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ABSTRACT

This paper aims to address the significant power challenges in live
virtual reality (VR) streaming (a.k.a., 360-degree video streaming),
where the VR view rendering and the advanced deep learning op-
erations (e.g., super-resolution) consume a considerable amount of
power draining the battery-constrained VR headset. We develop
EdgeVR, a power optimization technique for live VR streaming,
which offloads the on-device VR rendering and deep learning op-
erations to an edge server for power savings. To address the sig-
nificantly increased motion-to-photon (MtoP) latency due to the
edge offloading, we develop a live VR viewport prediction method
to pre-render the VR views on the edge server and compensate
for the round-trip delays. We evaluate the effectiveness of EdgeVR
using an end-to-end live VR streaming system with an empirical VR
head movement dataset involving 48 users watching 9 VR videos.
The results reveal that EdgeVR achieves power-efficient live VR
streaming with low MtoP latency.
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1 INTRODUCTION

The recent rapid growth in consumer virtual reality (VR) head-
sets [7, 11, 14, 17] has enabled a new interface for presenting multi-
media content such as videos and games [30, 34]. VR video stream-
ing (a.k.a., 360-degree video streaming), which provides users with a
fully immersive video viewing experience, has emerged as a widely
deployed VR application [1, 2]. In particular, live VR streaming,
where the VR video content is generated on the fly during stream-
ing, has become the most attractive VR video use case (e.g., live
sports broadcast [4, 6]) and garnered increased interests from the
community given its inherent performance challenges [20, 27, 41].

However, the quality of experience (QoE) of VR video streaming,
including live streaming, is fundamentally constrained by the high
power consumption and limited battery capacity on the VR headset.
For example, preliminary power measurement studies such as [23]
reveal that VR video streaming consumes significantly more power
than traditional 2D video, due to the increased data volume and
computation required by VR-specific features. Moreover, the re-
cent adoption of deep learning techniques (e.g., super-resolution)
in state-of-the-art VR streaming systems [18, 19], although signifi-
cantly improving QoE and bandwidth efficiency, poses additional
workload on the VR headset to worsen the power efficiency. Since
the VR headsets are driven by power-constrained batteries, the
video viewing session may have to be terminated for a battery
recharge, which severely degrades the user’s QoE. Also, since the
headset is a wearable device, the on-device heat accumulation and
dissipation due to the intensive power consumption can signifi-
cantly impact the viewing experience as well.

Prior power optimization techniques for traditional 2D videos [21,
28, 36, 37] cannot be directly applied to VR streaming due to the
unique user-centric viewport control through head movements in
the VR experience, as well as the newly introduced on-device deep
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learning operations for VR. Such VR-specific features and opera-
tions trigger power consumptions caused by additional sensing,
computation, and view generation [23]. Several recent works have
started investigating power optimization for VR videos, such as
dynamically scaling VR display brightness based on user’s eye move-
ments [39], dynamically adapting the frame rate [22], and leverag-
ing specialized hardware or edge-based video pre-processing [25].
These studies provide valuable insights on VR power optimization;
however, they rely on pre-processing of past video or user data,
which are available only in the offline video-on-demand (VOD) sce-
nario where the content is pre-recorded, instead of live VR stream-
ing where the content is generated on the fly. Other recent works
proposed to pre-render the user’s viewport at an edge server and
pre-deliver it to the client device to reduce latency or power con-
sumption [25, 31]; however, the existing solutions either target the
VOD streaming case [25] or require ideal network condition and
video streaming pipeline to meet the latency requirement [31].

We develop EdgeVR, an edge offloading-based mechanism to
reduce the power consumption in live VR streaming. Built on top of
our preliminary, work-in-progress prototype [43], EdgeVR offloads
the VR-specific, computation-intensive view generation and deep
learning tasks to an edge server and thus reduces the on-device
power consumption caused by the intensive computations. Despite
the power benefits from offloading, EdgeVR is challenged by the
round-trip communication delay added to the user’s interactive
VR experience, which consists of the time for the headset to send
the user’s head orientation information to the edge server and
that for the edge server to deliver the rendered view back to the
headset. Such delay becomes an integral part of the motion-to-
photon (MtoP) latency [3, 5, 24, 42], i.e., the latency between the
user’s head movement and the display of the corresponding VR
view, which may cause motion sickness if beyond 20 ms [3, 5].

