9 videos).

System
Average Power (Watt)

LG V20 Pixel 3

Original 5.01 4.58

EdgeVR-NP 1.65 1.41

EdgeVR 2.14 1.65

Figure 3: Power distribution comparison between EdgeVR

and two baselines (48 users, 9 videos).

5.3 Latency Overhead

We measure the MtoP latency by calculating the time difference

between the user head movement event and the corresponding

frame display event. Figure 4 shows the distribution of the MtoP

latencies for all the 9 videos and 48 users. The overall average MtoP

latency of EdgeVR is 11 ms, versus 231 ms for EdgeVR-NP. Also,

95% of the MtoP latency values are within the 20 ms boundary,

benefiting from the effective live viewport prediction in EdgeVR.

5.4 Quality Overhead

We note that the remote rendering and local cropping mechanisms

adopted by EdgeVR may result in quality degradations of the VR
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Figure 4: Distribution of the MtoP latency (ms) comparing

EdgeVR-NP and EdgeVR for 9 videos and 48 users on LG V20.

Table 2: Per-video angular error distribution (in degrees) for

EdgeVR in pitch, yaw, and roll directions over 48 users.

Percentile 5 10 15 20 80 85 90 95

V
id
eo

1 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 3.15 12.55

roll 0.06 0.12 0.19 0.26 4.89 6.40 8.72 13.22

V
id
eo

2 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 3.87 14.24

roll 0.09 0.18 0.28 0.40 6.34 8.12 10.85 15.85

V
id
eo

3 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 2.73 13.27

roll 0.06 0.12 0.18 0.25 4.26 5.58 7.70 12.05

V
id
eo

4 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 2.27 10.38

roll 0.06 0.11 0.17 0.24 4.70 6.21 8.57 13.16

V
id
eo

5 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0.99 6.16 16.08

roll 0.08 0.15 0.24 0.35 5.99 7.62 10.14 14.72

V
id
eo

6 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 3.96 12.66

roll 0.05 0.09 0.15 0.21 4.15 5.43 7.44 11.47

V
id
eo

7 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 1.46 13.57

roll 0.03 0.06 0.10 0.12 2.42 3.28 4.64 7.25

V
id
eo

8 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 1.82 7.20 17.33

roll 0.06 0.12 0.19 0.27 4.47 5.75 7.75 11.51

V
id
eo

9 pitch 0 0 0 0 0 0 0 0

yaw 0 0 0 0 0 0 2.20 11.01

roll 0.04 0.09 0.14 0.20 4.41 5.86 8.11 12.51

video presented to the end user. It is because the central point of the

actual viewport required by the end user may be shifted from that

used for rendering the enlarged viewport at the edge server, due to

the imperfect viewport predictions. The cropping helps reduce the

mismatch but would introduce additional quality overhead, since it

changes the content without changing the projection point.

To evaluate the quality impact of the viewport prediction, we

adopt the angular distance (a.k.a., angular error) between the final

viewport and actual user head orientation as our quality evalua-

tion metric. Table 2 shows the detailed angular error distribution

results for the 9 test videos over 48 users in the pitch, yaw, and roll

directions. We observe that EdgeVR achieves 0 angular errors in

95% and 80% of the cases in pitch and yaw directions, respectively,

and around 95% of the roll direction errors are within 15 degrees.

We adopt the SSIM metric to evaluate the impact of cropping

(i.e., the potential distortion), as it can represent the similarity be-

tween the ground truth image and the one generated after cropping.

Figure 5 shows the distribution of the per-frame SSIM results for

each video over 48 users based on the dataset [38]. The top and

bottom box boundaries indicate the 25% and 75% percentile of the

results (i.e., Q1 and Q3), respectively; the top and bottom whisker

marks indicate Q1 − 1.5 × (Q3 − Q1) and Q3 + 1.5 × (Q3 − Q1),

respectively, which represent the non-outlier range; and the rest of

the data points are outliers. We observe that the minimal median

SSIM is 0.60 over 9 videos, and the average SSIM ranges from 0.62

to 0.80. Note that the interpretation of SSIM for visual quality may

be different for the VR use case than the traditional 2D images.

Figure 5: Per-frame SSIM results for 9 videos over 48 users.

6 CONCLUSION

We have developed EdgeVR, a power optimization framework target-

ing live VR streaming. EdgeVR leverages edge offloading to reduce

the dominant power consumption caused by the on-device VR ren-

dering and deep learning computations. Also, it compensates for

the increased MtoP latency by dynamically predicting and pre-

rendering the user’s viewport of interest on the edge. The proposed

edge offloading and live viewport prediction approaches achieve

significant power savings while keeping a low MtoP latency to

meet the real-time requirement. The repository of the project is at

https://github.com/hwsel/EdgeVR.
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