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A B S T R A C T   

Neuroimaging studies are often limited by the number of subjects and cognitive processes that can be feasibly 
interrogated. However, a rapidly growing number of neuroscientific studies have collectively accumulated an 
extensive wealth of results. Digesting this growing literature and obtaining novel insights remains to be a major 
challenge, since existing meta-analytic tools are constrained to keyword queries. In this paper, we present 
Text2Brain, an easy to use tool for synthesizing brain activation maps from open-ended text queries. Text2Brain 
was built on a transformer-based neural network language model and a coordinate-based meta-analysis of 
neuroimaging studies. Text2Brain combines a transformer-based text encoder and a 3D image generator, and was 
trained on variable-length text snippets and their corresponding activation maps sampled from 13,000 published 
studies. In our experiments, we demonstrate that Text2Brain can synthesize meaningful neural activation pat
terns from various free-form textual descriptions. Text2Brain is available at https://braininterpreter.com as a 
web-based tool for efficiently searching through the vast neuroimaging literature and generating new 
hypotheses.   

1. Introduction 

A rapidly growing number of functional magnetic resonance imaging 
(fMRI) studies have given us important insights into the mental pro
cesses that underpin behavior. However, individual studies are often 
power-restricted (Carp, 2012; Button et al., 2013), since the number of 
subjects and mental processes that can be interrogated in a single 
experiment is limited (Church et al., 2010). One approach to digest the 
vast literature and synthesize across many studies is to perform a 
meta-analysis of the reported results, such as the coordinates of the most 
significant effects (e.g., 3D location of peak brain activation in response 
to a task). These meta-analyses usually require expert curation of rele
vant experiments (e.g. Costafreda et al., 2008; Minzenberg et al., 2009; 
Shackman et al., 2011). A critical technical challenge here is the 
consolidation of synonymous terms. Importantly, over time, different 
denominations might be used in different contexts or invented to refine 
existing ideas. For instance, “self-generated thought”, one of the most 
highly studied functional domains of the human brain (Smallwood, 

2013), can be referred to by varying terms, such as “task-unrelated 
thought” (Andrews-Hanna et al., 2014). 

The selection of reported results for meta-analysis can be automated 
on data scraped from the published literature (Yarkoni et al., 2011; 
Dockès et al., 2020; Rubin et al., 2017). Two popular examples of this 
direction are Neurosynth (Yarkoni et al., 2011) and more recently 
Neuroquery (Dockès et al., 2020). Neurosynth utilizes automated 
keyword search to retrieve relevant studies and statistical tests to find 
summary brain activation maps corresponding to the keywords. Unlike 
Neurosynth, Neuroquery is a predictive model that synthesizes activa
tion maps from keywords in the input query. Despite their differences in 
modeling, both Neurosynth and Neuroquery only support queries con
sisting predefined keywords. Furthermore, Neurosynth does not 
explicitly handle long queries, while Neuroquery relies on superficial 
lexical similarity via word co-occurences for inference of longer or rarer 
queries. We propose an alternative approach named Text2Brain, which 
builds on recent neural language models and permits more flexible 
free-form text queries. Text2Brain captures a more fine-grained and 
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implicit semantic similarity via vector representations from the neural 
language model in order to retrieve more relevant studies. Furthermore, 
in contrast to tools like Neuroquery, our method computes synthesized 
activation maps via a 3D convolutional neural network (CNN) model, 
which we empirically demonstrate, can capture coarse and fine details. 

We compare Text2Brain’s predictions with those from Neurosynth 
and Neuroquery, where we used article titles as free-form queries. 
Furthermore, we assess model predictions on independent test datasets, 
including reliable task contrasts and meta-analytic activation maps of 
well-studied cognitive domains predicted from their descriptions. Our 

analysis shows that Text2Brain generates activation maps that better 
match the target images than the baselines tools. Given its flexibility in 
taking input queries, Text2Brain can be used as an educational aid as 
well as a tool for synthesizing maps based on published results or 
generating novel hypotheses for future research. Compared to our con
ference article (Ngo et al., 2021), we have extensively expanded our 
results and analysis. Specifically, we have expanded on the model 
validation on article titles with a different test set (Sections 3.1 and 4.1), 
added additional evaluation on the contrast maps predicted from their 
descriptions (Section 4.2). New results and discussion have also been 
added to this paper, including a high-level conceptual comparison of 
models (Section 2.7), new experiments on predicting representative 
meta-analytic results (Sections 3.3 and 4.2), and quantitative analysis of 
the models’ robustness to input queries (Sections 3.4 and 5.2). 

2. Datasets and methods 

2.1. Model overview 

Fig. 1 shows the overview of this work, including data generation, 
model architecture, and model training. The Text2Brain model has an 
encoder-decoder architecture that maps text sequences into brain 

Fig. 1. Overview of data preprocessing, the Text2Brain model, and training 
procedure. All activation maps are 3D volumes, but projected to the surface for 
visualization. 

Table 1 
High-level comparison of approaches to meta-analytic brain maps generation .   

Neurosynth Neuroquery Text2Brain 

Vocabulary Fixed Fixed Unlimited 
Handle of complex 

query 
None Lexical similarity Semantic similarity 

Predictive models None TF-IDF, linear 
regression 

Transformer, 
convolution  

Fig. 2. Evaluation of article-average activation maps predicted from their titles 
measured in area under the Dice curve (AUC) score. The left and right graph 
show the Dice AUCs of samples from the easy and hard test sets, respectively 
(Section 3.1). The p-values are computed from paired-sample t-tests between 
Text2Brains and each of the 2 baselines. 