To address the critical MtoP latency challenge, while taking
into account the unique data availability and timing challenges
posed by live streaming, we develop a pre-rendering mechanism at
the edge server, which predicts the viewports that the user would
most likely watch based on an online modeling of the user’s head
movements. The edge server pre-renders these predicted viewports
and pre-delivers them to the client before being requested. The
lead time achieved by viewport prediction is able to compensate
for the increased MtoP latency and achieve a premium QoE. We
evaluate EdgeVR using an empirical VR head movement dataset
involving 48 users watching 9 VR videos. Our experimental results
indicate around 60% power savings compared to the original VR
streaming system and an average 11 ms MtoP latency under the live
VR streaming scenario, meeting the interactive VR requirement.

2 BACKGROUND
2.1 Live VR Streaming

Figure 1(a) shows the overall workflow of a typical live VR stream-
ing system. The live VR video is first captured by a 360-degree
camera and packaged to video segments of a few seconds each.
The generated video segments are then deployed immediately to
a content server. Next, the headset requests the 360-degree video
segments via HTTP as they become available, conducts VR-specific
computations (e.g., super-resolution and view rendering) based

58

Zichen Zhu, Xianglong Feng, Zhongze Tang, Nan Jiang, Tian Guo, Lisong Xu, and Sheng Wei

Power

(a) Original: Constramt

VR-Specific
Computations \ ,b

VR Headset
<360%
b) EdgeVR: VR-Specific / Content Live
(b) EdgeVR: Computations Server Stream
VR Headset Edge Server

Figure 1: Overall workflow of (a) the original live VR stream-
ing system; and (b) the proposed EdgeVR for power savings.

on the user’s head orientation, and presents the high-quality 2D
viewport to the user.

2.2 Power Consumption in VR Streaming

The live VR streaming system depicted in Figure 1(a) could pose
significant challenges to the power consumption of the VR headset
for two reasons. (i) VR rendering: Prior studies [23, 25] reported
that VR rendering is the top power consumption sources in VR
streaming. (ii) Deep learning computations: The newer devel-
opment in VR streaming, which was not covered by the prior VR
power measurement studies, is the adoption of deep learning tech-
niques to improve user QoE and bandwidth efficiency. For example,
recent VR streaming research [18, 19] adopted the super-resolution
technique [26, 40] to reduce the bandwidth consumption, which
streams a low-resolution video over the network and boosts the
resolution at playback by executing a generative neural network
model on the VR headset. In the neural network, the convolutional
layers play the role of interpolation that takes in a low-resolution
2D image and outputs extra information in the feature dimension.
Such computation-intensive deep learning operations would add
additional power consumption to the already high power profile of
VR rendering.

3 PROPOSED APPROACH: EDGEVR

We develop an edge offloading-based approach, namely EdgeVR, to
minimize the on-device computation and thus power consumption
in live VR streaming. Figure 1(b) depicts the overall system work-
flow of EdgeVR, as compared to the original workflow in Figure 1(a).
In EdgeVR, the live VR video is first delivered to the edge server
for processing and rendering. Then, the VR headset interacts with
the edge server with the user head movement data to request the
specific viewports. With the edge-based workflow, the most power-
consuming component, i.e., the intensive computations caused by
VR rendering and deep learning, can be offloaded to the edge server
that is not power constrained. The VR headset now only needs
to display the already rendered and resolution-boosted viewport,
which would save significant amount of power.

