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ARTICLE INFO ABSTRACT

Keywords: Neuroimaging studies are often limited by the number of subjects and cognitive processes that can be feasibly
Coordinate-based meta-analysis interrogated. However, a rapidly growing number of neuroscientific studies have collectively accumulated an
Transformers

extensive wealth of results. Digesting this growing literature and obtaining novel insights remains to be a major
challenge, since existing meta-analytic tools are constrained to keyword queries. In this paper, we present
Text2Brain, an easy to use tool for synthesizing brain activation maps from open-ended text queries. Text2Brain
was built on a transformer-based neural network language model and a coordinate-based meta-analysis of
neuroimaging studies. Text2Brain combines a transformer-based text encoder and a 3D image generator, and was
trained on variable-length text snippets and their corresponding activation maps sampled from 13,000 published
studies. In our experiments, we demonstrate that Text2Brain can synthesize meaningful neural activation pat-
terns from various free-form textual descriptions. Text2Brain is available at https://braininterpreter.com as a
web-based tool for efficiently searching through the vast neuroimaging literature and generating new

Information retrieval
Image generation

hypotheses.

1. Introduction

A rapidly growing number of functional magnetic resonance imaging
(fMRI) studies have given us important insights into the mental pro-
cesses that underpin behavior. However, individual studies are often
power-restricted (Carp, 2012; Button et al., 2013), since the number of
subjects and mental processes that can be interrogated in a single
experiment is limited (Church et al., 2010). One approach to digest the
vast literature and synthesize across many studies is to perform a
meta-analysis of the reported results, such as the coordinates of the most
significant effects (e.g., 3D location of peak brain activation in response
to a task). These meta-analyses usually require expert curation of rele-
vant experiments (e.g. Costafreda et al., 2008; Minzenberg et al., 2009;
Shackman et al., 2011). A critical technical challenge here is the
consolidation of synonymous terms. Importantly, over time, different
denominations might be used in different contexts or invented to refine
existing ideas. For instance, “self-generated thought”, one of the most
highly studied functional domains of the human brain (Smallwood,
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2013), can be referred to by varying terms, such as “task-unrelated
thought” (Andrews-Hanna et al., 2014).

The selection of reported results for meta-analysis can be automated
on data scraped from the published literature (Yarkoni et al., 2011;
Dockes et al., 2020; Rubin et al., 2017). Two popular examples of this
direction are Neurosynth (Yarkoni et al., 2011) and more recently
Neuroquery (Dockes et al., 2020). Neurosynth utilizes automated
keyword search to retrieve relevant studies and statistical tests to find
summary brain activation maps corresponding to the keywords. Unlike
Neurosynth, Neuroquery is a predictive model that synthesizes activa-
tion maps from keywords in the input query. Despite their differences in
modeling, both Neurosynth and Neuroquery only support queries con-
sisting predefined keywords. Furthermore, Neurosynth does not
explicitly handle long queries, while Neuroquery relies on superficial
lexical similarity via word co-occurences for inference of longer or rarer
queries. We propose an alternative approach named Text2Brain, which
builds on recent neural language models and permits more flexible
free-form text queries. Text2Brain captures a more fine-grained and
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Fig. 1. Overview of data preprocessing, the Text2Brain model, and training
procedure. All activation maps are 3D volumes, but projected to the surface for
visualization.

Table 1
High-level comparison of approaches to meta-analytic brain maps generation .
Neurosynth ~ Neuroquery Text2Brain
Vocabulary Fixed Fixed Unlimited
Handle of complex None Lexical similarity Semantic similarity
query
Predictive models None TF-IDF, linear Transformer,
regression convolution
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Fig. 2. Evaluation of article-average activation maps predicted from their titles
measured in area under the Dice curve (AUC) score. The left and right graph
show the Dice AUCs of samples from the easy and hard test sets, respectively
(Section 3.1). The p-values are computed from paired-sample t-tests between
Text2Brains and each of the 2 baselines.

implicit semantic similarity via vector representations from the neural
language model in order to retrieve more relevant studies. Furthermore,
in contrast to tools like Neuroquery, our method computes synthesized
activation maps via a 3D convolutional neural network (CNN) model,
which we empirically demonstrate, can capture coarse and fine details.