Fig. 3. Dice AUCs of predicted IBC task activation maps from contrasts’ 
description. The p-values are estimated from paired-sample t-tests between 
Text2Brain against the two baselines. 

Fig. 4. Dice AUCs of predicted HCP task activation maps from contrasts’ 
description. The graph includes 22 contrasts with the highest HCP-IBC’s Dice 
AUC scores and sorted in decreasing order. 
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activation maps (Section 2.2). Its transformer-based encoder uses self- 
attention to encode a snippet of text input into vector representation 
(Vaswani et al., 2017; Devlin et al., 2018). Text2Brain’s 3D convolu
tional decoder (CNN) then translates the vector representation into a 3D 
brain activation map. The Transformer is currently the most effective 
approach for modeling text since it can capture long-distance de
pendency between words and can learn efficiently through 
self-supervision from massive text corpora (Jawahar et al., 2019; Raffel 
et al., 2020). On the other hand, 3D CNNs are the most dominant 
architectural design in medical imaging (Milletari et al., 2016; Kam
nitsas et al., 2017). 

In our proposed approach, we first extract full text and activation 
coordinates from each research article to create data samples. Each 
sample consists of an input snippet from the full text and an output 3D 
activation map created using the coordinates (Section 2.3). Text2Brain 
is trained to associate the input text to activations at various spatial 
locations. Since Text2Brain’s transformer-based encoder is context- 
sensitive, it can better extract information from free-form query by 
refining the vector representation depending on the specific phrasing of 
the text inputs (Tenney et al., 2019). In contrast, the classical keyword 
search mainly exploits co-occurrence of keywords regardless of context 
and therefore may struggle on more nuanced queries (Salton and 
Buckley, 1988). Furthermore, keyword search approaches store one 
activation map for each supported keyword, which are in turn linearly 
combined for queries. This approach can limit how many keywords are 
supported (Yarkoni et al., 2011; Dockès et al., 2020). On the other hand, 
Text2Brain stores the text and activation maps content in its parameters 
and can scale better to diverse input queries (Petroni et al., 2019). We 
use data augmentation to encourage Text2Brain to construct and store 
rich many-to-one mappings between textual description and activation 
maps (Section 2.4). This allows Text2Brain to better map semantically 
similar text queries to similar activation maps. 

2.2. Implementation 

Fig. 1 bottom left corner shows the Text2Brain model with its text 
encoder and 3D CNN image decoder. Text2Brain’s text encoder is based 
on SciBERT, a BERT model that has been trained using scientific articles 
(Beltagy et al., 2019). BERT is a transformer-based model with bidi
rectional self-attention trained via self-supervision to learn semantic 
representations of textual input (Devlin et al., 2018). The text encoder 
outputs a vector representation of dimension 768. This vector is pro
jected using a fully-connected layer and then reshaped to a 3D volume of 
dimension 4 × 5 × 4 voxels with 64 channels at each voxel. The image 
decoder consists of 3 transposed 3D convolutional layers with 32, 16, 8 
channels respectively. Text2Brain was trained using the Adam opti
mizer (Loshchilov and Hutter, 2018) and the mean-squared error with a 
batch size of 24 for 2000 epochs. The learning rate for the text encoder 
and image decoder are set at 10−5 and 3 × 10−2 respectively. The 
model’s source code is available at https://github.com/sabunculab/text 
2brain. 

2.3. Data preprocessing 

We used the same set of 13,000 neuroimaging articles previously 
released in Dockès et al. (2020) in our experiments. Each article contains 
one or more tables of results that reported coordinates of peak activation 
in MNI152 coordinate system (Lancaster et al., 2007). The activation 
foci are also publicly released by Neuroquery (Dockès et al., 2020). 
Following the same procedure as Dockès et al. (2020), the set of acti
vation foci associated with each table is used to generate an activation 
map by placing a Gaussian sphere with full width at half maximum 
(FWHM) of 9mm at each of the coordinates of peak activation. The 
chosen FWHM allows a fair comparison with Neuroquery (Dockès et al., 
2020) in our experiments, and is consistent with previous work (Wager 

Fig. 5. Task activation maps predicted from contrasts’ description. Each row shows both the thresholded maps of the top 25% most activated voxels (top) and the 
overlap between predicted and target binarized brain maps. Blue is activation in the target contrast, red is the predicted activation and yellow is the overlap. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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et al., 2009; Yarkoni et al., 2011; Yeo et al., 2015). Supplemental section 
6.6 shows an analysis of the effect of the Gaussian kernel’s FWHM used 
for preprocessing on Text2Brain’s predictive accuracy on an indepen
dent test set. This comparison confirms that the choice of the kernel’s 
FWHM is reasonable. An article-average activation map is also gener
ated by averaging the activation maps of all the tables in the article. The 

text associated with the activation maps are extracted from the articles’ 
full text. The articles’ full text are scraped using their PubMedID via the 
NCBI API 3 and the Elsevier E-utilities API.4 As there may be multiple 
text snippets corresponding to the same activation map, the next section 
(Section 2.4) shows how the corresponding text of an activation map is 

Fig. 6. Prediction of brain maps from meta-analytic studies of representative functional domains. The information of the investigated functional domains are listed in 
Table 2. Reference and predicted activation maps of the first 4 function domains are visualized on the brain surface. The last domain (“pain”) is visualized in the 
volume as most activation concentrates in the non-cortical parts of the brain. For all functional domains, Text2Brain generates reasonable activation maps and 
comparable with the baselines for the common functional domains. 