Challenge: Motion-to-Photon Latency. The edge-based design
presented in Figure 1(b) would pose a significant challenge to the
QoE in VR streaming due to the increased motion-to-photon (MtoP)
latency [3, 5, 24, 42]. The MtoP latency is defined as the time dif-
ference between when the user conducts a head movement and
when the headset displays the corresponding view. This latency
is critical in VR streaming, as a high MtoP latency may cause a
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poor VR experience with disorientation and motion sickness [42].
We note that the MtoP latency would increase in the scenario of
edge offloading, as it is now the sum of the network round-trip
time and the computation/rendering time at the edge, which can be
hundreds of milliseconds [31] and thus far beyond the requirement
for interactive VR applications (i.e., 20 ms) [3, 5]. Moreover, such
MtoP latency cannot be reduced via straightforward system or net-
work engineering, simply due to the inevitable round-trip network
delay and the video buffering. Therefore, a new thread of latency
compensation approach tailored to the real-time requirement of
VR is required. A key goal in EdgeVR is to develop a latency com-
pensation mechanism to significantly reduce the round-trip delay
caused by edge offloading (i.e., a few hundred milliseconds) to the
acceptable level of VR MtoP latency (i.e., below 20 ms).

Solution: Live Viewport Prediction. Our key idea is to leverage
viewport prediction to compensate for the impact of network delay
on MtoP latency. Specifically, we leverage the user head movement
to predict the user’s future viewports and pre-render them at the
edge server prior to the client’s requests. The edge server then deliv-
ers the pre-rendered future viewports to the VR headset for display
upon the actual user head movements. In order for EdgeVR to com-
pensate for the aforementioned network delay, the live viewport
prediction must satisfy two requirements: (i) sufficient prediction
accuracy to cover the user’s actual viewport; and (ii) sufficient lead
time of the prediction to account for the network delay.

We develop a live viewport prediction scheme for EdgeVR by
leveraging the real-time velocity and trajectory of the user head
movement. The edge server collects the user’s viewports in the
previous frames, which form the user’s past trajectory. Then, based
on the past trajectory, we model the velocity of the head move-
ment and estimate the trend of the viewing trajectory in the new
frames. In particular, we set a sliding time window of K frames
when forming the user viewing trajectory and update the window
once the predictions on new frames are finished. Given the latest
user feedback (i.e., the actual viewport) at frame c, we collect the
viewports from frame i to frame c, where i = ¢ + 1 — K . Based
on the viewing trajectory with the K viewports, we calculate the

velocity and estimate the new viewports from frame ¢ + 1 to frame
Tmeop

2f

MtoP latency. Upon receiving the user feedback for a new frame
(i.e., frame c + 1), we shift the time window by 1, i.e., the new time
window ranges from frame i + 1 to frame ¢ + 1.

The user orientation can be described by yaw, pitch and roll,
which can be further interpreted by three angles, namely f, 0 and
a. We consider a right-hand reference system where the roll, pitch
and yaw axes are positive towards the user’s nose, left ear and head,
respectively. The user head movement can be described by angular
velocity Vg, Vg and V. In EdgeVR, we calculate the angular velocity
of the three angles separately since they are orthogonal to each
other. Given the angles in the previous K frames (i.e., vectors f, 0
and a with length K), the angular velocity Vg, Vp, and Vg can be
calculated following Equation (1). The predicted user orientation,
/3/, 0 and o’ can be obtained using Equations (1) to (3).

c+

, where f is the frame rate of the video, and Tys;0p is the

K—ﬁo 9[(—90 aK — oo
Vp = X , Vo = X Va = X (1)
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Figure 2: Architecture of the proposed EdgeVR system. The
shaded blocks are EdgeVR-specific components.
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To mitigate the potential offsets due to slight head movements
(e.g., caused by breathing), we extend the predicted viewport by a
padding angle p (also referred to as tolerance hereafter). Assuming
the original viewport angle is O, the angle of the predicted viewport
will be O +p. Taking angle f (i.e., yaw) as an example, the predicted
viewport has an angular range of f + 0.5(0 + p). In this work, we
set O = 90° and p = 30° which increases the viewport by 33%.