We compare Text2Brain’s predictions with those from Neurosynth
and Neuroquery, where we used article titles as free-form queries.
Furthermore, we assess model predictions on independent test datasets,
including reliable task contrasts and meta-analytic activation maps of
well-studied cognitive domains predicted from their descriptions. Our
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Fig. 3. Dice AUCs of predicted IBC task activation maps from contrasts’
description. The p-values are estimated from paired-sample t-tests between
Text2Brain against the two baselines.
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Fig. 4. Dice AUCs of predicted HCP task activation maps from contrasts’
description. The graph includes 22 contrasts with the highest HCP-IBC’s Dice
AUC scores and sorted in decreasing order.

analysis shows that Text2Brain generates activation maps that better
match the target images than the baselines tools. Given its flexibility in
taking input queries, Text2Brain can be used as an educational aid as
well as a tool for synthesizing maps based on published results or
generating novel hypotheses for future research. Compared to our con-
ference article (Ngo et al., 2021), we have extensively expanded our
results and analysis. Specifically, we have expanded on the model
validation on article titles with a different test set (Sections 3.1 and 4.1),
added additional evaluation on the contrast maps predicted from their
descriptions (Section 4.2). New results and discussion have also been
added to this paper, including a high-level conceptual comparison of
models (Section 2.7), new experiments on predicting representative
meta-analytic results (Sections 3.3 and 4.2), and quantitative analysis of
the models’ robustness to input queries (Sections 3.4 and 5.2).

2. Datasets and methods
2.1. Model overview
Fig. 1 shows the overview of this work, including data generation,

model architecture, and model training. The Text2Brain model has an
encoder-decoder architecture that maps text sequences into brain
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Fig. 5. Task activation maps predicted from contrasts’ description. Each row shows both the thresholded maps of the top 25% most activated voxels (top) and the
overlap between predicted and target binarized brain maps. Blue is activation in the target contrast, red is the predicted activation and yellow is the overlap. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

activation maps (Section 2.2). Its transformer-based encoder uses self-
attention to encode a snippet of text input into vector representation
(Vaswani et al., 2017; Devlin et al., 2018). Text2Brain’s 3D convolu-
tional decoder (CNN) then translates the vector representation into a 3D
brain activation map. The Transformer is currently the most effective
approach for modeling text since it can capture long-distance de-
pendency between words and can learn efficiently through
self-supervision from massive text corpora (Jawahar et al., 2019; Raffel
et al., 2020). On the other hand, 3D CNNs are the most dominant
architectural design in medical imaging (Milletari et al., 2016; Kam-
nitsas et al., 2017).

In our proposed approach, we first extract full text and activation
coordinates from each research article to create data samples. Each
sample consists of an input snippet from the full text and an output 3D
activation map created using the coordinates (Section 2.3). Text2Brain
is trained to associate the input text to activations at various spatial
locations. Since Text2Brain’s transformer-based encoder is context-
sensitive, it can better extract information from free-form query by
refining the vector representation depending on the specific phrasing of
the text inputs (Tenney et al., 2019). In contrast, the classical keyword
search mainly exploits co-occurrence of keywords regardless of context
and therefore may struggle on more nuanced queries (Salton and
Buckley, 1988). Furthermore, keyword search approaches store one
activation map for each supported keyword, which are in turn linearly
combined for queries. This approach can limit how many keywords are
supported (Yarkoni et al., 2011; Dockes et al., 2020). On the other hand,
Text2Brain stores the text and activation maps content in its parameters
and can scale better to diverse input queries (Petroni et al., 2019). We
use data augmentation to encourage Text2Brain to construct and store
rich many-to-one mappings between textual description and activation
maps (Section 2.4). This allows Text2Brain to better map semantically
similar text queries to similar activation maps.

2.2. Implementation

Fig. 1 bottom left corner shows the Text2Brain model with its text
encoder and 3D CNN image decoder. Text2Brain’s text encoder is based
on SciBERT, a BERT model that has been trained using scientific articles
(Beltagy et al., 2019). BERT is a transformer-based model with bidi-
rectional self-attention trained via self-supervision to learn semantic
representations of textual input (Devlin et al., 2018). The text encoder
outputs a vector representation of dimension 768. This vector is pro-
jected using a fully-connected layer and then reshaped to a 3D volume of
dimension 4 x 5 x 4 voxels with 64 channels at each voxel. The image
decoder consists of 3 transposed 3D convolutional layers with 32, 16, 8
channels respectively. Text2Brain was trained using the Adam opti-
mizer (Loshchilov and Hutter, 2018) and the mean-squared error with a
batch size of 24 for 2000 epochs. The learning rate for the text encoder
and image decoder are set at 10~ and 3 x 1072 respectively. The
model’s source code is available at https://github.com/sabunculab/text
2brain.

2.3. Data preprocessing

We used the same set of 13,000 neuroimaging articles previously
released in Dockes et al. (2020) in our experiments. Each article contains
one or more tables of results that reported coordinates of peak activation
in MNI152 coordinate system (Lancaster et al., 2007). The activation
foci are also publicly released by Neuroquery (Dockes et al., 2020).
Following the same procedure as Dockes et al. (2020), the set of acti-
vation foci associated with each table is used to generate an activation
map by placing a Gaussian sphere with full width at half maximum
(FWHM) of 9mm at each of the coordinates of peak activation. The
chosen FWHM allows a fair comparison with Neuroquery (Dockes et al.,
2020) in our experiments, and is consistent with previous work (Wager


https://github.com/sabunculab/text2brain
https://github.com/sabunculab/text2brain

G.H. Ngo et al.