3 https://www.ncbi.nlm.nih.gov/books/NBK25501/  
4 https://dev.elsevier.com/ 
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selected. 

2.4. Training 

Each training sample consists of a text-activation map pair and 
correspond to an neuroimaging article. The activation map is sampled 
uniformly at random from the union set of table-specific maps and 
article-average map. For each table-specific map, the first sentence of 
the corresponding table caption is chosen as the map’s associated text. 
Our initial data exploration suggested that the first sentence to be the 
most relevant description of the activation map. For each article-average 
map, the associated text that describes the activation map is sampled 
uniformly at random from the following four sources: (1) the article’s 
title; (2) one of the article’s keywords; (3) the article’s abstract; and (4) a 
randomly chosen subset of sentences from the discussion section of the 
article. This data augmentation strategy encourages Text2Brain to 
generalize over input texts of different lengths. Furthermore, matching 
the same activation pattern with multiple different text snippets en
courages the model to recognize important words common across the 
snippets and to learn the association between different but synonymous 
words. Supplemental Fig. 12 shows our ablation study on the sampling 
strategy. The liberal (and likely noisy) construction of image-text pairs 
appears to perform better than more deliberate coupling of image-text 
snippets strategies (not reported) that we tried in our preliminary ex
periments. We surmise that simply presenting different text snippets to a 
target brain image is analogous to another augmentation strategy that 
allows the neural network to pool across samples and learn the relevant 
words and their weights with respect to the target brain maps. Training 
with the set up in Section 2.2 takes approximately 75 h on one Nvi
diaRTX GPU while one inference pass with an input query of up to 140 
characters takes less than 1 s. 

2.5. Baselines 

We compare Text2Brain to 2 different baselines: Neurosynth (Yar
koni et al., 2011) and Neuroquery (Dockès et al., 2020). For a keyword, 
Neurosynth first finds all neuroimaging articles that mention that 
keyword. Then, one statistical test per voxel is performed across the 
activation maps corresponding to those studies to determine a signifi
cant association. Since Neurosynth was not formulated to handle 
multiple-word queries, for such query, we performed statistical test 
using activation maps from all articles that contain at least one of the 
keywords in the query. 

Neuroquery extends Neurosynth’s vocabulary of keywords by 
including more curated keywords from lexicons such as MeSH, 

NeuroNames, and NIF (Lipscomb, 2000; Bowden and Martin, 1995; 
Gardner et al., 2008). The keyword encoding is obtained after per
forming non-negative matrix factorization of the articles’ full text (as a 
bag of keywords) represented with term frequency - inverse document 
frequency (TF-IDF) features (Salton and Buckley, 1988). A ridge 
regression model was trained to map the text encoding to the activation. 
The inference of a keyword is smoothed by a weighed average of its most 
related keywords (in the TF-IDF space). For multiple-word queries, the 
predicted activation map is obtained by averaging the activation maps 
from all keywords in the input, weighed by the coefficients learnt during 
training. 

2.6. Evaluation metrics 

For thresholded target activation maps such as those computed by 
ALE (Eickhoff et al., 2009), the predicted brain maps are thresholded to 
retain the same number of most activated voxels as the target. For 
example, given an estimated activation map by ALE with statistically 
significant clusters of activation that cover 25% of the brain volume, the 
brain maps predicted by Text2Brain, Neuroquery, and Neurosynth are 
also thresholded to retain the top 25% most activated voxels in each 
map. The accuracy of prediction is measured by Dice score (Dice, 1945) 
which quantifies the extent of overlap between the predicted and target 
brain maps (details are in Supplemental Section 6.2). 

Furthermore, we use Dice scores at different thresholds to estimate 
the similarity between predicted and target activation maps at different 
levels of detail (Ngo et al., 2022). This evaluation procedure is similar to 
that used in Dockès et al. (2020) for a thresholded target map, but we 
apply the same thresholding to both the target and predicted map. For 
example, at 5% threshold (considering the 5% most activated voxels), 
the Dice score measures the correspondence of the fine-grained details 
between the target and predicted activation maps. At higher thresholds 
(e.g. 25%), the score captures the gross agreement between activation 
clusters. We also estimated the area under the Dice curve (AUC) as a 
summary measure using approximated integration of Dice scores across 
all thresholds from 5% up to 30%. Supplemental Fig. 9 shows the Dice 
curve for an example pair of target-predicted activation maps. Note that 
the range of thresholds in the x-axis also conveys the maximum per
centage of the gray matter mask that has an activation in the target brain 
map. For example, if only a proportion of gray matter mask has acti
vation, such as the case of Neuroquery prediction that mostly extends up 
to 30% of the gray matter mask or a sparse target activation pattern from 
the coordinate-based meta-analysis, the x-axis range will not be 
extended up to 1. 