Tp

4 EDGEVR SYSTEM IMPLEMENTATION

Our proposed EdgeVR system consists of three components: client,
edge, and content server. Figure 2 illustrates the system architecture,
in which the shaded blocks are EdgeVR-specific components. The
content server provides HTTP-based live VR video stream following
the DASH standard [33]. The edge server takes in the live VR video
stream, renders the 2D viewport of each frame based on live view-
port prediction, and streams the 2D frames to the client. The client
involves a lightweight video player that crops and displays the 2D
viewports based on the sensor samples of user head orientations.

4.1 Edge Server

4.1.1 Renderer. The renderer on the edge server plays the role of
rendering the VR content. We adopt FFmpeg [10] as the overall
multimedia framework on the edge server to process and render the
live VR video. For rendering VR viewports in particular, we adopt
FFmpeg360 [29], an open-source FFmpeg filter with the ability
of rendering a specific viewport from a 360-degree video frame
given the instant user head orientation. We leverage FFmpeg360 to
process the input video with the predicted head orientation data.
The rendered frames are passed to FFmpeg to be encoded into
H.264 and delivered to the client via Real-Time Messaging Protocol
(RTMP) [16].

4.1.2  Viewport Predictor. The role of the viewport predictor is to
predict the user’s future viewport for the time period of Ty ,p /2 fol-
lowing the velocity-based method presented in Section 3, leveraging
the real-time sensor data received from the client. A key challenge
in implementing the viewport predictor lies in the synchronization
between the stream of the sensor data (i.e., head orientation) and
the VR video stream. We addressed the challenge by implementing
the viewport predictor as a filter in the FFmpeg framework used to
implement the renderer, which eliminates the complex inter-process
communication mechanisms (e.g., message queue, pipe, or UNIX
domain socket) required by a standalone predictor module. The
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predictor filter takes the frame right before the FFmpeg360 filter
and makes the prediction. By using the value designed for private
user data in the FFmpeg frame data structure, the viewport predictor
can write the predicted viewports into the frame for the renderer. In
our implementation, the viewport predictor and the renderer work
in the same thread to avoid synchronization issues.

4.1.3  Viewport Scaling. As discussed in Section 3, we enlarge the
predicted viewport to raise the tolerance of the prediction error.
When rendering the enlarged viewport, we still require it to keep
the same projection as the target viewport of the client. In practice,
FFmpeg360 [29] uses perspective projection to generate the view-
port from the entire frame. Considering there is only one object in
the 360-degree scene, and the position of the user (i.e., the camera
that generates the viewport) is fixed to the central point of the
video sphere, we can further simplify the projection. Assuming the
final viewport length is len,, on the client, the following equation
holds, where r is an intermediate parameter that reflects the depth
of the 2-D panel viewport.

lenyp
= 4
r=— @)

Then, the enlarged viewport length len,,,..4 can be calculated as

O
cot —
2

leng,,eq len
;;re = rtang + zvp (5)
O
lenyreq = lenyp cot 3 tang +lenyp (6)

In this way, when cropping the viewport O from the center of
the enlarged viewport, we will obtain the viewport with len,,, as
the length. With the enlarged size and the parameter r, we can
calculate the enlarged viewport O’ used in the rendering:

leny,eq
O’ =2tan”! # 7)
0]
=2tan"! [tan p + tan — 8)
2 2

According to Equation (8), the enlarged viewport O’ should be
O’ = 2tan"! (tan30/2 + tan90/2) ~ 103.48°. Since we cannot
set arbitrary viewport size in FFmpeg360, we set leny, = 800,
len,,eq = 1400, O = 90°, and O’ = 120°. This leads to two r values
r = 400 and r ~ 404, which should be the same value theoretically.
We use r = 400 to match the final viewport in our implementation.

4.1.4  Super-resolution. The super-resolution module on the edge
server plays the role of boosting the received low-resolution VR
video to high resolution. To balance the performance and the out-
put quality, we utilize both ESPCN [32] and bi-linear interpola-
tion [35] to accomplish the super-resolution operation. The input
low-resolution VR video from the upstream server with the size of
w X h is processed by ESPCN first via the PyTorch framework to
boost the resolution to 2w X 2h. Then, the bi-linear interpolation
further increases the resolution to 4w X 4h.