~ ALE target

Visual
processing

1x10-3 EEEET] 5x1072

>

Dice = 0.447

Auditory
processing

1x10-3 EEEET) 1.4x10°"

Motor

execution
1x10-° EET] 2.2x10"

Working

memory 1x10- EEEET 8.3

Pain

D|ce 0 636

B Target-only

J'ethBrain

5x10 EEEET] 1.9x1073

4x10* mEEET] 1.7x10°3

Medical Image Analysis 81 (2022) 102540

‘Neurosynth

‘Neuroquery

5x104 mEEETT] 1.7x1073

=

Dice = 0.359

5x10 mEETT] 1.9x1073

=

Dice =0.118

Dice = 0.509 Dice = 0.220

AVE

che o 566 Dice = 0.364
[JOverlap Il Prediction-only

Fig. 6. Prediction of brain maps from meta-analytic studies of representative functional domains. The information of the investigated functional domains are listed in
Table 2. Reference and predicted activation maps of the first 4 function domains are visualized on the brain surface. The last domain (“pain™) is visualized in the
volume as most activation concentrates in the non-cortical parts of the brain. For all functional domains, Text2Brain generates reasonable activation maps and

comparable with the baselines for the common functional domains.

etal., 2009; Yarkoni et al., 2011; Yeo et al., 2015). Supplemental section
6.6 shows an analysis of the effect of the Gaussian kernel’s FWHM used
for preprocessing on Text2Brain’s predictive accuracy on an indepen-
dent test set. This comparison confirms that the choice of the kernel’s
FWHM is reasonable. An article-average activation map is also gener-
ated by averaging the activation maps of all the tables in the article. The

text associated with the activation maps are extracted from the articles’
full text. The articles’ full text are scraped using their PubMedID via the
NCBI API ° and the Elsevier E-utilities APL* As there may be multiple
text snippets corresponding to the same activation map, the next section
(Section 2.4) shows how the corresponding text of an activation map is

3 https://www.ncbi.nlm.nih.gov/books/NBK25501/

4 https://dev.elsevier.com/
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Table 2

Meta-analytic studies of representative functional domains. The studies were
selected from the ANIMA dataset (Reid et al., 2016) that have the most number
of experiments and covere a diverse set of brain regions.

Functional domain #Exp  Search queries

Visual processing ( 114
Heckner et al., 2021)

visual processing face monitor face
discrimination film viewing fixation flashing
checkerboard passive viewing visual object
identification visual pursuit visual tracking
visuospatial attention

auditory processing divided auditory attention
music comprehension oddball discrimination
passive listening phonological discrimination
pitch monitor pitch discrimination tone
monitor tone discrimination

motor execution writing chewing swallowing
drawing isometric force motor learning
grasping finger tapping button press flexion
extension

Auditory processing ( 122
Heckner et al., 2021)

Motor execution ( 251
Heckner et al., 2021)

Working memory ( 189 working memory short-term memory
Rottschy et al., 2012)
Pain (Xu et al., 2020) 222 pain noxious nociception
selected.
2.4. Training

Each training sample consists of a text-activation map pair and
correspond to an neuroimaging article. The activation map is sampled
uniformly at random from the union set of table-specific maps and
article-average map. For each table-specific map, the first sentence of
the corresponding table caption is chosen as the map’s associated text.
Our initial data exploration suggested that the first sentence to be the
most relevant description of the activation map. For each article-average
map, the associated text that describes the activation map is sampled
uniformly at random from the following four sources: (1) the article’s
title; (2) one of the article’s keywords; (3) the article’s abstract; and (4) a
randomly chosen subset of sentences from the discussion section of the
article. This data augmentation strategy encourages Text2Brain to
generalize over input texts of different lengths. Furthermore, matching
the same activation pattern with multiple different text snippets en-
courages the model to recognize important words common across the
snippets and to learn the association between different but synonymous
words. Supplemental Fig. 12 shows our ablation study on the sampling
strategy. The liberal (and likely noisy) construction of image-text pairs
appears to perform better than more deliberate coupling of image-text
snippets strategies (not reported) that we tried in our preliminary ex-
periments. We surmise that simply presenting different text snippets to a
target brain image is analogous to another augmentation strategy that
allows the neural network to pool across samples and learn the relevant
words and their weights with respect to the target brain maps. Training
with the set up in Section 2.2 takes approximately 75 h on one Nvi-
diaRTX GPU while one inference pass with an input query of up to 140
characters takes less than 1 s.