In our experiments, all evaluation is performed in the MNI152 
volumetric space, which is the original space of all predicted maps. For 
visualization, with activation maps that mostly concentrate in the ce
rebral cortex, the original volumetric images are transformed from 
MNI152 space to fs_LR surface space using Connetome Workbench (Van 
Essen et al., 2013) via the FreeSurfer surface space (Buckner et al., 2011; 
Fischl, 2012), with isolated surface clusters of less than 20 vertices being 
removed (Wu et al., 2018). Activation maps with significant activation 
in the non-cortical parts of the brain are visualized by cross-sectional 
slices with significant activation using Nilearn (Abraham et al., 2014). 

2.7. High-level model comparison 

Text2Brain can better handle input text than prior approaches 
because its vocabulary is not limited to a fixed pre-defined set of words 
(Table 1). In contrast, Neurosynth and Neuroquery rely on fixed word 
vocabularies and cannot predict for queries consisting of out-of- 
vocabulary words. Besides, Neurosynth’s and Neuroquery’s vocabu
laries are not sufficiently extensive, covering only a fraction (under 
10%) (Dockès et al., 2020) of terms in relevant neuroimaging lexicons 
such as Cognitive Atlas (Poldrack and Yarkoni, 2016) and NeuroNames 
(Bowden and Martin, 1995). Text2Brain’s usage of byte-pair encoding 

Table 2 
Meta-analytic studies of representative functional domains. The studies were 
selected from the ANIMA dataset (Reid et al., 2016) that have the most number 
of experiments and covere a diverse set of brain regions.  

Functional domain #Exp Search queries 

Visual processing ( 
Heckner et al., 2021) 

114 visual processing face monitor face 
discrimination film viewing fixation flashing 
checkerboard passive viewing visual object 
identification visual pursuit visual tracking 
visuospatial attention 

Auditory processing ( 
Heckner et al., 2021) 

122 auditory processing divided auditory attention 
music comprehension oddball discrimination 
passive listening phonological discrimination 
pitch monitor pitch discrimination tone 
monitor tone discrimination 

Motor execution ( 
Heckner et al., 2021) 

251 motor execution writing chewing swallowing 
drawing isometric force motor learning 
grasping finger tapping button press flexion 
extension 

Working memory ( 
Rottschy et al., 2012) 

189 working memory short-term memory 

Pain (Xu et al., 2020) 222 pain noxious nociception  
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enables the model to handle infrequent and out-of-vocabulary words 
more gracefully, by breaking down those words into digestable 
sub-word tokens (Sennrich et al., 2016). Hence, Text2Brain’s vocabulary 
is open ended and can scale with training data to be unlimited in theory. 
Besides, Text2Brain’s training is not limited to only training set data. 
Text2Brain can leverage self-supervised learning from 
non-neuroimaging scientific articles, as well as neuroimaging articles 
that do not report activation coordinates to learn a better 
text-to-activation-map transformation. By finetuning a SciBERT text 
encoder pretrained on the larger dataset of scientific articles (including 
non-neuroimaging articles), Text2Brain seems to converge on an opti
mum with a more useful representational space of the input text. Sup
plemental Section 6.4 shows the comparison between the Text2Brain 
model that uses pretrained SciBERT text encoder versus a randomly 
initialized text encoder. Evaluation on predicting article-average acti
vation maps from both sets of test articles in the Neuroquery dataset 
(similar to Section 3.1) suggests that pretraining benefits the Text2
Brains performance. Furthermore, Text2Brain uses contextualized text 
embeddings to model semantic relationship between words so it can 

deal with nuanced queries more effectively. Methods such as Neuro
synth and Neuroquery may have difficulty dealing with complex ex
pressions. By simply averaging the keywords’ activation maps to arrive 
at the prediction for a complex query, these methods may fail to account 
for relationship between words in the query, such as order and semantic. 
Lastly, while the predictive approach of Neuroquery constructs the 
predicted activation map by modelling voxels’ activation indepen
dently, Text2Brain generates the whole-brain activation with a 3D 
convolutional decoder that takes in the text encoding produced by the 
language model. By upsampling and computing the whole-brain acti
vation from a bottleneck, Text2Brain can better model both the short 
and long-distance relationship between voxels. 

3. Experimental setup 

3.1. Predict activation maps from article title 

Two test sets were created from the Neuroquery dataset of 13,000 
studies. The first test set consists of 1000 randomly sampled articles. The 

Fig. 7. Prediction of self-generated thought activation map using synonymous queries. While Text2Brain generates consistent prediction across the similar queries, 
Neurosynth and Neuroquery’s prediction deteriorate on the “internally-directed thought” and “task-unrelated thought” queries. 
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second test set also consists of 1000 articles but was randomly sampled 
such that the keywords (defined by the articles’ authors) do not appear 
in the training and validation articles. The two test sets are labeled as 
easy and hard test sets respectively. Of the remaining articles, 1000 are 
randomly held out as a validation set for parameters tuning. For each 
article, the article-average activation map is predicted from its title 
using Text2Brain, as well as the Neurosynth and Neuroquery baselines. 
Both Text2Brain and Neuroquery were trained on the 10,000 articles in 
the training set. The Text2Brain model is trained using both the articles’ 
titles and samples from the full-text, while Neuroquery is trained on the 
articles’ full-text. We use predictions from the publicly available Neu
rosynth model at https://neurosynth.org, which was trained on the ar
ticles’ abstracts. Note that Neurosynth is not a predictive model meant 
for out-of-sample prediction, but for performing automated statistical 
testing of associations between terms and brain locations. 