4.2 Client

4.2.1 Video Player. With edge offloading, the client component of
EdgeVR plays the role of a lightweight 2D video player to display
the viewport to the user. We adopt an open-source, FFmpeg-based
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player, ijkplayer [9], in the implementation of video player. The
player receives the pre-rendered VR video frames from the edge
server using the RTMP protocol [16]. Then, it decodes and crops
the received frame based on the actual head orientation data for
display.

4.2.2  Viewport Cropping. As described previously, our viewport
prediction algorithm returns an enlarged viewport to mitigate the
potential prediction errors or other noises. Therefore, before playing
back the video, the video player must crop the target frame to the
original size based on the actual user head orientation. Due to the
projection during the rendering, the offsets of the cropped viewport
are based on the deviation between the predicted and actual user
head orientations, which can be represented as follows:

Ayaw = rtanAf
Apireh = rtan A0

©)
(10)
where Af and Af are the deviations of the head orientation in
the yaw and pitch directions, respectively. Considering the rotation

during the rendering, the deviation of the head orientation reflected
in the enlarged frame satisfies the following relationship:

Ap = (ﬁreal - ﬂ,) cosa’ — (areal - 9,) sina’
A0 = (Brear = ﬁ’) sina’ + (0y¢qr = 0’) cos @’

(11)
(12)

where ., and 6,,,; are the user head orientation in the yaw
and pitch directions, respectively. Using the central point of the
enlarged frame as an origin, the coordinate of the actual user head
orientation is (Ayaw, Apitch). With the quantified offset, we can
crop the rendered frame using FFmpeg for display.

Additionally, since we use O’ = 120° as the enlarged viewport,
we have an extra angular error tolerance beyond the originally
designed tolerance p = 30°. Based on Equation (8), we can calculate
the actual tolerance p’ as follows:

o’ (0]
p’ =2tan"! [tan — — tan — (13)
2 2
. 120° 90° .
=2tan"! [tan ——— — tan ~ 72.
2t tan —— —tan — | ~ 72.41 (14)

Considering that the distortion becomes worse when the content
is closer to the edge of the viewport, we limit the maximum offset
to £15° in the current implementation. Meanwhile, we maintain
the ability to transmit the enlarged viewport with extra tolerance.

4.3 Communication between Edge and Client

There are two communication channels between the client and the
edge server. First, the client sends the instant user head orienta-
tion data to the edge server via HTTP POST, which is required for
the velocity-based viewport prediction on the edge server. Second,
We use RTMP [16] to deliver the rendered video frames from the
edge server to the client to minimize the communication delay. In
addition to the rendered frame, the client requires the predicted
head orientation corresponding to the frame, which is viewed as
metadata associated with the predicted viewport. We adopt the Sup-
plemental Enhancement Information (SEI) [8] in H.264 to transmit
the metadata together with the rendered frame in order.
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5 EXPERIMENTAL RESULTS
5.1 Experimental Setup

Hardware and system setup. We evaluate the power efficiency
of EdgeVR using two smartphones as the VR headsets: (i) LG V20
with 1.6 & 2.15 GHz CPU frequency, 4 GB RAM, and a 3300mAh
removable battery; and (ii) Google Pixel 3 with 1.6 & 2.5 GHz CPU
frequency, 4GB RAM, and a 2915 mAh non-removable battery. The
smartphone under test connects to a wireless router from an ap-
proximate distance of 12 feet using the IEEE 802.11ac protocol. The
edge server (dual E5-2623 CPU, 32GB RAM, and GTX TITAN X
GPU) connects to the wireless router through a wired Ethernet con-
nection. We conduct experiments to compare the proposed EdgeVR
system with the following two baseline systems: (1) Original refers
to the original VR video streaming system without power optimiza-
tion. We implemented this system using the WebVR library [13],
the DASH protocol [33], and the ESPCN [32] via the ONNX-js li-
brary [15]. It serves as baseline to evaluate the power benefit of
edge offloading adopted in EdgeVR. (2) EdgeVR-NP refers to our
proposed EdgeVR system but without the viewport prediction for
MtoP latency compensation. It serves as a baseline to evaluate our
viewport prediction-based latency compensation in EdgeVR.