2.5. Baselines

We compare Text2Brain to 2 different baselines: Neurosynth (Yar-
koni et al., 2011) and Neuroquery (Dockes et al., 2020). For a keyword,
Neurosynth first finds all neuroimaging articles that mention that
keyword. Then, one statistical test per voxel is performed across the
activation maps corresponding to those studies to determine a signifi-
cant association. Since Neurosynth was not formulated to handle
multiple-word queries, for such query, we performed statistical test
using activation maps from all articles that contain at least one of the
keywords in the query.

Neuroquery extends Neurosynth’s vocabulary of keywords by
including more curated keywords from lexicons such as MeSH,
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NeuroNames, and NIF (Lipscomb, 2000; Bowden and Martin, 1995;
Gardner et al., 2008). The keyword encoding is obtained after per-
forming non-negative matrix factorization of the articles’ full text (as a
bag of keywords) represented with term frequency - inverse document
frequency (TF-IDF) features (Salton and Buckley, 1988). A ridge
regression model was trained to map the text encoding to the activation.
The inference of a keyword is smoothed by a weighed average of its most
related keywords (in the TF-IDF space). For multiple-word queries, the
predicted activation map is obtained by averaging the activation maps
from all keywords in the input, weighed by the coefficients learnt during
training.

2.6. Evaluation metrics

For thresholded target activation maps such as those computed by
ALE (Eickhoff et al., 2009), the predicted brain maps are thresholded to
retain the same number of most activated voxels as the target. For
example, given an estimated activation map by ALE with statistically
significant clusters of activation that cover 25% of the brain volume, the
brain maps predicted by Text2Brain, Neuroquery, and Neurosynth are
also thresholded to retain the top 25% most activated voxels in each
map. The accuracy of prediction is measured by Dice score (Dice, 1945)
which quantifies the extent of overlap between the predicted and target
brain maps (details are in Supplemental Section 6.2).

Furthermore, we use Dice scores at different thresholds to estimate
the similarity between predicted and target activation maps at different
levels of detail (Ngo et al., 2022). This evaluation procedure is similar to
that used in Dockes et al. (2020) for a thresholded target map, but we
apply the same thresholding to both the target and predicted map. For
example, at 5% threshold (considering the 5% most activated voxels),
the Dice score measures the correspondence of the fine-grained details
between the target and predicted activation maps. At higher thresholds
(e.g. 25%), the score captures the gross agreement between activation
clusters. We also estimated the area under the Dice curve (AUC) as a
summary measure using approximated integration of Dice scores across
all thresholds from 5% up to 30%. Supplemental Fig. 9 shows the Dice
curve for an example pair of target-predicted activation maps. Note that
the range of thresholds in the x-axis also conveys the maximum per-
centage of the gray matter mask that has an activation in the target brain
map. For example, if only a proportion of gray matter mask has acti-
vation, such as the case of Neuroquery prediction that mostly extends up
to 30% of the gray matter mask or a sparse target activation pattern from
the coordinate-based meta-analysis, the x-axis range will not be
extended up to 1.

In our experiments, all evaluation is performed in the MNI152
volumetric space, which is the original space of all predicted maps. For
visualization, with activation maps that mostly concentrate in the ce-
rebral cortex, the original volumetric images are transformed from
MNI152 space to fs_LR surface space using Connetome Workbench (Van
Essen et al., 2013) via the FreeSurfer surface space (Buckner et al., 2011;
Fischl, 2012), with isolated surface clusters of less than 20 vertices being
removed (Wu et al., 2018). Activation maps with significant activation
in the non-cortical parts of the brain are visualized by cross-sectional
slices with significant activation using Nilearn (Abraham et al., 2014).

2.7. High-level model comparison

Text2Brain can better handle input text than prior approaches
because its vocabulary is not limited to a fixed pre-defined set of words
(Table 1). In contrast, Neurosynth and Neuroquery rely on fixed word
vocabularies and cannot predict for queries consisting of out-of-
vocabulary words. Besides, Neurosynth’s and Neuroquery’s vocabu-
laries are not sufficiently extensive, covering only a fraction (under
10%) (Dockes et al., 2020) of terms in relevant neuroimaging lexicons
such as Cognitive Atlas (Poldrack and Yarkoni, 2016) and NeuroNames
(Bowden and Martin, 1995). Text2Brain’s usage of byte-pair encoding
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Fig. 7. Prediction of self-generated thought activation map using synonymous queries. While Text2Brain generates consistent prediction across the similar queries,
Neurosynth and Neuroquery’s prediction deteriorate on the “internally-directed thought” and “task-unrelated thought” queries.