3.2. Predict activation maps from contrast descriptions 

3.2.1. Individual brain charting (IBC) task contrasts 
The Individual Brain Charting (IBC) project (Pinho et al., 2020) es

timates an extensive functional atlas of the human brain via fMRI data of 
subjects measured under a large number of task conditions. In partic
ular, the IBC dataset consists of 180 task contrasts measured on 12 
subjects. We use the activation maps provided by the IBC project to 
measure the predictive accuracy of Text2Brain and the two baselines 
over a wide range of functional domains, given the contrast descriptions 
from IBC. 

3.2.2. Human connectome project (HCP) task contrasts 
While the IBC dataset offers a large number of reference brain maps, 

the small number of subjects might make some results less reliable. We 
also utilized the Human Connectome Project (HCP) data both for 
reference and a measure of reliability of target maps. The HCP dataset 
consists of neuroimaging data from over 1200 subjects, including task 
fMRI (tfMRI) of 86 task contrasts from 7 domains (Barch et al., 2013), 
which overlap with 43 contrasts under the IBC dataset. We evaluate the 
model prediction of HCP task contrasts from their descriptions. While 
HCP provides detailed descriptions of task contrasts, we opt for the more 
concise contrast descriptions provided by the Individual Brain Charting 
(IBC) as they are more succinct and thus more favorable to the baselines. 
The IBC contrast descriptions are extracted from the metadata of the 
activation maps released on Neurovault https://neurovault.org/images/ 
360528. The list of all IBC description of HCP contrasts are included in 
Supplemental Table 6.1. On the other hand, the target (ground-truth) 
activation maps are the HCP group-average contrast maps, as the large 
number of subjects provides more reliable estimates of the contrast 

maps. In the analyses of this experiment, we use the agreement between 
the IBC and HCP maps as a measure of reliability. Despite using similar 
protocols, there are subtle differences between the IBC and HCP ex
periments. For instance, the original HCP language task was conducted 
in English but the corresponding language task in the IBC project was 
conducted in French. 

3.3. Predict representative meta-analytic brain maps 

The automated approach to brain map generation of Text2Brain and 
the 2 baselines are compared against published brain maps created from 
a manually curated set of meta-analyses. In particular, 5 cognitive 
concepts and their corresponding activation maps of 5 representative 
meta-analytic studies from ANIMA database (Reid et al., 2016) were 
selected. The 5 meta-analytic studies were selected for having the most 
number of experiments and their different coverage of the human brain. 
The cognitive processes of interest are visual processing, auditory pro
cessing, motor execution (Heckner et al., 2021), working memory 
(Rottschy et al., 2012), and pain (Xu et al., 2020). Each study searches 
for published neuroimaging studies that contain a set of texts queries 
relevant to the cognitive concept of interest. For example, in Rottschy 
et al. (2012), the phrases to search for working memory-related studies 
are “working memory” and “short-term memory”. The same text queries 
for discovering relevant studies in the original meta-analysis were used 
as input to Neurosynth, Neuroquery, and Text2Brain. Table 2 shows the 
search queries and the number of experiments included in the original 
meta-analysis of the 5 chosen cognitive concepts. Activation maps 
generated from all text input queries corresponding to each cognitive 
concept are averaged to yield a single brain map for each model. The 
reference brain images for comparison are the activation maps released 
by the studies and made publicly available on ANIMA. The reference 
activation maps are produced by Activation Likelihood Estimation 
(ALE) (Turkeltaub et al., 2002; Laird et al., 2005; Eickhoff et al., 2009) 
and thresholded to retain only the statistically significant clusters of 
activation. For all reference ALE maps, the cluster-level forming 
threshold at voxel-level is p < 0.001 and cluster-level corrected 
threshold is set at p < 0.05 by the original authors (Eickhoff et al., 
2012). For comparison, the generated brain maps are thresholded to 
keep the same number of survived voxels as those in the reference 
activation maps. The accuracy of each model’s generated brain map is 
evaluated as the Dice score between the (thresholded) generated brain 
map and the target (thresholded) brain map (see Section 2.6). 

3.4. Evaluate robustness of model prediction to semantically-equivalent 
queries 

With the continual improvement of our understanding of the human 
brain and mind, neuroscientific knowledge is also an ever evolving 
repertoire. Several neuroimaging concepts have also been changing, 
adapting and broadening over time. Thus, we were interested in 
examining if our approach is robust to semantically equivalent queries. 
For example, “self-generated thought”, one of the most intensively 
examined cognitive domains in neuroscience, has had its definition 
refined and assigned different denominations over the years. As a 
cognitive paradigm, different names have been used to refer to the set of 
inward-oriented psychological processes, such as “self-generated 
thought” (Smallwood, 2013), or “task-unrelated thought” (Andrew
s-Hanna et al., 2014). Both terms are associated with “default network” 
(Buckner et al., 2008), the set of brain regions with elevated activation 
when subjects are not subjected to any external stimulus. 