Dataset. We use a VR head movement dataset [38] to emulate
the user head movements, excluding a small number of data entries
where the timestamps of the user traces are non-monotonic. We
adopt the 48 users and 9 videos in the first group of the dataset,
which represents the scenario where users freely watch the videos
without being asked to accomplish any specific task.

Power Measurement Method. We adopt the Monsoon power
monitor [12] for power measurements. To establish a relatively
stable measurement environment, we mute the smartphone, set the
brightness to the lowest level, and turn on the airplane mode with
only WiFi enabled. For the EdgeVR and EdgeVR-NP cases, we directly
measure the power consumption on our implemented end-to-end
system. In the Original case, due to the high complexity of super-
resolution computations, we were not able to achieve real-time
super—resolution on the two smartphones and, therefore, we mea-
sure the following two components separately: (i) the VR rendering
power is measured on a WebVR-based end-to-end video streaming
system, following the same setup adopted in the literature [23];
and (ii) the super-resolution power is measured by a non-realtime
implementation of super-resolution on the two smartphones using
the ESPCN [32] via the ONNX-js library [15].

5.2 Power Evaluations

Table 1 shows the average power consumption of the three systems
measured over 48 users and 9 videos on 2 different phones. We
observe that Original consumes the highest average power among
the three systems, and EdgeVR-NP consumes the lowest thanks
to the benefit of edge offloading but would incur huge MtoP (as
discussed in Section 5.3). The power consumption of EdgeVR is
slightly higher than EdgeVR-NP as the headset needs to conduct the
extra cropping operation before displaying the video. In summary,
compared to Original, EdgeVR achieves significant power savings,
ie., 57% (LG V20) and 64% (Pixel 3). Figure 3 illustrates the power
distribution of the three systems over 9 videos and 48 users on
2 different phones. For each video, we measure VR rendering for
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48 users (1 minute each), and we measure super-resolution for 10
minutes as it is independent of user traces. We then plot the sum
of (1) average VR rendering power over 48 users, and (2) a moving
window average of super-resolution power (length = 10 samples
and step = 10 samples), as the total power consumption of Original.
The distribution results indicate that the most common power value
of EdgeVR is significantly lower than Original, i.e., 1.93W vs. 4.81W
(LG V20), and 1.61W vs. 4.40W (Pixel3).

Table 1: Average power consumption (48 users, 9 videos).

Average Power (Watt)

System
LG V20 Pixel 3
Original 5.01 4.58
EdgeVR-NP 1.65 1.41
EdgeVR 2.14 1.65
LG V20
0.015
4.81W
i
2 001
°
©
0 1.47W
2 0.005 193w
o
O u n
0 2 4 6 8
Power (Watt)
Pixel 3
0.02
4.40W
>0.015
® 001
a
2
a 0.005 1-24“{.61!1\/'
0 .
0 2 4 6 8
Power (Watt)
Original EdgeVR-NP EdgeVR

Figure 3: Power distribution comparison between EdgeVR
and two baselines (48 users, 9 videos).

5.3 Latency Overhead

We measure the MtoP latency by calculating the time difference
between the user head movement event and the corresponding
frame display event. Figure 4 shows the distribution of the MtoP
latencies for all the 9 videos and 48 users. The overall average MtoP
latency of EdgeVR is 11 ms, versus 231 ms for EdgeVR-NP. Also,
95% of the MtoP latency values are within the 20 ms boundary,
benefiting from the effective live viewport prediction in EdgeVR.

5.4 Quality Overhead

We note that the remote rendering and local cropping mechanisms
adopted by EdgeVR may result in quality degradations of the VR
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Figure 4: Distribution of the MtoP latency (ms) comparing
EdgeVR-NP and EdgeVR for 9 videos and 48 users on LG V20.

Table 2: Per-video angular error distribution (in degrees) for
EdgeVR in pitch, yaw, and roll directions over 48 users.