enables the model to handle infrequent and out-of-vocabulary words
more gracefully, by breaking down those words into digestable
sub-word tokens (Sennrich et al., 2016). Hence, Text2Brain’s vocabulary
is open ended and can scale with training data to be unlimited in theory.
Besides, Text2Brain’s training is not limited to only training set data.
Text2Brain can  leverage  self-supervised learning  from
non-neuroimaging scientific articles, as well as neuroimaging articles
that do not report activation coordinates to learn a better
text-to-activation-map transformation. By finetuning a SciBERT text
encoder pretrained on the larger dataset of scientific articles (including
non-neuroimaging articles), Text2Brain seems to converge on an opti-
mum with a more useful representational space of the input text. Sup-
plemental Section 6.4 shows the comparison between the Text2Brain
model that uses pretrained SciBERT text encoder versus a randomly
initialized text encoder. Evaluation on predicting article-average acti-
vation maps from both sets of test articles in the Neuroquery dataset
(similar to Section 3.1) suggests that pretraining benefits the Text2-
Brains performance. Furthermore, Text2Brain uses contextualized text
embeddings to model semantic relationship between words so it can

deal with nuanced queries more effectively. Methods such as Neuro-
synth and Neuroquery may have difficulty dealing with complex ex-
pressions. By simply averaging the keywords’ activation maps to arrive
at the prediction for a complex query, these methods may fail to account
for relationship between words in the query, such as order and semantic.
Lastly, while the predictive approach of Neuroquery constructs the
predicted activation map by modelling voxels’ activation indepen-
dently, Text2Brain generates the whole-brain activation with a 3D
convolutional decoder that takes in the text encoding produced by the
language model. By upsampling and computing the whole-brain acti-
vation from a bottleneck, Text2Brain can better model both the short
and long-distance relationship between voxels.

3. Experimental setup
3.1. Predict activation maps from article title

Two test sets were created from the Neuroquery dataset of 13,000
studies. The first test set consists of 1000 randomly sampled articles. The
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Fig. 8. Accuracy of matching Cognitve Atlas concept names with their
description and aliases using models’ predicted brain maps.

second test set also consists of 1000 articles but was randomly sampled
such that the keywords (defined by the articles’ authors) do not appear
in the training and validation articles. The two test sets are labeled as
easy and hard test sets respectively. Of the remaining articles, 1000 are
randomly held out as a validation set for parameters tuning. For each
article, the article-average activation map is predicted from its title
using Text2Brain, as well as the Neurosynth and Neuroquery baselines.
Both Text2Brain and Neuroquery were trained on the 10,000 articles in
the training set. The Text2Brain model is trained using both the articles’
titles and samples from the full-text, while Neuroquery is trained on the
articles’ full-text. We use predictions from the publicly available Neu-
rosynth model at https://neurosynth.org, which was trained on the ar-
ticles’ abstracts. Note that Neurosynth is not a predictive model meant
for out-of-sample prediction, but for performing automated statistical
testing of associations between terms and brain locations.

3.2. Predict activation maps from contrast descriptions

3.2.1. Individual brain charting (IBC) task contrasts

The Individual Brain Charting (IBC) project (Pinho et al., 2020) es-
timates an extensive functional atlas of the human brain via fMRI data of
subjects measured under a large number of task conditions. In partic-
ular, the IBC dataset consists of 180 task contrasts measured on 12
subjects. We use the activation maps provided by the IBC project to
measure the predictive accuracy of Text2Brain and the two baselines
over a wide range of functional domains, given the contrast descriptions
from IBC.

3.2.2. Human connectome project (HCP) task contrasts

While the IBC dataset offers a large number of reference brain maps,
the small number of subjects might make some results less reliable. We
also utilized the Human Connectome Project (HCP) data both for
reference and a measure of reliability of target maps. The HCP dataset
consists of neuroimaging data from over 1200 subjects, including task
fMRI (tfMRI) of 86 task contrasts from 7 domains (Barch et al., 2013),
which overlap with 43 contrasts under the IBC dataset. We evaluate the
model prediction of HCP task contrasts from their descriptions. While
HCP provides detailed descriptions of task contrasts, we opt for the more
concise contrast descriptions provided by the Individual Brain Charting
(IBC) as they are more succinct and thus more favorable to the baselines.
The IBC contrast descriptions are extracted from the metadata of the
activation maps released on Neurovault https://neurovault.org/images/
360528. The list of all IBC description of HCP contrasts are included in
Supplemental Table 6.1. On the other hand, the target (ground-truth)
activation maps are the HCP group-average contrast maps, as the large
number of subjects provides more reliable estimates of the contrast
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maps. In the analyses of this experiment, we use the agreement between
the IBC and HCP maps as a measure of reliability. Despite using similar
protocols, there are subtle differences between the IBC and HCP ex-
periments. For instance, the original HCP language task was conducted
in English but the corresponding language task in the IBC project was
conducted in French.