To assess models’ prediction of synonymous queries, we utilized the 
ontology from the Cognitive Atlas (Poldrack et al., 2011; Bilder et al., 
2009). The Cognitive Atlas is a collaborative knowledge base for 
neuroscience with content such as cognitive concepts, their description 
and synonyms (aliases) contributed by the project’s voluntary partici
pants (Miller et al., 2010). At the time of our experiments, Cognitive 

Fig. 8. Accuracy of matching Cognitve Atlas concept names with their 
description and aliases using models’ predicted brain maps. 
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Atlas includes 885 concepts with definition, 108 of which have at least 
one alias. We considered a model to be robust with respect to a specific 
cognitive concept’s definition if the activation map predicted from the 
description matches the predicted map from the concept’s name. In 
particular, given a model’s predicted brain maps from all 885 Cognitive 
Atlas concept names and their description, we assess if the model’s brain 
map predicted from a concept’s definition is one of the k maps (out of 
886 possible maps) most similar to the model’s brain map predicted 
from the concept’s name. In our experiments, top-1, top-5 and top-10 
matching accuracy were evaluated using Dice AUC metrics. The 
different values of k’s account for the uncertainty of the concepts’ nat
ural language text, e.g., different contributors might use different names 
to refer to the same concept. Similarly, models’ robustness with respect 
to a cognitive concept’s alias is measured by the accuracy of matching 
the activation maps predicted from the text of a concept’s alias and its 
name. 

4. Results 

4.1. Validation of activation maps predicted from article title 

Fig. 2 shows the quality of activation maps predicted from the titles 
of 1000 articles in each of the two test sets (Section 3.1). In the easy test 
set (the test articles’ keywords can overlap with the training articles’), 
the proposed Text2Brain model (mean Dice AUC = 0.0636) outperforms 
Neuroquery (mean Dice AUC = 0.0523) and Neurosynth (mean Dice 
AUC = 0.0453). In the hard test set (the test articles’ keywords are not 
present in the training set), the Text2Brain model (mean Dice AUC =
0.0609) also performs better than Neuroquery (mean AUC = 0.0499) 
and Neurosynth (mean AUC = 0.0457). Paired-sample t-tests show that 
the performance differences in both test sets are statistically very sig
nificant. The p-values when comparing Neuroquery and Neurosynth are 
p = 5.25 × 10−27 and p = 2.40 × 10−12. Fig. 2 also indicates how the 
different models handle out-of-sample input text. Text2Brain can make a 
prediction for all input texts, evident with positive Dice AUCs for all 
samples. On the other hand, Neurosynth fails to make prediction for 
some article titles in both test sets, resulting in zero Dice AUCs for such 
samples. Similarly, Neuroquery fails to make prediction for some sam
ples in the hard test set. These failure cases are caused by the limited 
vocabularies of Neurosynth and Neuroquery that cannot cover the words 
in the test input queries. On the other hand, the language model of 
Text2Brain is finetuned from SciBert, which has been pretrained on a 
broader lexicon and utilizes sub-word tokens to extend the vocabulary to 
unseen words (more details in Section 2.7). 

4.2. Prediction of task contrast maps from description 

Fig. 3 shows the Dice AUC scores for the prediction of Text2Brain, 
Neuroquery and Neurosynth against the IBC group-average task contrast 
maps. Text2Brain (mean Dice AUC = 0.0507) improves upon both 
Neuroquery (mean Dice AUC = 0.0457, p = 4.11 × 10−4), and Neuro
synth (mean Dice AUC = 0.0404, p = 1.58 × 10−9). The p-values are 
measured by 2-tail paired-sample t-test between Text2Brain and the two 
baselines. 

Fig. 4 shows the AUC scores for the prediction of the three models 
and the IBC average contrasts, against the HCP target maps. The 22 
contrasts with above-average HCP-IBC’s AUC scores, considered to be 
the reliable contrasts, are shown. Across all 43 HCP contrasts, Text2
Brain (mean AUC = 0.082) performs better than the baselines, i.e. 
Neuroquery (mean AUC = 0.0755, p = 0.08), Neurosynth (mean AUC =
0.047, p = 1.5 × 10−5), where p-values are computed from the paired t- 
test between Text2Brain’s and the baselines’ prediction. As reference, 
IBC contrasts yield a mean AUC = 0.094 when compared to the corre
sponding HCP maps (Statistical comparison with Text2Brain, p =

0.077). 

Fig. 5 shows the prediction for three contrasts correspond to different 
HCP task groups, namely “MOTOR”, “LANGUAGE”, “RELATIONAL” 
thresholded at the top 25% most activated voxels. The three task groups 
were chosen to show results for a range of target images with different 
levels of reliability. The two task groups “MOTOR” and “LANGUAGE” 
are the two most reliable task (having the highest average HCP-IBC AUC 
across all contrasts), while “RELATIONAL” has the lowest average HCP- 
IBC AUC. Text2Brain’s prediction improves over the baselines for the 
three contrasts. Neurosynth was not able to generate activation maps for 
one of the contrast descriptions (“Move tongue”). On the other hand, for 
the “Move tongue” contrast, Neuroquery predicts activation in the pri
mary cortex, but the peak is in the wrong location, shifted more toward 
the hand region of the homunculus. Additionally, there is a false positive 
prediction in the occipital cortex, which might be an artifact from 
modeling brain activation coupled with visual stimuli-related words 
describing the motor experiments. 