Percentile ‘ 5 10 15 20 80 85 90 95

'; pitch 0 0 0 0 0 0 0 0
73 yaw 0 0 0 0 0 0 3.15 12.55
> roll [0.06 012 0.19 026 489 640 872 13.22
‘: pitch 0 0 0 0 0 0 0 0
§ yaw 0 0 0 0 0 0 3.87 14.24
> roll [0.09 018 0.28 040 634 812 10.85 15.85
‘2 pitch 0 0 0 0 0 0 0 0
_% yaw 0 0 0 0 0 0 273 13.27
> roll [0.06 012 0.18 025 426 558 7.70 12.05
g pitch 0 0 0 0 0 0 0 0
-'-“.: yaw 0 0 0 0 0 0 2.27  10.38
> roll |0.06 011 0.17 024 470 621 857 13.16
”O’ pitch 0 0 0 0 0 0 0 0
-_-Q.: yaw 0 0 0 0 0 099 6.16 16.08
> roll [0.08 015 0.24 035 599 7.62 10.14 14.72
‘g pitch 0 0 0 0 0 0 0 0
% yaw 0 0 0 0 0 0 3.96 12.66
> roll |0.05 009 015 021 415 543 7.44 1147
‘; pitch 0 0 0 0 0 0 0 0
7§ yaw 0 0 0 0 0 0 1.46  13.57
> roll [0.03 006 0.10 0.12 242 3.28 4.64 7.25
°§ pitch 0 0 0 0 0 0 0 0
_% yaw 0 0 0 0 0 1.82 7.20 17.33
> roll [0.06 012 0.19 027 447 575 7.75 1151
% pitch 0 0 0 0 0 0 0 0
7§ yaw 0 0 0 0 0 0 220 11.01
> roll |[0.04 009 0.14 020 441 586 811 1251

video presented to the end user. It is because the central point of the
actual viewport required by the end user may be shifted from that
used for rendering the enlarged viewport at the edge server, due to
the imperfect viewport predictions. The cropping helps reduce the
mismatch but would introduce additional quality overhead, since it
changes the content without changing the projection point.
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To evaluate the quality impact of the viewport prediction, we
adopt the angular distance (a.k.a., angular error) between the final
viewport and actual user head orientation as our quality evalua-
tion metric. Table 2 shows the detailed angular error distribution
results for the 9 test videos over 48 users in the pitch, yaw, and roll
directions. We observe that EdgeVR achieves 0 angular errors in
95% and 80% of the cases in pitch and yaw directions, respectively,
and around 95% of the roll direction errors are within 15 degrees.

We adopt the SSIM metric to evaluate the impact of cropping
(i.e., the potential distortion), as it can represent the similarity be-
tween the ground truth image and the one generated after cropping.
Figure 5 shows the distribution of the per-frame SSIM results for
each video over 48 users based on the dataset [38]. The top and
bottom box boundaries indicate the 25% and 75% percentile of the
results (i.e., Q1 and Q3), respectively; the top and bottom whisker
marks indicate Q1 — 1.5 X (Q3 — Q1) and Q3 + 1.5 X (Q3 — Q1),
respectively, which represent the non-outlier range; and the rest of
the data points are outliers. We observe that the minimal median
SSIM is 0.60 over 9 videos, and the average SSIM ranges from 0.62
to 0.80. Note that the interpretation of SSIM for visual quality may
be different for the VR use case than the traditional 2D images.

TIATATIIE
LUTTUTH

Video #

Figure 5: Per-frame SSIM results for 9 videos over 48 users.

6 CONCLUSION

We have developed EdgeVR, a power optimization framework target-
ing live VR streaming. EdgeVR leverages edge offloading to reduce
the dominant power consumption caused by the on-device VR ren-
dering and deep learning computations. Also, it compensates for
the increased MtoP latency by dynamically predicting and pre-
rendering the user’s viewport of interest on the edge. The proposed
edge offloading and live viewport prediction approaches achieve
significant power savings while keeping a low MtoP latency to
meet the real-time requirement. The repository of the project is at
https://github.com/hwsel/EdgeVR.
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