3.3. Predict representative meta-analytic brain maps

The automated approach to brain map generation of Text2Brain and
the 2 baselines are compared against published brain maps created from
a manually curated set of meta-analyses. In particular, 5 cognitive
concepts and their corresponding activation maps of 5 representative
meta-analytic studies from ANIMA database (Reid et al., 2016) were
selected. The 5 meta-analytic studies were selected for having the most
number of experiments and their different coverage of the human brain.
The cognitive processes of interest are visual processing, auditory pro-
cessing, motor execution (Heckner et al., 2021), working memory
(Rottschy et al., 2012), and pain (Xu et al., 2020). Each study searches
for published neuroimaging studies that contain a set of texts queries
relevant to the cognitive concept of interest. For example, in Rottschy
et al. (2012), the phrases to search for working memory-related studies
are “working memory” and “short-term memory”. The same text queries
for discovering relevant studies in the original meta-analysis were used
as input to Neurosynth, Neuroquery, and Text2Brain. Table 2 shows the
search queries and the number of experiments included in the original
meta-analysis of the 5 chosen cognitive concepts. Activation maps
generated from all text input queries corresponding to each cognitive
concept are averaged to yield a single brain map for each model. The
reference brain images for comparison are the activation maps released
by the studies and made publicly available on ANIMA. The reference
activation maps are produced by Activation Likelihood Estimation
(ALE) (Turkeltaub et al., 2002; Laird et al., 2005; Eickhoff et al., 2009)
and thresholded to retain only the statistically significant clusters of
activation. For all reference ALE maps, the cluster-level forming
threshold at voxel-level is p < 0.001 and cluster-level corrected
threshold is set at p < 0.05 by the original authors (Eickhoff et al.,
2012). For comparison, the generated brain maps are thresholded to
keep the same number of survived voxels as those in the reference
activation maps. The accuracy of each model’s generated brain map is
evaluated as the Dice score between the (thresholded) generated brain
map and the target (thresholded) brain map (see Section 2.6).

3.4. Evaluate robustness of model prediction to semantically-equivalent
queries

With the continual improvement of our understanding of the human
brain and mind, neuroscientific knowledge is also an ever evolving
repertoire. Several neuroimaging concepts have also been changing,
adapting and broadening over time. Thus, we were interested in
examining if our approach is robust to semantically equivalent queries.
For example, “self-generated thought”, one of the most intensively
examined cognitive domains in neuroscience, has had its definition
refined and assigned different denominations over the years. As a
cognitive paradigm, different names have been used to refer to the set of
inward-oriented psychological processes, such as “self-generated
thought” (Smallwood, 2013), or “task-unrelated thought” (Andrew-
s-Hanna et al., 2014). Both terms are associated with “default network”
(Buckner et al., 2008), the set of brain regions with elevated activation
when subjects are not subjected to any external stimulus.

To assess models’ prediction of synonymous queries, we utilized the
ontology from the Cognitive Atlas (Poldrack et al., 2011; Bilder et al.,
2009). The Cognitive Atlas is a collaborative knowledge base for
neuroscience with content such as cognitive concepts, their description
and synonyms (aliases) contributed by the project’s voluntary partici-
pants (Miller et al., 2010). At the time of our experiments, Cognitive
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Atlas includes 885 concepts with definition, 108 of which have at least
one alias. We considered a model to be robust with respect to a specific
cognitive concept’s definition if the activation map predicted from the
description matches the predicted map from the concept’s name. In
particular, given a model’s predicted brain maps from all 885 Cognitive
Atlas concept names and their description, we assess if the model’s brain
map predicted from a concept’s definition is one of the k maps (out of
886 possible maps) most similar to the model’s brain map predicted
from the concept’s name. In our experiments, top-1, top-5 and top-10
matching accuracy were evaluated using Dice AUC metrics. The
different values of k’s account for the uncertainty of the concepts’ nat-
ural language text, e.g., different contributors might use different names
to refer to the same concept. Similarly, models’ robustness with respect
to a cognitive concept’s alias is measured by the accuracy of matching
the activation maps predicted from the text of a concept’s alias and its
name.