4.3. Prediction of brain maps from representative meta-analytic studies 

Fig. 6 shows the prediction of activation maps for 5 representative 
meta-analytic studies with the most number of experiments from 
ANIMA (Reid et al., 2016). Among the three models, Neuroquery has the 
lowest Dice score on average, with prediction on “Visual processing”, 
“Working memory”, and “Pain” that significantly deviates from the 
target maps. On the other hand, Neurosynth-derived brain maps 
consistently match well against the target maps. The high accuracy of 
Neurosynth prediction is expected since the five chosen cognitive con
cepts are among the most commonly studied concepts with the most 
number of experiments reporting activation coordinates in the litera
ture. Given high number of available experiments and the input queries 
mostly exist in Neurosynth’s predefined keyword set, the activation 
coordinates scraped by automated method by Neurosynth would be very 
similar to the manually curated data in the original meta-analysis. 
Lastly, Text2Brain also predicts consistently reasonable brain maps for 
all five cognitive concepts, and matches the target maps better than 
Neurosynth for “Visual Processing” and “Pain”. Results in Fig. 6 shows 
that Text2Brain could learn appropriate relationship between common 
search phrases and the activation pattern of a diverse set of functional 
domains. 

5. Robustness of models to input queries 

5.1. Example of “self-generated thought” synonyms 

We examine the prediction for “self-generated thought”, which is one 
of the most extensively investigated functional domains, due to its 
involvement in a wide range of cognitive processes that do not require 
external stimuli (Andrews-Hanna et al., 2014), and is associated with the 
default network (Buckner et al., 2008). The ground-truth map for 
self-generated thought, taken from (Ngo et al., 2019), is estimated using 
activation likelihood estimation (ALE) (Eickhoff et al., 2009) applied on 
activation foci across 167 imaging studies of 7 tasks selected based on 
strict criteria (Spreng et al., 2009; Mar, 2011; Sevinc and Spreng, 2014). 
The resulting ALE map is thresholded with the cluster-level forming 
threshold at voxel-level p < 0.001, and cluster-level corrected threshold 
p < 0.05 (Eickhoff et al., 2012). 

Fig. 7 shows the prediction of self-generated thought activation map 
using four different query terms, thresholded to retain the same number 
of activated voxels as the target map. 

Across all four queries, Text2Brain’s prediction best matches the 
ground-truth activation map compared to the baselines. For the “self- 
generated thought” and “default network” queries, all approaches 
generate activation maps that are consistent with the ground-truth, 
which includes the precuneus, the medial prefrontal cortex, the 
temporo-parietal junction, and the temporal pole. Text2Brain and 
Neuroquery both make reasonable prediction from the “internally- 
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directed thought” query while Neurosynth’s prediction is largely scat
tered and does not match the target map. Lastly, Text2Brain can also 
replicate a similar activation pattern to the target from the query “task- 
unrelated thought”, evident by only a slight drop in the Dice score. 
However, Neuroquery and Neurosynth both generate activation maps 
that differ from the typical default network’s regions, such as activation 
in the prefrontal cortex, and also result in a large drop of the Dice scores. 

5.2. Prediction of cognitive atlas concepts from synonymous queries 

Fig. 8 shows the accuracy of matching cognitive concept names from 
the Cognitive Atlas (Poldrack et al., 2011) with their definitions and 
atlases using the different models’ predicted brain maps. Prediction by 
Text2Brain is more robust than both Neuroquery and Neurosynth with 
respect to the concept definition and alias. In particular, Text2Brain has 
the same top-1 accuracy of matching the brain map predicted from a 
concept’s alias with the prediction from the concept name compared to 
Neurosynth. This result is expected given that Neurosynth can yield 
accurate brain map for keywords that are included in their vocabulary. 
In contrast, Text2Brain improves over Neurosynth for top-1 accuracy of 
matching concept name with the longer text of concept definition. 
Text2Brain is more robust than both Neurosynth and Neuroquery 
baselines in terms of top-5 and top-10 matching accuracies for both 
concept aliases and definitions. Fig. 8 indicates that Text2Brain pre
diction is robust to natural language text queries of different length and 
complexity. 

6. Conclusion 

In this work, we present a model named Text2Brain for generating 
activation maps from free-form text query. By finetuning a high-capacity 
SciBert-based text encoder to predict coordinate-based meta-analytic 
maps, Text2Brain captures the rich relationship in the language repre
sentational space, allowing the model to generalize its prediction for 
synonymous queries. This is evident in the better performance of 
Text2Bran in predicting the self-generated thought activation map using 
different descriptions of the functional domain. Text2Brain’s capability 
to implicitly learn relationships between textual terms and images en
sures the model can remain relevant and useful even as neuroimaging 
literature continues to evolve with new discoveries and rephrasing of 
existing concepts. We also show that Text2Brain accurately predicts 
most of the task contrasts included in the IBC and HCP dataset, vali
dating its capability to make prediction for longer, arbitrary queries. 
Text2Brain also preempts failure cases in Neurosynth and Neuroquery, 
where they cannot predict input queries undefined in the vocabulary 
list, even though these queries are relevant to neuroscience research (e. 
g. title of an article). On the other hand, we also observed that Text2
Brain had difficulties handling queries that involve logical reasoning, 
such as the direction of a contrast. For example, while queries such as “A 
vs B” and “B vs A” can be inferred by human to correspond with inverted 
activation maps, Text2Brain sometimes treats one direction to be the 
same as the other. We suspect that this type of error is likely due to the 
model’s inability to generalize “vs” as an “subtractive” operator. 
Resolving such limitation will likely require modifications to the lan
guage model. Furthore, in the future, we plan to enhance the inter
pretability of our approach, such as to attribute regions of activations in 
the generated map to specific words in the input query, as well as to 
efficiently match activation maps and scientific descriptions most rele
vant to the synthesized images. 