4. Results
4.1. Validation of activation maps predicted from article title

Fig. 2 shows the quality of activation maps predicted from the titles
of 1000 articles in each of the two test sets (Section 3.1). In the easy test
set (the test articles’ keywords can overlap with the training articles’),
the proposed Text2Brain model (mean Dice AUC = 0.0636) outperforms
Neuroquery (mean Dice AUC = 0.0523) and Neurosynth (mean Dice
AUC = 0.0453). In the hard test set (the test articles’ keywords are not
present in the training set), the Text2Brain model (mean Dice AUC =
0.0609) also performs better than Neuroquery (mean AUC = 0.0499)
and Neurosynth (mean AUC = 0.0457). Paired-sample t-tests show that
the performance differences in both test sets are statistically very sig-
nificant. The p-values when comparing Neuroquery and Neurosynth are
p=>525x10"% and p = 2.40 x 1012, Fig. 2 also indicates how the
different models handle out-of-sample input text. Text2Brain can make a
prediction for all input texts, evident with positive Dice AUCs for all
samples. On the other hand, Neurosynth fails to make prediction for
some article titles in both test sets, resulting in zero Dice AUCs for such
samples. Similarly, Neuroquery fails to make prediction for some sam-
ples in the hard test set. These failure cases are caused by the limited
vocabularies of Neurosynth and Neuroquery that cannot cover the words
in the test input queries. On the other hand, the language model of
Text2Brain is finetuned from SciBert, which has been pretrained on a
broader lexicon and utilizes sub-word tokens to extend the vocabulary to
unseen words (more details in Section 2.7).

4.2. Prediction of task contrast maps from description

Fig. 3 shows the Dice AUC scores for the prediction of Text2Brain,
Neuroquery and Neurosynth against the IBC group-average task contrast
maps. Text2Brain (mean Dice AUC = 0.0507) improves upon both
Neuroquery (mean Dice AUC = 0.0457, p = 4.11 x 10~*), and Neuro-
synth (mean Dice AUC = 0.0404, p = 1.58 x 10~°). The p-values are
measured by 2-tail paired-sample t-test between Text2Brain and the two
baselines.

Fig. 4 shows the AUC scores for the prediction of the three models
and the IBC average contrasts, against the HCP target maps. The 22
contrasts with above-average HCP-IBC’s AUC scores, considered to be
the reliable contrasts, are shown. Across all 43 HCP contrasts, Text2-
Brain (mean AUC = 0.082) performs better than the baselines, i.e.
Neuroquery (mean AUC = 0.0755, p = 0.08), Neurosynth (mean AUC =
0.047,p = 1.5 x 1075), where p-values are computed from the paired t-
test between Text2Brain’s and the baselines’ prediction. As reference,
IBC contrasts yield a mean AUC = 0.094 when compared to the corre-
sponding HCP maps (Statistical comparison with Text2Brain, p =
0.077).
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Fig. 5 shows the prediction for three contrasts correspond to different
HCP task groups, namely “MOTOR”, “LANGUAGE”, “RELATIONAL”
thresholded at the top 25% most activated voxels. The three task groups
were chosen to show results for a range of target images with different
levels of reliability. The two task groups “MOTOR” and “LANGUAGE”
are the two most reliable task (having the highest average HCP-IBC AUC
across all contrasts), while “RELATIONAL” has the lowest average HCP-
IBC AUC. Text2Brain’s prediction improves over the baselines for the
three contrasts. Neurosynth was not able to generate activation maps for
one of the contrast descriptions (“Move tongue™). On the other hand, for
the “Move tongue” contrast, Neuroquery predicts activation in the pri-
mary cortex, but the peak is in the wrong location, shifted more toward
the hand region of the homunculus. Additionally, there is a false positive
prediction in the occipital cortex, which might be an artifact from
modeling brain activation coupled with visual stimuli-related words
describing the motor experiments.

4.3. Prediction of brain maps from representative meta-analytic studies

Fig. 6 shows the prediction of activation maps for 5 representative
meta-analytic studies with the most number of experiments from
ANIMA (Reid et al., 2016). Among the three models, Neuroquery has the
lowest Dice score on average, with prediction on “Visual processing”,
“Working memory”, and “Pain” that significantly deviates from the
target maps. On the other hand, Neurosynth-derived brain maps
consistently match well against the target maps. The high accuracy of
Neurosynth prediction is expected since the five chosen cognitive con-
cepts are among the most commonly studied concepts with the most
number of experiments reporting activation coordinates in the litera-
ture. Given high number of available experiments and the input queries
mostly exist in Neurosynth’s predefined keyword set, the activation
coordinates scraped by automated method by Neurosynth would be very
similar to the manually curated data in the original meta-analysis.
Lastly, Text2Brain also predicts consistently reasonable brain maps for
all five cognitive concepts, and matches the target maps better than
Neurosynth for “Visual Processing” and “Pain”. Results in Fig. 6 shows
that Text2Brain could learn appropriate relationship between common
search phrases and the activation pattern of a diverse set of functional
domains.

5. Robustness of models to input queries
5.1. Example of “self-generated thought” synonyms

We examine the prediction for “self-generated thought”, which is one
of the most extensively investigated functional domains, due to its
involvement in a wide range of cognitive processes that do not require
external stimuli (Andrews-Hanna et al., 2014), and is associated with the
default network (Buckner et al., 2008). The ground-truth map for
self-generated thought, taken from (Ngo et al., 2019), is estimated using
activation likelihood estimation (ALE) (Eickhoff et al., 2009) applied on
activation foci across 167 imaging studies of 7 tasks selected based on
strict criteria (Spreng et al., 2009; Mar, 2011; Sevinc and Spreng, 2014).
The resulting ALE map is thresholded with the cluster-level forming
threshold at voxel-level p < 0.001, and cluster-level corrected threshold
p < 0.05 (Eickhoff et al., 2012).

Fig. 7 shows the prediction of self-generated thought activation map
using four different query terms, thresholded to retain the same number
of activated voxels as the target map.

Across all four queries, Text2Brain’s prediction best matches the
ground-truth activation map compared to the baselines. For the “self-
generated thought” and “default network” queries, all approaches
generate activation maps that are consistent with the ground-truth,
which includes the precuneus, the medial prefrontal cortex, the
temporo-parietal junction, and the temporal pole. Text2Brain and
Neuroquery both make reasonable prediction from the “internally-
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directed thought” query while Neurosynth’s prediction is largely scat-
tered and does not match the target map. Lastly, Text2Brain can also
replicate a similar activation pattern to the target from the query “task-
unrelated thought”, evident by only a slight drop in the Dice score.
However, Neuroquery and Neurosynth both generate activation maps
that differ from the typical default network’s regions, such as activation
in the prefrontal cortex, and also result in a large drop of the Dice scores.

5.2. Prediction of cognitive atlas concepts from synonymous queries

Fig. 8 shows the accuracy of matching cognitive concept names from
the Cognitive Atlas (Poldrack et al., 2011) with their definitions and
atlases using the different models’ predicted brain maps. Prediction by
Text2Brain is more robust than both Neuroquery and Neurosynth with
respect to the concept definition and alias. In particular, Text2Brain has
the same top-1 accuracy of matching the brain map predicted from a
concept’s alias with the prediction from the concept name compared to
Neurosynth. This result is expected given that Neurosynth can yield
accurate brain map for keywords that are included in their vocabulary.
In contrast, Text2Brain improves over Neurosynth for top-1 accuracy of
matching concept name with the longer text of concept definition.
Text2Brain is more robust than both Neurosynth and Neuroquery
baselines in terms of top-5 and top-10 matching accuracies for both
concept aliases and definitions. Fig. 8 indicates that Text2Brain pre-
diction is robust to natural language text queries of different length and
complexity.

6. Conclusion

In this work, we present a model named Text2Brain for generating
activation maps from free-form text query. By finetuning a high-capacity
SciBert-based text encoder to predict coordinate-based meta-analytic
maps, Text2Brain captures the rich relationship in the language repre-
sentational space, allowing the model to generalize its prediction for
synonymous queries. This is evident in the better performance of
Text2Bran in predicting the self-generated thought activation map using
different descriptions of the functional domain. Text2Brain’s capability
to implicitly learn relationships between textual terms and images en-
sures the model can remain relevant and useful even as neuroimaging
literature continues to evolve with new discoveries and rephrasing of
existing concepts. We also show that Text2Brain accurately predicts
most of the task contrasts included in the IBC and HCP dataset, vali-
dating its capability to make prediction for longer, arbitrary queries.
Text2Brain also preempts failure cases in Neurosynth and Neuroquery,
where they cannot predict input queries undefined in the vocabulary
list, even though these queries are relevant to neuroscience research (e.
g. title of an article). On the other hand, we also observed that Text2-
Brain had difficulties handling queries that involve logical reasoning,
such as the direction of a contrast. For example, while queries such as “A
vs B” and “B vs A” can be inferred by human to correspond with inverted
activation maps, Text2Brain sometimes treats one direction to be the
same as the other. We suspect that this type of error is likely due to the
model’s inability to generalize “vs” as an ‘“subtractive” operator.
Resolving such limitation will likely require modifications to the lan-
guage model. Furthore, in the future, we plan to enhance the inter-
pretability of our approach, such as to attribute regions of activations in
the generated map to specific words in the input query, as well as to
efficiently match activation maps and scientific descriptions most rele-
vant to the synthesized images.

We believe that the flexibility of Text2Brain can significantly lower
the barrier for researchers at all stages of their careers to synthesize
brain activation maps needed for their research. For example, the ability
of Text2Brain to generate meaningful neural activation patterns of
synonymous queries for a functional domain can improve the accuracy
of delineating region-of-interests (ROIs) relevant to the functional pro-
cess, as well as to assess the reliability of each ROI. Discovery of these
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ROIs is useful for several applications such as meta-analytic connectivity
modeling (MACM) (Laird et al., 2013). We look forward to such appli-
cation of Text2Brain in aiding future neuroscientific research.
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