We believe that the flexibility of Text2Brain can significantly lower 
the barrier for researchers at all stages of their careers to synthesize 
brain activation maps needed for their research. For example, the ability 
of Text2Brain to generate meaningful neural activation patterns of 
synonymous queries for a functional domain can improve the accuracy 
of delineating region-of-interests (ROIs) relevant to the functional pro
cess, as well as to assess the reliability of each ROI. Discovery of these 

ROIs is useful for several applications such as meta-analytic connectivity 
modeling (MACM) (Laird et al., 2013). We look forward to such appli
cation of Text2Brain in aiding future neuroscientific research. 
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Dockès, J., Poldrack, R.A., Primet, R., Gözükan, H., Yarkoni, T., Suchanek, F., Thirion, B., 
Varoquaux, G., 2020. NeuroQuery, comprehensive meta-analysis of human brain 
mapping. Elife 9, e53385. 

Eickhoff, S.B., Bzdok, D., Laird, A.R., Kurth, F., Fox, P.T., 2012. Activation likelihood 
estimation meta-analysis revisited. NeuroImage 59 (3), 2349–2361. 

Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate- 
based activation likelihood estimation meta-analysis of neuroimaging data: a 
random-effects approach based on empirical estimates of spatial uncertainty. Hum. 
Brain Mapp. 30 (9), 2907–2926. 

Fischl, B., 2012. Freesurfer. NeuroImage 62 (2), 774–781. 
Gardner, D., Akil, H., Ascoli, G.A., Bowden, D.M., Bug, W., Donohue, D.E., Goldberg, D. 

H., Grafstein, B., Grethe, J.S., Gupta, A., et al., 2008. The neuroscience information 
framework: a data and knowledge environment for neuroscience. Neuroinformatics 
6 (3), 149–160. 

Heckner, M.K., Cieslik, E.C., Küppers, V., Fox, P.T., Eickhoff, S.B., Langner, R., 2021. 
Delineating visual, auditory and motor regions in the human brain with functional 
neuroimaging: a brainmap-based meta-analytic synthesis. Sci. Rep. 11 (1), 1–11. 

G.H. Ngo et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.media.2022.102540
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0001
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0001
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0001
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0002
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0002
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0002
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0003
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0003
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0003
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0003
http://arxiv.org/abs/1903.10676
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0005
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0005
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0005
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0006
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0006
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0008
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0008
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0008
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0009
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0009
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0009
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0010
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0010
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0011
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0011
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0011
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0012
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0012
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0012
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0014
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0014
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0015
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0015
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0015
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0016
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0016
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0017
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0017
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0017
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0017
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0018
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0019
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0019
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0019
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0019
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0020
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0020
http://refhub.elsevier.com/S1361-8415(22)00187-6/sbref0020


Medical Image Analysis 81 (2022) 102540

10

Jawahar, G., Sagot, B., Seddah, D., 2019. What does bert learn about the structure of 
language? ACL 2019-57th Annual Meeting of the Association for Computational 
Linguistics. 

Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., 
Rueckert, D., Glocker, B., 2017. Efficient multi-scale 3D CNN with fully connected 
CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78. 

Laird, A.R., Eickhoff, S.B., Rottschy, C., Bzdok, D., Ray, K.L., Fox, P.T., 2013. Networks of 
task co-activations. NeuroImage 80, 505–514. 

Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., 
Turkeltaub, P.E., Kochunov, P., Fox, P.T., 2005. ALE meta-analysis: controlling the 
false discovery rate and performing statistical contrasts. Hum. Brain Mapp. 25 (1), 
155–164. 

Lancaster, J.L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., 
Mazziotta, J.C., Fox, P.T., 2007. Bias between MNI and Talairach coordinates 
analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28 (11), 
1194–1205. 

Lipscomb, C.E., 2000. Medical subject headings (mesh). Bull. Med. Libr. Assoc. 88 (3), 
265. 

Loshchilov, I., Hutter, F., 2018. Decoupled weight decay regularization. Proceedings of 
ICLR. 

Mar, R.A., 2011. The neural bases of social cognition and story comprehension. Annu. 
Rev. Psychol. 62, 103–134. 

Miller, E., Seppa, C., Kittur, A., Sabb, F., Poldrack, R., 2010. The cognitive atlas: 
employing interaction design processes to facilitate collaborative ontology creation. 
Nat. Preced., 1 https://doi.org/10.1038/npre.2010.4532.1. 

Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-Net: fully convolutional neural networks 
for volumetric medical image segmentation. 2016 Fourth International Conference 
on 3D Vision (3DV). IEEE, pp. 565–571. 

Minzenberg, M.J., Laird, A.R., Thelen, S., Carter, C.S., Glahn, D.C., 2009. Meta-analysis 
of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. 
Gen. Psychiatry 66 (8), 811–822. 

Ngo, G.H., Eickhoff, S.B., Nguyen, M., Sevinc, G., Fox, P.T., Spreng, R.N., Yeo, B.T., 2019. 
Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. 
NeuroImage 200, 142–158. 

Ngo, G.H., Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R., 2022. Predicting 
individual task contrasts from resting-state functional connectivity using a surface- 
based convolutional network. NeuroImage 248, 118849. 

Ngo, G.H., Nguyen, M., Chen, N.F., Sabuncu, M.R., 2021. Text2brain: Synthesis of brain 
activation maps from free-form text query. International Conference on Medical 
Image Computing and Computer-Assisted Intervention. Springer, pp. 605–614. 
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